JP2005030676A - Coil tube type heat radiator - Google Patents

Coil tube type heat radiator Download PDF

Info

Publication number
JP2005030676A
JP2005030676A JP2003196017A JP2003196017A JP2005030676A JP 2005030676 A JP2005030676 A JP 2005030676A JP 2003196017 A JP2003196017 A JP 2003196017A JP 2003196017 A JP2003196017 A JP 2003196017A JP 2005030676 A JP2005030676 A JP 2005030676A
Authority
JP
Japan
Prior art keywords
resin layer
coil tube
fin
fin member
base portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003196017A
Other languages
Japanese (ja)
Other versions
JP2005030676A5 (en
Inventor
Shoichiro Usui
正一郎 臼井
Tetsuo Ogata
哲夫 小方
Koichi Hayashi
耕一 林
Shigeyuki Ishida
重行 石田
Choju Amano
長壽 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP2003196017A priority Critical patent/JP2005030676A/en
Publication of JP2005030676A publication Critical patent/JP2005030676A/en
Publication of JP2005030676A5 publication Critical patent/JP2005030676A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/04Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0472Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being helically or spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coil tube type heat radiator cooling fuel or the like heated to a high temperature, allowing improvement of cooling performance, allowing reduction of weight and cost by using a resin material, and having excellent flexibility of a layout allowing arrangement even in a narrow underfloor space or the like. <P>SOLUTION: A resin layer 2 is disposed on the outer surface of a spiral metal tube 1 to form a coil tube body 5. At least one metal fin member 6 is projectingly provided on one face or both the faces of the coil tube body 5 with a base part 7 fixed to the resin layer 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、自動車用、一般産業用のフューエルパイプ、オイルパイプ等の内部を流動する流体を、空冷により冷却するためのコイルチューブ式放熱器に係るものである。
【0002】
【従来の技術】
【特許文献1】特開平7−158530号公報
【特許文献2】特開2000−120442号公報
【特許文献3】特開平5−322457号公報
【0003】
従来、複数の噴射ノズルを設けてエンジンの複数の気筒にガソリン等の燃料を供給するフューエルデリバリパイプが知られている。このフューエルデリバリパイプは、フューエルパイプを介して燃料タンクから導入された燃料を、複数の噴射ノズルから順次、エンジンの複数の吸気管又は気筒内に噴射し、この燃料を空気と混合し、この混合気を燃焼させる事によってエンジンの出力を発生させている。
【0004】
そして、燃料タンクからフューエルデリバリパイプ内に余分に燃料が供給された場合、その余分の燃料を圧力レギュレーターにより燃料タンクに戻す回路を有するリターン方式が存在する。しかし、フューエルデリバリパイプは高温のエンジン気筒に近接して配置していたため、このフューエルデリバリパイプに供給された燃料は高温化する。この高温化した余分の燃料を燃料タンクに戻す事によって、燃料タンク内のガソリンの温度が上昇する。この温度上昇により、燃料が気化し、環境に悪影響を及ぼすものとなり好ましくないため、特許文献1、2に記載の発明の如く、フューエルクーラー等により高温化した燃料を水冷又は空冷等により冷却した後、燃料タンク等に戻す方式をとっていた。
【0005】
また、エンジンの可動部分を潤滑するためのエンジンオイルは、エンジンの熱により高温化する事で、粘性が低下し潤滑性能が失われるため、特許文献1、2に示す如く、オイルパイプに連結したオイルクーラー等によりエンジンオイルを冷却した後、エンジンに戻していた。
【0006】
上述の如きフューエルクーラー、オイルクーラー等の放熱器では、特にディーゼルエンジンの場合は、車輌の床下に設置するため、冷却水、カーエアコン用冷媒、その他の冷媒液による冷却ができず、特許文献2の如き空冷タイプのものが使用されている。この特許文献2では、フューエルパイプを設置するカバーに、冷却風の流動方向に直交して複数のフィン部材を突設し、このフィン部材によりフューエルパイプの外周に於いて冷却風を乱流化させ、フューエルパイプ内を流動する燃料の冷却を行おうとするものである。しかしながら、冷却風の乱流化だけでは、冷却効果の大きな向上は望めなかった。
【0007】
そのため、他の異なる熱交換器では、フューエルパイプやオイルパイプ等の外周に、アルミダイキャスト成形により複数のフィンを突設したり、特許文献3に記載の如く、アルミ等の金属製の薄板フィンを、拡管により前記パイプの外周にかしめ固定していた。このフィン部材の配設により、放熱器の伝熱面積を増大させ、外気への放熱を促進して、燃料の冷却を行っていた。また、パイプをU字形或いは蛇行させて折曲する事でも、管長を長くして伝熱面積を増やし、冷却効果を高めようとしていた。
【0008】
【発明が解決しようとする課題】
しかしながら、フューエルパイプやオイルパイプをU字状、蛇行状に折曲した場合では、管長を長くするのに限界があるし、放熱器が縦横方向に嵩張るものとなり、設置場所が限定されてレイアウトの自由度が低かった。また、アルミダイキャスト成形によりフィンを形成する場合、パイプの金属とアルミダイキャストフィンとの接着が、技術的に容易ではなかった。また、アルミダイキャストフィンは、加工技術上、ある程度肉厚とする必要があるため、重量が重くなり過ぎたり、外気への通風抵抗も増して冷却効果が低下する虞があった。また、アルミダイキャストフィンの内部に流体の流路を設ける手段もあるが、流路がアルミ製であると燃料への耐食性に問題を生じていた。
【0009】
そこで、本発明者は、廉価であるとともに軽量で加工性に優れた樹脂に注目し、金属製の伝熱面と樹脂製の伝熱面との熱交換性能について比較したところ、金属製伝熱面に比べて樹脂製伝熱面は、条件にもよるが熱交換性能が4〜15%程度しか劣化しない事を見出した。また、フィン部材の数を多くしたり、表面積が広くなるような形状でフィン部材を形成すれば、樹脂材の使用による4〜15%程度の熱交換性能の劣化を補う事ができ、金属材のみの伝熱面と同等若しくはそれ以上の熱交換性能を得る事が可能であり、しかも加工が容易で軽量な製品が得られると言う結論を得た。
【0010】
本発明は上述の如き課題を解決しようとするものであって、フューエルパイプやオイルパイプ等を流動する流体の空冷を行うためのコイルチューブ式放熱器を、樹脂材を使用して軽量で廉価に製作するとともに、この製作を容易な技術で行う事を目的とするものである。また、嵩張りを少なくし、床下等の狭い空間への設置が行い易くレイアウトの自由度の高い製品を得るものである。そして、樹脂材を使用していても、金属材のみで形成した製品と同等若しくはそれ以上の熱伝導性を得て、流体の冷却効果を向上させるものである。
【0011】
【課題を解決するための手段】
本発明は上述の如き課題を解決するため、渦巻き状とした金属管の外表面に樹脂層を配設して形成したコイルチューブ本体の片面又は両面に、金属製のフィン部材を、樹脂層に基盤部を固定して少なくとも一個突設して成るものである。
【0012】
また、樹脂層は、渦巻き状に成形した金属管の外表面に、モールディング成形により樹脂材を配設して形成し、樹脂層内に金属管を埋設しても良い。
【0013】
また、樹脂層は、予め金属管の外表面に配設したものであって、この樹脂層を配設した金属管を渦巻き状に成形してコイルチューブ本体を形成しても良い。
【0014】
また、フィン部材は、樹脂層に固定する基盤部と、この基盤部に突設したフィンとから成り、前記基盤部に貫通孔を少なくとも一個設け、予め熱溶融させた樹脂層にフィン部材を押し付けて樹脂材を前記貫通孔を介して基盤部の表面側に流出させ固化させる事により、この固化した樹脂材にてフィン部材をコイルチューブ本体に固定しても良い。
【0015】
また、フィン部材は、樹脂層に固定する基盤部と、この基盤部に突設したフィンとから成り、前記基盤部に貫通孔を少なくとも一個設け、この貫通孔に係合可能な突起を樹脂層に突出形成し、フィン部材の基盤部の貫通孔から突出する樹脂層の突起を熱溶融させ固化させる事により、この固化した樹脂材にてフィン部材をコイルチューブ本体に固定しても良い。
【0016】
また、フィン部材は、樹脂層に固定する基盤部と、この基盤部に突設したフィンとから成り、予め熱溶融させた樹脂層にフィン部材を押し付けて、基盤部の長さ方向の両側から溶融した樹脂材を基盤部の表面側に流動させ固化させる事により、この固化した樹脂材にてフィン部材をコイルチューブ本体に固定しても良い。
【0017】
また、フィン部材は、樹脂層に固定する基盤部と、この基盤部に突設したフィンとから成り、この基盤部を樹脂層に接着剤及び/又は熱溶融させた樹脂材の接着力にて接着する事により、フィン部材をコイルチューブ本体に固定しても良い。
【0018】
また、コイルチューブ本体は、両面に幅狭な支持部材を少なくとも一対配置し、この両面の支持部材をコイルチューブ本体を介して接続手段により互いに接続しても良い。
【0019】
また、支持部材は、フィン部材を介してコイルチューブ本体の両面に配置し、接続手段により互いに接続する事で、支持部材にてフィン部材をコイルチューブ本体に固定しても良い。
【0020】
また、フィン部材は、端面形状をL字形、U字形、コ字形、又はV字形とする板状フィン又はピン状フィンであるか又はこれらを複数連結し端面形状を櫛歯形、鋸歯形、又は波形とする板状フィンであっても良い。
【0021】
また、樹脂層は、カーボンナノファイバーを含有させても良い。
【0022】
また、カーボンナノファイバーは、5wt%より多く30wt%より少ない含有量で含有させても良い。
【0023】
【作用】
本発明は上述の如く構成したものであるから、ディーゼルエンジンの燃料等、高温化した流体が金属管内を流動すると、この流体の熱が金属管の表面に伝熱された後、樹脂層を介してフィン部材に伝熱され、更にはフィン部材の外周を流動する冷却風や外気中に放熱される事により、流体の冷却が行われる。そして、本発明では金属管を渦巻き状に配設しているから、U字状、蛇行状に配設した場合に比べ、コイルチューブ本体内での流体の流路を長くする事が可能となる。例えば、外径が8mmの金属管を最大径200mm程度に巻き回すと、コールドプレート本体の金属管は全長で3m以上となる。
【0024】
従って、樹脂材を使用していても伝熱面積を増大させる事が可能となり、冷却効果を向上させる事ができる。また、渦巻き状に金属管を配設する事により、U字状、蛇行状に比べ、曲線部の曲率半径が大きく、湾曲が緩やかとなり、流体の圧力損失が少ないものとなる。従って、流体から金属管への熱伝導性が高まり、流体の冷却性能をより高める事ができる。
【0025】
また、樹脂材の使用により、アルミダイキャスト製品等の全体を金属材で形成した製品に比べ、軽量で廉価な製品を得る事ができる。更に、金属管をほぼ密着させて渦巻き状に巻き回しているので、空間効率良くコイルチューブ本体を成型する事ができ、平面方向の形成幅を小さくする事が可能となるとともに、厚み方向にも嵩張らない偏平なものとなる。従って、コイルチューブ本体のコンパクト化が可能となり、床下等の狭い空間への設置が可能で、レイアウトの自由度の高い製品となる。また、金属管の外周に樹脂層を配設する事により、雨水や泥水等に対するコイルチューブ本体の耐食性が向上するとともに、樹脂材の弾力性により、飛び石等に対する耐久性も向上する。
【0026】
また、樹脂層を介して金属管とフィン部材とを接続するので、溶接やろう付け等を考慮する必要がなく、何れの金属材で形成しても良いものとなる。例えば金属管は燃料等に対する耐食性の高いステンレス鋼で形成し、フィン部材は軽量なアルミで形成する事もできる。
【0027】
また、本明細書で言う樹脂層への基盤部の固定とは、例えば、樹脂層を熱溶融させて基盤部の一部又は全体を樹脂層に埋設して固定しても良い。また、樹脂材の熱溶融による接着力を利用して、基盤部を樹脂層に接着しても良いし、接着剤の塗布により樹脂層に基盤部を接着しても良い。また、樹脂材の熱溶融と接着剤の双方の接着力により樹脂層に基盤部を接着しても良い。また、樹脂層にフィン部材を密着固定する事が可能であれば、樹脂材や接着剤を用いる事なく、ステー等の支持部材によりフィン部材を樹脂層に密着固定させる等、他の何れの手段により行っても良いものである。何れの場合でも、アルミダイキャスト成形や、パイプの拡管によるフィン部材の形成、金属材の溶接やろう付け等によるフィン部材の形成に比べ、簡単な技術で容易に製作する事ができる。
【0028】
また、金属管への樹脂層の配設は、金属管を渦巻き状に成形した後、この渦巻き状の金属管の外周全体に樹脂材を、射出成形やディッピングによりモールディングし、金属管を樹脂材に埋設しても良い。また、金属管の外周に樹脂被膜を設ける等により、外周に予め樹脂層を設けて金属管を形成し、この樹脂層を外装した金属管を渦巻き状に成形してコイルチューブ本体を形成しても良い。また、他の異なる手段により、金属管に樹脂層を配設しても良い。
【0029】
【実施例】
以下、本発明を自動車のディーゼルエンジン用のフューエルクーラーで実施した例を図面に於て詳細に説明する。図1は第1実施例のフューエルクーラーの斜視図で、コイルチューブ本体の両面に櫛歯形のフィン部材を突設し、基盤部に設けた貫通孔から熱溶融させた樹脂層の樹脂材を流出させて固化する事で、基盤部を樹脂層に固定している。図2はフィン部材のコイルチューブ本体への接続前の斜視図である。図3は図1のA−A線拡大断面図である。また、図4は円形の渦巻き状に成形した金属管の平面図である。また、図5は角形の渦巻き状に成形した金属管の平面図である。
【0030】
また、図6は第2実施例で、樹脂層に複数の突起を突設したコイルチューブ本体と、その突起を係合する貫通孔を基盤部に設けたフィン部材の分解斜視図である。図7は第3実施例のフューエルクーラーの斜視図で、端面形状をパルス波形とし幅狭なフィン部材を複数個コイルチューブ本体に配設し、フィン部材の両端部から基盤部表面に流動した樹脂材にて基盤部を固定している。図8は第4実施例のフューエルクーラーの断面図で、端面形状が鋸歯形のフィン部材を複数個コイルチューブ本体に配設している。
【0031】
また、図9は第5実施例のフューエルクーラーの平面図で、予め樹脂層を配設した金属管を円形の渦巻き状に成形して得たコイルチューブ本体に、端面形状がL字形のフィン部材を樹脂材の熱溶融により複数固定するとともにコイルチューブ本体を、十字形に配設した支持部材にて支持固定している。図10は図9のB−B線断面図で、図11は図9のC−C線断面図である。また、図12は第6実施例のフューエルクーラーの平面図で、端面形状がU字形のフィン部材を樹脂材の熱溶融により複数固定している。図13は図12のD−D線断面図である。
【0032】
また、図14は第7実施例のフューエルクーラーの平面図で、端面形状がL字形の複数のフィン部材を接着剤によりコイルチューブ本体に接着固定するとともに、このフィン部材とコイルチューブ本体とを支持部材によって挟持固定している。図15は図14のE−E線断面図である。
【0033】
また、図16は第8実施例のフューエルクーラーの平面図で、端面形状がU字形のフィン部材を、支持部材の挟持力と樹脂層の接着力によりコイルチューブ本体に固定し、更に各フィン部材の両端を両側支持部材により接続固定している。図17は図16のF方向から見た側面図である。
【0034】
尚、本発明ではコイルチューブ本体に樹脂材を用いるが、この樹脂材は何れのものを用いても良い。また、モノマーキャストナイロン、ポリアミドイミド、ポリペンズイミダゾール、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルホン、ポリイミド、ポリフェニレンサルファイド、ポリサルフォン、ポリテトラフルオロエチレン、テトラフルオロエチレン−パーフルオロアルコキシアルカン、フルオロエチレン−プロピレン、ポリクロロトリフルオロエチレン、テトラフルオロエチレン−エチレン、エチレンクロロトリフルオロエチレン等の樹脂材を使用する事により、熱交換性能が優れるだけでなく、耐食性や耐熱性にも優れるフューエルクーラーを得る事ができる。また、フューエルクーラーだけでなく、オイルクーラー、EGRガス冷却装置、その他のコイルチューブ式放熱器の熱交換性能、耐食性、耐熱性、耐久性を向上させる事ができる。
【0035】
更に好ましくは、上述の如き樹脂材にカーボンナノファイバーを混入する事により、樹脂層の熱伝導性を向上させる事が可能となり、金属管内部を流動する燃料等の流体から金属管の表面に伝達された熱を、樹脂層のカーボンを介して迅速にフィン部材に伝達する事ができ、フューエルクーラーの冷却性能を高める事ができる。また、上記ナノカーボンは、5wt%より多く30wt%より少ない含有量で含有させる事で、樹脂材の熱伝導性を向上させる事ができ、フューエルクーラーの放熱特性の高い向上が可能となる。この含有量を5wt%以下とすると、伝熱効果の向上に乏しく、30wt%以上を樹脂材に含有させるのは困難で、生産性が低下するとともに高価で、伝熱効果に大きな差を生じない。尚、本明細書で言うカーボンナノファイバーとは、ナノテクノロジー分野に於いて、カーボンナノチューブ、カーボンナノホーン、その他ナノ単位のカーボン材料を全て含んだ総称を示すものである。
【0036】
上記樹脂材等を用いたフューエルクーラーの第1実施例を、図1〜図5に基づいて詳細に説明すると、(1)は金属管で、鉄、ステンレス鋼、銅、黄銅、アルミ、その他で形成している。また、内外表面の耐食性を高めるため、前記金属管(1)の表面に亜鉛、亜鉛−アルミ合金、亜鉛−錫合金、又は亜鉛−ニッケル合金等の犠牲腐食性めっき処理を施しても良い。
【0037】
このような金属管(1)を図4に示す如く、水平方向に円弧状に巻き回して、外形が円形となるように渦巻き状に成形するとともに、この渦巻き状の金属管(1)への燃料の流入側と流出側に、各々耐食性のステンレスで形成した流入管(3)と流出管(4)とを、ろう付けにより接続している。また、金属管(1)は、図5に示す如く、直線部と曲線部を設けて巻き回し、外形が角形となるような渦巻きとしても良い。
【0038】
そして、上述の如き円形又は角形の渦巻き状金属管(1)の外周に、前述の如き樹脂材を、射出成形やディッピングによりモールディングする事により、金属管(1)の外周全体に樹脂層(2)を配設して、コイルチューブ本体(5)を矩形状に形成している。また、樹脂のモールディング時は、渦巻き状の金属管(1)の外周全体が樹脂材に埋設されるように加工し、流入管(3)と流出管(4)とは、図2に示す如く、コイルチューブ本体(5)から外部に突出させる。このように、渦巻き状の金属管(1)全体を樹脂材で被覆する事により、金属管(1)が固定されて燃料の流動圧や車輌の振動等による金属管(1)のブレ等を防止する事が可能となるし、雨水や泥水等に対する耐食性も向上する。
【0039】
また、上記コイルチューブ本体(5)に突設するフィン部材(6)は、図2に示す如く、アルミ板をL字形に連続して折曲し、端面形状を櫛歯形に形成している。そして、樹脂層(2)に固定する基盤部(7)と、この基盤部(7)から外方に突出する平板状のフィン(8)とを複数設けている。また、フィン部材(6)は、図1に示す形成長さa及び形成幅bを、コイルチューブ本体(5)の形成長さと形成幅とほぼ同一寸法で形成する。更に、フィン部材(6)は、樹脂層(2)への固定のため、複数の基盤部(7)に、2つおきに貫通孔(10)を複数開口している。尚、樹脂層(2)は、表面に何等凹凸を設けず、両面を平滑に形成している。
【0040】
上述の如く形成したフィン部材(6)を、コイルチューブ本体(5)の両面に接続するには、まず、樹脂層(2)の表面全体を超音波振動や高周波誘導等の適宜の加熱手段で加熱して溶融させる。この溶融状態の樹脂層(2)の表面に、前記フィン部材(6)の基盤部(7)を押し付ける事により、溶融した樹脂材が基盤部(7)の貫通孔(10)から基盤部(7)の表面側に流出し、基盤部(7)の表面を貫通孔(10)よりも広幅な面積で広がりながら流動する。この流動した樹脂材が、基盤部(7)の表面で冷えて固化する事により形成される止着部(9)によって、基盤部(7)が樹脂層(2)に固定され、コイルチューブ本体(5)の両面にフィン部材(6)が接続されるものとなる。従って、アルミダイキャスト成形、金属管の拡管、ろう付け、溶接等でフィン部材を金属管に接続する場合に比べて、容易な製作が可能となる。
【0041】
尚、渦巻き状の金属管(1)の流入管(3)との接続側は、渦巻き部分と立体的に交わるから、図1、図2に示す如く、コイルチューブ本体(5)の流入管(3)側が外方に突出している。これを考慮して、本実施例では、流入管(3)位置に配置する基盤部(7)を弧状に形成し、フィン(8)を短尺に突設している。また、他の異なる手段として、フィン部材(6)の一部を切り欠いて、流入管(3)側の突出位置には基盤部(7)とフィン(8)とを設けないようにしても良い。
【0042】
上述の如く形成したフューエルクーラー(11)を、車輌の床下に於いてフューエルデリバリパイプ(図示せず)と燃料タンク(図示せず)との間に設置し、フューエルデリバリパイプ内に余分に供給された高温の燃料を冷却して燃料タンクに戻す事を可能としている。そして、本発明のフューエルクーラー(11)は、金属管(1)を平面方向に渦巻き状に成形しているから、厚み方向に嵩張らず、床下等の狭い空間にも設置が可能であるとともに、アルミダイキャスト成形等に比べて非常に軽量なものとなり、車輌への設置に好ましい製品となる。
【0043】
そして、フューエルデリバリパイプから本発明のフューエルクーラー(11)に、高温化した燃料が供給されると、この燃料は流入管(3)を介して渦巻き状の金属管(1)内に流入する。この金属管(1)を渦巻き状として燃料の流路を長く形成しているから、伝熱面積を増大させる事ができ、燃料の熱を効率的に金属管(1)の表面に伝熱させる事ができる。そして、この金属管(1)が受熱した熱は、樹脂層(2)を介してフィン部材(6)の基盤部(7)に伝熱され、フィン部材(6)に複数突設し伝熱面積を増大させたフィン(8)を介して、効率的に外気や冷却風に放熱され、優れた冷却性能を得る事ができる。
【0044】
また、樹脂層(2)にカーボンナノファイバーを混入した場合には、金属管(1)と樹脂層(2)、更には樹脂層(2)とフィン部材(6)との熱伝導性が、金属製品と同等に高くする事ができる。そして、燃料の熱を効率的にフィン部材(6)に伝熱させて外気や冷却風に放熱させる事ができ、フューエルクーラー(11)は、更に優れた冷却性能を得る事ができる。
【0045】
また、上記第1実施例では、樹脂層(2)へのフィン部材(6)の固定は、表面が平滑な樹脂層(2)を熱溶融させ、基盤部(7)の貫通孔(10)から流出する樹脂材を固化させた止着部(9)で行っているため、金型が単純となりモールディング加工も容易であるし、樹脂層(2)にフィン部材(6)を押し付けるだけで固定が行える。これに対して、他の異なる第2実施例では図6に示す如く、基盤部(7)の貫通孔(10)に対応して、樹脂層(2)に複数の突起(12)を突設している。この突起(12)は、金属管(1)の外周に樹脂層(2)を配設する際に、射出成形等によるモールディング時に、樹脂層(2)と一体に容易に設ける事ができる。
【0046】
そして、上記突起(12)と基盤部(7)の貫通孔(10)とを係合して、突起(12)を基盤部(7)の表面側に突出させた後、この突出部分を加熱して溶融させ固化させる事により止着部(9)が形成され、この止着部(9)により基盤部(7)が樹脂層(2)に固定されるものとなる。このように、少なくとも樹脂層(2)側に予め設けた突起(12)のみを熱溶融させる事により、樹脂層(2)全体を加熱する必要がなく、エネルギー効率が良好であるとともに、樹脂材の冷却による固化も迅速なものとなる。
【0047】
また、上記第1、第2実施例では、フィン部材(6)の端面形状を櫛歯形とし、基盤部(7)の貫通孔(10)から流出する樹脂材又は突起(12)によりフィン部材(6)を樹脂層(2)に固定している。これに対して、他の異なる第3実施例では図7に示す如く、板部材をコ字形に連続して折曲し、フィン部材(6)の端面形状をパルス波形状に形成し、基盤部(7)には貫通孔(10)を設けずに形成している。更に、第3実施例では、フィン部材(6)の形成長さaはコイルチューブ本体(5)の形成長さとほぼ同一としているが、形成幅bをコイルチューブ本体(5)よりも幅狭に形成している。そして、この幅狭なフィン部材(6)を複数、互いに間隔を介してコイルチューブ本体(5)の両面幅方向に配設している。
【0048】
そして、各フィン部材(6)を樹脂層(2)に固定するには、樹脂層(2)全体を加熱して溶融させ、フィン部材(6)を樹脂層(2)に押し付けると、樹脂層(2)の溶融した樹脂材が、図7に示す如く、コイルチューブ本体(5)よりも幅狭な形成幅b方向の間隔から流出し、この流出した樹脂材が基盤部(7)の表面側に流動して固化する。そして、この表面側で固化した樹脂材の止着部(9)によって基盤部(7)が樹脂層(2)に固定される。このように、貫通孔(10)を開口しなくても、基盤部(7)を樹脂層(2)に固定する事ができ、本実施例の如く幅狭なフィン部材(6)をコイルチューブ本体(5)に接続する際等に適したものである。
【0049】
また、図8に示す第4実施例は、板部材をV字形に連続して折曲し、フィン部材(6)の端面形状を鋸歯形としている。また、第3実施例と同様にフィン部材(6)の形成長さをコイルチューブ本体(5)の形成長さとほぼ同一とし、形成幅をコイルチューブ本体(5)の形成幅よりも幅狭に形成している。そして、図8に示す如く、樹脂層(2)側のV字の基端部を基盤部(7)とし、この基盤部(7)からフィン(8)を外方に突設している。このようなフィン部材(6)を、熱溶融させた樹脂層(2)に押し付けて、コイルチューブ本体(5)よりも幅狭な形成幅方向の間隔から樹脂材を流出させ、この流出した樹脂材を基盤部(7)の表面側に流動させ固化させる。そして、この樹脂材の固化により形成される止着部(9)によって、フィン部材(6)をコイルチューブ本体(5)に接続している。勿論、V字の基盤部(7)に、貫通孔(10)を設け、この貫通孔(10)から流出する樹脂層(2)の樹脂材や、樹脂層(2)に設けた突起(12)により、基盤部(7)を樹脂層(2)に固定するものであっても良い。
【0050】
また、上記第1〜第4実施例では、金属管(1)を渦巻き状に成形した後、その外周に樹脂材をモールディングして樹脂層(2)を設けているが、図9〜図17に示す第5〜第8実施例では、金属管(1)の製造時に、予めこの金属管(1)の外周に樹脂被膜を配設し、この樹脂被膜を樹脂層(2)とする事により、樹脂材による射出成形やディッピング等のモールディング作業を省いている。
【0051】
上記各実施例で使用する金属管(1)は、鉄、ステンレス鋼、銅、黄銅、アルミ等の金属管(1)の外周に亜鉛、亜鉛−アルミ合金、亜鉛−錫合金、亜鉛−ニッケル合金等の犠牲腐食性めっき処理を施している。そして、その外面に肉厚50μmのPA樹脂被膜を配設し、このPA樹脂被膜の外面に肉厚1mmのPP樹脂被膜を配設する事で、金属管(1)の外周に樹脂層(2)を設けている。そして、このような金属管(1)を、円形又は角形の渦巻き状に成形するだけで、図11に示す如く、金属管(1)の外表面にPA樹脂被膜とPP樹脂被膜とから成る樹脂層(2)を配設したコイルチューブ本体(5)を得る事ができ、製作工程が容易なものとなる。
【0052】
また、金属管(1)全体に樹脂層(2)を配設しているので、雨水や泥水等による耐食性が得られるとともに、コイルチューブ本体(5)から燃料供給側及び燃料排出側に突出させる流入管(3)と流出管(4)とを、渦巻き部分と同一の金属管(1)で形成する事ができ、第1実施例等の如く、耐食性を持たせて別個に形成した流入管(3)と流出管(4)とを、ろう付けや溶接等により渦巻き状の金属管(1)に接続する手間等がない。
【0053】
上述の如く渦巻き状の金属管(1)を使用した、図9〜図11に示す第5実施例を詳細に説明する。まず、金属管(1)を渦巻き状としただけは、コイルチューブ本体(5)の両面に凹凸を生じ、樹脂層(2)とフィン部材(6)の基盤部(7)との接触面積が少なくなって固定性が低下したり、車輌の振動や流体の流動等により、金属管(1)がブレを生じ、更にはフィン部材(6)でもブレやコイルチューブ本体(5)からの脱落等を生じる可能性がある。
【0054】
そのため、第5実施例では図9に示す如く、コイルチューブ本体(5)の両面に、幅狭な一方及び他方の支持部材(15)(16)(ステー)を十文字形に配設している。そして、対向する一対の一方の支持部材(15)及び一対の他方の支持部材(16)の両端と中央を、各々ボルト(17)とスペーサー(18)等から成る接続手段により接続し、渦巻き状金属管(1)を両側から挟持固定している。これにより、金属管(1)が固定され、コイルチューブ本体(5)の両面の凹凸が解消されるので、後工程のフィン部材(6)の固定を行い易くなるとともに、金属管(1)やフィン部材(6)のブレや脱落等も防止する事が可能となる。
【0055】
また、一方及び他方の支持部材(15)(16)は長さ方向の両側縁に、図9、図11に示す如く、リブ(20)を直交方向に突設する事により、一方及び他方の支持部材(15)(16)の剛性を高め、コイルチューブ本体(5)の固定性を強固とするとともに、変形等を防止している。また、図9で上下方向に配置した一方の支持部材(15)と、左右方向に配置した他方の支持部材(16)とが互いに交差し、且つ双方の支持部材(15)(16)の表面が確実に樹脂層(2)に当接して固定されるように、他方の支持部材(16)の中央には、リブ(20)を突設していない。更に、図11に示す如く、一方の支持部材(15)は、他方の支持部材(16)の肉厚分、中央を台形状に突設し、この突設部分を他方の支持部材(16)の中央に係合し、中央以外の内面を樹脂層(2)に確実に当接させている。
【0056】
そして、一方及び他方の支持部材(15)(16)で4つの扇形に区画されたコイルチューブ本体(5)の両面に、端面形状をL字形とする板状のフィン部材(6)を複数個、一方の支持部材(15)と平行に配設している。尚、これら複数のフィン部材(6)は、各区画の扇形の形状に対応させて、一方の支持部材(15)に最も近いフィン部材(6)を最も長尺とし、一方の支持部材(15)から離れるに従って短尺に形成する事により、略円形のフューエルクーラー(11)を得ている。
【0057】
この第5実施例に於いても、図9、図10に示す如く、各フィン部材(6)の基盤部(7)に、一個又は複数の貫通孔(10)を開口している。そして、PA樹脂被膜とPP樹脂被膜とから成る樹脂層(2)を熱溶融させ、この樹脂層(2)にフィン部材(6)を押し付け、貫通孔(10)を介して基盤部(7)の表面側に樹脂材を流出させ固化させる事で形成された止着部(9)により、基盤部(7)を樹脂層(2)に固定している。
【0058】
また、上記第5実施例では、端面形状がL字形のフィン部材(6)をコイルチューブ本体(5)の両面に接続しているが、他の異なる第6実施例では、図13に示す如く、端面形状がU字形のフィン部材(6)を接続固定している。また、第6実施例では、第5実施例と同様に、図12、図13に示す如く、コイルチューブ本体(5)を、十字形に配設した一方及び他方の支持部材(15)(16)にて支持固定している。
【0059】
上記第5、第6実施例に於いて、まず第5実施例の如く、フィン部材(6)をL字形とする事により、金属材の使用が少なく、より軽量なフューエルクーラー(11)を得る事ができる。一方、第6実施例の如く、フィン部材(6)をU字形とする事により、フィン部材(6)の伝熱面積を増大させる事ができ、放熱特性を向上させて、フューエルクーラー(11)の冷却性能を高める事ができる。
【0060】
また、上記第5、第6実施例では、十文字形に配設した支持部材(15)に仕切られた4つの区画(両面で8区画)に、一方及び他方の支持部材(15)(16)に接触する事なくフィン部材(6)を配設しているが、他の異なる第7実施例では、図14、図15に示す如く、端面形状をL字形とし、コイルチューブ本体(5)の形成長さよりやや長尺に形成したフィン部材(6)を複数個、コイルチューブ本体(5)の両面に他方の支持部材(16)と平行に設けている。
【0061】
そして、この長尺なフィン部材(6)は、樹脂層(2)と基盤部(7)との間に塗布した接着剤により接着固定するとともに、フィン部材(6)を、これとらと直交する一方の支持部材(15)にて挟持して、コイルチューブ本体(5)に固定している。このように、フィン部材(6)を接着剤による接着だけでなく、一方の支持部材(15)にて挟持固定する事により、フィン部材(6)の固定性が高まり、燃料の流動圧や振動等によるフィン部材(6)のブレや脱落等を防止する事ができる。そして、フィン部材(6)からの放熱による優れた冷却性能を持続させる事ができる。
【0062】
また、この第7実施例の場合も、他方の支持部材(16)側のフィン部材(6)の形成長さを最も長尺とし、他方の支持部材(16)から離れるに従って、フィン部材(6)の長さを徐々に短尺とする事により、フューエルクーラー(11)の外形を略円形としている。更に、図15に示す如く、一方の支持部材(15)で挟持する部分には、基盤部(7)にフィン(8)を突設せずに形成している。
【0063】
また、上記第7実施例では、複数のフィン部材(6)の中央を一方の支持部材(15)で挟持してコイルチューブ本体(5)に固定しているが、図16、図17に示す他の異なる第8実施例では、更に各フィン部材(6)の両端を両側支持部材(21)にて互いに接続固定している。まず、第8実施例では、端面形状をU字形とするとともに他方の支持部材(16)と同一長さとするフィン部材(6)を、複数個同一形状で形成する。また、コイルチューブ本体(5)の両端部に配置される両面それぞれ2枚のフィン部材(6)には、両端にボルト(17)の挿通用の孔を開口するとともに、一方の支持部材(15)と交差する中央には、フィン(8)を突設せずに形成している。
【0064】
そして、コイルチューブ本体(5)の両面に、上記フィン部材(6)を接続するには、樹脂層(2)を熱溶融し、その表面に、他方の支持部材(16)の配設位置を避けて、この他方の支持部材(16)と同一長さとする複数のフィン部材(6)を順次配設する。これらのフィン部材(6)は、樹脂層(2)が冷却固化する際の樹脂材の接着力によっても、樹脂層(2)に接着されるものである。次に、他方の支持部材(16)を、コイルチューブ本体(5)の中央に、フィン部材(6)と平行に配設し、この他方の支持部材(16)とフィン部材(6)に十文字形に交差するよう、一方の支持部材(15)を配設する。そして、一方の支持部材(15)の両端と、一方及び他方の支持部材(16)とが交差する中心部を、スペーサー(18)を介してボルト(17)にて接続する。
【0065】
更に、コイルチューブ本体(5)の一面側と他面側の双方から突出するフィン部材(6)と、他方の支持部材(16)の各両端の上面及び下面に、両側支持部材(21)を配設するとともに、一面側と他面側のフィン部材(6)の間に、図17に示す如く、端面形状がコ字形の補強材(22)を配設している。そして、両側支持部材(21)の両端で、この両側支持部材(21)及びフィン部材(6)、補強材(22)とをボルト(17)にて接続固定し、両側支持部材(21)の中央では、両側支持部材(21)及び他方の支持部材(16)、フィン部材(6)、補強材(22)とをボルト(17)にて接続固定している。
【0066】
上述の如く、第8実施例では、フィン部材(6)を樹脂材の接着力、及び一方の支持部材(15)で固定するだけでなく、両端を両側支持部材(21)で固定する事により、フィン部材(6)のブレやコイルチューブ本体(5)からの脱落等の防止効果が高まり、フューエルクーラー(11)の耐久性や使用性が向上して、燃料の良好な冷却が可能となる。
【0067】
また、上記各実施例では、必要に応じて樹脂層(2)を形成する樹脂材にカーボンナノファイバーを混入して樹脂層(2)の熱伝導性を高めている。しかし、樹脂層(2)の熱伝導性を向上させる他の異なる実施例として、前記樹脂材にカーボンナノファイバー以外の金属粉末や、ガラス繊維等を混合したり、樹脂層(2)の表面に金属粉末等を混合した塗料を塗布したり、樹脂層(2)に金属をめっき或いは蒸着等させても良い。また、黒色の樹脂材を使用しても良い。
【0068】
また、上記各実施例では、フィン部材(6)の長尺な基盤部(7)に、この基盤部(7)と同様に長尺な平板状のフィン(8)を突設しているが、長尺な基盤部(7)に、ピン状にフィンを突設しても良い。また、ピン状フィンは、基盤部(7)を短尺に形成し、この基盤部(7)と同一長さでフィンを突設して形成したものであっても良い。
【0069】
また、上記各実施例では、フューエルクーラー(11)で実施しているが、エンジンを潤滑させるためのエンジンオイル、ミッションオイル、ATFを冷却するオイルクーラーで実施する事も可能である。また、空冷による各種放熱器での実施も可能で、冷却効果が高く、軽量で小型であり、床下等の狭い場所等への設置も可能なレイアウトの自由度の高い製品となる。
【0070】
【発明の効果】
本発明は上述の如く構成したものであり、樹脂材の使用により、軽量で廉価なコイルチューブ式放熱器を、容易な技術で製作する事が可能となる。また、金属管を渦巻き状に成形して、偏平形状としているので、厚み方向への嵩張りが少なく、床下等の狭い空間への設置も可能で、レイアウト性に優れた製品を得る事ができる。そして、フィン部材の突設により、樹脂材を使用していても、金属材のみで形成した製品と同等若しくはそれ以上の熱伝導性を得て、流体の冷却効果を向上させる事ができる。
【図面の簡単な説明】
【図1】本発明の第1実施例のフューエルクーラーの斜視図。
【図2】フィン部材とコイルチューブ本体との分解斜視図。
【図3】図1のA−A線断面図。
【図4】円形の渦巻き状とした金属管の平面図。
【図5】角形の渦巻き状とした金属管の平面図。
【図6】本発明の第2実施例のフューエルクーラーの分解斜視図。
【図7】本発明の第3実施例のフューエルクーラーの斜視図。
【図8】本発明の第4実施例のフューエルクーラーの断面図。
【図9】本発明の第5実施例のフューエルクーラーの平面図。
【図10】図9のB−B線断面図。
【図11】図9のC−C線断面図。
【図12】本発明の第6実施例のフューエルクーラーの平面図。
【図13】図12のD−D線断面図。
【図14】本発明の第7実施例のフューエルクーラーの平面図。
【図15】図14のE−E線断面図。
【図16】本発明の第8実施例のフューエルクーラーの平面図。
【図17】図16のF方向からの側面図。
【符号の説明】
1 金属管
2 樹脂層
5 コイルチューブ本体
6 フィン部材
7 基盤部
8 フィン
10 貫通孔
12 突起
15 一方の支持部材
16 他方の支持部材
17 ボルト(本発明の接続手段)
21 両側支持部材
[0001]
[Industrial application fields]
The present invention relates to a coiled tube heat radiator for cooling a fluid flowing inside an automobile, a general industrial fuel pipe, an oil pipe or the like by air cooling.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Laid-Open No. 7-158530
[Patent Document 2] Japanese Unexamined Patent Publication No. 2000-120442
[Patent Document 3] JP-A-5-322457
[0003]
2. Description of the Related Art Conventionally, there is known a fuel delivery pipe that is provided with a plurality of injection nozzles and supplies fuel such as gasoline to a plurality of cylinders of an engine. This fuel delivery pipe injects fuel introduced from the fuel tank through the fuel pipe into a plurality of intake pipes or cylinders of the engine sequentially from a plurality of injection nozzles, and mixes this fuel with air. The engine output is generated by burning the qi.
[0004]
And when an excess fuel is supplied from the fuel tank into the fuel delivery pipe, there is a return system having a circuit for returning the excess fuel to the fuel tank by a pressure regulator. However, since the fuel delivery pipe is disposed in the vicinity of the high-temperature engine cylinder, the fuel supplied to the fuel delivery pipe is heated. The temperature of gasoline in the fuel tank rises by returning the high temperature excess fuel to the fuel tank. This temperature rise is not preferable because the fuel vaporizes and adversely affects the environment. After the fuel heated at a high temperature by a fuel cooler or the like is cooled by water cooling or air cooling, as in the inventions described in Patent Documents 1 and 2. The system was returned to the fuel tank.
[0005]
In addition, engine oil for lubricating the moving parts of the engine is connected to an oil pipe as shown in Patent Documents 1 and 2 because the viscosity decreases and the lubrication performance is lost due to the high temperature caused by engine heat. The engine oil was cooled by an oil cooler or the like and then returned to the engine.
[0006]
In the case of a radiator such as a fuel cooler and an oil cooler as described above, particularly in the case of a diesel engine, it is installed under the floor of a vehicle, and therefore cannot be cooled with cooling water, a refrigerant for a car air conditioner, or other refrigerant liquid. The air-cooled type is used. In this Patent Document 2, a plurality of fin members project from a cover on which a fuel pipe is installed in a direction perpendicular to the flow direction of cooling air, and the cooling air is turbulent around the outer periphery of the fuel pipe by the fin members. The fuel flowing through the fuel pipe is to be cooled. However, a significant improvement in the cooling effect could not be expected only by making the cooling air turbulent.
[0007]
Therefore, in other different heat exchangers, a plurality of fins project from the outer periphery of a fuel pipe, an oil pipe or the like by aluminum die casting, or a thin metal fin made of metal such as aluminum as described in Patent Document 3. Was fixed to the outer periphery of the pipe by pipe expansion. By disposing the fin member, the heat transfer area of the radiator is increased, the heat radiation to the outside air is promoted, and the fuel is cooled. Also, by bending the pipe in a U-shape or meandering, the pipe length is lengthened to increase the heat transfer area and to improve the cooling effect.
[0008]
[Problems to be solved by the invention]
However, if the fuel pipe or oil pipe is bent in a U shape or a meandering shape, there is a limit to lengthening the pipe length, and the radiator becomes bulky in the vertical and horizontal directions, and the installation location is limited and the layout is limited. The degree of freedom was low. Further, when fins are formed by aluminum die casting, it is not technically easy to bond the metal of the pipe to the aluminum die casting fins. In addition, since the aluminum die cast fins need to be thick to some extent in terms of processing technology, there is a possibility that the weight becomes too heavy, or the cooling effect is lowered due to increased ventilation resistance to the outside air. Further, there is a means for providing a fluid flow path inside the aluminum die-cast fin, but if the flow path is made of aluminum, there is a problem in the corrosion resistance to the fuel.
[0009]
Therefore, the present inventor focused on a resin that is inexpensive, lightweight, and excellent in workability, and compared the heat exchange performance between the metal heat transfer surface and the resin heat transfer surface. It has been found that the heat exchange performance of the resin heat transfer surface is deteriorated only by about 4 to 15%, although it depends on the conditions. Also, if the number of fin members is increased or the fin members are formed in a shape that increases the surface area, the deterioration of the heat exchange performance of about 4 to 15% due to the use of the resin material can be compensated. It was concluded that it was possible to obtain a heat exchange performance equivalent to or better than that of only the heat transfer surface, and that it would be easy to process and lightweight.
[0010]
The present invention is intended to solve the above-described problems, and a coil tube type radiator for performing air cooling of a fluid flowing in a fuel pipe, an oil pipe or the like is made of a resin material and is lightweight and inexpensive. The purpose is to make this production with easy technology. Further, it is possible to obtain a product with a low degree of bulkiness, easy installation in a narrow space such as under the floor, and a high degree of freedom in layout. And even if it uses the resin material, the thermal conductivity equivalent to or more than the product formed only with the metal material is obtained, and the cooling effect of the fluid is improved.
[0011]
[Means for Solving the Problems]
In order to solve the problems as described above, the present invention provides a metal fin member on a resin layer on one or both sides of a coil tube body formed by disposing a resin layer on the outer surface of a spiral metal tube. The base is fixed and at least one piece is provided.
[0012]
The resin layer may be formed by forming a resin material on the outer surface of a spirally formed metal tube by molding and embedding the metal tube in the resin layer.
[0013]
The resin layer is previously disposed on the outer surface of the metal tube, and the coil tube body may be formed by forming the metal tube having the resin layer in a spiral shape.
[0014]
The fin member is composed of a base portion fixed to the resin layer and a fin projecting from the base portion. The fin member is provided with at least one through hole, and the fin member is pressed against the resin layer that has been thermally melted in advance. Then, the fin member may be fixed to the coil tube body with the solidified resin material by causing the resin material to flow out to the surface side of the base portion through the through hole and solidify.
[0015]
The fin member includes a base portion fixed to the resin layer and a fin projecting from the base portion. The base portion is provided with at least one through hole, and a protrusion engageable with the through hole is formed on the resin layer. The fin member may be fixed to the coil tube main body with the solidified resin material by forming a protrusion on the base plate and heat-melting and solidifying the protrusion of the resin layer protruding from the through hole of the base portion of the fin member.
[0016]
The fin member is composed of a base portion fixed to the resin layer and fins protruding from the base portion, and the fin member is pressed against the resin layer that has been thermally melted in advance, from both sides in the length direction of the base portion. The fin member may be fixed to the coil tube main body with the solidified resin material by allowing the molten resin material to flow and solidify on the surface side of the base portion.
[0017]
The fin member is composed of a base portion fixed to the resin layer and a fin protruding from the base portion, and the base portion is bonded with an adhesive and / or a resin material obtained by heat melting the resin layer. The fin member may be fixed to the coil tube main body by bonding.
[0018]
Further, the coil tube main body may include at least a pair of narrow support members on both sides, and the support members on both sides may be connected to each other by connection means via the coil tube main body.
[0019]
Further, the support member may be arranged on both surfaces of the coil tube main body via the fin member, and connected to each other by a connecting means, whereby the fin member may be fixed to the coil tube main body by the support member.
[0020]
Further, the fin member is a plate-like fin or pin-like fin whose end face shape is L-shaped, U-shaped, U-shaped, or V-shaped, or a plurality of these are connected, and the end face shape is comb-toothed, saw-toothed, or corrugated It may be a plate-like fin.
[0021]
The resin layer may contain carbon nanofibers.
[0022]
Carbon nanofibers may be contained in a content of more than 5 wt% and less than 30 wt%.
[0023]
[Action]
Since the present invention is configured as described above, when a fluid heated at a high temperature, such as diesel engine fuel, flows in the metal pipe, the heat of the fluid is transferred to the surface of the metal pipe, and then passes through the resin layer. Then, the heat is transferred to the fin member, and further, the fluid is cooled by being dissipated into the cooling air flowing in the outer periphery of the fin member or the outside air. In the present invention, since the metal tubes are arranged in a spiral shape, the flow path of the fluid in the coil tube body can be made longer than in the case where the metal tubes are arranged in a U shape or a meandering shape. . For example, when a metal tube having an outer diameter of 8 mm is wound around a maximum diameter of about 200 mm, the metal tube of the cold plate main body becomes 3 m or more in total length.
[0024]
Therefore, even if the resin material is used, the heat transfer area can be increased, and the cooling effect can be improved. Further, by arranging the metal tube in a spiral shape, the radius of curvature of the curved portion is large, the curve becomes gentle, and the pressure loss of the fluid is small as compared with the U shape and the meandering shape. Therefore, the thermal conductivity from the fluid to the metal tube is increased, and the cooling performance of the fluid can be further enhanced.
[0025]
In addition, by using a resin material, it is possible to obtain a lighter and less expensive product than a product in which the entire aluminum die-cast product or the like is formed of a metal material. Furthermore, since the metal tube is wound almost in close contact with each other, it is possible to mold the coil tube main body in a space-efficient manner, and it is possible to reduce the formation width in the plane direction and also in the thickness direction. It will be flat and not bulky. Therefore, the coil tube body can be made compact, can be installed in a narrow space such as under the floor, and the product has a high degree of freedom in layout. Further, by disposing the resin layer on the outer periphery of the metal tube, the corrosion resistance of the coil tube body against rainwater, muddy water and the like is improved, and the durability against the flying stones and the like is also improved by the elasticity of the resin material.
[0026]
In addition, since the metal tube and the fin member are connected via the resin layer, it is not necessary to consider welding or brazing, and any metal material may be used. For example, the metal tube can be formed of stainless steel having high corrosion resistance against fuel or the like, and the fin member can be formed of lightweight aluminum.
[0027]
In addition, the fixing of the base part to the resin layer in the present specification may be performed by, for example, thermally melting the resin layer and burying a part or the whole of the base part in the resin layer. Moreover, the base part may be adhered to the resin layer by using the adhesive force of the resin material by heat melting, or the base part may be adhered to the resin layer by application of an adhesive. Moreover, you may adhere | attach a base | substrate part on a resin layer with the adhesive force of both the heat melting of a resin material and an adhesive agent. Also, if it is possible to tightly fix the fin member to the resin layer, any other means such as fixing the fin member to the resin layer with a support member such as a stay without using a resin material or an adhesive. It may be performed by. In any case, it can be easily manufactured with a simple technique as compared with the formation of a fin member by aluminum die-casting, pipe expansion, metal welding, brazing, or the like.
[0028]
In addition, the resin layer is disposed on the metal tube after the metal tube is formed into a spiral shape, and then a resin material is molded over the entire outer periphery of the spiral metal tube by injection molding or dipping, and the metal tube is molded into the resin material. You may embed in. In addition, by providing a resin film on the outer periphery of the metal tube, a resin layer is previously provided on the outer periphery to form a metal tube, and the metal tube with the resin layer is formed into a spiral shape to form a coil tube body. Also good. Further, the resin layer may be disposed on the metal pipe by other different means.
[0029]
【Example】
Hereinafter, an example in which the present invention is implemented in a fuel cooler for an automobile diesel engine will be described in detail with reference to the drawings. FIG. 1 is a perspective view of the fuel cooler according to the first embodiment, in which comb-shaped fin members project from both sides of a coil tube main body, and a resin material of a resin layer that has been thermally melted flows out from a through hole provided in a base portion. By letting it solidify, the base part is fixed to the resin layer. FIG. 2 is a perspective view before the fin member is connected to the coil tube main body. 3 is an enlarged sectional view taken along line AA of FIG. FIG. 4 is a plan view of a metal tube formed into a circular spiral shape. FIG. 5 is a plan view of a metal tube formed into a square spiral shape.
[0030]
FIG. 6 is an exploded perspective view of a coil member body in which a plurality of protrusions are provided on the resin layer and a fin member provided with a through hole for engaging the protrusions in the base portion in the second embodiment. FIG. 7 is a perspective view of the fuel cooler of the third embodiment, in which the end face shape is a pulse waveform, a plurality of narrow fin members are arranged in the coil tube body, and the resin flows from both ends of the fin member to the surface of the base portion. The base is fixed with a material. FIG. 8 is a cross-sectional view of the fuel cooler according to the fourth embodiment, in which a plurality of fin members each having a serrated end surface shape are arranged on the coil tube body.
[0031]
FIG. 9 is a plan view of the fuel cooler according to the fifth embodiment. A fin member having an L-shaped end surface is formed on a coil tube body obtained by forming a metal tube, on which a resin layer is previously disposed, into a circular spiral shape. The coil tube body is supported and fixed by a support member arranged in a cross shape. 10 is a cross-sectional view taken along the line BB of FIG. 9, and FIG. 11 is a cross-sectional view taken along the line CC of FIG. FIG. 12 is a plan view of the fuel cooler of the sixth embodiment, in which a plurality of U-shaped fin members are fixed by thermal melting of a resin material. 13 is a cross-sectional view taken along the line DD of FIG.
[0032]
FIG. 14 is a plan view of the fuel cooler of the seventh embodiment, in which a plurality of fin members having an L-shaped end surface are bonded and fixed to the coil tube main body with an adhesive, and the fin member and the coil tube main body are supported. It is clamped and fixed by the member. 15 is a cross-sectional view taken along line EE in FIG.
[0033]
FIG. 16 is a plan view of the fuel cooler according to the eighth embodiment. A fin member having a U-shaped end surface is fixed to the coil tube body by the holding force of the support member and the adhesive force of the resin layer. Both ends of the are connected and fixed by supporting members on both sides. FIG. 17 is a side view seen from the direction F of FIG.
[0034]
In the present invention, a resin material is used for the coil tube body, but any resin material may be used. Also, monomer cast nylon, polyamide imide, poly benzimidazole, polyether ether ketone, polyether imide, polyether sulfone, polyimide, polyphenylene sulfide, polysulfone, polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkoxyalkane, fluoroethylene -By using resin materials such as propylene, polychlorotrifluoroethylene, tetrafluoroethylene-ethylene, and ethylene chlorotrifluoroethylene, a fuel cooler that not only has excellent heat exchange performance but also has excellent corrosion resistance and heat resistance is obtained. I can do things. In addition to the fuel cooler, the heat exchange performance, corrosion resistance, heat resistance, and durability of the oil cooler, the EGR gas cooling device, and other coil tube type radiators can be improved.
[0035]
More preferably, by mixing carbon nanofibers in the resin material as described above, it becomes possible to improve the thermal conductivity of the resin layer, and transfer from the fluid such as fuel flowing inside the metal tube to the surface of the metal tube. The generated heat can be quickly transmitted to the fin member through the carbon of the resin layer, and the cooling performance of the fuel cooler can be improved. Further, the nanocarbon can be contained in a content of more than 5 wt% and less than 30 wt%, whereby the thermal conductivity of the resin material can be improved, and the heat dissipation characteristics of the fuel cooler can be improved. If this content is 5 wt% or less, the improvement in heat transfer effect is poor, and it is difficult to contain 30 wt% or more in the resin material, the productivity is lowered and the cost is high, and there is no significant difference in the heat transfer effect. . The carbon nanofiber referred to in the present specification is a general term including all carbon materials of carbon nanotubes, carbon nanohorns, and other nano units in the nanotechnology field.
[0036]
The first embodiment of the fuel cooler using the resin material will be described in detail with reference to FIGS. 1 to 5. (1) is a metal tube, which is iron, stainless steel, copper, brass, aluminum, etc. Forming. In order to improve the corrosion resistance of the inner and outer surfaces, the surface of the metal pipe (1) may be subjected to sacrificial corrosion plating treatment such as zinc, zinc-aluminum alloy, zinc-tin alloy, or zinc-nickel alloy.
[0037]
As shown in FIG. 4, such a metal tube (1) is wound in an arc shape in the horizontal direction and formed into a spiral shape so that the outer shape is circular, and the metal tube (1) is wound on the spiral metal tube (1). An inflow pipe (3) and an outflow pipe (4) made of corrosion-resistant stainless steel are connected to the inflow side and the outflow side of the fuel by brazing. Further, as shown in FIG. 5, the metal tube (1) may be spirally provided with a straight portion and a curved portion so that the outer shape is square.
[0038]
Then, by molding the resin material as described above on the outer periphery of the circular or square spiral metal tube (1) as described above by injection molding or dipping, the resin layer (2 The coil tube body (5) is formed in a rectangular shape. Further, when molding the resin, the entire outer periphery of the spiral metal pipe (1) is processed so as to be embedded in the resin material, and the inflow pipe (3) and the outflow pipe (4) are as shown in FIG. And projecting from the coil tube body (5) to the outside. In this way, by covering the entire spiral metal tube (1) with a resin material, the metal tube (1) is fixed and the metal tube (1) is prevented from shaking due to the fluid pressure of the fuel or the vibration of the vehicle. It can be prevented, and corrosion resistance against rainwater and muddy water is improved.
[0039]
Moreover, as shown in FIG. 2, the fin member (6) protruding from the coil tube main body (5) is formed by bending an aluminum plate continuously into an L shape and forming an end face shape in a comb shape. And the base part (7) fixed to the resin layer (2) and the flat fin (8) which protrudes outward from this base part (7) are provided with two or more. Further, the fin member (6) is formed with the formation length a and the formation width b shown in FIG. 1 having substantially the same dimensions as the formation length and the formation width of the coil tube body (5). Further, the fin member (6) has a plurality of through-holes (10) opened in every second base portion (7) for fixing to the resin layer (2). In addition, the resin layer (2) does not provide any unevenness on the surface, and both surfaces are formed smoothly.
[0040]
In order to connect the fin member (6) formed as described above to both surfaces of the coil tube body (5), first, the entire surface of the resin layer (2) is subjected to appropriate heating means such as ultrasonic vibration or high frequency induction. Heat to melt. By pressing the base part (7) of the fin member (6) against the surface of the molten resin layer (2), the melted resin material is removed from the through hole (10) of the base part (7) ( 7) It flows out to the surface side and flows while expanding the surface of the base part (7) in an area wider than the through hole (10). The base portion (7) is fixed to the resin layer (2) by the fastening portion (9) formed by cooling and solidifying the fluidized resin material on the surface of the base portion (7), and the coil tube body The fin member (6) is connected to both surfaces of (5). Therefore, it is possible to manufacture easily compared to the case where the fin member is connected to the metal pipe by aluminum die casting, expansion of the metal pipe, brazing, welding or the like.
[0041]
Since the connection side of the spiral metal pipe (1) with the inflow pipe (3) intersects with the spiral portion three-dimensionally, as shown in FIGS. 1 and 2, the inflow pipe ( 3) The side protrudes outward. In consideration of this, in the present embodiment, the base portion (7) disposed at the position of the inflow pipe (3) is formed in an arc shape, and the fin (8) is projected in a short length. Further, as another different means, a part of the fin member (6) is cut away so that the base portion (7) and the fin (8) are not provided at the protruding position on the inflow pipe (3) side. good.
[0042]
The fuel cooler (11) formed as described above is installed between a fuel delivery pipe (not shown) and a fuel tank (not shown) under the floor of the vehicle, and is supplied to the fuel delivery pipe in excess. It is possible to cool the hot fuel and return it to the fuel tank. And since the fuel cooler (11) of this invention has shape | molded the metal pipe (1) spirally in the plane direction, it is not bulky in the thickness direction and can be installed in narrow spaces, such as under the floor, Compared to aluminum die-cast molding, etc., it is very lightweight and is a preferred product for installation in vehicles.
[0043]
And when the high-temperature fuel is supplied from the fuel delivery pipe to the fuel cooler (11) of the present invention, the fuel flows into the spiral metal pipe (1) through the inflow pipe (3). Since the metal pipe (1) is spiral and the fuel flow path is long, the heat transfer area can be increased, and the heat of the fuel is efficiently transferred to the surface of the metal pipe (1). I can do things. The heat received by the metal pipe (1) is transferred to the base portion (7) of the fin member (6) through the resin layer (2), and a plurality of protrusions are provided on the fin member (6) to transfer heat. Through the fin (8) having an increased area, it is efficiently radiated to the outside air or cooling air, and excellent cooling performance can be obtained.
[0044]
Moreover, when carbon nanofiber is mixed in the resin layer (2), the thermal conductivity between the metal tube (1) and the resin layer (2), and further the resin layer (2) and the fin member (6) is It can be as high as metal products. The heat of the fuel can be efficiently transferred to the fin member (6) and radiated to the outside air or the cooling air, and the fuel cooler (11) can obtain further excellent cooling performance.
[0045]
In the first embodiment, the fin member (6) is fixed to the resin layer (2) by thermally melting the resin layer (2) having a smooth surface, and the through hole (10) of the base portion (7). Because the resin material that flows out from the solidified part (9) is solidified, the mold becomes simple and molding is easy, and it is fixed simply by pressing the fin member (6) against the resin layer (2). Can be done. On the other hand, in another different second embodiment, as shown in FIG. 6, a plurality of protrusions (12) are provided in the resin layer (2) so as to correspond to the through holes (10) of the base part (7). is doing. The protrusion (12) can be easily provided integrally with the resin layer (2) during molding by injection molding or the like when the resin layer (2) is disposed on the outer periphery of the metal tube (1).
[0046]
Then, the protrusion (12) and the through hole (10) of the base part (7) are engaged to cause the protrusion (12) to protrude to the surface side of the base part (7), and then the protruding part is heated. Then, the fastening part (9) is formed by melting and solidifying, and the base part (7) is fixed to the resin layer (2) by the fastening part (9). In this way, it is not necessary to heat the entire resin layer (2) by thermally melting only the protrusions (12) provided in advance at least on the resin layer (2) side, the energy efficiency is good, and the resin material Solidification by cooling of the steel also becomes rapid.
[0047]
Moreover, in the said 1st, 2nd Example, the end surface shape of the fin member (6) was made into the comb-tooth shape, and the fin member (by the resin material or protrusion (12) which flows out from the through-hole (10) of a base | substrate part (7) ( 6) is fixed to the resin layer (2). On the other hand, in another different third embodiment, as shown in FIG. 7, the plate member is continuously bent in a U-shape, and the end surface shape of the fin member (6) is formed into a pulse wave shape, (7) is formed without providing a through hole (10). Furthermore, in the third embodiment, the formation length a of the fin member (6) is substantially the same as the formation length of the coil tube body (5), but the formation width b is narrower than the coil tube body (5). Forming. A plurality of narrow fin members (6) are arranged in the width direction of the both surfaces of the coil tube main body (5) with a space between each other.
[0048]
And in order to fix each fin member (6) to the resin layer (2), when the whole resin layer (2) is heated and melted and the fin member (6) is pressed against the resin layer (2), the resin layer As shown in FIG. 7, the melted resin material of (2) flows out from the gap in the forming width b direction, which is narrower than the coil tube main body (5), and the outflowed resin material is the surface of the base portion (7). It flows to the side and solidifies. And the base | substrate part (7) is fixed to the resin layer (2) by the fastening part (9) of the resin material solidified by this surface side. Thus, even if it does not open a through-hole (10), a base | substrate part (7) can be fixed to the resin layer (2), and a narrow fin member (6) like a present Example can be used as a coil tube. It is suitable for connecting to the main body (5).
[0049]
In the fourth embodiment shown in FIG. 8, the plate member is continuously bent into a V shape, and the end surface shape of the fin member (6) is a sawtooth shape. Similarly to the third embodiment, the formation length of the fin member (6) is substantially the same as the formation length of the coil tube body (5), and the formation width is narrower than the formation width of the coil tube body (5). Forming. And as shown in FIG. 8, the base end part of the V shape by the side of the resin layer (2) is made into the base part (7), and the fin (8) is protruded outward from this base part (7). Such a fin member (6) is pressed against the heat-melted resin layer (2) so that the resin material flows out from the gap in the forming width direction narrower than the coil tube body (5). The material is fluidized and solidified on the surface side of the base part (7). And the fin member (6) is connected to the coil tube main body (5) by the fastening part (9) formed by solidification of this resin material. Of course, the V-shaped base (7) is provided with a through hole (10), the resin material of the resin layer (2) flowing out from the through hole (10), and the protrusion (12) provided on the resin layer (2). ) To fix the base portion (7) to the resin layer (2).
[0050]
Moreover, in the said 1st-4th Example, after shape | molding a metal pipe (1) in a spiral shape, the resin material is molded in the outer periphery, and the resin layer (2) is provided, but FIGS. 9-17. In the fifth to eighth embodiments shown in FIG. 5, when the metal tube (1) is manufactured, a resin film is previously disposed on the outer periphery of the metal tube (1), and this resin film is used as the resin layer (2). The molding work such as injection molding and dipping with resin material is omitted.
[0051]
The metal pipe (1) used in each of the above examples is made of zinc, zinc-aluminum alloy, zinc-tin alloy, zinc-nickel alloy on the outer periphery of the metal pipe (1) such as iron, stainless steel, copper, brass, and aluminum. Sacrificial corrosive plating treatment such as. Then, a PA resin film having a thickness of 50 μm is disposed on the outer surface, and a PP resin film having a thickness of 1 mm is disposed on the outer surface of the PA resin film, whereby a resin layer (2 ). Then, by simply forming such a metal tube (1) into a circular or square spiral shape, as shown in FIG. 11, a resin comprising a PA resin film and a PP resin film on the outer surface of the metal tube (1). The coil tube main body (5) provided with the layer (2) can be obtained, and the manufacturing process becomes easy.
[0052]
Further, since the resin layer (2) is disposed on the entire metal pipe (1), corrosion resistance due to rain water, muddy water, etc. is obtained, and the coil tube body (5) is protruded from the fuel supply side and the fuel discharge side. The inflow pipe (3) and the outflow pipe (4) can be formed of the same metal pipe (1) as the spiral portion, and the inflow pipe is formed separately with corrosion resistance as in the first embodiment. There is no need to connect (3) and the outflow pipe (4) to the spiral metal pipe (1) by brazing, welding, or the like.
[0053]
The fifth embodiment shown in FIGS. 9 to 11 using the spiral metal tube (1) as described above will be described in detail. First, if the metal tube (1) is only spiral, irregularities are formed on both sides of the coil tube body (5), and the contact area between the resin layer (2) and the base portion (7) of the fin member (6) is increased. The metal tube (1) is shaken due to the decrease in the fixing property, the vibration of the vehicle, the fluid flow, and the like, and even the fin member (6) is shaken or dropped from the coil tube body (5). May occur.
[0054]
Therefore, in the fifth embodiment, as shown in FIG. 9, the narrow one and the other support members (15), (16) (stays) are arranged in a cross shape on both sides of the coil tube body (5). . Then, both ends and the center of the pair of one supporting member (15) and the other pair of supporting members (16) facing each other are connected by connecting means each consisting of a bolt (17), a spacer (18), etc. The metal tube (1) is clamped and fixed from both sides. As a result, the metal tube (1) is fixed and the unevenness on both sides of the coil tube main body (5) is eliminated, so that it is easy to fix the fin member (6) in the subsequent process, and the metal tube (1) or It is possible to prevent the fin member (6) from being shaken or dropped.
[0055]
The one and other support members (15) and (16) are provided on both side edges in the length direction by projecting ribs (20) in the orthogonal direction as shown in FIGS. The rigidity of the support members (15) and (16) is increased, the fixability of the coil tube body (5) is strengthened, and deformation and the like are prevented. Moreover, one support member (15) arrange | positioned in the up-down direction in FIG. 9 and the other support member (16) arrange | positioned at the left-right direction mutually cross | intersect, and the surface of both support members (15) (16) The rib (20) does not protrude from the center of the other support member (16) so that the second support member (16) is fixed in contact with the resin layer (2). Furthermore, as shown in FIG. 11, the one support member (15) protrudes in a trapezoidal shape at the center of the other support member (16), and the protruding portion is provided as the other support member (16). The inner surface other than the center is securely brought into contact with the resin layer (2).
[0056]
A plurality of plate-like fin members (6) having L-shaped end faces are formed on both sides of the coil tube main body (5) divided into four fan shapes by the one and the other support members (15) and (16). The first support member (15) is disposed in parallel. The plurality of fin members (6) have the longest fin member (6) closest to one support member (15), corresponding to the sector shape of each section, and one support member (15 The fuel cooler (11) having a substantially circular shape is obtained by forming a shorter length as the distance from the second position increases.
[0057]
Also in the fifth embodiment, as shown in FIGS. 9 and 10, one or a plurality of through holes (10) are opened in the base portion (7) of each fin member (6). And the resin layer (2) which consists of PA resin film and PP resin film is heat-melted, a fin member (6) is pressed against this resin layer (2), and a base part (7) is passed through a through-hole (10). The base part (7) is fixed to the resin layer (2) by the fastening part (9) formed by allowing the resin material to flow out and solidify on the surface side.
[0058]
In the fifth embodiment, the fin member (6) having an L-shaped end surface is connected to both surfaces of the coil tube body (5). In the other different sixth embodiment, as shown in FIG. The fin member (6) whose end face shape is U-shaped is connected and fixed. Further, in the sixth embodiment, similarly to the fifth embodiment, as shown in FIGS. 12 and 13, one and the other support members (15) and (16) in which the coil tube main body (5) is arranged in a cross shape. ) Is supported and fixed.
[0059]
In the fifth and sixth embodiments, first, as in the fifth embodiment, the fin member (6) is L-shaped to obtain a lighter fuel cooler (11) that uses less metal material. I can do things. On the other hand, as in the sixth embodiment, by making the fin member (6) U-shaped, the heat transfer area of the fin member (6) can be increased, improving the heat radiation characteristics, and the fuel cooler (11). The cooling performance can be improved.
[0060]
Moreover, in the said 5th, 6th Example, one and the other support member (15) (16) are divided into four divisions (8 divisions on both surfaces) partitioned by the support member (15) arrange | positioned in the cross shape. Although the fin member (6) is disposed without contacting, the other different seventh embodiment has an L-shaped end face shape as shown in FIGS. A plurality of fin members (6) formed slightly longer than the formation length are provided on both sides of the coil tube body (5) in parallel with the other support member (16).
[0061]
The long fin member (6) is bonded and fixed with an adhesive applied between the resin layer (2) and the base portion (7), and the fin member (6) is orthogonal to this. It is clamped by one support member (15) and fixed to the coil tube main body (5). In this way, the fin member (6) is not only bonded by an adhesive, but also held and fixed by one support member (15), so that the fixability of the fin member (6) is improved, and the fuel flow pressure and vibration are increased. It is possible to prevent the fin member (6) from blurring or falling off due to the above. And the outstanding cooling performance by the thermal radiation from a fin member (6) can be maintained.
[0062]
Also in the case of the seventh embodiment, the fin member (6) on the side of the other support member (16) is formed to be the longest, and the fin member (6) increases as the distance from the other support member (16) increases. ) Is gradually shortened to make the outer shape of the fuel cooler (11) substantially circular. Further, as shown in FIG. 15, the base (7) is formed without projecting the fin (8) in the portion sandwiched by one support member (15).
[0063]
Moreover, in the said 7th Example, although the center of several fin member (6) is clamped by one support member (15), it fixes to the coil tube main body (5), but it shows to FIG. 16, FIG. In other different 8th Example, both ends of each fin member (6) are mutually connected and fixed by the both-side support member (21). First, in the eighth embodiment, a plurality of fin members (6) having a U-shaped end face shape and the same length as the other support member (16) are formed in the same shape. In addition, the two fin members (6) disposed on both ends of the coil tube main body (5) are provided with holes for inserting bolts (17) at both ends, and one support member (15 The fin (8) is formed without projecting in the center that intersects with.
[0064]
And in order to connect the said fin member (6) to both surfaces of a coil tube main body (5), the resin layer (2) is heat-melted, and the arrangement | positioning position of the other support member (16) is formed in the surface. Avoiding this, a plurality of fin members (6) having the same length as the other support member (16) are sequentially arranged. These fin members (6) are bonded to the resin layer (2) also by the adhesive force of the resin material when the resin layer (2) is cooled and solidified. Next, the other support member (16) is arranged in the center of the coil tube body (5) in parallel with the fin member (6), and the other support member (16) and the fin member (6) are cross-shaped. One support member (15) is disposed so as to intersect the shape. And the both ends of one supporting member (15) and the center part which one and the other supporting member (16) cross | intersect are connected with a volt | bolt (17) through a spacer (18).
[0065]
Furthermore, the both side support members (21) are provided on the upper and lower surfaces of both ends of the fin member (6) projecting from one side and the other side of the coil tube body (5) and the other support member (16). As shown in FIG. 17, a reinforcing member (22) having a U-shaped end surface is disposed between the fin member (6) on the one surface side and the other surface side. The both side support members (21), the fin member (6), and the reinforcing material (22) are connected and fixed at both ends of the both side support members (21) with bolts (17). In the center, both side support members (21), the other support member (16), the fin member (6), and the reinforcing material (22) are connected and fixed by bolts (17).
[0066]
As described above, in the eighth embodiment, not only the fin member (6) is fixed by the adhesive force of the resin material and the one support member (15), but both ends are fixed by the both side support members (21). In addition, the effect of preventing the fin member (6) from blurring and falling off from the coil tube body (5) is enhanced, the durability and usability of the fuel cooler (11) is improved, and the fuel can be cooled satisfactorily. .
[0067]
Moreover, in each said Example, the carbon nanofiber is mixed in the resin material which forms the resin layer (2) as needed, and the heat conductivity of the resin layer (2) is improved. However, as another embodiment for improving the thermal conductivity of the resin layer (2), the resin material may be mixed with metal powder other than carbon nanofibers, glass fiber, or the like, or may be formed on the surface of the resin layer (2). A paint mixed with metal powder or the like may be applied, or metal may be plated or deposited on the resin layer (2). Further, a black resin material may be used.
[0068]
In each of the above embodiments, a long flat plate-like fin (8) is projected from the long base portion (7) of the fin member (6) in the same manner as the base portion (7). Further, fins may be provided in a projecting manner on the long base portion (7). Further, the pin-shaped fin may be formed by forming the base portion (7) in a short length and projecting the fin with the same length as the base portion (7).
[0069]
Moreover, in each said Example, although implemented with a fuel cooler (11), it is also possible to implement with the oil cooler which cools the engine oil for lubricating an engine, mission oil, and ATF. In addition, it can be implemented with various radiators by air cooling, has a high cooling effect, is lightweight and small, and has a high degree of freedom in layout that can be installed in a narrow place such as under the floor.
[0070]
【The invention's effect】
The present invention is configured as described above, and the use of a resin material makes it possible to manufacture a light and inexpensive coil tube type heatsink with an easy technique. In addition, since the metal tube is formed in a spiral shape to have a flat shape, it is less bulky in the thickness direction, can be installed in a narrow space such as under the floor, and can obtain a product with excellent layout properties. . And even if it uses the resin material by the protrusion of a fin member, the thermal conductivity equivalent to or more than the product formed only with the metal material can be acquired, and the cooling effect of the fluid can be improved.
[Brief description of the drawings]
FIG. 1 is a perspective view of a fuel cooler according to a first embodiment of the present invention.
FIG. 2 is an exploded perspective view of a fin member and a coil tube main body.
3 is a cross-sectional view taken along line AA in FIG.
FIG. 4 is a plan view of a circular spiral metal tube.
FIG. 5 is a plan view of a square spiral metal tube.
FIG. 6 is an exploded perspective view of a fuel cooler according to a second embodiment of the present invention.
FIG. 7 is a perspective view of a fuel cooler according to a third embodiment of the present invention.
FIG. 8 is a sectional view of a fuel cooler according to a fourth embodiment of the present invention.
FIG. 9 is a plan view of a fuel cooler according to a fifth embodiment of the present invention.
10 is a sectional view taken along line BB in FIG.
11 is a cross-sectional view taken along the line CC of FIG. 9;
FIG. 12 is a plan view of a fuel cooler according to a sixth embodiment of the present invention.
13 is a sectional view taken along line DD of FIG.
FIG. 14 is a plan view of a fuel cooler according to a seventh embodiment of the present invention.
15 is a cross-sectional view taken along line EE in FIG.
FIG. 16 is a plan view of a fuel cooler according to an eighth embodiment of the present invention.
17 is a side view from the direction F in FIG. 16;
[Explanation of symbols]
1 Metal tube
2 Resin layer
5 Coil tube body
6 Fin members
7 base part
8 Fin
10 Through hole
12 Protrusions
15 One support member
16 The other support member
17 bolts (connection means of the present invention)
21 Both side support members

Claims (12)

渦巻き状とした金属管の外表面に樹脂層を配設して形成したコイルチューブ本体の片面又は両面に、金属製のフィン部材を、樹脂層に基盤部を固定して少なくとも一個突設した事を特徴とするコイルチューブ式放熱器。At least one fin member made of metal is fixed to the resin layer with the base portion fixed on one or both sides of the coil tube body formed by arranging the resin layer on the outer surface of the spiral metal tube. Coil tube type radiator. 樹脂層は、渦巻き状に成形した金属管の外表面に、モールディング成形により樹脂材を配設して形成し、樹脂層内に金属管を埋設した事を特徴とする請求項1のコイルチューブ式放熱器。The coil tube type according to claim 1, wherein the resin layer is formed by forming a resin material on the outer surface of a spirally formed metal tube by molding, and the metal tube is embedded in the resin layer. Radiator. 樹脂層は、予め金属管の外表面に配設したものであって、この樹脂層を配設した金属管を渦巻き状に成形してコイルチューブ本体を形成した事を特徴とする請求項1のコイルチューブ式放熱器。2. The resin layer according to claim 1, wherein the resin layer is previously disposed on the outer surface of the metal tube, and the coil tube body is formed by forming the metal tube having the resin layer into a spiral shape. Coil tube type heatsink. フィン部材は、樹脂層に固定する基盤部と、この基盤部に突設したフィンとから成り、前記基盤部に貫通孔を少なくとも一個設け、予め熱溶融させた樹脂層にフィン部材を押し付けて樹脂材を前記貫通孔を介して基盤部の表面側に流出させ固化させる事により、この固化した樹脂材にてフィン部材をコイルチューブ本体に固定した事を特徴とする請求項1、2又は3のコイルチューブ式放熱器。The fin member is composed of a base portion fixed to the resin layer and a fin projecting from the base portion. The fin member is provided with at least one through hole in the base portion, and the fin member is pressed against the resin layer that has been thermally melted in advance. The fin member is fixed to the coil tube main body with the solidified resin material by allowing the material to flow out to the surface side of the base portion through the through-hole and solidify the material. Coil tube type heatsink. フィン部材は、樹脂層に固定する基盤部と、この基盤部に突設したフィンとから成り、前記基盤部に貫通孔を少なくとも一個設け、この貫通孔に係合可能な突起を樹脂層に突出形成し、フィン部材の基盤部の貫通孔から突出する樹脂層の突起を熱溶融させ固化させる事により、この固化した樹脂材にてフィン部材をコイルチューブ本体に固定した事を特徴とする請求項1、2又は3のコイルチューブ式放熱器。The fin member includes a base portion fixed to the resin layer and a fin projecting from the base portion. The fin member has at least one through hole formed in the base portion, and a protrusion that can be engaged with the through hole projects into the resin layer. The fin member is fixed to the coil tube body with the solidified resin material by forming and melting and solidifying the protrusion of the resin layer protruding from the through hole of the base portion of the fin member. 1, 2, or 3 coil tube radiators. フィン部材は、樹脂層に固定する基盤部と、この基盤部に突設したフィンとから成り、予め熱溶融させた樹脂層にフィン部材を押し付けて、基盤部の長さ方向の両側から溶融した樹脂材を基盤部の表面側に流動させ固化させる事により、この固化した樹脂材にてフィン部材をコイルチューブ本体に固定した事を特徴とする請求項1、2又は3のコイルチューブ式放熱器。The fin member is composed of a base portion fixed to the resin layer, and a fin protruding from the base portion, and the fin member is pressed against the resin layer that has been thermally melted in advance and melted from both sides in the length direction of the base portion. The coil tube type heat radiator according to claim 1, 2 or 3, wherein the fin member is fixed to the coil tube body with the solidified resin material by allowing the resin material to flow and solidify on the surface side of the base portion. . フィン部材は、樹脂層に固定する基盤部と、この基盤部に突設したフィンとから成り、この基盤部を樹脂層に接着剤及び/又は熱溶融させた樹脂材の接着力にて接着する事により、フィン部材をコイルチューブ本体に固定した事を特徴とする請求項1、2又は3のコイルチューブ式放熱器。The fin member includes a base portion fixed to the resin layer and fins protruding from the base portion, and the base portion is bonded to the resin layer with an adhesive and / or a heat-melted resin material. 4. The coil tube type heat radiator according to claim 1, wherein the fin member is fixed to the coil tube main body. コイルチューブ本体は、両面に幅狭な支持部材を少なくとも一対配置し、この両面の支持部材をコイルチューブ本体を介して接続手段により互いに接続した事を特徴とする請求項3、4、5、6又は7のコイルチューブ式放熱器。7. The coil tube main body is characterized in that at least a pair of narrow support members are arranged on both surfaces, and the support members on both surfaces are connected to each other by connecting means through the coil tube main body. Or 7 coil tube type radiator. 支持部材は、フィン部材を介してコイルチューブ本体の両面に配置し、接続手段により互いに接続する事で、支持部材にてフィン部材をコイルチューブ本体に固定する事を特徴とする請求項8のコイルチューブ式放熱器。9. The coil according to claim 8, wherein the support member is disposed on both surfaces of the coil tube main body via the fin member, and is connected to each other by a connecting means, whereby the fin member is fixed to the coil tube main body by the support member. Tube type heatsink. フィン部材は、端面形状をL字形、U字形、コ字形、又はV字形とする板状フィン又はピン状フィンであるか又はこれらを複数連結し端面形状を櫛歯形、鋸歯形、又は波形とする板状フィンである事を特徴とする請求項1、3、4、5、6、7又は8のコイルチューブ式放熱器。The fin member is a plate-like fin or pin-like fin whose end face shape is L-shaped, U-shaped, U-shaped, or V-shaped, or a plurality of these are connected to form a comb-tooth shape, saw-tooth shape, or corrugated end face shape. It is a plate-shaped fin, The coil tube type heat radiator of Claim 1, 3, 4, 5, 6, 7 or 8 characterized by the above-mentioned. 樹脂層は、カーボンナノファイバーを含有させた事を特徴とする請求項1、3、4、5、6、7又は8のコイルチューブ式放熱器。The coil tube type heat radiator according to claim 1, 3, 4, 5, 6, 7 or 8, wherein the resin layer contains carbon nanofibers. カーボンナノファイバーは、5wt%より多く30wt%より少ない含有量で含有させた事を特徴とする請求項11のコイルチューブ式放熱器。The coiled tube heat radiator according to claim 11, wherein the carbon nanofiber is contained in an amount of more than 5 wt% and less than 30 wt%.
JP2003196017A 2003-07-11 2003-07-11 Coil tube type heat radiator Withdrawn JP2005030676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003196017A JP2005030676A (en) 2003-07-11 2003-07-11 Coil tube type heat radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003196017A JP2005030676A (en) 2003-07-11 2003-07-11 Coil tube type heat radiator

Publications (2)

Publication Number Publication Date
JP2005030676A true JP2005030676A (en) 2005-02-03
JP2005030676A5 JP2005030676A5 (en) 2006-08-24

Family

ID=34206683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003196017A Withdrawn JP2005030676A (en) 2003-07-11 2003-07-11 Coil tube type heat radiator

Country Status (1)

Country Link
JP (1) JP2005030676A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100718998B1 (en) * 2005-07-13 2007-05-16 엘지전자 주식회사 Plasma display panel
JP2007327735A (en) * 2006-05-10 2007-12-20 Usui Kokusai Sangyo Kaisha Ltd Finned tube
JP2009030955A (en) * 2007-06-29 2009-02-12 Furukawa Sky Kk Heat exchange part unit for heat exchanger
WO2018223935A1 (en) * 2017-06-05 2018-12-13 深圳市鸿富诚屏蔽材料有限公司 Fully-coated heat sink and manufacturing method therefor
IT201700096656A1 (en) * 2017-08-28 2019-02-28 Cosmogas Srl HEAT EXCHANGER FOR A BOILER, AND HEAT EXCHANGER TUBE
CN110986153A (en) * 2019-12-23 2020-04-10 北京建筑材料检验研究院有限公司 Heating heat transfer structure and heating radiator
JP2022121766A (en) * 2021-02-09 2022-08-22 ツインバード工業株式会社 storage

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100718998B1 (en) * 2005-07-13 2007-05-16 엘지전자 주식회사 Plasma display panel
JP2007327735A (en) * 2006-05-10 2007-12-20 Usui Kokusai Sangyo Kaisha Ltd Finned tube
JP2009030955A (en) * 2007-06-29 2009-02-12 Furukawa Sky Kk Heat exchange part unit for heat exchanger
WO2018223935A1 (en) * 2017-06-05 2018-12-13 深圳市鸿富诚屏蔽材料有限公司 Fully-coated heat sink and manufacturing method therefor
IT201700096656A1 (en) * 2017-08-28 2019-02-28 Cosmogas Srl HEAT EXCHANGER FOR A BOILER, AND HEAT EXCHANGER TUBE
WO2019043480A1 (en) * 2017-08-28 2019-03-07 Cosmogas S.R.L. Heat exchanger for a boiler, and heat-exchanger tube
CN111417823A (en) * 2017-08-28 2020-07-14 科斯莫加斯有限公司 Heat exchanger for a boiler and heat exchanger tube
CN111417823B (en) * 2017-08-28 2021-07-16 科斯莫加斯有限公司 Heat exchanger for a boiler and heat exchanger tube
US11598555B2 (en) 2017-08-28 2023-03-07 Cosmogas S.R.L. Heat exchanger for a boiler, and heat-exchanger tube
CN110986153A (en) * 2019-12-23 2020-04-10 北京建筑材料检验研究院有限公司 Heating heat transfer structure and heating radiator
CN110986153B (en) * 2019-12-23 2023-11-21 北京建筑材料检验研究院股份有限公司 Heating heat transfer structure and heating radiator
JP2022121766A (en) * 2021-02-09 2022-08-22 ツインバード工業株式会社 storage

Similar Documents

Publication Publication Date Title
JP4520774B2 (en) Heat exchanger
US20200298652A1 (en) Thermal management system and method
US7694724B2 (en) Engine cooling radiator
KR101500786B1 (en) Heat exchanger, particularly for a motor vehicle
JP4676438B2 (en) Heat exchanger
JP5426563B2 (en) Exhaust gas cooler for automobile
JP6191354B2 (en) Cover structure under the car body
JP2005030676A (en) Coil tube type heat radiator
JP5381770B2 (en) Heat exchanger
EP1862753A1 (en) Heat exchnager with a corrugated tube in the form of a serpentine
CN107806376B (en) Water-cooled exhaust gas recirculation cooler
JP2004191035A (en) Heat transfer pipe internally provided with resin pipe
JP2004191034A (en) Heat transfer pipe internally provided with fin member made of resin material
KR20230124054A (en) hybrid heat exchanger
US20130075071A1 (en) Heat Exchanger
JP2005147601A (en) Heat transfer tube having radial fin
JP7094805B2 (en) How to manufacture heat exchangers and heat exchangers
JP2004279021A (en) Heat transfer pipe with internally mounted resin fin member
JP2004226057A (en) Cooling device using plate-like fin tube
JP2019104318A (en) Air guide structure for vehicular radiator
KR101153315B1 (en) Heat exchanger
AU2018267568A1 (en) Thermal management system and method
JP2004226056A (en) Resin water tube and radiator device using resin water tube
JP2004191036A (en) Heat transfer pipe internally provided with fin member made of resin material
JP2005030677A (en) Heat transfer tube armored with resin fin member

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20060707

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20060707

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20060919

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070806