JP2005030340A - Fuel supply equipment of internal combustion engine, and method for controlling the same - Google Patents

Fuel supply equipment of internal combustion engine, and method for controlling the same Download PDF

Info

Publication number
JP2005030340A
JP2005030340A JP2003272472A JP2003272472A JP2005030340A JP 2005030340 A JP2005030340 A JP 2005030340A JP 2003272472 A JP2003272472 A JP 2003272472A JP 2003272472 A JP2003272472 A JP 2003272472A JP 2005030340 A JP2005030340 A JP 2005030340A
Authority
JP
Japan
Prior art keywords
heater
fuel
injection valve
amount
electric heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003272472A
Other languages
Japanese (ja)
Inventor
Takanobu Ichihara
隆信 市原
Kozo Katogi
工三 加藤木
Hiroaki Saeki
浩昭 佐伯
Kiyoshi Amo
天羽  清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2003272472A priority Critical patent/JP2005030340A/en
Publication of JP2005030340A publication Critical patent/JP2005030340A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent breakage of a heat transfer member of a heater caused by overheat of the electric heater, and to improve the combustion when the internal combustion engine is in a cold state by enhancing the evaporation performance by providing the electric heater to promote fuel evaporation of an internal combustion engine. <P>SOLUTION: A fuel supply equipment 5 comprises an auxiliary injection valve 4 for a fuel injection valve on an air-intake passage of an internal combustion engine, an electric heater 30 to heat and evaporate injected fuel from the auxiliary injection valve 4, and a heater relay 16 to control the heat generation of the electric heater. When a state that the heat radiation from a surface of the electric heater is reduced is determined, the heat generation of the electric heater is controlled and reduced by the heater relay during the injection of the fuel injection valve so that the temperature of the heat transfer member 6 of the heater does not exceed the heat-proof temperature thereof. As a result, the surface temperature of the heat transfer member of the heater can be set to be higher than the heat-proof temperature, and the fuel evaporation performance of the electric heater can be enhanced thereby. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電気ヒータを用いた内燃機関用燃料供給装置およびその制御方法に係り、特に、内燃機関の冷機時における燃焼改善と未燃ガスの削減が可能な燃料供給装置と、その制御方法に関する。   The present invention relates to a fuel supply device for an internal combustion engine using an electric heater and a control method thereof, and more particularly to a fuel supply device capable of improving combustion and reducing unburned gas when the internal combustion engine is cold, and a control method thereof. .

従来の技術として、燃料噴射弁により噴射される燃料を吸気通路に設けたヒータで加熱し、気化することにより、吸気通路や吸気弁に付着する燃料を減らし、とくに冷機始動時の燃焼改善と、有害な炭化水素の排出量の低減を図る方式が提案されている。例として特許文献1では、各気筒の吸気ポート付近に設けられる燃料噴射弁(主噴射弁)に加えて、その上流のスロットル弁をバイパスする補助空気通路に燃料噴射弁(補助噴射弁)と電気加熱式ヒータを配置する構成により、冷機時の始動やアイドルで補助燃料噴射弁よりヒータに向けて燃料噴射を行いヒータで燃料気化を促進することにより、燃焼改善を図りエンジンからの未燃ガス(HC)の排出量を低減している。   As conventional technology, the fuel injected by the fuel injection valve is heated by a heater provided in the intake passage and vaporized to reduce the fuel adhering to the intake passage and the intake valve. Methods have been proposed to reduce harmful hydrocarbon emissions. As an example, in Patent Document 1, in addition to a fuel injection valve (main injection valve) provided in the vicinity of the intake port of each cylinder, a fuel injection valve (auxiliary injection valve) and an electric valve are connected to an auxiliary air passage that bypasses the upstream throttle valve. With the arrangement of the heater, the fuel is injected from the auxiliary fuel injection valve to the heater at cold start or idling, and fuel vaporization is promoted by the heater, thereby improving combustion and unburned gas from the engine ( HC) emissions are reduced.

米国特許第5894832号明細書US Pat. No. 5,894,832

上記のような吸気通路に燃料気化を促進する電気加熱式のヒータを備えた燃料供給装置では、ヒータの消費電力の制限から、ヒータへの通電および補助噴射弁の噴射を実施するのは、一般に始動から始動後の数十秒の間であり、上記時間経過後は補助噴射弁の噴射量を徐々に減少させ、その間に主噴射弁の噴射量を徐々に増加させて噴射弁の切り換えを実施し、その後はヒータへの通電を停止している。   In a fuel supply apparatus having an electrically heated heater that promotes fuel vaporization in the intake passage as described above, it is generally the case that the heater is energized and the auxiliary injection valve is injected due to the limitation of power consumption of the heater. It is between several tens of seconds after start-up, and after the above time has elapsed, the injection amount of the auxiliary injection valve is gradually decreased, and during that time, the injection amount of the main injection valve is gradually increased to switch the injection valve After that, energization to the heater is stopped.

上記従来技術では、噴射弁の切り換え実施時に補助噴射弁の燃料噴射を停止してからヒータへの通電を停止するようにしているが、補助噴射弁から主噴射弁に噴射が切り換わる途中では補助噴射弁の噴射量は通常噴射量に対し少なくなる。   In the above prior art, when the injection valve is switched, the fuel injection of the auxiliary injection valve is stopped and then the energization to the heater is stopped. However, the auxiliary is not performed while the injection is switched from the auxiliary injection valve to the main injection valve. The injection amount of the injection valve is smaller than the normal injection amount.

一方、ヒータ伝熱部の温度はヒータに付着する燃料量によって変化し、ヒータに付着する燃料が多いときにはヒータ伝熱面から奪われる熱量が増えてヒータ伝熱部の温度が低下するが、ヒータに付着する燃料が少ないときにはヒータ伝熱面から奪われる熱量が少ないのでヒータ伝熱部の温度が上昇する。この特性はヒータの発熱部が電熱線タイプのもののほか、素子温度が一定となるように抵抗値が自己制御されるPTC(Positive Temperature Coefficient)サーミスタを用いたヒータでも同様で、PTCサーミスタの伝熱面の反対側の表面温度はPTCの設定温度(キューリー点温度)付近に制御され一定温度になるが、伝熱面側のPTC表面温度は、ヒータ付着燃料量が増加し放熱量が増加するとPTCの設定温度に対し低下する。このため伝熱部の温度は付着燃料量によって変動することになる。   On the other hand, the temperature of the heater heat transfer portion varies depending on the amount of fuel adhering to the heater. When there is a lot of fuel adhering to the heater, the amount of heat taken away from the heater heat transfer surface increases and the temperature of the heater heat transfer portion decreases. When the amount of fuel adhering to the heater is small, the amount of heat taken away from the heater heat transfer surface is small, so that the temperature of the heater heat transfer portion rises. This characteristic is the same for a heater using a PTC (Positive Temperature Coefficient) thermistor whose resistance is self-controlled so that the temperature of the element is constant, as well as the heater heating element type. The surface temperature on the opposite side of the surface is controlled near the set temperature (Curie point temperature) of the PTC and becomes a constant temperature. However, the PTC surface temperature on the heat transfer surface side increases as the amount of fuel adhering to the heater increases and the heat dissipation increases. Decreases with respect to the set temperature. For this reason, the temperature of the heat transfer section varies depending on the amount of attached fuel.

ここで、ヒータ伝熱部材として一般に用いるアルミニウムの耐熱温度は150℃程度であり、この温度を超えるとヒータ伝熱部材が変形して伝熱部材表面の耐食メッキがはがれる場合があるために腐食を生じたり、伝熱部材が破損する恐れがある。   Here, the heat-resistant temperature of aluminum generally used as a heater heat transfer member is about 150 ° C., and if this temperature is exceeded, the heater heat transfer member may be deformed and corrosion-resistant plating on the surface of the heat transfer member may be peeled off. It may occur or the heat transfer member may be damaged.

一方でガソリンの気化性が最も高くなるのは150〜180℃の温度範囲であるので、気化性の点からはヒータ伝熱部の温度が最大燃料量のときに150℃になることが望ましいが、上記従来技術では、前記したヒータへの付着燃料量の変化による伝熱部の温度変動があるため、この温度変動分を見込むと最大燃料量のときに最適温度(150℃)に対し伝熱部温度を低めに設定する必要があり、このため燃料量が多いときにヒータの気化性が低下するという問題があった。   On the other hand, gasoline has the highest vaporization property in the temperature range of 150 to 180 ° C. From the viewpoint of vaporization property, it is desirable that the temperature of the heater heat transfer section be 150 ° C. when the maximum fuel amount is reached. In the above prior art, there is a temperature fluctuation of the heat transfer section due to the change in the amount of fuel adhering to the heater. Therefore, when the temperature fluctuation is taken into account, the heat transfer with respect to the optimum temperature (150 ° C.) at the maximum fuel quantity is achieved. Therefore, there is a problem that the vaporization of the heater is lowered when the amount of fuel is large.

本発明の目的は、電気ヒータや、これに付随するヒータ伝熱部材の耐久性を損なうことなく、燃料の気化性能を向上させることができる燃料供給装置と、その制御方法を提供することにある。   An object of the present invention is to provide a fuel supply device capable of improving the fuel vaporization performance without impairing the durability of the electric heater and the heater heat transfer member associated therewith, and a control method thereof. .

上記課題を解決するため、本発明にかかる内燃機関の燃料供給装置は、内燃機関の吸気通路に設けられる燃料噴射弁と、該燃料噴射弁の噴射燃料を加熱し燃料気化を促進する電気ヒータと、該電気ヒータの制御手段とを備えた燃料供給装置であって、前記電気ヒータの放熱量が減少する状態を判定したときに、前記燃料噴射弁の噴射中に、前記発熱量制御手段で前記電気ヒータの発熱量を放熱量の減少に基づいて制御するようにした。すなわち、電気ヒータへの通電を止め、あるいは制限して発熱量を減少させる。   In order to solve the above-described problems, a fuel supply device for an internal combustion engine according to the present invention includes a fuel injection valve provided in an intake passage of the internal combustion engine, an electric heater that heats fuel injected from the fuel injection valve and promotes fuel vaporization. And a control device for the electric heater, wherein when determining a state in which the amount of heat released from the electric heater is reduced, the heat generation amount control means performs the heat generation amount control means during the injection of the fuel injection valve. The amount of heat generated by the electric heater was controlled based on the decrease in the amount of heat released. That is, the amount of heat generated is reduced by stopping or limiting the energization of the electric heater.

前記のように構成された本発明の燃量供給装置は、内燃機関の冷機時に噴射された燃料は電気ヒータにより気化が促進され、燃焼改善により内燃機関から排出される未燃ガスの排出量を低減することができる。そして、燃料噴射弁の切り換え等により、電気ヒータ表面の放熱量が減少する状態を判定してヒータの発熱量を減少させるため、電気ヒータの設定温度を高くできて燃量の気化性能を高めることができ、電気ヒータやヒータ伝熱部材が過熱により変形したり、破損することを防止できる。   In the fuel amount supply device of the present invention configured as described above, the fuel injected when the internal combustion engine is cold is promoted to vaporize by the electric heater, and the amount of unburned gas discharged from the internal combustion engine by the combustion improvement is reduced. Can be reduced. And, by switching the fuel injection valve, etc., it is possible to determine the state where the heat dissipation amount on the surface of the electric heater is reduced and reduce the heat generation amount of the heater, so that the set temperature of the electric heater can be increased and the fuel vaporization performance is improved. It is possible to prevent the electric heater and the heater heat transfer member from being deformed or damaged by overheating.

前記電気ヒータの設定温度について、電気ヒータはヒータ伝熱部材を備え、ヒータ伝熱部材に燃料が付着していない状態で放熱が少ない状態でのヒータ伝熱部材の表面温度を、ヒータ伝熱部材の耐熱温度より高く設定するようにした。前記電気ヒータは、PTCサーミスタを使用したヒータであることが好ましい。前記ヒータ伝熱部材は、アルミニウムまたはアルミニウムを主成分とする合金から形成し、PTCサーミスタのキューリー点温度を150℃以上に設定すると好適である。   With respect to the set temperature of the electric heater, the electric heater includes a heater heat transfer member, and the surface temperature of the heater heat transfer member in a state where the heat is not radiated when no fuel is attached to the heater heat transfer member It was set to be higher than the heat resistance temperature. The electric heater is preferably a heater using a PTC thermistor. The heater heat transfer member is preferably made of aluminum or an alloy containing aluminum as a main component, and the Curie point temperature of the PTC thermistor is preferably set to 150 ° C. or higher.

さらに、本発明に係る燃料供給装置の他の態様としては、内燃機関の吸気通路に設けられる燃料噴射弁と、該燃料噴射弁の噴射燃料を加熱し燃料気化を促進する電気ヒータとを備え、この燃料供給装置は、燃料噴射弁の噴射量を減少させる制御に合わせて、電気ヒータの発熱量を減少させるように制御する発熱量制御手段を備えたことを特徴とする。噴射量を減少させる制御と、電気ヒータの発熱量を減少させる制御とは、時間的に多少のずれがあってもよい。   Furthermore, as another aspect of the fuel supply device according to the present invention, a fuel injection valve provided in the intake passage of the internal combustion engine, and an electric heater that heats the fuel injected from the fuel injection valve to promote fuel vaporization, This fuel supply device is characterized by comprising a heat generation amount control means for controlling to reduce the heat generation amount of the electric heater in accordance with the control for decreasing the injection amount of the fuel injection valve. There may be a slight difference in time between the control for reducing the injection amount and the control for reducing the heat generation amount of the electric heater.

このように構成することにより、燃料噴射弁の噴射量が減少しても電気ヒータが過熱することが防止され、電気ヒータやこれに付随する伝熱部材等が耐熱温度を超えて変形することが防止され、耐久性が向上する。また、内燃機関の冷機時における燃料の気化性能が向上して燃焼改善が図れ、未燃ガスの削減が可能となる。   With this configuration, the electric heater is prevented from overheating even when the injection amount of the fuel injection valve is reduced, and the electric heater and the heat transfer member associated therewith can be deformed beyond the heat resistance temperature. Is prevented and durability is improved. Further, the vaporization performance of the fuel when the internal combustion engine is cold is improved, combustion can be improved, and unburned gas can be reduced.

本発明に係る燃料供給装置のさらに他の態様としては、内燃機関の吸気通路に設けられる主燃料噴射弁及び副燃料噴射弁と、前記副噴射弁の噴射燃料を加熱し燃料気化を促進する電気ヒータとを備え、この燃料供給装置は、主燃料噴射弁と副燃料噴射弁の切換制御に合わせて、電気ヒータの発熱量を減少させるように制御する発熱量制御手段を備えたことを特徴とする。切換制御と、電気ヒータの発熱量を減少させる制御とは、時間的に多少のずれがあってもよい。前記発熱量制御手段は、通電電流を減少させる制御、通電時間を間歇的にする制御、通電電圧を降下させる制御の内の少なくとも1つの制御を実施することが好ましい。   As still another aspect of the fuel supply device according to the present invention, a main fuel injection valve and a sub fuel injection valve provided in an intake passage of an internal combustion engine, and an electric for heating the fuel injected from the sub injection valve to promote fuel vaporization. The fuel supply device includes a heating value control means for controlling the heating value of the electric heater to be reduced in accordance with the switching control of the main fuel injection valve and the auxiliary fuel injection valve. To do. There may be a slight difference in time between the switching control and the control for reducing the amount of heat generated by the electric heater. The heat generation amount control means preferably performs at least one of control for reducing the energization current, control for intermittently energizing time, and control for decreasing the energization voltage.

このように構成することにより、内燃機関の始動時に副燃料噴射弁から主燃料噴射弁に切り換える際に燃料の噴射量が変動しても電気ヒータやこれに付随する伝熱部材等が耐熱温度を超えて変形することが防止される。また、内燃機関の冷機時における燃料の気化性能が向上して燃焼改善が図れ、未燃ガスの削減が可能となる。   With this configuration, even when the fuel injection amount fluctuates when switching from the auxiliary fuel injection valve to the main fuel injection valve at the start of the internal combustion engine, the electric heater, the heat transfer member associated therewith, and the like have a heat resistant temperature. It is prevented from being deformed beyond. Further, the vaporization performance of the fuel when the internal combustion engine is cold is improved, combustion can be improved, and unburned gas can be reduced.

また、本発明に係る内燃機関の燃料供給装置の制御方法は、吸気通路に設けられる燃料噴射弁および空気制御弁と、該燃料噴射弁の噴射燃料を加熱し燃料気化を促進する電気ヒータと、該電気ヒータの発熱量制御手段とを備えた内燃機関の燃料供給装置の制御方法であって、a.前記燃料噴射弁の燃料噴射量が所定値以下に減少したとき、b.前記燃料噴射弁の燃料噴射量が減少方向に変化したとき、c.前記内燃機関の吸入空気量が所定値以下に減少したとき、d.前記内燃機関の吸入空気量が減少方向に変化したとき、e.前記内燃機関の点火時期が所定値に対し進角したとき、f.前記内燃機関の点火時期が進角方向に変化したとき、g.前記内燃機関の回転が低下したとき、h.前記電気ヒータの電流検出値が所定値以下となったとき、i.前記燃料噴射弁の噴射量の減量動作を時間タイマーにより実施するものでは前記時間タイマーが所定時間となったとき又は前記所定時間の直前又は直後であるとき、j.前記空気制御弁および/または前記燃料噴射弁の異常を検出したとき、の内の少なくとも1つの状態を検出したとき、k.前記自動変速機のシフトレバーがニュートラルレンジからドライブレンジに切り換わった状態を検出したとき、の内の少なくとも1つの状態を検出したとき、前記電気ヒータの放熱量が減少する状態と判定し、前記燃料噴射弁の噴射中に、前記電気ヒータの発熱量を放熱量の減少に基づいて制御することを特徴とする。   Further, a control method for a fuel supply device for an internal combustion engine according to the present invention includes a fuel injection valve and an air control valve provided in an intake passage, an electric heater for heating fuel injected from the fuel injection valve and promoting fuel vaporization, A control method for a fuel supply device for an internal combustion engine, comprising a heating value control means for the electric heater, comprising: a. When the fuel injection amount of the fuel injection valve decreases below a predetermined value; b. When the fuel injection amount of the fuel injection valve changes in a decreasing direction; c. When the intake air amount of the internal combustion engine decreases below a predetermined value; d. When the intake air amount of the internal combustion engine changes in a decreasing direction, e. When the ignition timing of the internal combustion engine is advanced with respect to a predetermined value, f. When the ignition timing of the internal combustion engine changes in the advance direction, g. When the rotation of the internal combustion engine decreases, h. When the current detection value of the electric heater becomes a predetermined value or less, i. In the case where the operation of reducing the injection amount of the fuel injection valve is performed by a time timer, when the time timer reaches a predetermined time, or immediately before or after the predetermined time, j. When detecting an abnormality of the air control valve and / or the fuel injection valve, detecting at least one of the states; k. When detecting a state in which the shift lever of the automatic transmission is switched from the neutral range to the drive range, when detecting at least one of the states, it is determined that the heat dissipation amount of the electric heater is reduced, During the injection of the fuel injection valve, the amount of heat generated by the electric heater is controlled based on a decrease in the amount of heat released.

前記の如く構成された燃料供給装置の制御方法は、前記のa〜kの少なくとも1つの状態を検出したとき、前記電気ヒータの放熱量が減少する状態と判定し、燃料噴射弁の噴射中に、電気ヒータの発熱量を減少させるため、燃焼改善により内燃機関から排出される未燃ガスの排出量を低減することができると共に、電気ヒータの設定温度を高くできて燃量の気化性能を高めることができ、電気ヒータやヒータ伝熱部材が過熱により変形したり、破損することを防止できる。   The control method of the fuel supply apparatus configured as described above determines that the amount of heat dissipated by the electric heater is reduced when detecting at least one of the states a to k, and during the injection of the fuel injection valve. In order to reduce the amount of heat generated by the electric heater, it is possible to reduce the amount of unburned gas discharged from the internal combustion engine by improving the combustion, and to increase the set temperature of the electric heater to increase the fuel vaporization performance. It is possible to prevent the electric heater and the heater heat transfer member from being deformed or damaged by overheating.

以上説明したように、本発明ではエンジンの吸気通路に燃料噴射弁と、燃料噴射弁の噴射燃料を加熱気化する電気ヒータとを備えた構成において、ヒータ伝熱部材の温度が上昇する状態を検知し、すなわち、電気ヒータ表面の放熱量が減少する状態が判定されたときに、燃料噴射弁の噴射中に、電気ヒータの発熱量を減少させるので、ヒータ温度がヒータ伝熱部材の耐熱温度以上に上昇することが無くなり、ヒータ伝熱部材の破損を防止できる。   As described above, in the present invention, a state in which the temperature of the heater heat transfer member rises is detected in a configuration including the fuel injection valve in the intake passage of the engine and the electric heater that heats and vaporizes the fuel injected from the fuel injection valve. That is, when it is determined that the amount of heat released from the surface of the electric heater is reduced, the amount of heat generated by the electric heater is reduced during the fuel injection valve injection, so the heater temperature is equal to or higher than the heat resistance temperature of the heater heat transfer member. It is possible to prevent the heater heat transfer member from being damaged.

またヒータ温度の変動が減少し、過熱を防止した結果、ヒータの設定温度を従来より高く設定できるのでヒータの燃料気化性能を向上することができる。   Further, as a result of reducing the fluctuation of the heater temperature and preventing overheating, the set temperature of the heater can be set higher than before, so that the fuel vaporization performance of the heater can be improved.

以下、本発明に係る燃料供給装置の一実施形態を適用した内燃機関について詳細に説明する。図1は本実施形態に係る燃料供給装置を適用した内燃機関の要部構成図、図2は図1の燃料供給装置の断面図である。   Hereinafter, an internal combustion engine to which an embodiment of a fuel supply apparatus according to the present invention is applied will be described in detail. FIG. 1 is a main part configuration diagram of an internal combustion engine to which a fuel supply apparatus according to this embodiment is applied, and FIG. 2 is a cross-sectional view of the fuel supply apparatus of FIG.

図1,2において、主空気通路1にはエアクリーナ2、空気量センサ18、スロットル弁10が設けられ、シリンダ20の吸気ポート付近には主噴射弁3が設けられる。スロットル弁10をバイパスするようにバイパス通路7が設けられ、バイパス通路7の途中には燃料供給装置5および燃料供給装置5を経て、エンジンに流入する空気量を制御する空気制御弁9が設けられる。燃料供給装置5は通路内面に沿って設けられるヒータの伝熱部材6および補助噴射弁4から成る。燃料供給装置5から供給される気化燃料は気化燃料通路8を経てシリンダ20に供給される。   1 and 2, an air cleaner 2, an air amount sensor 18, and a throttle valve 10 are provided in the main air passage 1, and a main injection valve 3 is provided in the vicinity of the intake port of the cylinder 20. A bypass passage 7 is provided so as to bypass the throttle valve 10, and an air control valve 9 that controls the amount of air flowing into the engine via the fuel supply device 5 and the fuel supply device 5 is provided in the middle of the bypass passage 7. . The fuel supply device 5 includes a heater heat transfer member 6 and an auxiliary injection valve 4 provided along the inner surface of the passage. The vaporized fuel supplied from the fuel supply device 5 is supplied to the cylinder 20 through the vaporized fuel passage 8.

燃料供給装置5は電気ヒータ30と、このヒータの熱を伝達する伝熱部材6とを備えており、電気ヒータに通電を行うため車載バッテリ17、および電気ヒータの発熱量を制御する制御手段として、ヒータリレー16が接続されている。電気ヒータ30の電流を検出するための抵抗素子21が、必要に応じ接続される。クランク軸に近接して、クランク位置、エンジン回転を検出するためのクランク角度センサ11が設置されている。12、13、14はそれぞれ点火プラグ、点火コイル、パワースイッチである。他に、この内燃機関を搭載した自動車が自動変速機を有する場合、シフトレバー位置センサ22が設けられる。   The fuel supply device 5 includes an electric heater 30 and a heat transfer member 6 that transmits the heat of the heater. As a control means for controlling the in-vehicle battery 17 and the amount of heat generated by the electric heater to energize the electric heater. The heater relay 16 is connected. A resistance element 21 for detecting the current of the electric heater 30 is connected as necessary. In the vicinity of the crankshaft, a crank angle sensor 11 is installed for detecting the crank position and engine rotation. Reference numerals 12, 13, and 14 denote an ignition plug, an ignition coil, and a power switch, respectively. In addition, when an automobile equipped with this internal combustion engine has an automatic transmission, a shift lever position sensor 22 is provided.

空気量センサ18、ヒータ電流検出の抵抗素子21の端子電圧、クランク角度センサ11、シフトレバー位置センサ22の信号はコントロールユニット19に入力され、コントロールユニット19からは主噴射弁3、補助噴射弁4、空気制御弁9、ヒータリレー16、点火パワースイッチ14に制御信号が出力される。   The air voltage sensor 18, the terminal voltage of the heater current detection resistance element 21, the signals of the crank angle sensor 11 and the shift lever position sensor 22 are input to the control unit 19, and the control unit 19 receives the main injection valve 3 and the auxiliary injection valve 4. Control signals are output to the air control valve 9, the heater relay 16, and the ignition power switch 14.

ここで、本実施形態では電気ヒータ30、ヒータ伝熱部材6および補助噴射弁4はバイパス空気通路に配置しているが、これに限定されるものではなく主空気通路1内のスロットル弁10の下流または上流に配置されるものであっても良い。また、主噴射弁3はシリンダ20の吸気ポート近傍に設けられるものに限らず、主噴射弁3をシリンダ20内に配置する筒内噴射式の内燃機関であっても良い。   Here, in this embodiment, the electric heater 30, the heater heat transfer member 6, and the auxiliary injection valve 4 are disposed in the bypass air passage, but the present invention is not limited to this, and the throttle valve 10 in the main air passage 1 is not limited to this. It may be arranged downstream or upstream. The main injection valve 3 is not limited to the one provided near the intake port of the cylinder 20, and may be a cylinder injection internal combustion engine in which the main injection valve 3 is disposed in the cylinder 20.

つぎに、図2により燃料供給装置5について詳しく説明する。燃料供給装置5は筒状の加熱部35と、ハウジング37とを連結した形状をしている。加熱部35の内周に位置する伝熱部材6は、燃料の気化を促進するため電気ヒータ30で加熱されるもので筒状の通路を形成しており、導体で形成されPTCサーミスタの負電極も兼ねている。電気ヒータ30は通電により発熱するPTCサーミスタが使用されている。電気ヒータ30の外周には、正電極31が、さらに外周には正電極31を電気ヒータ30に密着固定するための固定部材33が位置しており、固定部材33は弾性を有するゴム材や板ばねなどが使用される。伝熱部材6と加熱部35とは、Oリング34によりシールされている。ハウジング37は補助噴射弁4を固定するためのもので、伝熱部材6で形成される通路に燃料気化を促進するための空気を導入する空気導入部36が設けられる。ここで、燃料供給装置5に備えた発熱部材である電気ヒータ30は、PTCサーミスタ以外に、ニクロム線などの電熱線であっても良い。   Next, the fuel supply device 5 will be described in detail with reference to FIG. The fuel supply device 5 has a shape in which a cylindrical heating unit 35 and a housing 37 are connected. The heat transfer member 6 located on the inner circumference of the heating unit 35 is heated by the electric heater 30 to promote fuel vaporization, forms a cylindrical passage, is formed of a conductor, and is a negative electrode of the PTC thermistor. Also serves. As the electric heater 30, a PTC thermistor that generates heat when energized is used. A positive electrode 31 is positioned on the outer periphery of the electric heater 30, and a fixing member 33 for tightly fixing the positive electrode 31 to the electric heater 30 is positioned on the outer periphery. The fixing member 33 is an elastic rubber material or plate. A spring or the like is used. The heat transfer member 6 and the heating unit 35 are sealed by an O-ring 34. The housing 37 is for fixing the auxiliary injection valve 4, and an air introduction portion 36 for introducing air for promoting fuel vaporization is provided in a passage formed by the heat transfer member 6. Here, the electric heater 30 which is a heat generating member provided in the fuel supply device 5 may be a heating wire such as a nichrome wire in addition to the PTC thermistor.

以下にPTCサーミスタを例として、伝熱部材の付着燃料量と、伝熱部材の温度との関係を説明する。図3にPTCサーミスタの温度と電気抵抗の関係を示す。PTCサーミスタでは、キューリー点温度Tc以下では電気抵抗が小さく、キューリー点温度Tcを超えると相転移により電気抵抗が急増する性質を持つため、素子温度が一定温度(キューリー点)になるよう抵抗(電流)が自己制御される。このため放熱量が多少変化してもPTCサーミスタの温度が一定に保たれる。しかし放熱量が大きい場合には、PTCサーミスタの温度は放熱の大きい部位と、放熱の少ない部位で温度差を生じる。   The relationship between the amount of fuel adhered to the heat transfer member and the temperature of the heat transfer member will be described below using a PTC thermistor as an example. FIG. 3 shows the relationship between the temperature and electrical resistance of the PTC thermistor. Since the PTC thermistor has a property that the electrical resistance is small below the Curie point temperature Tc and the electrical resistance rapidly increases due to the phase transition above the Curie point temperature Tc, the resistance (current) is set so that the element temperature becomes a constant temperature (Curie point). ) Is self-controlled. For this reason, the temperature of the PTC thermistor is kept constant even if the amount of heat radiation changes slightly. However, when the amount of heat radiation is large, the temperature of the PTC thermistor causes a temperature difference between a portion where heat radiation is large and a portion where heat radiation is small.

図4に、燃料供給装置5のヒータ部の断面拡大図を示す。PTCサーミスタ30の片面に伝熱部材6が取り付けられ、伝熱部材6はPTCサーミスタの負電極も兼ねている。PTCサーミスタ30の他の面には正電極31が取り付けられ、両電極間に挟まれたPTCサーミスタに電流が流れることでPTCサーミスタが発熱する。PTCサーミスタにより発生する熱は伝熱部材6を介して伝熱部材表面に付着した燃料に伝達されることで燃料の気化が促進される。   In FIG. 4, the cross-sectional enlarged view of the heater part of the fuel supply apparatus 5 is shown. The heat transfer member 6 is attached to one side of the PTC thermistor 30, and the heat transfer member 6 also serves as a negative electrode of the PTC thermistor. A positive electrode 31 is attached to the other surface of the PTC thermistor 30, and the PTC thermistor generates heat when a current flows through the PTC thermistor sandwiched between the two electrodes. The heat generated by the PTC thermistor is transmitted to the fuel adhering to the surface of the heat transfer member via the heat transfer member 6, thereby promoting the vaporization of the fuel.

ここで、図4の下段に各部の温度分布を示す。伝熱部材6に付着する燃料量が多い場合は、燃料の気化に伴い伝熱部材6からの放熱量も多くなる。PTCサーミスタ30はセラミック材であるので熱伝導率は高くなく、放熱量が多くなると供給熱量に対し放熱量が大きくなるためPTCサーミスタ30の伝熱部材6に接する面の温度が、伝熱部材6に接しない面の温度の比べて低くなる。ここでPTCサーミスタ30の伝熱部材6に接しない面の温度はほぼキューリー点温度Tcとなっているので、PTCサーミスタ30に流れる電流はこれ以上増加せず、したがって放熱量が多い場合にはPTCサーミスタ30の伝熱部材6に接する面の温度はTcに対して必ず低くなる。伝熱部材6の表面温度をTsとして、PTCサーミスタ30での温度降下分と伝熱部材6での温度降下分を含めた温度降下分をΔTとすると、Ts=Tc−ΔTで示される。   Here, the temperature distribution of each part is shown in the lower part of FIG. When the amount of fuel adhering to the heat transfer member 6 is large, the amount of heat released from the heat transfer member 6 increases as the fuel is vaporized. Since the PTC thermistor 30 is a ceramic material, its thermal conductivity is not high, and when the amount of heat released increases, the amount of heat released increases with respect to the amount of heat supplied. Therefore, the temperature of the surface of the PTC thermistor 30 that contacts the heat transfer member 6 The temperature of the surface not in contact with the temperature is lower. Here, since the temperature of the surface of the PTC thermistor 30 that is not in contact with the heat transfer member 6 is substantially the Curie point temperature Tc, the current flowing through the PTC thermistor 30 does not increase any more. The temperature of the surface of the thermistor 30 in contact with the heat transfer member 6 is necessarily lower than Tc. When the surface temperature of the heat transfer member 6 is Ts and the temperature drop including the temperature drop at the PTC thermistor 30 and the temperature drop at the heat transfer member 6 is ΔT, Ts = Tc−ΔT.

図5に伝熱部材6の表面温度と燃料の最大気化量の関係を示す。燃料の気化に最適な温度は150〜180℃の範囲であり、それ以下の温度では最大気化量は減少する。伝熱部材6に一般的に使用されるアルミニウムの耐熱温度は約150℃であるので、PTCサーミスタ30の設定温度(キューリー点温度Tc)を150℃に設定すると、伝熱部材6での付着燃料量が多いときの伝熱部材6の表面温度は150℃−ΔTとなり、温度降下により最大気化量はΔFだけ低下してしまう。   FIG. 5 shows the relationship between the surface temperature of the heat transfer member 6 and the maximum amount of fuel vaporized. The optimum temperature for the vaporization of the fuel is in the range of 150 to 180 ° C., and the maximum vaporization amount decreases at a temperature lower than that. Since the heat-resistant temperature of aluminum generally used for the heat transfer member 6 is about 150 ° C., if the set temperature (Curie point temperature Tc) of the PTC thermistor 30 is set to 150 ° C., the adhered fuel on the heat transfer member 6 The surface temperature of the heat transfer member 6 when the amount is large is 150 ° C.−ΔT, and the maximum vaporization amount is reduced by ΔF due to the temperature drop.

PTCサーミスタ30や伝熱部材6の温度降下による気化能力の低下を防ぐには、あらかじめ温度降下分を考慮して、PTCサーミスタ30のキューリー点温度Tcを高めに設定しておく方法が考えられるが、伝熱部材6に付着する燃料量は、以下で説明するように変動するため、付着燃料量が少なくなったときに放熱量が減少し伝熱部材6の温度が耐熱温度以上に上昇してしまうという問題があった。ここで、PTCサーミスタのキューリー点温度は、一般にPTCサーミスタの組成を変更することで、任意の温度に設定することが可能である。   In order to prevent the vaporization ability from being lowered due to the temperature drop of the PTC thermistor 30 or the heat transfer member 6, a method in which the Curie point temperature Tc of the PTC thermistor 30 is set higher in consideration of the temperature drop can be considered. Since the amount of fuel adhering to the heat transfer member 6 varies as described below, when the amount of adhering fuel decreases, the amount of heat release decreases and the temperature of the heat transfer member 6 rises above the heat resistance temperature. There was a problem that. Here, the Curie point temperature of the PTC thermistor can be generally set to any temperature by changing the composition of the PTC thermistor.

図6は、従来の燃料供給装置の始動での、補助噴射弁4、電気ヒータの動作とヒータ(伝熱部材6)の表面温度の変化を示す。エンジン冷機状態では、主噴射弁3で噴射を実施すると、吸気ポート壁面や吸気バルブに多くの燃料が付着して気相でシリンダに供給される燃料が減少することにより燃焼状態が悪化する。これに対し電気ヒータ30により燃料気化を促進するとシリンダに供給される気相燃料が増加するので燃焼状態が改善され、有害な未燃ガスの排出量を大幅に低減することができる。よって燃料供給装置の補助噴射弁4とヒータ6は冷機始動で動作させる。   FIG. 6 shows changes in the operation of the auxiliary injection valve 4 and the electric heater and the surface temperature of the heater (heat transfer member 6) when the conventional fuel supply device is started. In the engine cold state, when the main injection valve 3 performs the injection, a large amount of fuel adheres to the intake port wall surface and the intake valve, and the fuel supplied to the cylinder in the gas phase decreases, so that the combustion state deteriorates. On the other hand, when fuel vaporization is promoted by the electric heater 30, the amount of gas-phase fuel supplied to the cylinder increases, so that the combustion state is improved and the amount of harmful unburned gas discharged can be greatly reduced. Therefore, the auxiliary injection valve 4 and the heater 6 of the fuel supply device are operated by cold start.

(a)で始動クランキング開始とともに(d)(c)に示すように電気ヒータ30への通電と補助噴射弁4の噴射を開始する。このとき(b)のように主噴射弁3の噴射は停止するか、もしくはヒータの伝熱部材6で気化できる燃料量が不足する場合に、不足分を主噴射弁3で噴射するようにする。ここで、電気ヒータ30に常時通電すると消費電力が増大しバッテリが劣化したり、燃費が悪化する場合があるので、一般に電気ヒータ30への通電と補助噴射弁4の噴射は、始動から触媒が活性して触媒の排気浄化性能が得られるまでの数十秒程度の間だけ実施される。   At (a), start cranking is started and energization of the electric heater 30 and injection of the auxiliary injection valve 4 are started as shown in (d) and (c). At this time, as shown in (b), when the injection of the main injection valve 3 is stopped or when the amount of fuel that can be vaporized by the heat transfer member 6 of the heater is insufficient, the shortage is injected by the main injection valve 3. . Here, if the electric heater 30 is always energized, the power consumption increases and the battery may deteriorate or the fuel consumption may deteriorate. In general, the energization of the electric heater 30 and the injection of the auxiliary injection valve 4 are generally performed from the start of the catalyst. It is carried out only for about several tens of seconds until the exhaust gas purification performance of the catalyst is obtained.

したがって、始動後に上記時間が経過すると、ヒータの伝熱部材6に向けて燃料を噴射する補助噴射弁4の噴射量を徐々に減少させ、その間に主噴射弁3の噴射量を徐々に増加させて補助噴射弁4から主噴射弁3に切り換える制御が必要となる。   Therefore, when the above-mentioned time has elapsed after starting, the injection amount of the auxiliary injection valve 4 that injects fuel toward the heat transfer member 6 of the heater is gradually decreased, and the injection amount of the main injection valve 3 is gradually increased during that time. Therefore, control for switching from the auxiliary injection valve 4 to the main injection valve 3 is required.

始動から始動後アイドル状態でのヒータ(伝熱部材6)の表面温度の変化を(e)に示す。PTCサーミスタの設定温度(キューリー点温度)をTcとすると、アイドル状態では伝熱部材6への付着燃料量が多いため、燃料気化に伴う放熱により、ヒータ表面温度はTcに対しΔTだけ降下する。ここで、前記したように消費電力の制限から始動後所定の時間が経過すると噴射弁の切り換えのため、補助噴射弁4の噴射量は噴射量が0となるまで徐々に減少する。このとき伝熱部材6の放熱量が減少するため、PTCサーミスタ30、伝熱部材6内での温度降下ΔTは減少し、ヒータ表面温度Tsはキューリー点温度Tc付近まで上昇する。したがって従来はこの温度変化分を考慮して、PTCサーミスタ30の設定温度をヒータ伝熱部材6の耐熱温度である150℃程度までに制限していた。このためヒータ付着燃料量が増大したときヒータ表面温度が低下することで、伝熱部材6の燃料気化能力が低下し、シリンダに十分な気化燃料を供給することが出来ず、燃焼状態が悪化したり未燃ガスの排出量が増加するという問題があった。   (E) shows the change in the surface temperature of the heater (heat transfer member 6) from the start to the idle state after the start. Assuming that the set temperature (Curie point temperature) of the PTC thermistor is Tc, the amount of fuel adhering to the heat transfer member 6 is large in the idle state, so that the heater surface temperature drops by ΔT with respect to Tc due to heat radiation accompanying fuel vaporization. Here, as described above, when a predetermined time elapses from the start of the power consumption limitation, the injection amount of the auxiliary injection valve 4 gradually decreases until the injection amount becomes zero because the injection valve is switched. At this time, since the heat radiation amount of the heat transfer member 6 decreases, the temperature drop ΔT in the PTC thermistor 30 and the heat transfer member 6 decreases, and the heater surface temperature Ts increases to near the Curie point temperature Tc. Therefore, conventionally, in consideration of this temperature change, the set temperature of the PTC thermistor 30 is limited to about 150 ° C. which is the heat resistance temperature of the heater heat transfer member 6. For this reason, when the amount of fuel adhering to the heater is increased, the heater surface temperature is lowered, so that the fuel vaporization ability of the heat transfer member 6 is lowered, and sufficient vaporized fuel cannot be supplied to the cylinder, and the combustion state is deteriorated. There was a problem that the amount of unburned gas emissions increased.

また、伝熱部材6の燃料気化能力の低下を防ぐために電気ヒータ30の設定温度を高めに設定すると、前記のようにヒータ付着燃料量が減少したときに伝熱部材6の温度が耐熱温度を超えてしまう。その結果、伝熱部材6が変形して伝熱部材の耐食メッキがはがれて腐食を生じたり、伝熱部材が破損する場合があり、このとき燃料が電気系に侵入して電極の腐食や汚損による接触不良が発生したり、電気系の故障があるときに燃料が侵入すると燃料に着火してバックファイアーが発生する恐れがある。   Further, if the set temperature of the electric heater 30 is set to be high in order to prevent the fuel vaporization ability of the heat transfer member 6 from being lowered, the temperature of the heat transfer member 6 becomes the heat resistant temperature when the amount of fuel adhering to the heater is reduced as described above. It will exceed. As a result, the heat transfer member 6 may be deformed and the corrosion resistant plating of the heat transfer member may be peeled off to cause corrosion or the heat transfer member may be damaged. At this time, the fuel enters the electric system and the electrode is corroded or fouled. If there is a contact failure due to or if there is an electrical failure, the fuel may ignite and a backfire may occur if the fuel enters.

上記の従来の問題点を解決するための、本発明の第1の実施例について図7により説明する。前記の例と同様に始動クランキング開始から、電気ヒータ(PTCサーミスタ)30への通電、補助噴射弁4の噴射を実施するが、始動後所定の時間が経過して噴射弁の切り換えを実施する際に、従来は(d)の点線で示すように補助噴射弁4の噴射を停止してから電気ヒータ30への通電を停止していたが、第1の実施例では(d1)の実線で示すように噴射弁の切り換え時に補助噴射弁4の噴射を停止する前に電気ヒータ30への通電を停止するようにする。   A first embodiment of the present invention for solving the above conventional problems will be described with reference to FIG. As in the above example, the electric heater (PTC thermistor) 30 is energized and the auxiliary injection valve 4 is injected after the start cranking is started, and the injection valve is switched after a predetermined time has elapsed after the start. In the prior art, as indicated by the dotted line (d), the injection of the auxiliary injection valve 4 was stopped and then the energization to the electric heater 30 was stopped. In the first embodiment, the solid line (d1) As shown, before the injection of the auxiliary injection valve 4 is stopped when the injection valve is switched, the energization to the electric heater 30 is stopped.

これによりヒータ表面温度は(e)のTs2に示すように補助噴射弁4の噴射量が減少、あるいは無くなってもヒータの表面温度がそれ以上に上昇することが無くなる。その結果、PTCサーミスタのキューリー点温度を従来のキューリー点温度Tc1に対し、Tc2のように高く設定することができる。これにより、ヒータ付着燃料量が多い状態でヒータ伝熱部材6の温度を従来のTs1からTs2に、燃料の気化性に最適な温度まで高めて設定することが可能となり、ヒータ伝熱部材6の耐久性を損なうことなくヒータの気化能力を向上することができる。   As a result, the heater surface temperature does not rise any further even if the injection amount of the auxiliary injection valve 4 decreases or disappears as indicated by Ts2 in (e). As a result, the Curie point temperature of the PTC thermistor can be set as high as Tc2 with respect to the conventional Curie point temperature Tc1. This makes it possible to set the temperature of the heater heat transfer member 6 from the conventional Ts1 to Ts2 to a temperature optimum for fuel vaporization in a state where the amount of fuel adhering to the heater is large. The vaporization ability of the heater can be improved without impairing the durability.

ここで、上記のように、放熱量が減少する状態を判定して、電気ヒータ30の通電停止タイミングを早めても、ヒータ伝熱部材6の余熱によりヒータ表面温度は直ちには降下せず、ヒータ通電を停止してから噴射を停止するまでの燃料噴射量は少ないため、噴射した燃料は全て気化される。   Here, as described above, even if the state in which the amount of heat release is reduced is determined and the energization stop timing of the electric heater 30 is advanced, the heater surface temperature does not decrease immediately due to the residual heat of the heater heat transfer member 6, and the heater Since the amount of fuel injection from when the energization is stopped to when the injection is stopped is small, all of the injected fuel is vaporized.

ここで、本実施例1では、(d1)に示すように、補助噴射弁4の噴射を停止する前に、すなわち、放熱量が減少する状態を判定してヒータへの通電を完全に停止しているが、(d2)に示すように、補助噴射弁4の噴射を停止する前に電気ヒータ30をスイッチングして1サイクルの通電時間の比率を減少するようにして昇温を抑制するようにしても良い。   Here, in the first embodiment, as shown in (d1), before stopping the injection of the auxiliary injection valve 4, that is, by determining the state in which the heat radiation amount is reduced, the energization to the heater is completely stopped. However, as shown in (d2), before the injection of the auxiliary injection valve 4 is stopped, the electric heater 30 is switched to reduce the ratio of the energization time of one cycle so as to suppress the temperature rise. May be.

図8に、ヒータ(伝熱部材6)に付着する燃料量と、PTCサーミスタ30、伝熱部材6内の温度降下ΔT、およびヒータ(伝熱部材6)表面温度の関係を示す。ヒータに付着する燃料量が減少すると、ヒータ表面の放熱量が少なくなることで温度降下分ΔTは減少し、ヒータ表面温度はPTCサーミスタのキューリー点温度近くまで高くなる。   FIG. 8 shows the relationship between the amount of fuel adhering to the heater (heat transfer member 6), the PTC thermistor 30, the temperature drop ΔT in the heat transfer member 6, and the surface temperature of the heater (heat transfer member 6). When the amount of fuel adhering to the heater decreases, the amount of heat radiation on the heater surface decreases, and the temperature drop ΔT decreases, and the heater surface temperature increases to near the Curie point temperature of the PTC thermistor.

図9に、ヒータ(伝熱部材6)に導入される空気量と、PTCサーミスタ、伝熱部材内の温度降下ΔT、およびヒータ(伝熱部材6)表面温度の関係を示す。ヒータに導入される空気量が減少すると、ヒータ表面の放熱量が少なくなることで温度降下分ΔTは減少し、ヒータ表面温度は高くなる。図8,9に示すように、ヒータに付着する燃料量および、ヒータに導入される空気量によりヒータ表面温度が変化する。   FIG. 9 shows the relationship between the amount of air introduced into the heater (heat transfer member 6), the PTC thermistor, the temperature drop ΔT in the heat transfer member, and the surface temperature of the heater (heat transfer member 6). When the amount of air introduced into the heater is reduced, the amount of heat released from the heater surface is reduced, so that the temperature drop ΔT is reduced and the heater surface temperature is increased. As shown in FIGS. 8 and 9, the heater surface temperature varies depending on the amount of fuel adhering to the heater and the amount of air introduced into the heater.

第1の実施例では、冷機始動後の補助噴射弁4から主噴射弁3への噴射切り換え時に、補助噴射弁4の噴射量が減少するタイミングでヒータへの通電を停止していたが、以下で説明する第2の実施例では、前記の噴射弁切り換え時以外の状態で、ヒータ表面の放熱量が減少してヒータ伝熱面温度が上昇する状態を検知して、電気ヒータ30への通電を停止させるものである。   In the first embodiment, when the injection is switched from the auxiliary injection valve 4 to the main injection valve 3 after the cold start, the energization to the heater is stopped at the timing when the injection amount of the auxiliary injection valve 4 decreases. In the second embodiment described below, the state where the amount of heat dissipated on the heater surface decreases and the heater heat transfer surface temperature rises is detected in a state other than when the injection valve is switched, and the electric heater 30 is energized. Is to stop.

図10に示す第2の実施例において、一般に、冷機状態からの始動では(e)のように始動後から排気管の触媒が活性するまでの所定期間、点火時期を通常のアイドル状態での点火時期に対し遅角して触媒の昇温を促進するようにしているが、点火時期の遅角を実施しているときは、噴射量あたりのエンジントルクが低下するので、アイドル回転を維持するために補助噴射弁4の燃料噴射量が遅角を実施しないときに比べ増加し、ヒータの放熱量も大きくなる。これに対し、始動から前記の所定期間が過ぎると点火時期の遅角量が減少するので、エンジントルクが増加し、アイドル回転を維持するための補助噴射弁4の噴射量が減少してヒータの放熱量が減少するので、ヒータ表面温度が上昇する。   In the second embodiment shown in FIG. 10, in general, when starting from a cold state, the ignition timing is set to a normal idling state for a predetermined period after the start until the exhaust pipe catalyst is activated as shown in (e). The engine temperature is promoted by retarding the timing, but when the ignition timing is retarded, the engine torque per injection amount decreases, so the idle rotation is maintained. In contrast, the fuel injection amount of the auxiliary injection valve 4 increases as compared with the case where the retardation is not performed, and the heat dissipation amount of the heater also increases. On the other hand, since the retard amount of the ignition timing decreases after the predetermined period from the start, the engine torque increases, the injection amount of the auxiliary injection valve 4 for maintaining idle rotation decreases, and the heater Since the amount of heat release decreases, the heater surface temperature rises.

このように点火時期を遅角させている状態で、ヒータ表面温度をヒータ伝熱部材の耐熱温度付近に設定すると、(g)のように点火時期の遅角量が減少したとき、すなわち、所定値に対し進角したとき、あるいは進角方向に変化したとき、ヒータ伝熱面温度が破線で示すように上昇してヒータを破損するので、(f)のように始動後に点火時期の遅角量が減少する(進角する)タイミングでヒータ通電を停止させ、ヒータ伝熱部材の耐熱温度を超えないようにする。ここで、ヒータ通電停止後に補助噴射弁4の噴射を停止させ、主噴射弁3に噴射を切り換える。このとき触媒はほぼ活性温度に達しているので、主噴射弁3に噴射を切り換えることによる排気性能への影響は小さい。   When the heater surface temperature is set near the heat-resistant temperature of the heater heat transfer member with the ignition timing retarded as described above, when the ignition timing retard amount is reduced as shown in (g), that is, a predetermined value. When the lead angle is advanced or changed in the lead angle direction, the heater heat transfer surface temperature rises as shown by the broken line and breaks the heater. Heater energization is stopped at the timing when the amount decreases (advances), so that the heat resistant temperature of the heater heat transfer member is not exceeded. Here, after the heater energization is stopped, the injection of the auxiliary injection valve 4 is stopped and the injection is switched to the main injection valve 3. At this time, since the catalyst has almost reached the activation temperature, the influence on the exhaust performance by switching the injection to the main injection valve 3 is small.

また、前記のように点火時期の遅角量の減少に伴い、(d)のように補助噴射弁4の噴射量は減少するので、補助噴射弁4の噴射量が減少開始時または減少途中に、ヒータ通電を停止し、前記の例と同様に、ヒータ通電停止後に補助噴射弁4の噴射を停止させ、主噴射弁3に噴射を切り換えるようにしても良い。   Further, as described above, as the ignition timing retard amount decreases, the injection amount of the auxiliary injection valve 4 decreases as shown in (d), so that the injection amount of the auxiliary injection valve 4 starts or decreases in the middle. The heater energization may be stopped, and the injection of the auxiliary injection valve 4 may be stopped after the heater energization is stopped, and the injection may be switched to the main injection valve 3 in the same manner as in the above example.

また、点火時期の遅角量の減少に伴い、エンジン吸入空気量あたりのエンジントルクが増加するので、(b)のようにヒータに導入される空気量が減少するが、前記のように、ヒータに導入される空気量が減少すると、ヒータ表面からの放熱量が減少し、ヒータ表面温度が上昇してヒータが破損する場合があるので、エンジンの吸入空気量の減少を検出して、ヒータ通電を停止し、ヒータ通電停止後に補助噴射弁4の噴射を停止させ、主噴射弁3に噴射を切り換えるようにしても良い。   In addition, as the retard amount of the ignition timing decreases, the engine torque per engine intake air amount increases, so the amount of air introduced into the heater decreases as shown in (b). If the amount of air introduced into the heater decreases, the amount of heat released from the heater surface decreases, and the heater surface temperature rises and the heater may be damaged. The auxiliary injection valve 4 may be stopped after the heater energization is stopped, and the injection may be switched to the main injection valve 3.

図11により本発明の第3の実施例について説明する。本実施例は自動変速機を有するAT自動車の内燃機関の例で、(a)のようにファーストアイドル時にシフトレバーがニュートラル(N)レンジからドライブレンジ(D)に切り換わると、暴走防止のため通常、エンジン回転を低下させるようにしている。このとき(c)(e)のようにエンジンの吸入空気量および補助噴射弁4の噴射量が減少しヒータの放熱量が減少するので、(g)に破線で示すようにヒータ表面温度がヒータ伝熱部材の耐熱温度以上に上昇し、ヒータが破損する恐れがある。   A third embodiment of the present invention will be described with reference to FIG. This embodiment is an example of an internal combustion engine of an AT vehicle having an automatic transmission. When the shift lever is switched from the neutral (N) range to the drive range (D) at the time of first idle as shown in (a), to prevent runaway. Usually, the engine speed is reduced. At this time, as shown in (c) and (e), the intake air amount of the engine and the injection amount of the auxiliary injection valve 4 are reduced and the heat dissipation amount of the heater is reduced. There is a risk that the temperature will rise above the heat resistance temperature of the heat transfer member and the heater will be damaged.

従って、一般のシフトレバー位置センサ22によりシフトレバー位置を検出して、(f)のようにドライブレンジを検出したときにヒータ通電を停止し、補助噴射弁4の燃料量を減らしてから噴射を停止している。なお、ヒータ通電停止後に補助噴射弁4の噴射を停止させ、主噴射弁3に噴射を切り換えるようにしても良い。また、このとき前記の実施例と同様に、エンジンの吸入空気量(ヒータ導入空気量)や補助噴射弁4の噴射量の減少を検出したときにヒータ通電を停止するようにしても良い。以上の実施例1〜3では、ヒータの温度や電流を検出していないので、ヒータの温度センサや電流検出器が不要であり、簡単な構成で実施できる。   Therefore, when the shift lever position is detected by a general shift lever position sensor 22 and the drive range is detected as shown in (f), the heater energization is stopped and the fuel amount of the auxiliary injection valve 4 is reduced before injection. It has stopped. Note that the injection of the auxiliary injection valve 4 may be stopped after the heater energization is stopped, and the injection may be switched to the main injection valve 3. At this time, as in the above-described embodiment, the heater energization may be stopped when a decrease in the intake air amount (heater introduction air amount) of the engine or the injection amount of the auxiliary injection valve 4 is detected. In the above first to third embodiments, since the heater temperature and current are not detected, a heater temperature sensor and a current detector are unnecessary, and can be implemented with a simple configuration.

以下の図12で説明する第4の実施例では、電流検出用の抵抗素子21(図1参照)等が設けられた構成で、ヒータの電流が検出できる場合に、ヒータ表面温度の上昇をヒータ電流により検出して、ヒータ通電を停止するようにしたものである。すなわち、ヒータの電流検出値が所定値以下となったときを判定して、電気ヒータ30の発熱量を減少させている。図4で説明したように、電気ヒータ(PTCサーミスタ)30の電気抵抗はPTCサーミスタの温度で変化するので、電気ヒータ(PTCサーミスタ)30に流れる電流と、バッテリ17の電圧を検出することにより、PTCサーミスタの電気抵抗を求めることができ、ヒータ温度を推定することができる。   In the fourth embodiment described below with reference to FIG. 12, the heater surface temperature rise is increased when the heater current can be detected in a configuration provided with a resistance element 21 (see FIG. 1) for detecting current. It is detected by electric current and heater energization is stopped. That is, when the detected current value of the heater is equal to or less than a predetermined value, the amount of heat generated by the electric heater 30 is reduced. As described with reference to FIG. 4, since the electric resistance of the electric heater (PTC thermistor) 30 changes depending on the temperature of the PTC thermistor, by detecting the current flowing through the electric heater (PTC thermistor) 30 and the voltage of the battery 17, The electrical resistance of the PTC thermistor can be obtained and the heater temperature can be estimated.

ヒータ伝熱部材6の耐熱温度となるときの電気抵抗をRsとすると、ヒータ温度を耐熱温度以下とするためには、R<Rsであれば良いので、ヒータ電流をIh、バッテリ電圧をVbとすると、Ihについては、下記の(1)式に示す条件が成立していることが必要となる。   Assuming that the electrical resistance at the heat resistant temperature of the heater heat transfer member 6 is Rs, R <Rs is sufficient to keep the heater temperature below the heat resistant temperature, so the heater current is Ih and the battery voltage is Vb. Then, for Ih, it is necessary that the condition shown in the following formula (1) is satisfied.

Ih≧Vb/Rs (1)
よって、ヒータ電流とバッテリ電圧の検出値から上記条件が不成立となったときに、ヒータ通電を停止するようにすれば、ヒータ伝熱部材6が耐熱温度を超えないようにすることができ、ヒータの破損を防止できる。
Ih ≧ Vb / Rs (1)
Therefore, if the heater energization is stopped when the above condition is not satisfied from the detected values of the heater current and the battery voltage, the heater heat transfer member 6 can be prevented from exceeding the heat resistance temperature. Can be prevented from being damaged.

図12にエンジン始動時のヒータ電流の変化を示す。始動時にヒータ通電直後では(f)の前半に示すようにヒータ温度が低いのでPTCサーミスタ30の電気抵抗は小さく、(e)の前半に示すようにヒータ電流は高くなるが、エンジン温度の上昇によるフリクションの減少や点火時期遅角量の減少等の要因により(c)の後半に示すように補助噴射弁4の噴射量が減少し始めると、ヒータの放熱量が減少し、ヒータ温度が上昇するので(e)の後半に示すようヒータ電流は減少する。   FIG. 12 shows changes in the heater current when the engine is started. Immediately after the heater is energized at the time of starting, since the heater temperature is low as shown in the first half of (f), the electrical resistance of the PTC thermistor 30 is small, and the heater current is high as shown in the first half of (e). When the injection amount of the auxiliary injection valve 4 starts to decrease as shown in the latter half of (c) due to a decrease in friction or a decrease in the ignition timing retardation amount, the heat dissipation amount of the heater decreases and the heater temperature rises. Therefore, the heater current decreases as shown in the second half of (e).

このときヒータ電流の検出値を、(1)式で示されるヒータの耐熱温度に相当する電気抵抗とバッテリ電圧から求められる所定のしきい値ISL(=Vb/Rs)と比較して、ヒータ電流がしきい値ISLより低くなったときにヒータ通電を停止するようにすれば、ヒータ伝熱部材6の温度を耐熱温度以下に保つことができ、ヒータ伝熱部材6の破壊を防止できる。   At this time, the detected value of the heater current is compared with a predetermined threshold value ISL (= Vb / Rs) obtained from the electric resistance corresponding to the heat resistant temperature of the heater expressed by the equation (1) and the battery voltage. If the heater energization is stopped when the value becomes lower than the threshold value ISL, the temperature of the heater heat transfer member 6 can be kept below the heat resistant temperature, and the heater heat transfer member 6 can be prevented from being destroyed.

ここで、一般にPTCサーミスタ30の抵抗はキューリー点より低い所定温度で最小となる性質があるので、(e)のように冷機状態(ヒータが常温近くまで冷えている状態)からヒータに通電したときのヒータ電流のピーク値Ipを最初に検出して、前記のしきい値ISLをIpに対する相対値(Ip×所定の係数)で設定すれば、電流値によるヒータ温度検出の精度を向上することができる。   Here, generally, the resistance of the PTC thermistor 30 has the property that it becomes the minimum at a predetermined temperature lower than the Curie point. Therefore, when the heater is energized from the cold state (the state where the heater is cooled to near room temperature) as shown in (e). If the peak value Ip of the heater current is first detected and the threshold value ISL is set as a relative value (Ip × predetermined coefficient) with respect to Ip, the accuracy of heater temperature detection based on the current value can be improved. it can.

つぎに、前記した実施例の、コントロールユニット19のプログラム動作について、図13のフローチャートにより説明する。   Next, the program operation of the control unit 19 in the above-described embodiment will be described with reference to the flowchart of FIG.

ステップ100で、燃料供給装置5を動作させるのに適したエンジン温度となっているかを判定する。冷機状態で、燃料供給装置のヒータを駆動してもスタータのクランキング回転に必要な電流を供給できる温度範囲として、例えば−10〜30℃の範囲で燃料供給装置5を動作させる。   In step 100, it is determined whether the engine temperature is suitable for operating the fuel supply device 5. The fuel supply device 5 is operated in a temperature range of, for example, −10 to 30 ° C. as a temperature range in which a current required for cranking rotation of the starter can be supplied even when the heater of the fuel supply device is driven in a cold state.

ステップ110ではバッテリが劣化していないことを判定するためバッテリ電圧が所定値以上となっているかをチェックする。   In step 110, it is checked whether the battery voltage is equal to or higher than a predetermined value in order to determine that the battery has not deteriorated.

ステップ120では、燃料供給装置5のヒータに通電および、補助噴射弁4の噴射を実施する運転状態であるかを判定するため、始動クランキング時または、始動後所定時間TON以内であるかをチェックする。上記条件が成立している場合は、ステップ130で、ヒータ昇温途中でヒータ温度が低い状態を判定するためヒータ通電時間THONが所定値以内であるかをチェックする。ヒータ通電時間が所定値以内であれば、ステップ150でヒータへの通電を行い、さらにステップ160でエンジン回転中であれば、ステップ170で補助噴射弁4の噴射を実施する。   In step 120, in order to determine whether or not it is in an operating state in which the heater of the fuel supply device 5 is energized and the auxiliary injection valve 4 is injected, it is checked whether it is within the predetermined time TON at the time of start cranking or after start To do. If the above condition is satisfied, it is checked in step 130 whether the heater energization time THON is within a predetermined value in order to determine whether the heater temperature is low during the heating of the heater. If the heater energization time is within a predetermined value, the heater is energized in step 150, and if the engine is rotating in step 160, the auxiliary injection valve 4 is injected in step 170.

ステップ130でヒータ通電時間THONが所定値より長い場合は、ヒータ温度がある程度上昇しているので、ヒータの放熱量が減少しヒータ温度が上昇する状態であるかをステップ140で判定する。例としては、補助噴射弁4の噴射量TINJ2が所定値より少ない場合(状態a)や噴射量が減少方向に変化したとき(状態b)、エンジンの吸入空気量(ヒータ導入空気量)が所定値より少ない場合(状態c)又は吸入空気量が減少方向に変化したとき(状態d)、点火時期遅角量が所定値より少なく進角した場合(状態e)又は点火時期が進角方向に変化したとき(状態f)、エンジン回転が所定値より低い場合(状態g)、ヒータ電流が所定値より低い場合(状態h)、補助噴射弁の噴射量の減量動作を時間タイマーにより実施するものでは時間タイマーが所定時間となったとき又は所定時間の直前又は直後であるとき(状態i)、空気制御弁9や補助噴射弁4に故障がある場合(状態j)、また、自動変速機を有するAT車においては、シフトレバー位置がドライブ位置である場合(状態k)などが挙げられる。   If the heater energizing time THON is longer than the predetermined value in step 130, the heater temperature has risen to some extent, so it is determined in step 140 whether the heater heat dissipation is reduced and the heater temperature is increased. As an example, when the injection amount TINJ2 of the auxiliary injection valve 4 is smaller than a predetermined value (state a) or when the injection amount changes in a decreasing direction (state b), the intake air amount (heater introduction air amount) of the engine is predetermined. When the amount is smaller than the value (state c) or when the intake air amount changes in the decreasing direction (state d), when the ignition timing retard amount is advanced less than the predetermined value (state e) or when the ignition timing is advanced When the engine speed is lower than a predetermined value (state g), when the heater current is lower than a predetermined value (state h), when the engine speed is lower than a predetermined value (state h), the operation of reducing the injection amount of the auxiliary injection valve is performed by a time timer Then, when the time timer reaches a predetermined time or immediately before or after the predetermined time (state i), when there is a failure in the air control valve 9 or the auxiliary injection valve 4 (state j), In the AT car that has Trevor position like when a drive position (k).

ステップ140でヒータ表面の放熱量が減少する状態、すなわち、ヒータ温度が上昇する状態であると判定したとき、およびステップ120で始動後経過時間が所定値TON以上となったときは、ステップ180でヒータの通電を停止し、ステップ190で補助噴射弁4の噴射量を徐々に減量する。このとき主噴射弁3の噴射量TINJ1を、必要な供給燃料を全て主噴射弁3で噴射するまで徐々に増量し、噴射弁の切り換えを実施する。ここで、ヒータ通電を停止するタイミングは、補助噴射弁4の噴射量の減量を開始するタイミング以外に、補助噴射弁4の噴射量の減量を開始する直前であっても良く、また、補助噴射弁4の噴射量の減量を開始してから、ヒータ温度が実際に上昇するまでは多少の遅れがあるので、補助噴射弁4の噴射量の減量を開始してから、噴射を完全に停止するまでの間にヒータ通電を停止するようにしても良い。   If it is determined in step 140 that the amount of heat dissipated on the heater surface is reduced, that is, the heater temperature is rising, and if the elapsed time after starting is equal to or greater than the predetermined value TON in step 120, in step 180 The energization of the heater is stopped, and in step 190, the injection amount of the auxiliary injection valve 4 is gradually reduced. At this time, the injection amount TINJ1 of the main injection valve 3 is gradually increased until all necessary supply fuel is injected by the main injection valve 3, and the injection valve is switched. Here, the timing for stopping the energization of the heater may be immediately before starting the reduction of the injection amount of the auxiliary injection valve 4 in addition to the timing of starting the reduction of the injection amount of the auxiliary injection valve 4. There is a slight delay until the heater temperature actually increases after starting the reduction of the injection amount of the valve 4, so the injection is completely stopped after the reduction of the injection amount of the auxiliary injection valve 4 is started. Until the heater is turned off.

さらに、前記の実施例では、ヒータ表面の放熱量が減少する状態、すなわち、ヒータ温度が上昇する状態を判定して、ヒータ通電を停止しているが、ヒータ通電を完全に停止せずにスイッチング制御により、スイッチング1周期あたりのヒータ通電の割合を減少させてヒータ温度上昇を抑制するようにしても良く、この場合、ヒータ温度がすぐに低下することが無いので、補助噴射弁4の噴射を直ちに減量、停止する必要が無く、補助噴射弁4の噴射を継続できる。   Furthermore, in the above-described embodiment, the state in which the amount of heat released from the heater surface decreases, that is, the state in which the heater temperature rises is determined, and the heater energization is stopped. By controlling, the heater energization ratio per switching cycle may be decreased to suppress the heater temperature rise. In this case, since the heater temperature does not decrease immediately, the injection of the auxiliary injection valve 4 is performed. There is no need to immediately reduce or stop, and the injection of the auxiliary injection valve 4 can be continued.

以上のフローにより、ヒータ温度がヒータ伝熱部材6の耐熱温度以上に上昇することを防止でき、ヒータ温度の変動が減少した結果、ヒータの設定温度を従来より高く設定できるのでヒータの燃料気化性能を向上することができる。   As a result of the above flow, the heater temperature can be prevented from rising above the heat resistance temperature of the heater heat transfer member 6 and the heater temperature fluctuation can be reduced. As a result, the set temperature of the heater can be set higher than the conventional temperature. Can be improved.

また、以上の実施例では、PTCサーミスタを使用したヒータの例を示したが、ヒータは電熱線タイプのものでも良く、電熱線を伝熱部材に取り付けるタイプのヒータでもPTCサーミスタと同様に、ヒータ表面の放熱量により伝熱部材の温度が変化するので、ヒータの放熱量が減少しヒータ温度が上昇する状態を判定して、ヒータ通電を停止するようにしても良い。   Further, in the above embodiments, the example of the heater using the PTC thermistor has been shown. However, the heater may be of the heating wire type, and the heater of the type that attaches the heating wire to the heat transfer member is similar to the heater of the PTC thermistor. Since the temperature of the heat transfer member varies depending on the amount of heat released from the surface, the heater energization may be stopped by determining a state in which the amount of heat released from the heater decreases and the heater temperature rises.

本発明の燃料供給装置の一実施形態を適用した内燃機関の要部構成図。The principal part block diagram of the internal combustion engine to which one Embodiment of the fuel supply apparatus of this invention is applied. 図1の燃料供給装置の断面図。Sectional drawing of the fuel supply apparatus of FIG. PTCサーミスタの温度と電気抵抗の関係を示す図。The figure which shows the relationship between the temperature of a PTC thermistor, and electrical resistance. ヒータの断面拡大図および温度分布を示す図。The figure which shows the cross-sectional enlarged view and temperature distribution of a heater. ヒータ温度と燃料の気化性能の関係を示す図。The figure which shows the relationship between heater temperature and the vaporization performance of a fuel. 従来方式での始動動作におけるヒータ表面温度の変化を示す図。The figure which shows the change of the heater surface temperature in the starting operation by a conventional system. 本発明の第1実施例の動作を示す図。The figure which shows operation | movement of 1st Example of this invention. ヒータ付着燃料量とヒータ表面温度の関係を示す図。The figure which shows the relationship between a heater adhesion fuel amount and a heater surface temperature. ヒータ導入空気量とヒータ表面温度の関係を示す図。The figure which shows the relationship between heater introduction air amount and heater surface temperature. 本発明の第2実施例の動作を示す図。The figure which shows operation | movement of 2nd Example of this invention. 本発明の第3実施例の動作を示す図。The figure which shows operation | movement of 3rd Example of this invention. 本発明の第4実施例の動作を示す図。The figure which shows operation | movement of 4th Example of this invention. 本発明のコントロールユニットのプログラム動作を示す図。The figure which shows the program operation | movement of the control unit of this invention.

符号の説明Explanation of symbols

1…主空気通路、3…主噴射弁(燃料噴射弁)、4…補助噴射弁(燃料噴射弁)、5…燃料供給装置、6…ヒータ伝熱部材、8…気化燃料通路、16…ヒータリレー(発熱量制御手段)、17…車載バッテリ、18…空気量センサ、19…コントロールユニット、21…抵抗素子(判定手段)、22…シフトレバー位置センサ、30…PTCサーミスタ(電気ヒータ)   DESCRIPTION OF SYMBOLS 1 ... Main air passage, 3 ... Main injection valve (fuel injection valve), 4 ... Auxiliary injection valve (fuel injection valve), 5 ... Fuel supply device, 6 ... Heater heat transfer member, 8 ... Vaporized fuel passage, 16 ... Heater Relay (heat generation amount control means), 17 ... vehicle-mounted battery, 18 ... air amount sensor, 19 ... control unit, 21 ... resistance element (determination means), 22 ... shift lever position sensor, 30 ... PTC thermistor (electric heater)

Claims (5)

内燃機関の吸気通路に設けられる燃料噴射弁と、該燃料噴射弁の噴射燃料を加熱し燃料気化を促進する電気ヒータと、該電気ヒータの発熱量制御手段とを備えた燃料供給装置であって、
該燃料供給装置は、前記電気ヒータ表面の放熱量が減少する状態を判定したときに、前記燃料噴射弁の噴射中に、前記発熱量制御手段で前記電気ヒータの発熱量を前記放熱量の減少に基づいて制御することを特徴とする、内燃機関の燃料供給装置。
A fuel supply apparatus comprising: a fuel injection valve provided in an intake passage of an internal combustion engine; an electric heater that heats fuel injected from the fuel injection valve to promote fuel vaporization; and a calorific value control means for the electric heater. ,
The fuel supply device reduces the heat dissipation amount of the electric heater by the heat generation amount control means during the injection of the fuel injection valve when it is determined that the heat dissipation amount on the surface of the electric heater decreases. The fuel supply device for an internal combustion engine is controlled based on
前記電気ヒータは、ヒータ伝熱部材を備え、該ヒータ伝熱部材への付着燃料が無く放熱が少ない状態での該ヒータ伝熱部材の表面温度を、前記ヒータ伝熱部材の耐熱温度より高く設定することを特徴とする請求項1に記載の内燃機関の燃料供給装置。   The electric heater includes a heater heat transfer member, and the surface temperature of the heater heat transfer member is set higher than the heat-resistant temperature of the heater heat transfer member in a state where there is no fuel adhering to the heater heat transfer member and heat radiation is low. The fuel supply device for an internal combustion engine according to claim 1, wherein 内燃機関の吸気通路に設けられる燃料噴射弁と、該燃料噴射弁の噴射燃料を加熱し燃料気化を促進する電気ヒータとを備えた燃料供給装置であって、
前記燃料供給装置は、前記燃料噴射弁の噴射量を減少させる制御に合わせて、前記電気ヒータの発熱量を減少させるように制御する発熱量制御手段を備えたことを特徴とする、内燃機関の燃料供給装置。
A fuel supply device comprising: a fuel injection valve provided in an intake passage of an internal combustion engine; and an electric heater for heating fuel injected from the fuel injection valve to promote fuel vaporization,
The fuel supply apparatus includes a heat generation amount control unit that controls to decrease the heat generation amount of the electric heater in accordance with the control to decrease the injection amount of the fuel injection valve. Fuel supply device.
内燃機関の吸気通路に設けられる主燃料噴射弁及び副燃料噴射弁と、前記副噴射弁の噴射燃料を加熱し燃料気化を促進する電気ヒータとを備えた燃料供給装置であって、
前記燃料供給装置は、前記主燃料噴射弁と副燃料噴射弁の切換制御に合わせて、前記電気ヒータの発熱量を減少させるように制御する発熱量制御手段を備えたことを特徴とする、内燃機関の燃料供給装置。
A fuel supply device comprising a main fuel injection valve and a sub fuel injection valve provided in an intake passage of an internal combustion engine, and an electric heater for heating the fuel injected from the sub injection valve to promote fuel vaporization,
The internal combustion engine is characterized in that the fuel supply device includes a calorific value control means for controlling the calorific value of the electric heater in accordance with the switching control of the main fuel injection valve and the sub fuel injection valve. Engine fuel supply.
吸気通路に設けられる燃料噴射弁および空気制御弁と、該燃料噴射弁の噴射燃料を加熱し燃料気化を促進する電気ヒータと、該電気ヒータの発熱量制御手段とを備えた内燃機関の燃料供給装置の制御方法であって、
以下のa〜kの状態、すなわち、
a.前記燃料噴射弁の燃料噴射量が所定値以下に減少したとき、
b.前記燃料噴射弁の燃料噴射量が減少方向に変化したとき、
c.前記内燃機関の吸入空気量が所定値以下に減少したとき、
d.前記内燃機関の吸入空気量が減少方向に変化したとき、
e.前記内燃機関の点火時期が所定値に対し進角したとき、
f.前記内燃機関の点火時期が進角方向に変化したとき、
g.前記内燃機関の回転が低下したとき、
h.前記電気ヒータの電流検出値が所定値以下となったとき、
i.前記燃料噴射弁の噴射量の減量動作を時間タイマーにより実施するものでは前記時間タイマーが所定時間となったとき又は前記所定時間の直前又は直後であるとき、
j.前記空気制御弁および/または前記燃料噴射弁の異常を検出したとき、
k.前記自動変速機のシフトレバーがニュートラルレンジからドライブレンジに切り換わった状態を検出したとき、
の内の少なくとも1つの状態を検出したとき、前記電気ヒータの放熱量が減少する状態と判定し、
前記燃料噴射弁の噴射中に、前記電気ヒータの発熱量を前記放熱量の減少に基づいて制御することを特徴とする、内燃機関の燃料供給装置の制御方法。

Fuel supply for an internal combustion engine provided with a fuel injection valve and an air control valve provided in the intake passage, an electric heater for heating the fuel injected from the fuel injection valve to promote fuel vaporization, and a heating value control means for the electric heater A method for controlling an apparatus, comprising:
The following a to k states:
a. When the fuel injection amount of the fuel injection valve decreases below a predetermined value,
b. When the fuel injection amount of the fuel injection valve changes in a decreasing direction,
c. When the intake air amount of the internal combustion engine decreases below a predetermined value,
d. When the intake air amount of the internal combustion engine changes in a decreasing direction,
e. When the ignition timing of the internal combustion engine is advanced with respect to a predetermined value,
f. When the ignition timing of the internal combustion engine changes in the advance direction,
g. When the rotation of the internal combustion engine decreases,
h. When the current detection value of the electric heater becomes a predetermined value or less,
i. In the case where the operation of reducing the injection amount of the fuel injection valve is performed by a time timer, when the time timer reaches a predetermined time, or immediately before or after the predetermined time,
j. When detecting an abnormality of the air control valve and / or the fuel injection valve,
k. When detecting that the shift lever of the automatic transmission has switched from the neutral range to the drive range,
When at least one of the states is detected, it is determined that the amount of heat released from the electric heater is reduced,
A method for controlling a fuel supply device for an internal combustion engine, wherein the amount of heat generated by the electric heater is controlled based on a decrease in the amount of heat released during injection of the fuel injection valve.

JP2003272472A 2003-07-09 2003-07-09 Fuel supply equipment of internal combustion engine, and method for controlling the same Pending JP2005030340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003272472A JP2005030340A (en) 2003-07-09 2003-07-09 Fuel supply equipment of internal combustion engine, and method for controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003272472A JP2005030340A (en) 2003-07-09 2003-07-09 Fuel supply equipment of internal combustion engine, and method for controlling the same

Publications (1)

Publication Number Publication Date
JP2005030340A true JP2005030340A (en) 2005-02-03

Family

ID=34210016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272472A Pending JP2005030340A (en) 2003-07-09 2003-07-09 Fuel supply equipment of internal combustion engine, and method for controlling the same

Country Status (1)

Country Link
JP (1) JP2005030340A (en)

Similar Documents

Publication Publication Date Title
JP4780056B2 (en) Glow plug deterioration judgment device
JP5798059B2 (en) Engine control device
EP1138901A2 (en) Fuel supply system for internal combustion engine
JP4142696B2 (en) Throttle valve heating control device for internal combustion engine
CN111102042B (en) Exhaust purification device for internal combustion engine
CN103917752B (en) The control device of electric heating type catalyst
US8474310B2 (en) Valve freeze control apparatus and sensor element breakage control apparatus for internal combustion engine
KR100302433B1 (en) Exhaust emission control apparatus for internal combustion engine
JP2013060892A (en) Control device of internal combustion engine
JP2007239645A (en) Air heater system for internal combustion engine
JP6591680B2 (en) Exhaust pipe temperature estimation device and sensor heater control device for exhaust sensor using the same
JP2004270700A (en) Method for operating fuel device for internal combustion engine operated by fuel gas
JP2009250182A (en) Heating element control device
JP2012172535A (en) Engine control device
JP2005337087A (en) Engine control system
JP2005030340A (en) Fuel supply equipment of internal combustion engine, and method for controlling the same
JP4135380B2 (en) Exhaust gas sensor heater control device
JP5851333B2 (en) Control device for internal combustion engine
JP2003227400A (en) Temperature control device for air/fuel ratio sensor
JP4298722B2 (en) Engine control device
CN113266446A (en) Control device for internal combustion engine and control method for internal combustion engine
JP5041341B2 (en) Exhaust gas sensor heater control device
JPH05223014A (en) Fuel supply device for lp gas engine
JP2013234573A (en) Control device for internal combustion engine
KR101308762B1 (en) Oxygen sensor for internal combustion engine