JP2005029856A - Vapor deposition material and optical substrate using the same - Google Patents

Vapor deposition material and optical substrate using the same Download PDF

Info

Publication number
JP2005029856A
JP2005029856A JP2003272172A JP2003272172A JP2005029856A JP 2005029856 A JP2005029856 A JP 2005029856A JP 2003272172 A JP2003272172 A JP 2003272172A JP 2003272172 A JP2003272172 A JP 2003272172A JP 2005029856 A JP2005029856 A JP 2005029856A
Authority
JP
Japan
Prior art keywords
vapor deposition
deposition material
refractive index
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003272172A
Other languages
Japanese (ja)
Other versions
JP4269830B2 (en
Inventor
Sukefumi Tanaka
祐文 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2003272172A priority Critical patent/JP4269830B2/en
Publication of JP2005029856A publication Critical patent/JP2005029856A/en
Application granted granted Critical
Publication of JP4269830B2 publication Critical patent/JP4269830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor deposition material for producing an optical thin film having a refractive index in the range of 1.6 to 2.1 on an optical substrate by vacuum deposition in which the change in the film composition and splashes on the vapor deposition are reduced. <P>SOLUTION: An optical thin film having a refractive index in the range of 1.6 to 2.1 and having high permeability in a wide wavelength region from an ultraviolet region to an infrared region can be produced on an optical substrate with a vapor deposition material at least composed of aluminum oxide and tantalum oxide. When vacuum deposition is performed using the vapor deposition material, the change in the film composition and splashes are reduced, so that a thin film having a homogeneous composition and a medium refractive index can stably be obtained. Further, a thin film composed of two or more kinds of components can be deposited on a substrate using one electron gun, the film composition can easily be controlled, and costs can be reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、真空蒸着により屈折率が1.6〜2.1の範囲の光学薄膜を光学基体上に作製するための蒸着材料、及びそれを用いた光学基体に関する。   The present invention relates to a vapor deposition material for producing an optical thin film having a refractive index in the range of 1.6 to 2.1 on an optical substrate by vacuum vapor deposition, and an optical substrate using the same.

光学薄膜は、一般に、眼鏡レンズ、カメラレンズ等の反射防止膜や液晶プロジェクター、光通信用DWDM、3CCDビデオカメラ、デジタルカメラ、カラーコピー機等のフィルターやミラー、プリズム等の表面のコーティングに利用されている。このような光学薄膜は真空蒸着やスパッタ蒸着などにより形成されるが、成膜速度やコスト面から真空蒸着が行われることが多い。真空蒸着は、真空中で蒸着材料を熱的に蒸発、昇華させて蒸着粒子を作り、基板へ蒸着粒子を輸送し、基板上に蒸着粒子を付着、堆積させて薄膜を形成する方法であって、蒸着材料によって高、中、低屈折率の薄膜を得ることができる。このうち、屈折率nが約1.6〜1.9の範囲にある中屈折率の蒸着材料として利用できるものは、単一物質としてはAl(n=1.62)とCeF(n=1.63)のみであって、これより高い屈折率の場合は、高、中、低屈折率物質を目的に合わせて混合した混合物質が用いられている。 Optical thin films are generally used for antireflection films such as eyeglass lenses and camera lenses, and coatings on the surfaces of liquid crystal projectors, filters for DWDM, 3CCD video cameras, digital cameras, color copiers, etc. ing. Such an optical thin film is formed by vacuum vapor deposition or sputter vapor deposition, but vacuum vapor deposition is often performed from the viewpoint of film formation speed and cost. Vacuum deposition is a method of forming a thin film by thermally evaporating and sublimating a vapor deposition material in vacuum to produce vapor deposition particles, transporting the vapor deposition particles to a substrate, and depositing and depositing the vapor deposition particles on the substrate. Depending on the vapor deposition material, a thin film having a high, medium or low refractive index can be obtained. Among these, materials that can be used as a medium refractive index deposition material having a refractive index n in the range of about 1.6 to 1.9 are Al 2 O 3 (n = 1.62) and CeF 3 as single substances. In the case of a refractive index higher than this (n = 1.63), a mixed material in which high, medium, and low refractive index materials are mixed in accordance with the purpose is used.

これまで各種組合せの混合物質が発表されているが、混合する各物質の蒸気圧の差が大きいため、蒸気圧の高い物質が優先的に蒸発し、形成される膜の組成が変化し、制御するのが難しいという問題があった。また、蒸気圧の高い物質が溶融部でガス化してスプラッシュ(突沸)を起こし、蒸気でなく粒子の状態で光学基体上に付着するという問題があった。さらに、蒸着源である蒸着材料の組成も蒸着中に変化するため、蒸着後の材料に新たな材料を追加して製造することができず、コスト面で問題があった。   Various combinations of mixed substances have been announced so far, but because the difference in vapor pressure of each substance to be mixed is large, substances with high vapor pressure preferentially evaporate, and the composition of the formed film changes and is controlled. There was a problem that it was difficult to do. In addition, there is a problem that a substance having a high vapor pressure is gasified in the melted portion and causes splash (bumping), and adheres on the optical substrate in the form of particles instead of vapor. Furthermore, since the composition of the vapor deposition material that is the vapor deposition source also changes during the vapor deposition, a new material cannot be added to the material after the vapor deposition, resulting in a cost problem.

例えば、2元系の場合、AlとZrOの混合物質や、AlとYの混合物の焼結体(特開平8−277462号公報)が知られているが、いずれも成分である2物質の蒸気圧の差が大きく、上述した問題があるため、均質な組成を有する中屈折率の薄膜を安定して得ることが難しかった。 For example, in the case of a binary system, a mixed material of Al 2 O 3 and ZrO 2 or a sintered body of a mixture of Al 2 O 3 and Y 2 O 3 (Japanese Patent Laid-Open No. 8-277462) is known. In both cases, the difference in vapor pressure between the two components, which are components, is large and has the above-mentioned problems, and it has been difficult to stably obtain a thin film having a uniform refractive index and a homogeneous composition.

また、従来のように、電子銃を複数個用い、成分となる各物質を独立に蒸発させて基板上に膜形成する方法は、膜組成の制御が難しく、コスト面でも問題があった。   Further, the conventional method of forming a film on a substrate by using a plurality of electron guns and independently evaporating each substance as a component is difficult to control the film composition and has a problem in terms of cost.

特開平8−277462号公報JP-A-8-277462

従って、本発明は上述した問題を解決することを目的とし、真空蒸着により屈折率が1.6〜2.1の範囲の光学薄膜を光学基体上に作製するための蒸着材料であって、蒸着の際、膜組成の変化やスプラッシュの少ない蒸着材料を提供することを目的とする。   Accordingly, an object of the present invention is to provide an evaporation material for producing an optical thin film having a refractive index in the range of 1.6 to 2.1 on an optical substrate by vacuum evaporation. In this case, an object of the present invention is to provide a vapor deposition material with less change in film composition and less splash.

本発明者は上述した問題を解決するために鋭意検討した結果、少なくとも酸化アルミニウムと酸化タンタルからなる蒸着材料により、上記課題を解決することができることを見いだし本発明を完成させるに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that the above-mentioned problems can be solved by at least an evaporation material composed of aluminum oxide and tantalum oxide, and has completed the present invention.

すなわち、本発明の蒸着材料は、真空蒸着により屈折率が1.6〜2.1の範囲の光学薄膜を光学基体上に作製するための蒸着材料であって、少なくとも酸化アルミニウムと酸化タンタルからなることを特徴とする。図1に示すように、酸化アルミニウムと酸化タンタルは蒸気圧の差が小さいため、酸化アルミニウムと酸化タンタルからなる蒸着材料を用いた場合、均質な組成を有する中屈折率の薄膜を安定して得ることができる。また、これら2物質と蒸気圧の差が小さい、酸化ランタンや酸化チタンなどを含んでも良い。このように酸化アルミニウムや酸化タンタルと蒸気圧の差が小さい他の成分を含む場合も、同様に均質な組成を有する中屈折率の薄膜を安定して得ることができる。   That is, the vapor deposition material of the present invention is a vapor deposition material for producing an optical thin film having a refractive index in the range of 1.6 to 2.1 on an optical substrate by vacuum vapor deposition, and comprises at least aluminum oxide and tantalum oxide. It is characterized by that. As shown in FIG. 1, since the difference in vapor pressure between aluminum oxide and tantalum oxide is small, when a vapor deposition material composed of aluminum oxide and tantalum oxide is used, a thin film with a medium refractive index having a homogeneous composition can be obtained stably. be able to. Further, lanthanum oxide, titanium oxide, or the like having a small difference in vapor pressure from these two substances may be included. As described above, even when aluminum oxide or tantalum oxide and other components having a small difference in vapor pressure are included, a medium refractive index thin film having a homogeneous composition can be obtained stably.

酸化アルミニウムとしては、低温アルミナ(γ族アルミナ)、高温アルミナ(δ族アルミナ)、α−Alが好ましく、酸化タンタルとしては、Ta、TaOが好ましい。また、TaO(2≦x≦2.5)の組成範囲となるように、Taを水素還元したものやTaとTa金属を混合又は強熱したものも使用できる。TaとTa金属を使用する場合、Ta量に対してTa金属量が多いほど成膜中の放出ガス量を少なくすることができる。 As aluminum oxide, low temperature alumina (γ group alumina), high temperature alumina (δ group alumina) and α-Al 2 O 3 are preferable, and as tantalum oxide, Ta 2 O 5 and TaO 2 are preferable. Further, Ta 2 O 5 hydrogen-reduced, or Ta 2 O 5 and Ta metal mixed or ignited so that the composition range of TaO x (2 ≦ x ≦ 2.5) can be used. When Ta 2 O 5 and Ta metal are used, the amount of released gas during film formation can be reduced as the amount of Ta metal is larger than the amount of Ta 2 O 5 .

このような原料として粉末が好ましく、平均粒径は10μm以下が好ましい。より好ましくは0.1〜10μmの範囲である。平均粒径が10μmより大きいと焼結性が悪くなって焼結体の嵩密度が低下するからである。ここで、平均粒径は空気透過法によるフィッシャー・サブ・シーブ・サイザー(F.S.S.S)を用いて測定される。また、原料の純度は3N以上が好ましく、より好ましくは4N以上である。純度が低いと蒸着の際に膜に異物が混入し、膜特性が悪化するからである。   As such a raw material, a powder is preferable, and an average particle size is preferably 10 μm or less. More preferably, it is the range of 0.1-10 micrometers. This is because if the average particle size is larger than 10 μm, the sinterability deteriorates and the bulk density of the sintered body decreases. Here, the average particle diameter is measured using a Fischer sub-sieve sizer (FSSS) by an air permeation method. Moreover, the purity of the raw material is preferably 3N or more, more preferably 4N or more. This is because if the purity is low, foreign matters are mixed into the film during vapor deposition, and the film characteristics deteriorate.

前記蒸着材料は、原料として少なくとも酸化アルミニウムと酸化タンタルを混合し、焼結させた焼結体であることが好ましい。本発明では焼結させることは必ずしも必要ではないが、混合物の状態では蒸着前に行う溶かし込みに時間がかかり、また、溶かし込みが不十分な場合はスプラッシュを起こすことがあるため、焼結体が望ましい。ここで、溶かし込みとは、粒状の焼結体をハースに入れ、蒸着を行う前に加熱、溶融する工程をいう。   The vapor deposition material is preferably a sintered body obtained by mixing and sintering at least aluminum oxide and tantalum oxide as raw materials. In the present invention, it is not always necessary to sinter, but in the state of the mixture, it takes time to dissolve before vapor deposition, and if the melting is insufficient, splash may occur. Is desirable. Here, melting refers to a step of putting a granular sintered body into a hearth and heating and melting before vapor deposition.

原料の混合方法は、湿式、乾式どちらでも良く、反応によって共沈させた混合物を用いても良い。焼結させるときの焼成温度は融点以下であって、1500〜1800℃の範囲が好ましい。1500℃より低いと焼結体の嵩密度が低下し、蒸着前に行う溶かし込みでの目減りが大きく、作業性が悪くなる。ここで、溶かし込みでの目減りとは、粒状の焼結体をハースに入れ、加熱、溶融したときの体積の減少をいう。逆に1800℃より高いと焼結体が一部融着し、ハースから取り出した後、焼結体を粒状化する必要があり、作業性が悪く、収率も悪くなる。焼成雰囲気は空気中や窒素、アルゴンなどの不活性ガス中でも可能であるが、焼結体の嵩密度が低下するため、真空中が好ましい。また、原料混合物を焼結させる前に造粒や加圧成形することで、焼結体の嵩密度を上げることができ、蒸着前に行う溶かし込みでの目減りや蒸着中に発生するガス量を抑えることができる。   The method for mixing the raw materials may be either wet or dry, and a mixture co-precipitated by reaction may be used. The firing temperature when sintering is not higher than the melting point and is preferably in the range of 1500 to 1800 ° C. When the temperature is lower than 1500 ° C., the bulk density of the sintered body is lowered, the reduction in the melting performed before vapor deposition is large, and the workability is deteriorated. Here, the reduction in melting refers to a decrease in volume when a granular sintered body is placed in a hearth and heated and melted. On the other hand, if the temperature is higher than 1800 ° C., the sintered body is partly fused, and after taking out from the hearth, it is necessary to granulate the sintered body, resulting in poor workability and poor yield. The firing atmosphere can be in the air or in an inert gas such as nitrogen or argon, but is preferably in a vacuum because the bulk density of the sintered body is reduced. In addition, the bulk density of the sintered body can be increased by granulating or pressing the raw material mixture before sintering, and the amount of gas generated during vapor deposition during vapor deposition can be reduced. Can be suppressed.

また、前記原料が酸化アルミニウムと酸化タンタルであって、2元系の蒸着材料が好ましい。酸化アルミニウムと酸化タンタルは蒸気圧の差が小さいため、酸化アルミニウムと酸化タンタルの割合をどのように変えても、その組成比を保ったまま成膜が行うことができる。さらに、蒸着材料の組成が蒸着中に変化しないため、新たな材料を追加して連続蒸着を行っても安定して所望の屈折率の光学薄膜を得ることができる。こうして得られる光学薄膜は、屈折率を酸化アルミニウムの屈折率から酸化タンタルの屈折率まで自由に変更することができ、膜設計の自由度が上がるため、従来5〜7層が必要な反射防止膜の膜層数を、用いる基板の屈折率によらず減らすことができるものと期待される。また、酸化アルミニウムと酸化タンタルは紫外域から赤外域まで広い透過帯域をもっているため、光学薄膜としての応用範囲も拡大するものと期待される。   The raw materials are aluminum oxide and tantalum oxide, and binary evaporation materials are preferable. Since the difference in vapor pressure between aluminum oxide and tantalum oxide is small, film formation can be performed while maintaining the composition ratio regardless of the ratio of aluminum oxide and tantalum oxide. Furthermore, since the composition of the vapor deposition material does not change during vapor deposition, an optical thin film having a desired refractive index can be stably obtained even when continuous vapor deposition is performed by adding a new material. The optical thin film thus obtained can be freely changed in refractive index from the refractive index of aluminum oxide to that of tantalum oxide, and the degree of freedom in designing the film is increased. Therefore, an antireflection film that conventionally requires 5 to 7 layers. It is expected that the number of film layers can be reduced regardless of the refractive index of the substrate used. In addition, since aluminum oxide and tantalum oxide have a wide transmission band from the ultraviolet region to the infrared region, the application range as an optical thin film is expected to be expanded.

前記酸化アルミニウムの量は、酸化アルミニウムと酸化タンタルの合計を100重量%としたとき、0.5〜99重量%の範囲が好ましい。原料の混合割合は両物質の蒸気圧の差が小さいため任意に選択することができるが、酸化タンタルの添加量が1重量%未満の場合、酸化タンタルの分子量が酸化アルミニウムの分子量に比べて非常に大きいため、蒸着して得られる光学薄膜の屈折率が酸化アルミニウム単独の場合と比べて0.01程度の差しかない。逆に、酸化アルミニウムの添加量が1重量%未満でも酸化タンタル単独の場合に比べ屈折率を大きく変えることができ、0.5〜99重量%の範囲で屈折率が1.6〜2.1の範囲のの薄膜を作製することができる蒸着材料が得られる。   The amount of the aluminum oxide is preferably in the range of 0.5 to 99% by weight when the total of aluminum oxide and tantalum oxide is 100% by weight. The mixing ratio of the raw materials can be selected arbitrarily because the difference in vapor pressure between the two substances is small. However, when the amount of tantalum oxide added is less than 1% by weight, the molecular weight of tantalum oxide is much higher than the molecular weight of aluminum oxide. Therefore, the refractive index of the optical thin film obtained by vapor deposition is only about 0.01 compared with the case of aluminum oxide alone. On the contrary, even if the addition amount of aluminum oxide is less than 1% by weight, the refractive index can be greatly changed as compared with the case of tantalum oxide alone, and the refractive index is 1.6 to 2.1% in the range of 0.5 to 99% by weight. The vapor deposition material which can produce the thin film of the range of this is obtained.

前記真空蒸着は、電子ビーム加熱蒸着が好ましい。真空蒸着として、一般に抵抗加熱蒸着や電子ビーム加熱蒸着が知られているが、高融点の材料には電子ビーム加熱蒸着が適している。本発明の蒸着材料は融点が高いため、電子ビーム加熱蒸着が好ましい。   The vacuum deposition is preferably electron beam heating deposition. As vacuum deposition, resistance heating deposition or electron beam heating deposition is generally known, but electron beam heating deposition is suitable for a material having a high melting point. Since the vapor deposition material of the present invention has a high melting point, electron beam heating vapor deposition is preferable.

本発明の光学基体は、上記蒸着材料を用いて、真空蒸着により1.6〜2.1の範囲の屈折率を有する光学薄膜が被覆された光学基体である。基体としては、ガラス、石英、プラスチック等が好ましく、形状は板状、フィルム状などが用いられる。   The optical substrate of the present invention is an optical substrate coated with an optical thin film having a refractive index in the range of 1.6 to 2.1 by vacuum deposition using the above-described vapor deposition material. As the substrate, glass, quartz, plastic or the like is preferable, and a plate shape, a film shape, or the like is used.

少なくとも酸化アルミニウムと酸化タンタルからなる蒸着材料を用いて真空蒸着を行うと、膜組成の変化やスプラッシュが少なく、また、成膜回数を増やしても得られる薄膜の屈折率はほとんど差がないため、均質な組成を有する中屈折率の薄膜を安定して得ることができる。さらに、2種以上の成分から成る薄膜を1つの電子銃を用いて基板上に形成でき、膜組成を制御し易く、コスト面でも改善される。また、得られる薄膜は、屈折率が1.6〜2.1の範囲にあって、紫外域から赤外域まで広い波長域において高い透過率を有しているため、光学薄膜として工業的に広く利用されるものと期待される。   When vacuum deposition is performed using a deposition material consisting of at least aluminum oxide and tantalum oxide, there is little change in film composition and splash, and even if the number of film formation is increased, there is almost no difference in the refractive index of the thin film, A thin film having a medium refractive index having a homogeneous composition can be obtained stably. Furthermore, a thin film composed of two or more components can be formed on the substrate using one electron gun, the film composition can be easily controlled, and the cost can be improved. Moreover, since the obtained thin film has a refractive index in the range of 1.6 to 2.1 and has a high transmittance in a wide wavelength range from the ultraviolet region to the infrared region, it is industrially widely used as an optical thin film. Expected to be used.

次に、本発明の蒸着材料について詳細に説明する。例えば、原料として酸化アルミニウム粉末と酸化タンタル粉末を、酸化アルミニウムと酸化タンタルの合計を100重量%としたとき、酸化アルミニウムの量が0.5〜99重量%の範囲となるように秤量し、混合する。混合方法は、通常ボールミルにより混合するが、粉砕媒体を用いずに混合しても良い。また、湿式混合、乾式混合どちらでも良く、共沈反応させた混合物でも良い。得られる原料混合物をそのまま蒸着材料として用いても良いが、該原料混合物を焼結させた焼結体が好ましく、焼結させる前に造粒や加圧成形するとさらに好ましい。例えば、原料混合物を造粒機で造粒した後、篩を通して得られる粒状の造粒体をそのまま、或いは0.5〜1.0t/cmの範囲の圧力でペレット状に加圧成形した後、真空中1200〜1800℃の温度範囲で焼成し、粒状やペレット状の焼結体を得る。 Next, the vapor deposition material of the present invention will be described in detail. For example, when aluminum oxide powder and tantalum oxide powder are used as raw materials and the total amount of aluminum oxide and tantalum oxide is 100% by weight, the amount of aluminum oxide is weighed so as to be in the range of 0.5 to 99% by weight and mixed. To do. The mixing method is usually performed by a ball mill, but may be performed without using a grinding medium. Further, either wet mixing or dry mixing may be used, and a coprecipitation mixture may be used. The obtained raw material mixture may be used as a vapor deposition material as it is, but a sintered body obtained by sintering the raw material mixture is preferable, and granulation or pressure molding is more preferable before sintering. For example, after granulating the raw material mixture with a granulator, the granular granule obtained through the sieve is pressed as it is or after being pressed into a pellet at a pressure in the range of 0.5 to 1.0 t / cm 2. And firing in a vacuum at a temperature range of 1200 to 1800 ° C. to obtain a granular or pellet-shaped sintered body.

焼結体の形状は粒状、ペレット状どちらでも良いが、粒状が好ましい。ペレット状の場合は、成膜の都度、焼結体を交換する必要があり、作業効率が悪いのに対し、粒状の場合は、1回目の成膜で消費した分を補給して2回目の成膜をすることができ、作業効率が良い。粒状焼結体の嵩密度は、2.0g/cc以上が好ましい。嵩密度が2.0g/ccより小さいと、粒状焼結体をハースに入れ、加熱、溶融したときの体積の減少が大きく、この作業を繰り返す回数が増えるため、作業性が非常に悪くなってしまう。このように、蒸着前に行う溶かし込みでの目減りが大きく、作業性が悪いため、嵩密度が2.0g/cc以上の粒状焼結体が好ましく用いられる。また、粒状焼結体の大きさは、粒度が0.1〜10mmの範囲が好ましく、0.5〜4mmの範囲がより好ましい。粒度が0.1mmより小さいと成膜中にスプラッシュが起こりやすく、膜中に異物が混入するからであり、逆に10mmより大きいと嵩密度が小さくなって蒸着前に行う溶かし込みでの目減りが大きく、作業性が悪くなるからである。ペレット状の焼結体の大きさは特に限定されないが、一般にφ10〜φ50mmの大きさのものが使用される。   The shape of the sintered body may be either granular or pellet, but granular is preferable. In the case of pellets, it is necessary to replace the sintered body every time the film is formed, and the work efficiency is poor. On the other hand, in the case of particles, the amount consumed in the first film formation is replenished. Films can be formed and work efficiency is good. The bulk density of the granular sintered body is preferably 2.0 g / cc or more. If the bulk density is less than 2.0 g / cc, the volume of the granular sintered body is greatly reduced when it is heated and melted, and the number of times this operation is repeated increases, so the workability becomes very poor. End up. As described above, since the reduction in the melting performed before vapor deposition is large and the workability is poor, a granular sintered body having a bulk density of 2.0 g / cc or more is preferably used. The size of the granular sintered body is preferably in the range of 0.1 to 10 mm and more preferably in the range of 0.5 to 4 mm. If the particle size is smaller than 0.1 mm, splash is likely to occur during film formation, and foreign matter is mixed in the film. Conversely, if the particle size is larger than 10 mm, the bulk density is reduced, and there is a reduction in the penetration caused before the deposition. This is because it is large and workability is poor. The size of the pellet-shaped sintered body is not particularly limited, but generally a size of φ10 to φ50 mm is used.

このようにして得られる本発明の蒸着材料を用いて真空蒸着を行うと、膜組成の変化やスプラッシュが少ないため、均質な組成を有する中屈折率の薄膜を安定して得ることができる。また、2種以上の成分から成る薄膜を1つの電子銃を用いて基板上に形成でき、膜組成を制御し易く、コスト面でも改善される。また、得られる薄膜は、屈折率が1.6〜2.1の範囲にあって、紫外域から赤外域まで広い波長域において高い透過率を有しているため、光学薄膜として工業的に広く利用されるものと期待される。   When vacuum vapor deposition is performed using the vapor deposition material of the present invention thus obtained, there is little change in film composition and splash, so that a medium refractive index thin film having a homogeneous composition can be stably obtained. In addition, a thin film composed of two or more components can be formed on a substrate using one electron gun, the film composition can be easily controlled, and the cost can be improved. Moreover, since the obtained thin film has a refractive index in the range of 1.6 to 2.1 and has a high transmittance in a wide wavelength range from the ultraviolet region to the infrared region, it is industrially widely used as an optical thin film. Expected to be used.

[実施例1]
純度4N、平均粒径0.5μmのα−Al紛末と、純度4N、平均粒径1.1μmのTa紛末を、重量比30/70で24時間ボールミル混合した後、造粒機で造粒し、篩を通して造粒体を得る。この造粒体を真空中、1650℃で2時間焼成し、粒度0.5〜2mm、嵩密度3.40g/cmの粒状焼結体である本発明の蒸着材料を得る。
[Example 1]
After ball mill mixing of α-Al 2 O 3 powder having a purity of 4N and an average particle size of 0.5 μm and Ta 2 O 5 powder having a purity of 4N and an average particle size of 1.1 μm at a weight ratio of 30/70 for 24 hours. Granulate with a granulator and obtain a granulated body through a sieve. This granulated body is fired in vacuum at 1650 ° C. for 2 hours to obtain the vapor deposition material of the present invention which is a granular sintered body having a particle size of 0.5 to 2 mm and a bulk density of 3.40 g / cm 3 .

このようにして得られる蒸着材料10gを無酸素銅のハース(ハースサイズφ35×17H)に入れ、電子ビーム加熱法による真空蒸着装置(BMC650)に装入する。電子銃にはJEOL203UAを使用する。成膜する前に次のように溶かし込みを行う。すなわち、真空度2.67×10−3Paで蒸着材料に電子ビームを照射して溶融させた後、常圧下でハースに蒸着材料を10g補給する工程を2回繰り返し、最後に真空度2.67×10−3Paで電子ビームを照射して溶融させ、合計30gの蒸着材料の溶かし込みを行う。加熱条件はAMP7、エミッション電流値700mAで行う。 10 g of the vapor deposition material thus obtained is placed in oxygen-free copper hearth (Haas size φ35 × 17H) and charged into a vacuum vapor deposition apparatus (BMC650) by an electron beam heating method. JEOL203UA is used for the electron gun. Before film formation, melting is performed as follows. That is, after the deposition material was irradiated with an electron beam at a degree of vacuum of 2.67 × 10 −3 Pa and melted, 10 g of the deposition material was replenished to Hearth under normal pressure, and finally the degree of vacuum of 2. An electron beam is irradiated and melted at 67 × 10 −3 Pa, and a total of 30 g of the vapor deposition material is dissolved. The heating conditions are AMP7 and an emission current value of 700 mA.

次に、常圧下で真空蒸着装置内にガラス基体を装入し、圧力2.67×10−3Paまで真空排気した後、酸素を導入して圧力3.33×10−2Paに調整する。その後、基体温度を70℃とし、電子ビーム加熱により、3分間にλ/4の蒸着速度で光学膜厚が3λまで成膜を行う(ここでモニター波長λ=550nmとする)。加熱条件はAMP3、エミッション電流値300mAで行う。蒸着の際にスプラッシュや膜組成の変化は見られず、被膜は、波長500nmにおいて屈折率n=1.80であり、紫外域から赤外域まで広い透過帯域を有している。 Next, the glass substrate is placed in a vacuum deposition apparatus under normal pressure and evacuated to a pressure of 2.67 × 10 −3 Pa. Then, oxygen is introduced to adjust the pressure to 3.33 × 10 −2 Pa. . Thereafter, the substrate temperature is set to 70 ° C., and the optical film thickness is formed to 3λ at a deposition rate of λ / 4 for 3 minutes by electron beam heating (here, the monitor wavelength is set to λ = 550 nm). The heating conditions are AMP3 and an emission current value of 300 mA. No splash or change in film composition was observed during vapor deposition, and the film had a refractive index n = 1.80 at a wavelength of 500 nm, and had a wide transmission band from the ultraviolet region to the infrared region.

[実施例2]
実施例1のように1回目の成膜を行った後、消費した分の蒸着材料をハースに補給し、実施例1と同様にして2回目の成膜を行い、屈折率n=1.80の薄膜を得る。
[Example 2]
After the first film formation as in Example 1, the consumed vapor deposition material is supplied to Hearth, and the second film formation is performed in the same manner as in Example 1, with the refractive index n = 1.80. Get a thin film.

[実施例3]
実施例2のように2回目の成膜を行った後、消費した分の蒸着材料をハースに補給し、実施例1と同様にして3回目の成膜を行い、屈折率n=1.79の薄膜を得る。
[Example 3]
After the second film formation as in Example 2, the consumed vapor deposition material was supplied to Hearth, and the third film formation was performed in the same manner as in Example 1, with a refractive index n = 1.79. Get a thin film.

[実施例4]
原料のα−Al紛末とTa紛末を重量比50/50で使用し、酸素導入後の圧力を4.00×10−2Paとする以外は実施例1と同様に行い、粒度0.5〜2mm、嵩密度3.20g/ccの蒸着材料を得る。また、この蒸着材料を用いて実施例1と同様に真空蒸着を行い、屈折率n=1.74の薄膜を得る。
[Example 4]
The same as in Example 1 except that raw material α-Al 2 O 3 powder and Ta 2 O 5 powder are used at a weight ratio of 50/50, and the pressure after introducing oxygen is 4.00 × 10 −2 Pa. To obtain a vapor deposition material having a particle size of 0.5 to 2 mm and a bulk density of 3.20 g / cc. Further, this vapor deposition material is used for vacuum vapor deposition in the same manner as in Example 1 to obtain a thin film having a refractive index n = 1.74.

[実施例5]
実施例4のように1回目の成膜を行った後、消費した分の蒸着材料をハースに補給し、実施例4と同様にして2回目の成膜を行い、屈折率n=1.74の薄膜を得る。
[Example 5]
After the first film formation as in Example 4, the consumed vapor deposition material is supplied to Hearth, the second film formation is performed in the same manner as in Example 4, and the refractive index n = 1.74. Get a thin film.

[実施例6]
実施例5のように2回目の成膜を行った後、消費した分の蒸着材料をハースに補給し、実施例4と同様にして3回目の成膜を行い、屈折率n=1.73の薄膜を得る。
[Example 6]
After the second film formation as in Example 5, the consumed vapor deposition material was supplied to Hearth, and the third film formation was performed in the same manner as in Example 4, with a refractive index n = 1.73. Get a thin film.

[実施例7]
原料のα−Al紛末とTa紛末を重量比70/30で使用し、溶かし込み時のエミッション電流値を800mA、酸素導入後の圧力を4.00×10−2Pa、成膜時のエミッション電流値を350mAとする以外は実施例1と同様に行い、粒度0.5〜2mm、嵩密度2.72g/ccの蒸着材料を得る。また、この蒸着材料を用いて実施例1と同様に真空蒸着を行い、屈折率n=1.68の薄膜を得る。
[Example 7]
The raw material α-Al 2 O 3 powder and Ta 2 O 5 powder are used in a weight ratio of 70/30, the emission current value at the time of melting is 800 mA, and the pressure after introducing oxygen is 4.00 × 10 −2. A vapor deposition material having a particle size of 0.5 to 2 mm and a bulk density of 2.72 g / cc is obtained in the same manner as in Example 1 except that Pa and the emission current value during film formation are 350 mA. Further, using this vapor deposition material, vacuum vapor deposition is performed in the same manner as in Example 1 to obtain a thin film having a refractive index n = 1.68.

[実施例8]
実施例7のように1回目の成膜を行った後、消費した分の蒸着材料をハースに補給し、実施例7と同様にして2回目の成膜を行い、屈折率n=1.68の薄膜を得る。
[Example 8]
After the first film formation as in Example 7, the consumed vapor deposition material was replenished to Hearth, and the second film formation was performed in the same manner as in Example 7, with a refractive index n = 1.68. Get a thin film.

[実施例9]
実施例8のように2回目の成膜を行った後、消費した分の蒸着材料をハースに補給し、実施例7と同様にして3回目の成膜を行い、屈折率n=1.66の薄膜を得る。
[Example 9]
After the second film formation as in Example 8, the consumed deposition material was supplied to the hearth, and the third film formation was performed in the same manner as in Example 7, with a refractive index n = 1.66. Get a thin film.

[比較例1]
Ta紛末を使用せず、α−Al紛末のみを使用する以外は実施例1と同様に行い、蒸着材料を得る。また、この蒸着材料を用いて実施例1と同様に真空蒸着を行い、屈折率n=1.63の薄膜を得る。
[Comparative Example 1]
A vapor deposition material is obtained in the same manner as in Example 1 except that only the α-Al 2 O 3 powder is used without using the Ta 2 O 5 powder. Further, using this vapor deposition material, vacuum vapor deposition is performed in the same manner as in Example 1 to obtain a thin film having a refractive index n = 1.63.

実施例1〜9及び比較例1の蒸着材料を用いて得られる薄膜について、SELLMEIER分散式の係数(A,B)と波長500nmにおける屈折率nを表1に示す。   Table 1 shows the coefficients (A, B) of the SELLMEIER dispersion formula and the refractive index n at a wavelength of 500 nm for the thin films obtained using the vapor deposition materials of Examples 1 to 9 and Comparative Example 1.

Figure 2005029856
Figure 2005029856

この表から、本発明の蒸着材料を用いて得られる薄膜は、屈折率が1.6〜2.1の範囲にあることがわかる。また、実施例1〜3、実施例4〜6及び実施例7〜9において各実施例を比較すると、成膜回数を1〜3回と増やしても得られる薄膜の屈折率はほとんど差がないことがわかる。なお、SELLMEIER分散式は次式で表され、nは屈折率、λは波長である。
n=SQRT(1+A/(1+B/λ))
From this table, it can be seen that the thin film obtained using the vapor deposition material of the present invention has a refractive index in the range of 1.6 to 2.1. Moreover, when Examples are compared in Examples 1 to 3, Examples 4 to 6, and Examples 7 to 9, there is almost no difference in the refractive index of the thin film obtained even when the number of film formation is increased to 1 to 3. I understand that. The SELLMEIER dispersion formula is expressed by the following formula, where n is the refractive index and λ is the wavelength.
n = SQRT (1 + A / (1 + B / λ 2 ))

次に、実施例1の蒸着材料のX線回折図を図2に示す。測定条件は、Miniflex(Rigaku)、管球CuKα、電圧30kV、電流15mA、サンプリング幅0.02°、スキャンスピード4°/min.で行う。この図から、Taの回折線は無く、α−AlとAlTaOの回折線が見られることから、実施例1の焼結体から成る蒸着材料は単なる原料混合物ではないことがわかる。また、実施例4、7の蒸着材料のX線回折図も同様にα−AlとAlTaOの回折線が観察される。 Next, an X-ray diffraction diagram of the vapor deposition material of Example 1 is shown in FIG. The measurement conditions were Miniflex (Rigaku), tube CuKα, voltage 30 kV, current 15 mA, sampling width 0.02 °, scan speed 4 ° / min. To do. From this figure, there is no diffraction line of Ta 2 O 5 , and diffraction lines of α-Al 2 O 3 and AlTaO 4 can be seen. Therefore, the vapor deposition material composed of the sintered body of Example 1 is not a mere raw material mixture. I understand. Similarly, the diffraction lines of α-Al 2 O 3 and AlTaO 4 are observed in the X-ray diffraction patterns of the vapor deposition materials of Examples 4 and 7.

本発明の蒸着材料を用いて真空蒸着を行うと、膜組成の変化やスプラッシュが少なく、また、成膜回数を増やしても得られる薄膜の屈折率はほとんど差がないため、均質な組成を有する中屈折率の薄膜を安定して得ることができる。このようにして得られる光学薄膜は、屈折率が1.6〜2.1の範囲にあって、紫外域から赤外域まで広い波長域において高い透過率を有しているため、眼鏡レンズ、カメラレンズ等の反射防止膜や液晶プロジェクター、光通信用DWDM、3CCDビデオカメラ、デジタルカメラ、カラーコピー機等のフィルターやミラー、プリズム等の表面のコーティングなどに広く利用されるものと期待される。   When vacuum deposition is performed using the vapor deposition material of the present invention, there is little change in film composition and splash, and there is almost no difference in the refractive index of the thin film obtained even if the number of film formation is increased, so it has a homogeneous composition. A thin film having a medium refractive index can be obtained stably. The optical thin film thus obtained has a refractive index in the range of 1.6 to 2.1 and has a high transmittance in a wide wavelength range from the ultraviolet region to the infrared region. It is expected to be widely used for antireflection films such as lenses, liquid crystal projectors, DWDM for optical communication, 3CCD video cameras, digital cameras, color copiers, etc., filters, mirrors, surface coatings such as prisms, and the like.

酸化アルミニウムと酸化タンタルの蒸気圧曲線を示すグラフ図である。It is a graph which shows the vapor pressure curve of an aluminum oxide and a tantalum oxide. 実施例1の蒸着材料のX線回折図である。2 is an X-ray diffraction diagram of a vapor deposition material of Example 1. FIG.

Claims (6)

真空蒸着により屈折率が1.6〜2.1の範囲の光学薄膜を光学基体上に作製するための蒸着材料であって、少なくとも酸化アルミニウムと酸化タンタルからなることを特徴とする蒸着材料。 A vapor deposition material for producing an optical thin film having a refractive index in the range of 1.6 to 2.1 on an optical substrate by vacuum vapor deposition, comprising at least aluminum oxide and tantalum oxide. 前記蒸着材料は、原料として少なくとも酸化アルミニウムと酸化タンタルを混合し、焼結させた焼結体であることを特徴とする請求項1に記載の蒸着材料。 The vapor deposition material according to claim 1, wherein the vapor deposition material is a sintered body obtained by mixing and sintering at least aluminum oxide and tantalum oxide as raw materials. 前記原料が酸化アルミニウムと酸化タンタルであることを特徴とする請求項2に記載の蒸着材料。 The vapor deposition material according to claim 2, wherein the raw materials are aluminum oxide and tantalum oxide. 前記酸化アルミニウムの量は、酸化アルミニウムと酸化タンタルの合計を100重量%としたとき、0.5〜99重量%の範囲であることを特徴とする請求項3に記載の蒸着材料。 4. The vapor deposition material according to claim 3, wherein the amount of the aluminum oxide is in the range of 0.5 to 99 wt% when the total of aluminum oxide and tantalum oxide is 100 wt%. 前記真空蒸着は、電子ビーム加熱蒸着であることを特徴とする請求項1乃至4に記載の蒸着材料。 5. The vapor deposition material according to claim 1, wherein the vacuum vapor deposition is electron beam heating vapor deposition. 請求項1乃至5に記載の蒸着材料を用いて、真空蒸着により1.6〜2.1の範囲の屈折率を有する光学薄膜が被覆された光学基体。
An optical substrate coated with an optical thin film having a refractive index in the range of 1.6 to 2.1 by vacuum vapor deposition using the vapor deposition material according to claim 1.
JP2003272172A 2003-07-09 2003-07-09 Vapor deposition material Expired - Lifetime JP4269830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003272172A JP4269830B2 (en) 2003-07-09 2003-07-09 Vapor deposition material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003272172A JP4269830B2 (en) 2003-07-09 2003-07-09 Vapor deposition material

Publications (2)

Publication Number Publication Date
JP2005029856A true JP2005029856A (en) 2005-02-03
JP4269830B2 JP4269830B2 (en) 2009-05-27

Family

ID=34209807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272172A Expired - Lifetime JP4269830B2 (en) 2003-07-09 2003-07-09 Vapor deposition material

Country Status (1)

Country Link
JP (1) JP4269830B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284778A (en) * 2005-03-31 2006-10-19 Hoya Corp Method of suppressing splash and method for manufacturing plastic lens
US7382944B1 (en) 2006-07-14 2008-06-03 The United States Of America As Represented By The Administration Of The National Aeronautics And Space Administration Protective coating and hyperthermal atomic oxygen texturing of optical fibers used for blood glucose monitoring
JP2009235564A (en) * 2008-03-03 2009-10-15 Toho Titanium Co Ltd Vapor-deposition material of tantalum oxide, production method therefor, and method for producing vapor-deposition film of tantalum oxide
JP2009235563A (en) * 2008-03-03 2009-10-15 Toho Titanium Co Ltd Vapor-deposition material of metal oxide, production method therefor, and method for producing vapor-deposition film of metal oxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284778A (en) * 2005-03-31 2006-10-19 Hoya Corp Method of suppressing splash and method for manufacturing plastic lens
US7382944B1 (en) 2006-07-14 2008-06-03 The United States Of America As Represented By The Administration Of The National Aeronautics And Space Administration Protective coating and hyperthermal atomic oxygen texturing of optical fibers used for blood glucose monitoring
JP2009235564A (en) * 2008-03-03 2009-10-15 Toho Titanium Co Ltd Vapor-deposition material of tantalum oxide, production method therefor, and method for producing vapor-deposition film of tantalum oxide
JP2009235563A (en) * 2008-03-03 2009-10-15 Toho Titanium Co Ltd Vapor-deposition material of metal oxide, production method therefor, and method for producing vapor-deposition film of metal oxide

Also Published As

Publication number Publication date
JP4269830B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
JP5169888B2 (en) Composite tungsten oxide target material and manufacturing method thereof
JP5138881B2 (en) Vapor deposition materials for the production of high refractive index layers
TWI432590B (en) A sintered body, a sintered body, a sputtering target and a sputtering target-supporting plate assembly
US20080299415A1 (en) Sputtering Target, Thin Film for Optical Information Recording Medium and Process for Producing the Same
JP2007314892A (en) Sputtering target and method for the preparation thereof
JP2008174829A (en) Ito target, method of manufacturing the ito target, and ito transparent electrode
CN114045455B (en) Yttrium thermal spray coating film using yttrium particle powder and method for producing same
JP4269830B2 (en) Vapor deposition material
JP3069403B2 (en) Method for producing titanium suboxide
JP5296619B2 (en) Method for producing titanium suboxide
JP5301211B2 (en) Method for producing titanium suboxide
JPH05264804A (en) Vapor deposition material and production of optical thin film using the vapor deposited material
JP3472169B2 (en) Evaporation material for optical thin film with intermediate refractive index and optical thin film using the evaporation material
JP3160309B2 (en) Thin film formation method
TW200946692A (en) Sb-te alloy powder for sintering, process for production of the powder, and sintered target
JP2010180431A (en) Vapor deposition material, optical thin film and production method therefor
JP2007321170A (en) Sputtering film deposition method, optical absorption film and nd filter
JP2939359B2 (en) Method for producing titanium suboxide
JP5426137B2 (en) Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film
JP3186788B2 (en) Method for producing titanium suboxide
JP5426136B2 (en) Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film
JP4363168B2 (en) Titanium oxide sintered body and manufacturing method thereof
JP2001003157A (en) Film forming material of optical thin film and film forming method
JP2009062237A (en) Forming material for optical thin film and method of forming optical thin film
JP2002266070A (en) ZnS-SiO2 SPUTTERING TARGET AND OPTICAL RECORDING MEDIUM FORMED WITH ZnS-SiO2 PHASE TRANSITION TYPE OPTICAL DISK PROTECTIVE FILM USING THIS TARGET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4269830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term