JP2005029659A - Polyimide resin, resin solution composition thereof, photosensitive resin composition, laminated form and color filter - Google Patents

Polyimide resin, resin solution composition thereof, photosensitive resin composition, laminated form and color filter Download PDF

Info

Publication number
JP2005029659A
JP2005029659A JP2003194968A JP2003194968A JP2005029659A JP 2005029659 A JP2005029659 A JP 2005029659A JP 2003194968 A JP2003194968 A JP 2003194968A JP 2003194968 A JP2003194968 A JP 2003194968A JP 2005029659 A JP2005029659 A JP 2005029659A
Authority
JP
Japan
Prior art keywords
resin
polyimide resin
polyimide
composition
chemical formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003194968A
Other languages
Japanese (ja)
Inventor
Katsumoto Hosokawa
勝元 細川
Hiroyuki Kagawa
博之 香川
Seiji Kamimura
誠二 神村
Kenichiro Fujimoto
憲一郎 藤本
Soro Isogawa
素朗 礒川
Mitsuaki Senda
光昭 千田
Shigeyoshi Mita
三田  成良
Sunao Nagai
永井  直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Hitachi Cable Ltd
Original Assignee
Mitsui Chemicals Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Hitachi Cable Ltd filed Critical Mitsui Chemicals Inc
Priority to JP2003194968A priority Critical patent/JP2005029659A/en
Publication of JP2005029659A publication Critical patent/JP2005029659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Materials For Photolithography (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyimide resin composition dissolvable and debondable by a dilute aqueous alkali solution low in environmental burden, and to provide a laminated form of the composition. <P>SOLUTION: The polyimide resin is represented by the formula( wherein, k is an integer of ≥1; m and n are each an integer of ≥1; R<SP>1</SP>and R<SP>3</SP>are each a bivalent organic group; R<SP>2</SP>and R<SP>4</SP>are each a tetravalent organic group; wherein at least R<SP>1</SP>is a bivalent organic group derived from a diaminobicyclohexyldicarboxylic acid ). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ポリイミド樹脂、樹脂溶液組成物、感光性樹脂組成物およびその積層体に関し、更に詳しくは、ポリイミドの分子中にジアミノビシクロヘキシルジカルボン酸由来のカルボキシル基を有する特定の二価の有機基を含有させたポリイミド樹脂、樹脂溶液組成物、感光性樹脂組成物およびその積層体に関するものであり、さらにその組成物を用いて製造された液晶ディスプレイや撮像素子などに用いられるカラーフィルターに関するものである。
【0002】
【従来の技術】
半導体デバイス製造工程又はディスプレイデバイス製造工程において、フォトレジスト膜は、エッチング工程が終わると剥離除去されるが、フォトレジスト膜を、半導体デバイスの表面保護膜や層間絶縁膜として使用される場合には、永久膜として残されるため、電気的・機械的特性に優れたものが要求されると共に高温にも耐えることが要求される。
【0003】
このようなフォトレジスト膜として、感光性ポリイミド樹脂の膜が使用されている(特許文献1、特許文献2)。
【0004】
ポリイミド樹脂は、電気的・機械的特性、耐熱特性に優れており、感光性ポリイミド樹脂として、ポリイミド樹脂の前駆体であるポリアミック酸に光重合性官能基を有する感光助剤と光重合開始剤を導入した化合物が知られている。
【0005】
現在、基板上に形成されたポリイミド層を溶解剥離する場合、有機極性溶剤もしくは有機アルカリを用いることが一般的である。
【0006】
ここでの有機極性溶剤、および有機アルカリとはN−メチル‐2‐ピロリドン、N,N−ジメチルホルムアミド、ヒドラジン等である。
【0007】
また、ポリイミド前駆体であるポリアミック酸は、希アルカリ水溶液への溶解性を有しているため、基板上に形成されたポリアミック酸層を希アルカリ水溶液により溶解剥離し、その後残存させたポリアミック酸層を加熱処理することによりイミドへ転化し、ポリイミド層とする手法も取られている。
【0008】
ここでの希アルカリ水溶液とは濃度0.01から10%の水酸化ナトリウム水溶液、水酸化カリウム水溶液、テトラメチルアンモニウムヒドロキシド水溶液等である。
【0009】
さらに、カルボキシル基をポリイミド分子内に有することで希アルカリ水溶液への溶解性を有したポリイミド樹脂は特許文献3に記載されている。
【0010】
【特許文献1】
特開平11−282157号公報
【特許文献2】
特開2003−173024号公報
【特許文献3】
特開2003−41004号公報
【0011】
【発明が解決しようとする課題】
しかしながら、そのような従来の手法では剥離の際に用いる有機極性溶剤、および有機アルカリは廃液処理の際に環境への負荷が懸念され、また、ポリアミック酸の溶解剥離の場合、イミドへ転化する必要があるため、高温での熱処理が必要となり、基材への熱履歴等が懸念される。
【0012】
さらに、特許文献3に記載のカルボキシル基をポリイミド分子内に有するポリイミドは酸価に対する明確な規定が無く、ポリイミド樹脂の希アルカリ水溶液への溶解性は必ずしも実用上十分であるとは言えない。
【0013】
このような現状より、環境への負荷の小さい希アルカリ水溶液で実用上十分に溶解剥離可能なポリイミドが強く求められている。
【0014】
従って、本発明の目的は、環境への負荷の小さい希アルカリ水溶液により実用上十分に溶解剥離可能なポリイミド樹脂組成物およびその積層体を提供することである。
【0015】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、下記化1
【0016】
【化1】

Figure 2005029659
【0017】
(式中、kは1以上の整数、m、nは1以上の整数であり、R 、R は互いに同一でも良く異なっていても良い2価の有機基であり、R 、R は互いに同一でも良く異なっていても良い4価の有機基であり、少なくとも、R がジアミノビシクロヘキシルジカルボン酸に由来する2価の有機基である)
からなるポリイミド樹脂である。
【0018】
また、化1中のR 及び又はR が脂肪族構造を有する4価の有機基であってもよく、R が脂肪族構造を有する2価の有機基であってもよい。
【0019】
本発明のポリイミド樹脂の酸価は、160mgKOH/g以上、260mgKOH/g以下であるのが好ましく、これにより本発明のポリイミド樹脂は希アルカリ水溶液に対して良好な溶解性を示す。
【0020】
また本発明のポリイミド樹脂は、化1において、下記式(1)
2.32×10−3≧ Nk/Mk ≧1.43×10−3 …(1)
(式(1)中、Nk:化1記載のkで示される括弧中のジアミノビシクロヘキシルジカルボン酸に由来する2価の有機基の数、Mk:化1に記載のkで示される括弧中の分子量)となるのがよい。この式(1)は、単位重量当たりのポリイミド樹脂中のジアミノビシクロヘキシルジカルボン酸に由来する2価の有機基の数を規定するものであり、得られるポリイミド樹脂中のカルボキシル基の数、つまり酸価を規定することができる。
【0021】
上述の本発明のポリイミド樹脂を溶剤成分に溶解させて樹脂溶液組成物としてもよい。
【0022】
また、本発明の樹脂溶液組成物に、感光剤を含有させて感光性樹脂組成物としてもよい。
【0023】
本発明は、さらに上述のポリイミド樹脂、樹脂溶液組成物、あるいは感光性樹脂組成物を含有する樹脂層と、ガラス、または銅、またはアルミ、またはステンレス等の基材からなる積層体としたものであり、カラーフィルターはかかる組成物からなる樹脂層を透明基板上に有することを特徴とするものである。
【0024】
【発明の実施の形態】
以下本発明の好適実施の形態を説明する。
【0025】
本発明のポリイミド樹脂、および樹脂溶液組成物、および感光性樹脂組成物、およびこれらからなる積層体は、ジアミノビシクロヘキシルジカルボン酸からなる2価の有機基を分子内に有することを特徴とする。
【0026】
この本発明のポリイミド樹脂は、ジアミノビシクロヘキシルジカルボン酸に、テトラカルボン酸二無水物、好ましくは1,2,3,4−シクロペンタンテトラカルボン酸二無水物、ビシクロ(2,2,2)オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、4,4’−オキシジフタル酸無水物、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物等のテトラカルボン酸二無水物のいずれか、あるいはこれら2つ以上のテトラカルボン酸二無水物を加え、さらにγ−カプロラクトン(4−エチルブチロラクトン)、ピリジンを加え、溶剤としてNMP(N−メチル−2−ピロリドン)とトルエンを加えて、これらを窒素雰囲気中で撹拌した後、約180℃で、3時間程度撹拌しながら反応させることで得られる。
【0027】
このポリイミド樹脂を乾燥して粉末とし、これをNMP溶媒に溶解して基板等に塗布することで、ポリイミド樹脂膜層とすることができる。
【0028】
また、本発明におけるジアミノジカルボン酸は、3,3’−ジアミノビシクロヘキシル−4,4’−ジカルボン酸、4,3’−ジアミノビシクロヘキシル−3,4’−ジカルボン酸、4,4’−ジアミノビシクロヘキシル−3,3’−ジカルボン酸のいずれか1種類の位置異性体から構成されていても、あるいは2種類以上の位置異性体の混合物から構成されていても良い。
【0029】
この本発明のポリイミド樹脂は、ポリイミド樹脂層の剥離の際に、任意離部分を選択するために既存の光酸発生剤、光重合開始剤等と増感剤、架橋剤、架橋助剤等を併用することにより、所望の感光性樹脂組成物に調整し、使用可能である。
【0030】
【実施例】
以下、本発明を実施例を比較例と共に詳細に説明するが、本発明はこれらの実施例に制限されるものではない。
【0031】
(実施例1)
攪拌器を取りつけた1000mlのセパラブル四つ口フラスコに、水分分離トラップを備えた玉付冷却管を取りつけ、1,2,3,4−シクロペンタンテトラカルボン酸二無水物(化1中のR 、R となる脂肪族を構成)21.0g、ジアミノビシクロヘキシルジカルボン酸(同じくR 又はR を構成、以降DABCHDCと称す)28.4g、γ−カプロラクトン1.1g、ピリジン2.0g、NMP200.0g、トルエン40.0gを加え、常温で窒素雰囲気中10分間攪拌した後、180℃に昇温し、180rpmで3時間攪拌した。なお留出成分は反応中に水分分離トラップより適時取り除いた。この後、真空乾燥を行い反応液(ワニス)を得た[工程1]。
【0032】
次いで得られたワニスをメタノール中に投入することによって、生成した沈殿を分離し、粉砕、ろ過、洗浄および減圧乾燥させる工程を経ることによりポリマー粉末を得た[工程2]。
【0033】
その後、NMP26.0gに樹脂4.0gを溶解し、これを基材に塗布、乾燥することで溶解試験用評価用サンプルを作成した[工程3]。
【0034】
得られたサンプルを用いて希アルカリ水溶液への溶解性の評価を行った。評価結果を表1に示す。
【0035】
(実施例2)
実施例1と同様の装置に、ビシクロ(2,2,2)オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物(化1中のR 、R となる脂肪族を構成、以降BCDと称す)24.8g、DABCHDC28.4g、γ−カプロラクトン1.1g、ピリジン2.0g、NMP200.0g、トルエン40.0gを加え、実施例1の[工程1]と同様に、常温で窒素雰囲気中10分間攪拌した後、180℃に昇温し、180rpmで3時間攪拌し、反応中の留出成分を水分分離トラップより適時取り除き、この後、真空乾燥を行って、反応液(ワニス)を得た。
【0036】
次いで得られたワニスを、同じく[工程2]と同様に、メタノール中に投入することによって、生成した沈殿を分離し、粉砕、ろ過、洗浄および減圧乾燥させる工程を経ることによりポリマー粉末を得た後、[工程3]と同様に、NMP26.0gに樹脂4.0gを溶解し、これを基材に塗布、乾燥することで溶解試験用評価用サンプルを作成した。
【0037】
得られたサンプルを用いて、希アルカリ水溶液への溶解性の評価を行った。評価結果を表1に示す。
【0038】
(実施例3)
実施例1と同様の装置に、4,4’−オキシジフタル酸無水物(化1中のR 、R となる有機基を構成、以降ODPAと称す)31.0g、DABCHDC28.4g、γ−カプロラクトン1.1g、ピリジン2.0g、NMP200.0g、トルエン40.0gを加え、[工程1]と同様の方法で反応液(ワニス)を得た。
【0039】
次いで、得られたワニスを[工程2]、[工程3]と同様の方法で希アルカリ水溶液への溶解性の評価を行った。評価結果を表1に示す。
【0040】
以下に得られたポリマーの分析結果を示す。
【0041】
H−NMR分析結果
(測定装置:(「JNM−GSX400」日本電子製)、測定条件:観測周波数=400MHz、溶媒:重DMSO、標準物質:TSP、測定温度60℃)
δ=1.2−2.0ppm(12H)、δ=2.5−4.3ppm(6H)、δ=7.5ppm(4H)、δ=7.9ppm(2H)
(実施例4)
実施例1と同様の装置に、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(化1中のR 、R となる有機基を構成、以降6−FDAと称す)44.4g、DABCHDC28.4g、γ−カプロラクトン1.1g、ピリジン2.0g、NMP200.0g、トルエン40.0gを加え、[工程1]と同様の方法で反応液(ワニス)を得た。
【0042】
次いで得られたワニスを[工程2]、[工程3]と同様の方法で希アルカリ水溶液への溶解性の評価を行った。評価結果を表1に示す。
【0043】
(実施例5)
実施例1と同様の装置に3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(化1中のR 、R となる有機基を構成)32.2g、DABCHDC28.4g、γ−カプロラクトン1.1g、ピリジン2.0g、NMP200.0g、トルエン40.0gを加え、[工程1]と同様の方法で反応液(ワニス)を得た。
【0044】
次いで得られたワニスを[工程2]、[工程3]と同様の方法で希アルカリ水溶液への溶解性の評価を行った。評価結果を表1に示す。
【0045】
(実施例6)
実施例1と同様の装置に3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(化1中のR 、R となる有機基を構成、以降BPDAと称す)29.4g、DABCHDC28.4g、NMP200.0gを加え、[工程1]と同様の方法で反応液(ワニス)を得た。
【0046】
次いで、得られたワニスを[工程2]、[工程3]と同様の方法で希アルカリ水溶液への溶解性の評価を行った。評価結果を表1に示す。
【0047】
(実施例7)
実施例1と同様の装置にピロメリット酸二無水物(化1中のR 、R となる有機基を構成、以降PMDAと称す)21.8g、DABCHDC28.4g、NMP200.0gを加え、[工程1]と同様の方法で反応液(ワニス)を得た。
【0048】
次いで、得られたワニスを[工程2]、[工程3]と同様の方法で希アルカリ水溶液への溶解性の評価を行った。評価結果を表1に示す。
【0049】
(実施例8)
実施例1と同様の装置に6−FDA(化1中のR となる有機基を構成)22.2g、ODPA(化1中のR となる有機基を構成)15.5g、DABCHDC28.4g、γ−カプロラクトン1.1g、ピリジン2.0g、NMP200.0g、トルエン40.0gを加え、[工程1]と同様の方法で反応液(ワニス)を得た。
【0050】
次いで、得られたワニスを[工程2]、[工程3]と同様の方法で希アルカリ水溶液への溶解性の評価を行った。評価結果を表1に示す。
【0051】
(実施例9)
実施例1と同様の装置にBCD(化1中のR 、R となる脂肪族を構成)24.8g、DABCHDC21.3g、3,3’−ジメチル−4,4’−ジアミノジシクロヘキシルメタン6.0g、γ−カプロラクトン1.1g、ピリジン2.0g、NMP200.0g、トルエン40.0gを加え、[工程1]と同様の方法で反応液(ワニス)を得た。
【0052】
次いで、得られたワニスを[工程2]、[工程3]と同様の方法で希アルカリ水溶液への溶解性の評価を行った。評価結果を表1に示す。
【0053】
(実施例10)
以下の方法により、本発明のポリイミド樹脂より緑色塗膜を有するカラーフィルターを作成した。
【0054】
ピグメントグリーン36(オノールグリーン6YKP−N:東洋インキ株式会社製)10gをγ−ブチロラクトン90gに加えガラスビーズを用いてホモジナイザーで分散後、ガラスビーズをろ別することにより顔料分散液を得た。
【0055】
この顔料分散液50gと実施例1で得られたポリマー粉末30g、γ−ブチロラクトン250g及び界面活性剤“デイスパロン(登録商標)LC−951”(楠本化成株式会社製)の1%NMP溶液5gを室温で攪拌しながら添加し、顔料分散ポリイミド溶液を得た。
【0056】
この分散液をガラス基板上に熱処理後の膜厚が2μmとなるようにスピンコート法で塗布し、90℃で10分間乾燥し、この上にポジ型フォトレジスト(東京応化株式会社製OFPR−800)を乾燥後の膜厚が2μmとなるようにスピンコート法で塗布、90℃で10分間乾燥した。その後クロム製のフォトマスクを介して紫外線露光機で365nmの紫外線強度が150mJ/cmとなるよう露光し、2.38%テトラメチルアンモニウムヒドロキシド水溶液からなる現像液でフォトレジスト層並びにポリイミド層を溶解剥離した。残ったフォトレジスト層はアセトンにより溶解剥離し、200℃で30分乾燥することにより残存溶剤を除去した。このようにして得られた塗膜は所望のパターン形状を有していた。
【0057】
(比較例1)
実施例1と同様の装置にBPDA(化1中のR 、R となる有機基に相当)29.4g、1,4−フェニレンジアミン(化1のR 、R に相当)10.8g、NMP200.0gを加え、[工程1]と同様の方法で反応液(ワニス)を得た。
【0058】
次いで得られたワニスを[工程2]、[工程3]と同様の方法で希アルカリ水溶液への溶解性の評価を行った。評価結果を表1に示す。
【0059】
(比較例2)
実施例1と同様の装置にPMDA(化1中のR 、R となる有機基に相当)21.8g、4,4’−ジアミノジフェニルエーテル(化1中のR 、R となる有機基に相当)20.0g、NMP200.0gを加え、[工程1]と同様の方法で反応液(ワニス)を得た。
【0060】
次いで得られたワニスを[工程2]、[工程3]と同様の方法で希アルカリ水溶液への溶解性の評価を行った。評価結果を表1に示す。
【0061】
(比較例3)
実施例1と同様の装置にBCD(化1中のR 、R となる脂肪族に相当)24.8g、イソホロンジアミン(化1中のR 、R となる脂肪族に相当)17.0g、γ−カプロラクトン1.1g、ピリジン2.0g、NMP200.0g、トルエン40.0gを加え、[工程1]と同様の方法で反応液(ワニス)を得た。
【0062】
次いで、得られたワニスを[工程2]、[工程3]と同様の方法で希アルカリ水溶液への溶解性の評価を行った。評価結果を表1に示す。
【0063】
(希アルカリ水溶液への溶解試験)
溶解試験用サンプルは、ガラス基板上に[工程3]により得られたポリイミド樹脂を主成分とする溶液をスピンコート法により塗布した後、乾燥し、ガラス基板上にポリイミド樹脂を主成分とする樹脂層を形成することにより作成した。
【0064】
次に、この溶解試験用サンプルを1%水酸化ナトリウム水溶液、及び1%水酸化カリウム水溶液、1%テトラメチルアンモニウムヒドロキシド水溶液に浸漬し、樹脂層の溶解性を評価した。
【0065】
(酸価の測定)
酸価は、[工程2]により得られたポリマー粉末を溶解性の有する有機溶剤・イオン交換水の混合溶液に規定量溶解し、既知の濃度のKOH水溶液で電位差滴定装置を用いて滴定することにより測定した。
【0066】
以上の結果を表1に示す。
【0067】
【表1】
Figure 2005029659
【0068】
表1より、実施例1〜9は、化1のR 及び、又はR がジアミノビシクロヘキシルジカルボン酸に由来する2価の有機基を有し、その酸価は162〜245(mgKOH/g)であり、1%水酸化ナトリウム水溶液、1%水酸化カリウム水溶液、及び1%テトラメチルアンモニウムヒドロキシド水溶液への溶解性は良好であり、希アルカリ水溶液で容易に剥離でき、環境への負荷が少ない。これに対して比較例1〜3は、1%水酸化ナトリウム、1%水酸化カリウム水溶液、及び1%テトラメチルアンモニウムヒドロキシド水溶液に対して不溶であり、酸価も0(mgKOH/g)であった。
【0069】
【発明の効果】
本発明によれば、ジアミノビシクロヘキシルジカルボン酸に由来する2価の有機基を有することを特徴とするポリイミド樹脂層は希アルカリ水溶液により不要部分を簡単に溶解剥離できることから、剥離液の廃液処理時に環境への負荷を低く抑えることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyimide resin, a resin solution composition, a photosensitive resin composition and a laminate thereof, and more specifically, a specific divalent organic group having a carboxyl group derived from diaminobicyclohexyldicarboxylic acid in the molecule of polyimide. Related to polyimide resins, resin solution compositions, photosensitive resin compositions and laminates thereof, and further to color filters used in liquid crystal displays and image sensors manufactured using the compositions. is there.
[0002]
[Prior art]
In the semiconductor device manufacturing process or display device manufacturing process, the photoresist film is peeled off after the etching process is finished, but when the photoresist film is used as a surface protective film or an interlayer insulating film of a semiconductor device, Since it is left as a permanent film, it is required to have excellent electrical and mechanical characteristics and to withstand high temperatures.
[0003]
As such a photoresist film, a film of photosensitive polyimide resin is used (Patent Document 1, Patent Document 2).
[0004]
Polyimide resin has excellent electrical and mechanical properties and heat resistance properties. As a photosensitive polyimide resin, a polyamic acid, which is a precursor of polyimide resin, has a photo-sensitive assistant and a photo-polymerization initiator having a photo-polymerizable functional group. The introduced compounds are known.
[0005]
At present, when dissolving and peeling a polyimide layer formed on a substrate, it is common to use an organic polar solvent or an organic alkali.
[0006]
The organic polar solvent and the organic alkali here are N-methyl-2-pyrrolidone, N, N-dimethylformamide, hydrazine and the like.
[0007]
In addition, since the polyamic acid that is a polyimide precursor has solubility in a dilute alkaline aqueous solution, the polyamic acid layer formed on the substrate is dissolved and peeled off with the dilute alkaline aqueous solution, and then left behind. The method of converting to imide by heating is used to form a polyimide layer.
[0008]
The dilute alkaline aqueous solution here is a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, a tetramethylammonium hydroxide aqueous solution or the like having a concentration of 0.01 to 10%.
[0009]
Furthermore, Patent Document 3 describes a polyimide resin having solubility in a dilute alkaline aqueous solution by having a carboxyl group in the polyimide molecule.
[0010]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-282157 [Patent Document 2]
Japanese Patent Laid-Open No. 2003-173024 [Patent Document 3]
Japanese Patent Laid-Open No. 2003-41004
[Problems to be solved by the invention]
However, in such a conventional method, the organic polar solvent and organic alkali used for peeling are concerned about the burden on the environment at the time of waste liquid treatment, and in the case of polyamic acid dissolution peeling, it is necessary to convert it to imide. Therefore, heat treatment at a high temperature is necessary, and there is a concern about heat history to the base material.
[0012]
Furthermore, the polyimide which has the carboxyl group described in patent document 3 in the polyimide molecule does not have a clear regulation with respect to the acid value, and it cannot be said that the solubility of the polyimide resin in a dilute alkaline aqueous solution is necessarily sufficient in practice.
[0013]
Under such circumstances, there is a strong demand for a polyimide that can be practically sufficiently dissolved and peeled with a dilute alkaline aqueous solution having a small environmental load.
[0014]
Accordingly, an object of the present invention is to provide a polyimide resin composition and a laminate thereof that can be sufficiently dissolved and peeled practically with a dilute alkaline aqueous solution having a small environmental load.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides the following chemical formula 1
[0016]
[Chemical 1]
Figure 2005029659
[0017]
(In the formula, k is an integer of 1 or more, m and n are integers of 1 or more, R 1 and R 3 are divalent organic groups which may be the same or different, and R 2 and R 4. Are tetravalent organic groups which may be the same or different from each other, and at least R 1 is a divalent organic group derived from diaminobicyclohexyl dicarboxylic acid)
A polyimide resin.
[0018]
Further, R 2 and / or R 4 in Chemical Formula 1 may be a tetravalent organic group having an aliphatic structure, and R 3 may be a divalent organic group having an aliphatic structure.
[0019]
The acid value of the polyimide resin of the present invention is preferably 160 mgKOH / g or more and 260 mgKOH / g or less, whereby the polyimide resin of the present invention exhibits good solubility in a dilute alkaline aqueous solution.
[0020]
The polyimide resin of the present invention is represented by the following formula (1)
2.32 × 10 −3 ≧ Nk / Mk ≧ 1.43 × 10 −3 (1)
(In formula (1), Nk: the number of divalent organic groups derived from diaminobicyclohexyldicarboxylic acid in parentheses indicated by k in Chemical Formula 1, Mk: in the parentheses indicated by k in Chemical Formula 1 (Molecular weight). This formula (1) defines the number of divalent organic groups derived from diaminobicyclohexyl dicarboxylic acid in the polyimide resin per unit weight, that is, the number of carboxyl groups in the resulting polyimide resin, that is, acid. The price can be specified.
[0021]
The polyimide resin of the present invention described above may be dissolved in a solvent component to form a resin solution composition.
[0022]
Moreover, it is good also as a photosensitive resin composition by making the resin solution composition of this invention contain a photosensitive agent.
[0023]
The present invention further comprises a laminate comprising a resin layer containing the above-described polyimide resin, resin solution composition, or photosensitive resin composition, and a substrate such as glass, copper, aluminum, or stainless steel. The color filter has a resin layer made of such a composition on a transparent substrate.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
[0025]
The polyimide resin, resin solution composition, and photosensitive resin composition of the present invention, and a laminate comprising these have a divalent organic group composed of diaminobicyclohexyldicarboxylic acid in the molecule.
[0026]
The polyimide resin of the present invention comprises diaminobicyclohexyl dicarboxylic acid, tetracarboxylic dianhydride, preferably 1,2,3,4-cyclopentanetetracarboxylic dianhydride, bicyclo (2,2,2) octane. -7-ene-2,3,5,6-tetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride, 4,4 '-(hexafluoroisopropylidene) diphthalic dianhydride, 3,3 Any of tetracarboxylic dianhydrides such as ', 4,4'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride Or two or more tetracarboxylic dianhydrides are added, γ-caprolactone (4-ethylbutyrolactone) and pyridine are added, and NMP (N-methyl) is used as a solvent. 2-pyrrolidone) and adding toluene, these After stirring in a nitrogen atmosphere at about 180 ° C., is obtained by reacting with stirring for about 3 hours.
[0027]
The polyimide resin is dried to form a powder, which is dissolved in an NMP solvent and applied to a substrate or the like to form a polyimide resin film layer.
[0028]
The diaminodicarboxylic acid in the present invention is 3,3′-diaminobicyclohexyl-4,4′-dicarboxylic acid, 4,3′-diaminobicyclohexyl-3,4′-dicarboxylic acid, or 4,4′-diamino. It may be composed of any one type of positional isomer of bicyclohexyl-3,3′-dicarboxylic acid, or may be composed of a mixture of two or more types of positional isomers.
[0029]
This polyimide resin of the present invention has an existing photoacid generator, photopolymerization initiator, etc. and a sensitizer, a crosslinking agent, a crosslinking aid, etc., in order to select an arbitrary separation portion when the polyimide resin layer is peeled off. By using together, it can adjust to a desired photosensitive resin composition and can be used.
[0030]
【Example】
EXAMPLES Hereinafter, although an Example is described in detail with a comparative example, this invention is not restrict | limited to these Examples.
[0031]
(Example 1)
A 1000 ml separable four-necked flask equipped with a stirrer was fitted with a ball condenser equipped with a water separation trap, and 1,2,3,4-cyclopentanetetracarboxylic dianhydride (R 2 in Chemical Formula 1). , constituting the aliphatic becomes R 4) 21.0 g, constituting a diamino bicyclohexyl dicarboxylic acid (also R 1 or R 3, referred to hereinafter DABCHDC) 28.4g, γ- caprolactone 1.1 g, pyridine 2.0 g, After adding 200.0 g of NMP and 40.0 g of toluene and stirring at room temperature for 10 minutes in a nitrogen atmosphere, the temperature was raised to 180 ° C. and stirring was performed at 180 rpm for 3 hours. The distillate component was removed from the water separation trap in a timely manner during the reaction. Then, it vacuum-dried and obtained the reaction liquid (varnish) [process 1].
[0032]
Subsequently, the obtained varnish was put into methanol to separate the produced precipitate, and a polymer powder was obtained through steps of pulverization, filtration, washing and drying under reduced pressure [Step 2].
[0033]
Thereafter, 4.0 g of resin was dissolved in 26.0 g of NMP, and this was applied to a substrate and dried to prepare a sample for evaluation for dissolution test [Step 3].
[0034]
Using the obtained sample, the solubility in a dilute alkaline aqueous solution was evaluated. The evaluation results are shown in Table 1.
[0035]
(Example 2)
In the same apparatus as in Example 1, bicyclo (2,2,2) oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (R 2 and R 4 in Chemical Formula 1 were converted into fat. 24.8 g, DABCHDC 28.4 g, 1.1 g of γ-caprolactone, 2.0 g of pyridine, 200.0 g of NMP, 40.0 g of toluene and the same as [Step 1] of Example 1 Then, after stirring in a nitrogen atmosphere at room temperature for 10 minutes, the temperature was raised to 180 ° C., stirring was performed at 180 rpm for 3 hours, and the distillate component during the reaction was removed from the moisture separation trap in a timely manner, followed by vacuum drying. A reaction solution (varnish) was obtained.
[0036]
Subsequently, the obtained varnish was similarly put into methanol in the same manner as in [Step 2] to separate the produced precipitate, followed by pulverization, filtration, washing and drying under reduced pressure to obtain a polymer powder. Thereafter, in the same manner as in [Step 3], 4.0 g of resin was dissolved in 26.0 g of NMP, and this was applied to a substrate and dried to prepare a sample for evaluation for dissolution test.
[0037]
Using the obtained sample, the solubility in a dilute alkaline aqueous solution was evaluated. The evaluation results are shown in Table 1.
[0038]
(Example 3)
In the same apparatus as in Example 1, 4,4′-oxydiphthalic anhydride (the organic groups to be R 2 and R 4 in Chemical Formula 1 are hereinafter referred to as ODPA) 31.0 g, DABCHDC 28.4 g, γ- 1.1 g of caprolactone, 2.0 g of pyridine, 200.0 g of NMP and 40.0 g of toluene were added, and a reaction solution (varnish) was obtained in the same manner as in [Step 1].
[0039]
Subsequently, the obtained varnish was evaluated for solubility in a dilute aqueous alkali solution in the same manner as in [Step 2] and [Step 3]. The evaluation results are shown in Table 1.
[0040]
The analysis results of the obtained polymer are shown below.
[0041]
1 H-NMR analysis results (measuring device: (“JNM-GSX400” manufactured by JEOL), measurement conditions: observation frequency = 400 MHz, solvent: heavy DMSO, standard substance: TSP, measurement temperature 60 ° C.)
δ = 1.2-2.0 ppm (12H), δ = 2.5-4.3 ppm (6H), δ = 7.5 ppm (4H), δ = 7.9 ppm (2H)
(Example 4)
In the same apparatus as in Example 1, 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (constituting organic groups to be R 2 and R 4 in Chemical Formula 1, hereinafter referred to as 6-FDA) 44 .4 g, DABCHDC 28.4 g, γ-caprolactone 1.1 g, pyridine 2.0 g, NMP 200.0 g and toluene 40.0 g were added, and a reaction solution (varnish) was obtained in the same manner as in [Step 1].
[0042]
Subsequently, the obtained varnish was evaluated for solubility in a dilute alkaline aqueous solution in the same manner as in [Step 2] and [Step 3]. The evaluation results are shown in Table 1.
[0043]
(Example 5)
In the same apparatus as in Example 1, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (constituting organic groups to be R 2 and R 4 in Chemical Formula 1) 32.2 g, DABCHDC 28.4 g, 1.1 g of γ-caprolactone, 2.0 g of pyridine, 200.0 g of NMP, and 40.0 g of toluene were added, and a reaction solution (varnish) was obtained in the same manner as in [Step 1].
[0044]
Subsequently, the obtained varnish was evaluated for solubility in a dilute alkaline aqueous solution in the same manner as in [Step 2] and [Step 3]. The evaluation results are shown in Table 1.
[0045]
(Example 6)
29.4 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (constituting organic groups to be R 2 and R 4 in Chemical Formula 1, hereinafter referred to as BPDA) in the same apparatus as in Example 1 DABCHDC 28.4 g and NMP 200.0 g were added to obtain a reaction solution (varnish) in the same manner as in [Step 1].
[0046]
Subsequently, the obtained varnish was evaluated for solubility in a dilute aqueous alkali solution in the same manner as in [Step 2] and [Step 3]. The evaluation results are shown in Table 1.
[0047]
(Example 7)
In the same apparatus as in Example 1, pyromellitic dianhydride (constituting organic groups to be R 2 and R 4 in Chemical Formula 1, hereinafter referred to as PMDA) 21.8 g, DABCHDC 28.4 g, NMP 200.0 g were added, A reaction solution (varnish) was obtained in the same manner as in [Step 1].
[0048]
Subsequently, the obtained varnish was evaluated for solubility in a dilute aqueous alkali solution in the same manner as in [Step 2] and [Step 3]. The evaluation results are shown in Table 1.
[0049]
(Example 8)
In the same apparatus as in Example 1, 6-FDA (constituting an organic group to be R 2 in Chemical Formula 1) 22.2 g, ODPA (constituting an organic group to be R 4 in Chemical Formula 1) 15.5 g, DABCHDC 28. 4 g, 1.1 g of γ-caprolactone, 2.0 g of pyridine, 200.0 g of NMP, and 40.0 g of toluene were added, and a reaction liquid (varnish) was obtained in the same manner as in [Step 1].
[0050]
Subsequently, the obtained varnish was evaluated for solubility in a dilute aqueous alkali solution in the same manner as in [Step 2] and [Step 3]. The evaluation results are shown in Table 1.
[0051]
Example 9
In the same apparatus as in Example 1, 24.8 g of BCD (constituting aliphatic compounds to be R 2 and R 4 in Chemical Formula 1), 21.3 g of DABCHDC, 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane 6 0.0 g, 1.1 g of γ-caprolactone, 2.0 g of pyridine, 200.0 g of NMP, and 40.0 g of toluene were added, and a reaction solution (varnish) was obtained in the same manner as in [Step 1].
[0052]
Subsequently, the obtained varnish was evaluated for solubility in a dilute aqueous alkali solution in the same manner as in [Step 2] and [Step 3]. The evaluation results are shown in Table 1.
[0053]
(Example 10)
A color filter having a green coating film was prepared from the polyimide resin of the present invention by the following method.
[0054]
10 g of Pigment Green 36 (Onol Green 6YKP-N: manufactured by Toyo Ink Co., Ltd.) was added to 90 g of γ-butyrolactone and dispersed with a homogenizer using glass beads, followed by filtering the glass beads to obtain a pigment dispersion.
[0055]
50 g of this pigment dispersion, 30 g of the polymer powder obtained in Example 1, 250 g of γ-butyrolactone and 5 g of a 1% NMP solution of the surfactant “Daysparon (registered trademark) LC-951” (manufactured by Enomoto Kasei Co., Ltd.) Was added while stirring to obtain a pigment-dispersed polyimide solution.
[0056]
This dispersion was applied onto a glass substrate by spin coating so that the film thickness after heat treatment was 2 μm, dried at 90 ° C. for 10 minutes, and then a positive photoresist (OFPR-800 manufactured by Tokyo Ohka Kogyo Co., Ltd.) was formed thereon. ) Was applied by spin coating so that the film thickness after drying was 2 μm, and dried at 90 ° C. for 10 minutes. Thereafter, the film is exposed through a chromium photomask with an ultraviolet exposure machine so that the ultraviolet intensity at 365 nm is 150 mJ / cm 2, and the photoresist layer and the polyimide layer are formed with a developer composed of a 2.38% tetramethylammonium hydroxide aqueous solution. Dissolved and peeled. The remaining photoresist layer was dissolved and peeled off with acetone and dried at 200 ° C. for 30 minutes to remove the residual solvent. The coating film thus obtained had a desired pattern shape.
[0057]
(Comparative Example 1)
In the same apparatus as in Example 1, 29.4 g of BPDA (corresponding to organic groups to be R 2 and R 4 in Chemical Formula 1), 1,4-phenylenediamine (corresponding to R 1 and R 3 in Chemical Formula 1 ) 10. 8 g and 200.0 g of NMP were added, and a reaction solution (varnish) was obtained in the same manner as in [Step 1].
[0058]
Subsequently, the obtained varnish was evaluated for solubility in a dilute alkaline aqueous solution in the same manner as in [Step 2] and [Step 3]. The evaluation results are shown in Table 1.
[0059]
(Comparative Example 2)
In the same apparatus as in Example 1, 21.8 g of PMDA (corresponding to organic groups to be R 2 and R 4 in Chemical Formula 1), 4,4′-diaminodiphenyl ether (organic to be R 1 and R 3 in Chemical Formula 1) 20.0 g and NMP 200.0 g were added, and a reaction solution (varnish) was obtained in the same manner as in [Step 1].
[0060]
Subsequently, the obtained varnish was evaluated for solubility in a dilute alkaline aqueous solution in the same manner as in [Step 2] and [Step 3]. The evaluation results are shown in Table 1.
[0061]
(Comparative Example 3)
In the same apparatus as in Example 1, 24.8 g of BCD (corresponding to the aliphatic as R 2 and R 4 in chemical formula 1), isophoronediamine (corresponding to the aliphatic as R 1 and R 3 in chemical formula 1) 17 0.0 g, 1.1 g of γ-caprolactone, 2.0 g of pyridine, 200.0 g of NMP, and 40.0 g of toluene were added, and a reaction solution (varnish) was obtained in the same manner as in [Step 1].
[0062]
Subsequently, the obtained varnish was evaluated for solubility in a dilute aqueous alkali solution in the same manner as in [Step 2] and [Step 3]. The evaluation results are shown in Table 1.
[0063]
(Dissolution test in dilute alkaline aqueous solution)
The sample for dissolution test is a resin containing a polyimide resin as a main component obtained by [Step 3] on a glass substrate by spin coating, followed by drying, and a resin containing a polyimide resin as a main component on a glass substrate. Created by forming a layer.
[0064]
Next, this dissolution test sample was immersed in a 1% aqueous sodium hydroxide solution, a 1% aqueous potassium hydroxide solution, and a 1% tetramethylammonium hydroxide aqueous solution to evaluate the solubility of the resin layer.
[0065]
(Measurement of acid value)
The acid value is determined by dissolving a specified amount of the polymer powder obtained in [Step 2] in a mixed solution of organic solvent / ion-exchanged water having a solubility and titrating with a KOH aqueous solution of a known concentration using a potentiometric titrator. It was measured by.
[0066]
The results are shown in Table 1.
[0067]
[Table 1]
Figure 2005029659
[0068]
From Table 1, Examples 1 to 9 have divalent organic groups in which R 1 and / or R 3 in Chemical Formula 1 are derived from diaminobicyclohexyldicarboxylic acid, and the acid value is 162 to 245 (mgKOH / g The solubility in 1% sodium hydroxide aqueous solution, 1% potassium hydroxide aqueous solution, and 1% tetramethylammonium hydroxide aqueous solution is good. Few. In contrast, Comparative Examples 1 to 3 are insoluble in 1% sodium hydroxide, 1% potassium hydroxide aqueous solution, and 1% tetramethylammonium hydroxide aqueous solution, and the acid value is 0 (mgKOH / g). there were.
[0069]
【The invention's effect】
According to the present invention, a polyimide resin layer having a divalent organic group derived from diaminobicyclohexyldicarboxylic acid can easily dissolve and peel unnecessary portions with a dilute alkaline aqueous solution. The load on the environment can be kept low.

Claims (10)

下記化1
Figure 2005029659
(式中、kは1以上の整数、m、nは1以上の整数であり、R 、R は互いに同一でも良く異なっていても良い2価の有機基であり、R 、R は互いに同一でも良く異なっていても良い4価の有機基であり、少なくとも、R がジアミノビシクロヘキシルジカルボン酸に由来する2価の有機基である)
からなることを特徴とするポリイミド樹脂。
Below 1
Figure 2005029659
(In the formula, k is an integer of 1 or more, m and n are integers of 1 or more, R 1 and R 3 are divalent organic groups which may be the same or different, and R 2 and R 4. Are tetravalent organic groups which may be the same or different from each other, and at least R 1 is a divalent organic group derived from diaminobicyclohexyl dicarboxylic acid)
A polyimide resin characterized by comprising:
及び又はR が脂肪族構造を有する4価の有機基である請求項1に記載のポリイミド樹脂。The polyimide resin according to claim 1, wherein R 2 and / or R 4 is a tetravalent organic group having an aliphatic structure. が脂肪族構造を有する2価の有機基である請求項1〜2いずれかに記載のポリイミド樹脂。The polyimide resin according to claim 1, wherein R 3 is a divalent organic group having an aliphatic structure. 酸価が160mgKOH/g以上、260mgKOH/g以下であるポリイミド樹脂。A polyimide resin having an acid value of 160 mgKOH / g or more and 260 mgKOH / g or less. 酸価が160mgKOH/g以上、260mgKOH/g以下である請求項1〜3いずれかに記載のポリイミド樹脂。The polyimide resin according to any one of claims 1 to 3, which has an acid value of 160 mgKOH / g or more and 260 mgKOH / g or less. 化1において、下記式(1)
2.32×10−3≧ Nk/Mk ≧1.43×10−3 …(1)
(式(1)中、Nk:化1記載のkで示される括弧中のジアミノビシクロヘキシルジカルボン酸に由来する2価の有機基の数、Mk:化1に記載のkで示される括弧中の分子量)となる請求項1〜3いずれかに記載のポリイミド樹脂。
In the chemical formula 1, the following formula (1)
2.32 × 10 −3 ≧ Nk / Mk ≧ 1.43 × 10 −3 (1)
(In formula (1), Nk: the number of divalent organic groups derived from diaminobicyclohexyldicarboxylic acid in parentheses indicated by k in Chemical Formula 1, Mk: in the parentheses indicated by k in Chemical Formula 1 The polyimide resin according to claim 1, which has a molecular weight.
請求項1〜6いずれかに記載のポリイミド樹脂を、溶剤に溶解してなる樹脂溶液組成物。The resin solution composition formed by melt | dissolving the polyimide resin in any one of Claims 1-6 in a solvent. 請求項7に記載の樹脂溶液組成物に、感光剤を混合してなることを特徴とする感光性樹脂組成物。A photosensitive resin composition obtained by mixing a photosensitive agent with the resin solution composition according to claim 7. 請求項1〜8いずれかに記載のポリイミド樹脂、樹脂溶液組成物、あるいは感光性樹脂組成物を含有する樹脂層と、ガラス、または銅、またはアルミ、またはステンレス等の基材からなることを特徴とする積層体。It consists of a resin layer containing the polyimide resin, resin solution composition or photosensitive resin composition according to any one of claims 1 to 8, and a substrate such as glass, copper, aluminum, or stainless steel. Laminated body. 請求項7〜8いずれかに記載の組成物からなる樹脂層を透明基板上に有することを特徴とするカラーフィルター。A color filter comprising a resin layer made of the composition according to claim 7 on a transparent substrate.
JP2003194968A 2003-07-10 2003-07-10 Polyimide resin, resin solution composition thereof, photosensitive resin composition, laminated form and color filter Pending JP2005029659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003194968A JP2005029659A (en) 2003-07-10 2003-07-10 Polyimide resin, resin solution composition thereof, photosensitive resin composition, laminated form and color filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003194968A JP2005029659A (en) 2003-07-10 2003-07-10 Polyimide resin, resin solution composition thereof, photosensitive resin composition, laminated form and color filter

Publications (1)

Publication Number Publication Date
JP2005029659A true JP2005029659A (en) 2005-02-03

Family

ID=34205950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003194968A Pending JP2005029659A (en) 2003-07-10 2003-07-10 Polyimide resin, resin solution composition thereof, photosensitive resin composition, laminated form and color filter

Country Status (1)

Country Link
JP (1) JP2005029659A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125817A1 (en) * 2006-04-24 2007-11-08 Jsr Corporation Photosensitive resin composition
WO2021020360A1 (en) * 2019-07-30 2021-02-04 富士フイルム株式会社 Colored resin composition, film, color filter, solid state imaging device and image display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125817A1 (en) * 2006-04-24 2007-11-08 Jsr Corporation Photosensitive resin composition
JPWO2007125817A1 (en) * 2006-04-24 2009-09-10 Jsr株式会社 Photosensitive resin composition
JP4586920B2 (en) * 2006-04-24 2010-11-24 Jsr株式会社 Photosensitive resin composition
WO2021020360A1 (en) * 2019-07-30 2021-02-04 富士フイルム株式会社 Colored resin composition, film, color filter, solid state imaging device and image display device
JPWO2021020360A1 (en) * 2019-07-30 2021-02-04

Similar Documents

Publication Publication Date Title
EP1411088B1 (en) Polyamic acid resin composition
JP4663720B2 (en) Positive photosensitive resin composition and pattern forming method
JP4001569B2 (en) Soluble polyimide for photosensitive polyimide precursor and photosensitive polyimide precursor composition containing the same
TWI254833B (en) Positive type photosensitive polyimide resin composition
JP6294116B2 (en) Polyimide precursor resin composition, polyimide resin film, flexible printed wiring board, suspension with circuit, and hard disk drive
WO2002023276A1 (en) Negative photosensitive polyimide composition and method of forming image from the same
TWI490652B (en) Positive photosensitive resin composition, cured layer, protecting layer, insulating layer, and semiconductor device and display device using same
JPH03209478A (en) Positive type photosensitive polyimide resin composition
US20110172324A1 (en) Novel water soluble polyimide resin, its preparation and use
JP2005250160A (en) Positive photosensitive resin composition and cured object thereof
JP3419874B2 (en) Polyamic acid composition and liquid crystal element
TWI696893B (en) Positive photosensitive resin composition, dry film, hardened material and printed wiring board
JP3026459B2 (en) Photosensitive resin composition
JPH0673003A (en) Bismaleimide compound and photosensitive resin composition
JP4771412B2 (en) Photosensitive resin and method for producing the same
JP3458669B2 (en) Photosensitive resin composition
JP3064579B2 (en) Pattern formation method
JPH1184653A (en) Heat resistant photosensitive polymer composition and production of pattern
JP2005250161A (en) Negative photosensitive resin composition and cured object thereof
JP2005029659A (en) Polyimide resin, resin solution composition thereof, photosensitive resin composition, laminated form and color filter
JP2010180262A (en) Method of producing resin composition
TWI499617B (en) Photoresist polyimide composition, the main agent, the preparation of its main agent and the preparation of polyimide solder film
TWI614574B (en) Photosensitive composition
JP3365108B2 (en) Pattern forming method using photosensitive polyamide
JP2001337453A (en) Photosensitive polymer composition, method for producing pattern and electronic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617