JP2005029401A - Reflecting mirror for light source, and light source unit - Google Patents

Reflecting mirror for light source, and light source unit Download PDF

Info

Publication number
JP2005029401A
JP2005029401A JP2003193636A JP2003193636A JP2005029401A JP 2005029401 A JP2005029401 A JP 2005029401A JP 2003193636 A JP2003193636 A JP 2003193636A JP 2003193636 A JP2003193636 A JP 2003193636A JP 2005029401 A JP2005029401 A JP 2005029401A
Authority
JP
Japan
Prior art keywords
reflecting mirror
light source
reflecting
mirror
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003193636A
Other languages
Japanese (ja)
Inventor
Tsuguo Sekiguchi
嗣夫 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2003193636A priority Critical patent/JP2005029401A/en
Publication of JP2005029401A publication Critical patent/JP2005029401A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflecting mirror which is excellent in heat resistance, secures a sufficient surface accuracy, has a reflective surface with a surface roughness small enough to be coated with a vapor deposition film without being polished, can have a larger effective reflective surface, can be made small-sized and lightweight, and is excellent in mechanical strength. <P>SOLUTION: The reflecting mirror for a light source in a high-voltage discharge lamp unit is manufactured as follows: minutely rugged parts present on the inside reflective surface of a reflecting mirror mainly comprising SiO<SB>2</SB>are filled and coated with polysilazane, which is a high-molecular inorganic polymer convertible into the same substance as the reflecting mirror; and the polysilazane is converted into SiO<SB>2</SB>to change the minutely rugged surface into a smooth mirror surface. A light source unit having the reflecting mirror mounted thereon is also provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
液晶プロジェクタなどの投射型光源装置に用いられる、ショートアーク放電ランプと反射鏡とを組み合わせた光源装置に属するものであり、特に、装置の小型化に伴って発生する諸問題を、該ランプと共に用いる反射鏡を主体に解決を図った光源装置に関する。
【0002】
【従来の技術】
従来この種の光源装置に用いられる反射鏡は、硼珪酸塩ガラスからなり、その内表面にコールドミラーを施す事で、ランプから放射される熱線を反射鏡背面から逃がし、可視光を前面に反射するように機能させている。
【0003】
しかし現今、これら投射型光源装置に要求される装置の小型化においては、硼珪酸塩ガラスの熱膨張係数が大きい為に、ランプ発光部と反射鏡の反射面との最短距離が2mm以下となるような設計の場合、つまり反射面の温度が500℃を越えるような状態で利用する場合は、点灯消灯の繰り返しによる熱応力によって反射鏡にクラックを生じたり、極端な場合は破損したりして、プロジェクタ内にその破片が散乱し、大きな問題をもたらしていた。
【0004】
また、反射鏡の耐熱を向上させる為に、硼珪酸塩ガラスを出発材料とし、押し型でプレス成形後、溶解する温度付近まで再加熱し結晶化させる事で得られる、結晶化ガラスを反射鏡の材料に用いた例もあったが、ガラス成形後、再加熱時に結晶化させる際に焼き縮んだり変形したりするので、寸法精度、特に面精度や、反射面の平滑さの点で充分ではなく、成形後の工程として反射面の化学機械研磨を行い反射面を平滑化させていた。
【0005】
上記の硼珪酸塩ガラスを材料とする反射鏡は、ランプ破裂に備えて機械的強度を確保するため、平均肉厚を約4mmと厚くしてあるので、寸法は小さくても、かなりの重量があり、頻繁に持ち運びを行なう、ウルトラモバイル系やモバイル系のプロジェクタ用の放電ランプ装置には不向きであった。
【0006】
また、最近では更に耐熱性の高い石英ガラスが使われ始めている、公知な技術としては、球状シリカを原料として、これに添加剤を加えスラリー化し成形型によるスリップキャスト成形法により成形し、10−4Paの真空条件下において焼結させる方法がある。(たとえば、非特許文献1、非特許文献2参照)
【0007】
しかしながら、このスリップキャスト成形法の特徴的な欠点として平滑性を必要とする反射面の面粗さが非常に大きくなる。従って結晶化ガラス反射鏡と同様に後工程での反射面の化学機械研磨が必要となる。
更に、化学機械研磨を行うことにより反射面の平滑化は得られるが面精度を崩してしまうという2次的弊害も生じてしまう。
【0008】
図2は投射型プロジェクタ用光源装置の光源部の従来例を示したものである。内面をコールドミラーとした回転放物面反射鏡3は、焦点距離(f)が6.5mm、外側寸法が52×56mmである。また中央膨部2の最大径が10.0mm、平均肉厚2.5mmであり、内容積が約0.08mlの放電容器内に電極間距離を1.1mmとし、始動補助ガスとしてのアルゴンガスと共に、チラツキ防止及び、寿命中の黒化防止のために用いる臭化水素を封入し、その他に、バッファ効果のある発光物質としての水銀を16mg封入したショートアーク高圧水銀蒸気放電ランプ1を、前記反射鏡の焦点距離付近に配置した、定格消費電力を150Wとする液晶プロジェクタ用光源装置の光源部の例である。
【0009】
その反射鏡は、硼珪酸塩ガラスを溶融させ、型押し加工した後、結晶化させ反射部内面の凹凸を化学機械研磨を行うことにより平滑化し製作している、熱膨張係数は約16×10−7/Kであり、重さが約80g、焦点付近の底部を厚くし平均ガラス厚みを4mm程度として、ランプ破裂時の衝撃に機械的に耐えるようにしてあり、ランプシール部までを反射鏡内に納めた構造とし、反射鏡前面に厚さ約4mmの透光性のあるガラス板を設け、寿命中に発生する破裂に耐え得る構造としてランプの破片が外に飛び散らない様にしてある。用いられるプロジェクタ内でファンなどの強制空冷手段がない場合には、リフレクタ内面の、ランプに最も近い箇所では表面温度が580℃から640℃にもなっている。
【0010】
通常の硼珪酸塩ガラス(熱膨張係数=約36×10−7/K)製反射鏡では、耐熱温度(歪温度)がせいぜい480℃程度であり、光源装置を小型化する上では耐熱性に乏しいため、寸法精度の劣る結晶化ガラスを用いて、耐熱性のみを確保し、小型化に対応しているのが現状である。
【0011】
また、単なる硼珪酸塩ガラス製の反射鏡を含めて、量産を考慮して押し型成形で作成するため、押し型(モールド)が、回転放物面を有する押し型部の転写性を十分に確保しても、成形品から離型し易くなる様に、抜きテーパ角度を5度以上としてある。この角度を4度以下とすると、成形時にガラスの一部がモールドにしっかりと固着してしまい、モールドから離型せず、モールド面にガラスの一部が残ってしまって、次のガラス型押し工程時に、不良品を作る原因となったり、モールドそのものを破損したりして問題となるので、抜きテーパ角度を5度以上とする事は、内面の反射有効面積を大きく採りたくても守らなければならない条件であった。そのため、外側寸法は大きく採った場合でも、内面の反射有効面積は、その大きなテーパ角のために意外に小さな面積となってしまっていた。また、ガラス厚みが平均4mmとしているのも、反射鏡と共に用いるショートアーク放電ランプの安定動作時の圧力が、200気圧にもなる例も紹介されているので、破裂時の破壊エネルギーを考慮すると、硼珪酸塩ガラスを結晶化ガラスとして用いる場合は、機械的強度を得るには必要な厚さであった。
【0012】
【非特許文献1】
「高純度・透明石英ガラスの省エネルギー型製造技術の開発」、新エネルギー・産業技術総合開発機構(社団法人九州産業技術センター)、平成12年3月、P40〜49
【非特許文献2】
「高純度・透明石英ガラスの省エネルギー型製造技術の開発」、新エネルギー・産業技術総合開発機構(社団法人九州産業技術センター)、平成13年3月、P48〜54
【0013】
【発明が解決しようとする課題】
上記した問題に鑑み、耐熱性に優れ、且つ十分な面精度を確保し、反射面を研磨することなく蒸着膜がつけられるような十分小さな表面粗さにし、且つ有効反射面をより大きく採る事ができ、小型・軽量化が可能で、しかも機械的強度に優れた反射鏡およびそれを用いた光源ユニットを得ることを目的とする。
【0014】
【課題を解決するための手段】
本発明は上記課題を解決するために次の構成を有する。
主たる成分がSiOからなる反射鏡でその内面の反射面に存在する微小凹凸部に反射鏡と同物質となる高分子無機ポリマーであるポリシラザランを充填塗布した後SiOへ転化させ、微小凹凸面を平滑鏡面化したことを特徴とする、光源用反射鏡ならびに、その反射鏡を搭載したことを特徴とする光源ユニットとする。
【0015】
前記反射鏡において、反射鏡内面反射部の塗布層は1層以上の多層塗りであることを特徴とした、光源用反射鏡ならびに、その反射鏡を搭載した光源ユニットとする。
【0016】
【発明の実施の形態】
以下に本発明の一実施例を、図1乃至図8を参照して説明する。
図1は本発明の実施例の一部であって、従来例と同じく定格消費電力を150Wとする例を示す。また、共に用いる反射鏡は石英ガラス製である。
ショートアーク高圧放電ランプユニットにおいて、一対の電極27、27’を有しアーク長が2mm以下のショートアーク高圧放電ランプ21は、その膨部22(発光部)を、該ランプと共に用いる反射鏡23の焦点付近に配置させてなり、前記反射鏡は少なくとも球状SiOを冷間型押し加工した部分を有し、二酸化珪素を90%以上含有する石英ガラスからなり、前記放電ランプの発光部と前記反射鏡の反射面との最短距離を2mm以下としている。また、抜きテーパー角度が少なくとも3度以下の部分を有している。
【0017】
図1中、24は凹面反射鏡23の反射面、26は放電ランプ21の口金、28および29は放電ランプ21のモリブデン箔およびモリブデン線、30は同じく封止部を示す。また31は口金26の端子、32は反射鏡23の筒部を示し、放電ランプ21は反射鏡23の筒部32内にセメント33を介して固着されている。
【0018】
その石英ガラス製反射鏡の製法について記すと、例えば、平均粒径が0.6μmの球状シリカ(平均粒径を0.3μmとしたものと、0.6μmとしたもの、3μmとしたものの少なくとも一つ以上を用いプレス成形および焼成を行なってみたが、何れも若干の収縮率の違いがあるものの焼結石英成形体と成りえた)に、バインダーとしてポリビニルアルコール、ポリビニルアセタール等の水溶性樹脂および、ワックス・ステアリン酸等の炭化水素系・脂肪酸系のエマルジョンを2〜5重量%混合して水溶液(スラリー)とし、その後の成形性や分散性を良好にする為にスプレードライアで造粒したものを、押し型の内の第2のモールド(「胴型」や「ボトム」と呼ぶ)に常温下(冷間)で定量を振込み、約7MPa程度のプレス圧で押し型の内の第1のモールド(「矢型」や「プランジャ」と呼ぶ)で第2のモールドに対して約10秒間かけてプレス成形し、押し型成形した後、第1のモールドと第2のモールド内に出来たプレス成形品を取り出して、1000℃程度の酸化性雰囲気のオーブンによりバインダを燃焼させてから、やはり酸化性雰囲気または中性、還元性雰囲気中で石英ガラスの軟化温度以下の1320℃に数時間保持して焼結させて作製する。この際、真空加熱炉でも同様に作製できるが、工業的には大気中で加熱する方が、製造コストを小さくする事ができるので、真空ではない加熱炉を用いて作製した。
【0019】
ここで、プレス成形上りから焼結後に至る過程で、寸法に一定の収縮(約80%)があるので、焼結後に得たい寸法となる様に、押し型の寸法を大きめに設定する様にする事はいうまでもない。
【0020】
押し型成形に用いるモールドは、球状シリカを成形するので上手くモールド面を滑る現象があり、モールドの抜きテーパ角度を、溶融ガラスを押し型成形するのに比べ、充分小さく設定できる事が判った。そこで、本実施例では抜きテーパ角は1°としてみたが、反射鏡とする生地を生産する際に、押し型の欠けや大きな磨耗、材料の残渣などを全く発生させなかった。
【0021】
また、従来の溶融硼珪酸塩ガラスは熱間成形するので、ガラス成分が蒸発し第1のモールド面に焼き付き、数時間使用した後にモールド面を研磨しなくてはならず、研磨を繰り返すためにモールド面が設計値から徐々に外れて反射方向特性が変わってしまうが、この製造方法は冷間で押し型成形するので、その様なことは起こらず、また全くモールド面の研磨が必要ないので押し型の面を損傷させず、凹面鏡の設計値からの面精度誤差が0.05mm以内に収まり、十分に面精度を維持できた。
【0022】
次に、反射鏡内面の面粗さであるが、図3に示すとおり鏡面金型による球状シリカ粉体プレス時には表面に浮き出てきたバインダー41等の影響も有り十分な鏡面状態を保っている。ここで、図中42は平均粒径0.6μmの球状シリカを、45はプレス面(反射鏡反射面)を示す。
【0023】
しかし、仮焼成、本焼成を経た反射鏡内面ではバインダーの抜け及び球状シリカの結着した足跡のため図4,図5の様な0.1μm〜1μm程度の微小な凹凸が出来てしまうことが判明した。なお、図中43は焼結シリカガラスを示す。この微小凹凸は反射膜を蒸着した際に反射鏡面が薄く曇ったように乱反射を起こした状態となり反射率を落としてしまう原因となる。
【0024】
本実施例では、この微小凹凸部を平滑化するため、微小凹凸を充填材料で埋めることにより解決した。充填材料としては母材と同じ材質であり透光性のあるSiOを用い、SiOの充填の方法としてはポリシラザンを反射鏡面に塗布し焼成または加水分解を利用し形成する方法を用いた。ポリシラザンは
−(SiHNH)−
を基本ユニットとする有機溶剤に可溶な無機ポリマーで加熱及び水分や酸素と反応し緻密な高純度シリカに転化する材料である。本実施で用いた例えばポリシラザンはクラリアントジャパン株式会社製のNP−110、NP−140である。
【0025】
塗布方法はスプレー、手塗り、フローコートのいずれでも可能であった。膜厚は濃度により違ってくるが1%溶液で150℃の電気炉中で30分の焼成を行なった結果0.1μm〜0.3μm程の透明なシリカの膜が得られた。この膜厚は現状の表面粗さをある程度十分に改善できるが、図6に示すように、この膜を2層以上に多層化し充填塗布することにより反射鏡として更に十分な平滑反射面を作製することができた。図中44はポリシラザラン転化SiO多層膜を示す。
【0026】
また、通常塗布する場合2%以下の濃度が良いとされているが20%濃度の液をキシレンで5%、10%、15%、20%に調製し、塗布し同様に150℃の電気炉で30分焼成した結果、母材が同物質のため全てにおいて成膜が可能であった、特に20%溶液のフローコートでは1回塗りで反射面を十分鏡面化する効果が得られた、しかしながら10%以上の濃度では塗布中にSiOの結晶析出化が起きてしまうものがあった。結論として15〜20%溶液では塗布雰囲気管理をしっかり行なえば各塗布方法で十分実用に耐えうる膜が形成できた。環境雰囲気中であっても3%〜10%の溶液であれば手塗り、スプレー、およびフローコートにより単層膜あるいは多層膜を形成すればシリカ膜のクラックや曇り、結晶化も無く簡易に塗布でき実用に耐える膜となりえ、塗布効率も1%〜2%溶液より向上することが判明した。
【0027】
図7、図8は実際に5%溶液をフローコートにより1層塗りし、窒素雰囲気中に放置、乾燥させた後150℃の電気炉中で30分焼成を行なった本発明の試料と本発明の処理を行う前の試料の10μm角の表面粗さ状態をAFM(原子間力顕微鏡)で観察した画像である。
コーティング前では平均面粗さRaが50nm、最大高低差P−Vが800nmであったのに対しコーティング後では平均面粗さRaが1nm、最大高低差P−Vが30nmと大幅に改善されていることが判った。
以上の結果からも判るとおり反射鏡として十分実用性のある平滑面が本技術により作製することができた。
【0028】
一方、有効反射面については、外径寸法を硼珪酸塩ガラス製のものと同じとすると、石英ガラス製の反射鏡では抜きテーパ角度を小さく設定できるので、有効反射面を充分大きく採る事ができる事が判明した。そして、石英ガラスの機械的強度が硼珪酸塩ガラスに比べて約1.5倍と大きい事と、熱応力に対しても石英ガラスの熱膨張係数=6×10−7/Kと充分強固である事から、ガラス肉厚を小さくできるので、3mmと薄肉とし、ランプを強制破裂させ、機械強度を評価したが、何等反射鏡にクラックを発生させる事なく、従って破損する様子は見受けられず、問題を生じさせないことを確認した。そのため、ショートアーク放電ランプ21を反射鏡の反射面24に充分近付けて光学的効率を向上させて設計できるなどの有利性がある。
【0029】
この実施例では、凹面反射鏡23において反射面24の回転放物面部の焦点距離を5.5mmとし、ランプ発光部と反射鏡の反射面との最短距離を1.0mmに設計すると、従来の硼珪酸塩ガラスに比較して光学的効率を向上させる事が出来た。
【0030】
その組み合わせの場合でも、寿命を通じて反射鏡に異常は見受けられず、従来よりも装置の小型化が可能である事が判った。
【0031】
有効反射面も、押し型の抜きテーパ角度を1度と設定したので、向上させる事ができた。
【0032】
押し型成形時に充分時間をかけてプレス成形できるので、寸法精度が良好な上に、しかも、重量を約45gと非常に軽量な反射鏡とする事ができ、小型化を狙うウルトラモバイル系や、モバイル系のプロジェクタ用反射鏡としても、またそれと組み合わせた光源装置としても、優れた諸特性を示した。
【0033】
有効反射面積を硼珪酸塩ガラスと同じに設定した石英ガラス製の反射鏡を用いる場合には、外形寸法が49.5mm×53.5mm程度となり更に小さく構成出来るので、重量も約40gとなり、硼珪酸塩ガラスで作製したものに比較して半分の重量で済むことも判った。その様に作られた放物面反射鏡(焦点距離f=5.5mm)と、定格消費電力150Wでアーク長1.0mmのショートアーク放電ランプとを組み合わせた光源装置を製作して寿命試験をしてみたが、定格寿命の2000時間を越えても何ら問題を発生させなかった。
【0034】
【発明の効果】
以上説明した通り、従来の硼珪酸塩ガラスの代わりに石英ガラスを反射鏡に用いる事によって、耐熱性に優れると共に、反射鏡の焦点距離を小さく選定出来るので光学効率に優れた特性が得られ、主としてウルトラモバイル系やモバイル系と呼称されるプロジェクタに要求される小型化・軽量化に適したショートアーク放電ランプ用反射鏡および光源ユニットを提供できる。
【0035】
また、押し型(金型)をその都度研磨する煩わしさがない上に、頻繁に研磨が行なわれないため押し型の内面形状は設計値から外れることなく金型維持が出来るので金型寿命にも優れるという付随的効果がある。
【0036】
本発明では、反射鏡は球状シリカで成形するので、金型と成形品との離型性に優れるため、抜きテーパ角度を小さく選ぶ事ができ、従って反射面積を充分大きくし、有効反射面を大きく採れる反射鏡が得られるので、更なる小型化要求にも対応できる。同時に、機械的強度にも優れるので反射鏡の薄肉化が図れる。
【0037】
本発明では、反射鏡は球状シリカで成形するので、反射鏡の表面粗さは従来の反射鏡よりも小さいが、更に粗さを小さくする為に表面加工を施しても設計値から大きくずれない反射鏡が得られるので反射特性も優れた高効率の反射鏡が得られる。
【0038】
また、本発明では、反射鏡の内面の微小凹凸を同物質によりコーティングすることにより平滑鏡面化し従来行なっていた研磨により設計値どおりに作られた成形品の面精度を壊すことなく高耐熱、高効率で設計値どおりの反射鏡が得られる。
【0039】
さらに、本発明の反射鏡に関するコーティング平滑化は石英ガラス製反射鏡に限らず結晶化ガラスなどSiOを主原料とする反射鏡などにも使用できる。
【0040】
その様な石英ガラス製の反射鏡と組み合わせたショートアーク放電ランプとしての光源ユニットは、充分に投射型光源装置の小型化要求を満たす。
【図面の簡単な説明】
【図1】本発明の実施例を示す光源ユニットの光源部の概略断面図
【図2】従来の典型的な光源装置の光源部の概略断面図
【図3】本発明反射鏡のプレス直後の球状SiOの状態概略図
【図4】本発明反射鏡の仮焼成直後の球状SiOの状態概略図
【図5】本発明反射鏡の本焼成直後の球状SiOの状態概略図
【図6】図5の表面を拡大した部分にポリシラザンを多層塗布して鏡面化した概略図
【図7】本発明反射鏡のAFMでの表面粗さ測定結果(鳥瞰図)
【図8】本発明の処理を行う前の反射鏡のAFMでの表面粗さ測定結果(鳥瞰図)
【符号の説明】
1, 21・・・ショートアーク放電ランプ
2, 22・・・膨部
3, 23・・・凹面反射鏡
4, 24・・・反射面
5, ・・・前面カバーガラス
6, 26・・・口金
7, 27・・・電極
8, 28・・・モリブデン箔
9, 29・・・モリブデン線
10, 30・・・封止部
11, 31・・・端子
12, 32・・・筒部
13, 33・・・セメント
41・・・バインダー
42・・・平均粒径0.6μm球状シリカ
43・・・焼結シリカガラス
44・・・ポリシラザン転化SiO多層膜
45・・・プレス面(反射鏡反射面)
[0001]
BACKGROUND OF THE INVENTION
It belongs to a light source device used in a projection type light source device such as a liquid crystal projector, which is a combination of a short arc discharge lamp and a reflecting mirror, and in particular, various problems that occur with downsizing of the device are used together with the lamp. The present invention relates to a light source device that is mainly a reflecting mirror.
[0002]
[Prior art]
Conventionally, the reflector used in this type of light source device is made of borosilicate glass, and by applying a cold mirror to its inner surface, the heat rays radiated from the lamp escape from the back of the reflector and reflect visible light to the front. To function.
[0003]
However, at present, in the downsizing of devices required for these projection type light source devices, the shortest distance between the lamp light emitting part and the reflecting surface of the reflecting mirror is 2 mm or less because of the large thermal expansion coefficient of borosilicate glass. In the case of such a design, that is, when it is used in a state where the temperature of the reflecting surface exceeds 500 ° C., the reflecting mirror may be cracked or damaged in extreme cases due to thermal stress due to repeated lighting and extinguishing. The fragments were scattered in the projector, causing a big problem.
[0004]
In order to improve the heat resistance of the reflector, borosilicate glass is used as a starting material. After press molding with a pressing die, the crystallized glass obtained by reheating to near the melting temperature is crystallized. There are also examples used for this material, but after glass molding, it is shrunk or deformed when crystallizing during reheating, so it is not sufficient in terms of dimensional accuracy, especially surface accuracy, and smoothness of the reflective surface However, the reflective surface was smoothed by chemical mechanical polishing of the reflective surface as a step after molding.
[0005]
The reflector made of the above borosilicate glass has an average thickness of about 4 mm in order to ensure mechanical strength in preparation for lamp rupture. It is unsuitable for discharge lamp devices for projectors of ultra mobile type and mobile type that are frequently carried.
[0006]
Also, recently, has begun to use more highly heat-resistant quartz glass, as is well known technology, the spherical silica as a raw material, this was slurried adding an additive is molded by slip casting method using the mold, 10 - There is a method of sintering under a vacuum condition of 4 Pa. (For example, see Non-Patent Document 1 and Non-Patent Document 2)
[0007]
However, as a characteristic drawback of this slip cast molding method, the surface roughness of the reflecting surface requiring smoothness becomes very large. Therefore, chemical mechanical polishing of the reflecting surface in the subsequent process is required as in the case of the crystallized glass reflector.
Further, by performing chemical mechanical polishing, a smoothing of the reflecting surface can be obtained, but there is also a secondary problem that the surface accuracy is lost.
[0008]
FIG. 2 shows a conventional example of a light source unit of a projection projector light source device. The rotating paraboloid reflecting mirror 3 whose inner surface is a cold mirror has a focal length (f) of 6.5 mm and an outer dimension of 52 × 56 mm. Further, the maximum diameter of the central bulge 2 is 10.0 mm, the average wall thickness is 2.5 mm, the distance between the electrodes is 1.1 mm in a discharge vessel having an internal volume of about 0.08 ml, and argon gas as a starting auxiliary gas In addition, the short arc high-pressure mercury vapor discharge lamp 1 in which hydrogen bromide used for preventing flickering and preventing blackening during the lifetime is sealed, and in addition, 16 mg of mercury as a luminescent substance having a buffer effect is sealed, It is an example of the light source part of the light source device for liquid crystal projectors which arrange | positions in the vicinity of the focal distance of a reflective mirror and whose rated power consumption is 150W.
[0009]
The reflecting mirror is manufactured by melting borosilicate glass, embossing, crystallizing it, and smoothing the irregularities on the inner surface of the reflecting portion by chemical mechanical polishing, and the thermal expansion coefficient is about 16 × 10. -7 / K, weighs about 80 g, thickens the bottom near the focal point, and has an average glass thickness of about 4 mm so that it can mechanically withstand the impact when the lamp bursts. The structure is housed inside, and a translucent glass plate having a thickness of about 4 mm is provided on the front surface of the reflecting mirror so that the fragments of the lamp are not scattered to the outside as a structure that can withstand the burst that occurs during the lifetime. When there is no forced air cooling means such as a fan in the projector to be used, the surface temperature of the reflector inner surface closest to the lamp is 580 ° C. to 640 ° C.
[0010]
In a reflector made of ordinary borosilicate glass (thermal expansion coefficient = about 36 × 10 −7 / K), the heat resistance temperature (strain temperature) is at most about 480 ° C. Since it is scarce, the present situation is that only crystallized glass with inferior dimensional accuracy is used, ensuring only heat resistance and corresponding to miniaturization.
[0011]
In addition, including a simple borosilicate glass reflector, it is made by stamping in consideration of mass production, so the stamping mold (mold) has sufficient transferability of the stamping part having a paraboloid of revolution. Even if it is secured, the taper angle is set to 5 degrees or more so that it can be easily released from the molded product. If this angle is 4 degrees or less, a part of the glass is firmly fixed to the mold during molding, the mold is not released from the mold, and a part of the glass remains on the mold surface. This may cause defective products during the process or damage the mold itself. Therefore, setting the taper angle to 5 degrees or more must be protected even if you want to increase the effective reflection area on the inner surface. It was a necessary condition. Therefore, even when the outer dimension is large, the effective reflection area on the inner surface is unexpectedly small due to the large taper angle. In addition, an example in which the glass thickness is set to 4 mm on average and the pressure at the time of stable operation of the short arc discharge lamp used together with the reflector is 200 atm is also introduced. When borosilicate glass was used as crystallized glass, the thickness was necessary to obtain mechanical strength.
[0012]
[Non-Patent Document 1]
"Development of energy-saving manufacturing technology for high-purity and transparent quartz glass", New Energy and Industrial Technology Development Organization (Kyushu Industrial Technology Center), March 2000, P40-49
[Non-Patent Document 2]
"Development of energy-saving manufacturing technology for high-purity and transparent quartz glass", New Energy and Industrial Technology Development Organization (Kyushu Industrial Technology Center), March 2001, P48-54
[0013]
[Problems to be solved by the invention]
In view of the problems described above, heat resistance is excellent, sufficient surface accuracy is ensured, the surface is made sufficiently small so that a vapor deposition film can be applied without polishing the reflection surface, and a larger effective reflection surface is taken. An object of the present invention is to obtain a reflector that can be reduced in size and weight, and has excellent mechanical strength, and a light source unit using the same.
[0014]
[Means for Solving the Problems]
The present invention has the following configuration in order to solve the above problems.
The main component is a reflecting mirror made of SiO 2. The micro uneven surface present on the reflecting surface of the inner surface is filled with a polysilazarane, which is a polymer inorganic polymer that is the same material as the reflecting mirror, and then converted to SiO 2 . A light source reflecting mirror and a light source unit including the reflecting mirror are provided.
[0015]
In the reflecting mirror, the coating layer of the reflecting surface of the reflecting mirror is a multi-layer coating of one or more layers, and a light source reflecting mirror and a light source unit equipped with the reflecting mirror are provided.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to FIGS.
FIG. 1 is a part of an embodiment of the present invention, and shows an example in which the rated power consumption is 150 W as in the conventional example. The reflector used together is made of quartz glass.
In the short arc high pressure discharge lamp unit, the short arc high pressure discharge lamp 21 having a pair of electrodes 27 and 27 'and having an arc length of 2 mm or less has a bulging portion 22 (light emitting portion) of the reflecting mirror 23 used together with the lamp. The reflecting mirror is arranged near the focal point, and the reflecting mirror has at least a portion obtained by cold stamping spherical SiO 2 and is made of quartz glass containing 90% or more of silicon dioxide, and the light emitting portion of the discharge lamp and the reflecting The shortest distance from the reflecting surface of the mirror is 2 mm or less. Moreover, it has a part with a draft taper angle of at least 3 degrees or less.
[0017]
In FIG. 1, 24 is a reflecting surface of the concave reflecting mirror 23, 26 is a cap of the discharge lamp 21, 28 and 29 are molybdenum foil and molybdenum wire of the discharge lamp 21, and 30 is a sealing portion. Reference numeral 31 denotes a terminal of the base 26, 32 denotes a cylindrical portion of the reflecting mirror 23, and the discharge lamp 21 is fixed to the cylindrical portion 32 of the reflecting mirror 23 via a cement 33.
[0018]
The production method of the quartz glass reflecting mirror is described as follows. For example, at least one of spherical silica having an average particle diameter of 0.6 μm (average particle diameter of 0.3 μm, 0.6 μm, and 3 μm). At least one of them was press-molded and fired, and although each of them had a slight difference in shrinkage, it became a sintered quartz molded body), water-soluble resins such as polyvinyl alcohol and polyvinyl acetal as binders, and A mixture of 2 to 5% by weight of a wax or stearic acid hydrocarbon or fatty acid emulsion to form an aqueous solution (slurry), and then granulated with a spray dryer to improve the moldability and dispersibility Is transferred to a second mold (called “body mold” or “bottom”) of the mold at room temperature (cold), and the mold is pressed with a press pressure of about 7 MPa. The first mold (referred to as “arrow” or “plunger”) is press-molded for about 10 seconds with respect to the second mold, and after the press-molding, the first mold and the second mold After taking out the press-formed product made in this way, the binder is burned in an oven having an oxidizing atmosphere of about 1000 ° C., and the temperature is reduced to 1320 ° C. below the softening temperature of quartz glass in an oxidizing atmosphere or neutral / reducing atmosphere. It is produced by holding for several hours and sintering. At this time, although it can be similarly produced in a vacuum heating furnace, since the manufacturing cost can be reduced by heating in the air industrially, it was produced using a heating furnace that is not vacuum.
[0019]
Here, in the process from press forming up to after sintering, there is a certain shrinkage (about 80%) in the dimension, so that the size of the stamping die is set larger so that it becomes the dimension you want to obtain after sintering Needless to say.
[0020]
It has been found that the mold used for the press molding has a phenomenon that the mold surface slides well because it forms spherical silica, and the taper taper angle of the mold can be set sufficiently smaller than that of the mold molding of molten glass. In view of this, in this example, the draft taper angle was assumed to be 1 °. However, when producing a cloth to be a reflecting mirror, no chipping, large wear, material residue, etc. were generated at all.
[0021]
In addition, since conventional molten borosilicate glass is hot-molded, the glass component evaporates and seizes on the first mold surface, and after several hours of use, the mold surface must be polished to repeat polishing. Although the mold surface gradually deviates from the design value and the reflection direction characteristics change, this manufacturing method does not occur because it is cold-molded and no polishing of the mold surface is required. The surface accuracy error from the design value of the concave mirror was within 0.05 mm without damaging the surface of the pressing die, and the surface accuracy was sufficiently maintained.
[0022]
Next, regarding the surface roughness of the inner surface of the reflecting mirror, as shown in FIG. 3, when the spherical silica powder is pressed by a mirror mold, the surface is sufficiently mirrored due to the influence of the binder 41 and the like that have been raised on the surface. Here, in the figure, 42 indicates spherical silica having an average particle diameter of 0.6 μm, and 45 indicates a press surface (reflecting mirror reflecting surface).
[0023]
However, on the inner surface of the reflecting mirror that has undergone preliminary firing and main firing, minute irregularities of about 0.1 μm to 1 μm as shown in FIG. 4 and FIG. found. In the figure, reference numeral 43 denotes sintered silica glass. This minute unevenness causes the reflection mirror surface to be in a state of irregular reflection as if the reflecting mirror surface is thin and cloudy when the reflecting film is deposited, which causes a decrease in reflectance.
[0024]
In the present embodiment, in order to smooth the minute irregularities, the problem was solved by filling the minute irregularities with a filling material. As the filling material, SiO 2 which is the same material as the base material and has translucency was used, and as a filling method of SiO 2 , a method of applying polysilazane to the reflecting mirror surface and using baking or hydrolysis was used. Polysilazane is — (SiH 2 NH) —
It is a material that is converted into dense high-purity silica by heating and reacting with moisture and oxygen with an inorganic polymer soluble in an organic solvent having a basic unit. For example, polysilazane used in this embodiment is NP-110 and NP-140 manufactured by Clariant Japan.
[0025]
The application method could be spray, hand coating, or flow coating. Although the film thickness varies depending on the concentration, a transparent silica film of about 0.1 μm to 0.3 μm was obtained as a result of baking for 30 minutes in a 150 ° C. electric furnace with a 1% solution. This film thickness can sufficiently improve the current surface roughness to some extent, but as shown in FIG. 6, this film is multi-layered into two or more layers and coated to form a more sufficient smooth reflecting surface as a reflector. I was able to. In the figure, 44 indicates a polysilazarane-converted SiO 2 multilayer film.
[0026]
In addition, it is said that a concentration of 2% or less is good for normal application, but a 20% concentration liquid is prepared with xylene to 5%, 10%, 15%, and 20%, applied, and similarly an electric furnace at 150 ° C. As a result of baking for 30 minutes, it was possible to form a film on all of the base materials because the base material was the same. Especially, in the case of a 20% solution flow coat, the effect of sufficiently reflecting the reflective surface with a single coating was obtained. At a concentration of 10% or more, some SiO 2 crystals were precipitated during coating. In conclusion, with a 15 to 20% solution, if the coating atmosphere was properly controlled, a film that could withstand practical use could be formed by each coating method. Even in an ambient atmosphere, a 3% to 10% solution can be easily applied without cracking, clouding, or crystallization of the silica film if a single layer film or multilayer film is formed by hand coating, spraying, or flow coating. It was found that the film could be used practically and the coating efficiency was improved from 1% to 2% solution.
[0027]
7 and 8 show a sample of the present invention in which one layer of 5% solution was actually applied by flow coating, left to stand in a nitrogen atmosphere, dried and then baked in an electric furnace at 150 ° C. for 30 minutes. It is the image which observed the surface roughness state of a 10 micrometer square of the sample before performing the process of this with AFM (atomic force microscope).
Before coating, the average surface roughness Ra was 50 nm and the maximum height difference P-V was 800 nm, but after coating, the average surface roughness Ra was 1 nm and the maximum height difference P-V was greatly improved to 30 nm. I found out.
As can be seen from the above results, a smooth surface sufficiently practical as a reflector could be produced by this technique.
[0028]
On the other hand, with respect to the effective reflection surface, if the outer diameter is the same as that of borosilicate glass, the extraction angle can be set small in the reflection mirror made of quartz glass, so that the effective reflection surface can be made sufficiently large. Things turned out. And, the mechanical strength of quartz glass is about 1.5 times larger than that of borosilicate glass, and the thermal expansion coefficient of quartz glass is 6 × 10 −7 / K sufficiently strong against thermal stress. Because there is something, the glass thickness can be reduced, so it was made as thin as 3 mm, the lamp was forcibly ruptured, and the mechanical strength was evaluated, but there was no crack in the reflector, so no damage was seen, Confirmed that it does not cause problems. Therefore, there is an advantage that the short arc discharge lamp 21 can be designed to be sufficiently close to the reflecting surface 24 of the reflecting mirror to improve the optical efficiency.
[0029]
In this embodiment, when the focal length of the rotating paraboloid of the reflecting surface 24 in the concave reflecting mirror 23 is set to 5.5 mm and the shortest distance between the lamp light emitting portion and the reflecting surface of the reflecting mirror is designed to be 1.0 mm, Optical efficiency was improved compared to borosilicate glass.
[0030]
Even in the case of the combination, no abnormality was found in the reflecting mirror throughout the lifetime, and it was found that the apparatus can be made smaller than before.
[0031]
The effective reflecting surface was also improved because the punching taper angle of the pressing die was set to 1 degree.
[0032]
Since the press molding can take a sufficient amount of time during the press molding, the dimensional accuracy is good, and the weight can be made to be a very light reflecting mirror of about 45 g. As a reflector for mobile projectors and a light source device combined therewith, it showed excellent characteristics.
[0033]
When using a quartz glass reflector whose effective reflection area is set to be the same as that of borosilicate glass, the outer dimension is about 49.5 mm × 53.5 mm, which can be further reduced, and the weight is about 40 g. It has also been found that half the weight is required compared to that made of silicate glass. A light source device that combines a parabolic reflector (focal length f = 5.5 mm) made in this way with a short arc discharge lamp with a rated power consumption of 150 W and an arc length of 1.0 mm is manufactured and tested for life. However, no problem was caused even when the rated life exceeded 2000 hours.
[0034]
【The invention's effect】
As explained above, by using quartz glass instead of the conventional borosilicate glass for the reflecting mirror, it has excellent heat resistance, and since the focal length of the reflecting mirror can be selected small, characteristics excellent in optical efficiency can be obtained, It is possible to provide a reflector for a short arc discharge lamp and a light source unit that are suitable for miniaturization and weight reduction required for projectors mainly called ultra mobile systems and mobile systems.
[0035]
In addition, there is no hassle of polishing the mold (mold) each time, and since the polishing is not frequently performed, the inner surface shape of the mold can be maintained without deviating from the design value, so that the mold life is improved. Has the accompanying effect of being superior.
[0036]
In the present invention, since the reflecting mirror is formed of spherical silica, it is excellent in releasability between the mold and the molded product, so that the draft taper angle can be selected to be small, so that the reflection area is sufficiently large and the effective reflection surface is Since a large reflecting mirror can be obtained, it is possible to meet the demand for further miniaturization. At the same time, since the mechanical strength is excellent, the reflector can be thinned.
[0037]
In the present invention, since the reflecting mirror is formed of spherical silica, the surface roughness of the reflecting mirror is smaller than that of the conventional reflecting mirror, but even if surface processing is performed to further reduce the roughness, it does not deviate greatly from the design value. Since a reflecting mirror is obtained, a highly efficient reflecting mirror with excellent reflection characteristics can be obtained.
[0038]
In addition, in the present invention, the minute irregularities on the inner surface of the reflecting mirror are coated with the same material to make a smooth mirror surface, and the surface accuracy of the molded product made according to the design value by polishing that has been conventionally performed is high heat resistance, high without breaking the surface accuracy A reflector as designed with high efficiency can be obtained.
[0039]
Furthermore, the coating smoothing relating to the reflecting mirror of the present invention can be used not only for the reflecting mirror made of quartz glass but also for a reflecting mirror made mainly of SiO 2 such as crystallized glass.
[0040]
A light source unit as a short arc discharge lamp combined with such a reflection mirror made of quartz glass sufficiently satisfies the demand for miniaturization of a projection light source device.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a light source unit of a light source unit showing an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of a light source unit of a conventional typical light source device. Schematic diagram of the state of spherical SiO 2 [FIG. 4] Schematic diagram of the state of spherical SiO 2 immediately after preliminary firing of the reflector of the present invention [FIG. 5] Schematic diagram of state of spherical SiO 2 immediately after the final firing of the reflector of the present invention [FIG. FIG. 7 is a schematic view of a mirror-coated polysilazane coated on the enlarged surface of FIG. 5. FIG. 7 is a surface roughness measurement result (bird's eye view) of the reflecting mirror of the present invention by AFM.
FIG. 8 shows a surface roughness measurement result (bird's eye view) of an AFM of a reflecting mirror before performing the processing of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 21 ... Short arc discharge lamp 2, 22 ... Expanding part 3, 23 ... Concave mirror 4, 24 ... Reflecting surface 5, ... Front cover glass 6, 26 ... Base 7, 27 ... Electrode 8, 28 ... Molybdenum foil 9, 29 ... Molybdenum wire 10, 30 ... Sealing part 11, 31 ... Terminal 12, 32 ... Tube part 13, 33 ... Cement 41 ... Binder 42 ... Average particle size 0.6 µm Spherical silica 43 ... Sintered silica glass 44 ... Polysilazane converted SiO 2 multilayer film 45 ... Press surface (reflecting mirror reflecting surface) )

Claims (3)

主たる成分がSiOからなる反射鏡でその内面の反射面に存在する微小凹凸部に反射鏡と同物質となる高分子無機ポリマーであるポリシラザンを充填塗布した後SiOへ転化させ、微小凹凸面を平滑鏡面化したことを特徴とする、光源用反射鏡。The main component is converted to SiO 2 after polysilazane was filled coating is a polymeric inorganic polymer as a reflector and the material in the minute uneven portion present in the reflective surface of the inner surface of a reflective mirror composed of SiO 2, fine uneven surface A reflecting mirror for a light source, characterized by having a smooth mirror surface. 請求項1の反射鏡内面反射部の塗布層は1層以上の多層塗りであることを特徴とした、光源用反射鏡。2. The light source reflecting mirror according to claim 1, wherein the coating layer of the reflecting part on the inner surface of the reflecting mirror is one or more layers. 請求項1又は2項記載の反射鏡を搭載したことを特徴とする光源ユニットA light source unit comprising the reflecting mirror according to claim 1.
JP2003193636A 2003-07-08 2003-07-08 Reflecting mirror for light source, and light source unit Pending JP2005029401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003193636A JP2005029401A (en) 2003-07-08 2003-07-08 Reflecting mirror for light source, and light source unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003193636A JP2005029401A (en) 2003-07-08 2003-07-08 Reflecting mirror for light source, and light source unit

Publications (1)

Publication Number Publication Date
JP2005029401A true JP2005029401A (en) 2005-02-03

Family

ID=34205050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003193636A Pending JP2005029401A (en) 2003-07-08 2003-07-08 Reflecting mirror for light source, and light source unit

Country Status (1)

Country Link
JP (1) JP2005029401A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047886A1 (en) * 2006-10-13 2008-04-24 Asahi Glass Co., Ltd. Method of smoothing surface of substrate for euv mask blank, and euv mask blank obtained by the method
JP2009532847A (en) * 2006-04-06 2009-09-10 ゼネラル・エレクトリック・カンパニイ High intensity discharge lamp for spot lighting
CN104570307A (en) * 2014-12-29 2015-04-29 武汉开锐智能设备有限公司 Light-gathering structure of infrared heater
WO2016001661A3 (en) * 2014-07-02 2016-02-25 Pilkington Group Limited Planarisation of a coating
US9354528B2 (en) 2011-04-27 2016-05-31 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US9423699B2 (en) 2010-12-14 2016-08-23 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US9442395B2 (en) 2012-02-03 2016-09-13 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
JP2018535905A (en) * 2015-09-09 2018-12-06 ピルキントン グループ リミテッド Deposition method
CN110349834A (en) * 2018-04-02 2019-10-18 优志旺电机株式会社 Excimer lamp, light irradiation device and ozone generating apparatus
KR20200113005A (en) * 2018-02-22 2020-10-05 어플라이드 머티어리얼스, 인코포레이티드 Method for processing a mask substrate to enable better film quality

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532847A (en) * 2006-04-06 2009-09-10 ゼネラル・エレクトリック・カンパニイ High intensity discharge lamp for spot lighting
WO2008047886A1 (en) * 2006-10-13 2008-04-24 Asahi Glass Co., Ltd. Method of smoothing surface of substrate for euv mask blank, and euv mask blank obtained by the method
US11454895B2 (en) 2010-12-14 2022-09-27 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US11003094B2 (en) 2010-12-14 2021-05-11 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US12055862B2 (en) 2010-12-14 2024-08-06 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US9423699B2 (en) 2010-12-14 2016-08-23 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US10254660B2 (en) 2010-12-14 2019-04-09 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US9989867B2 (en) 2010-12-14 2018-06-05 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US9678445B2 (en) 2010-12-14 2017-06-13 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US9354528B2 (en) 2011-04-27 2016-05-31 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US11754929B2 (en) 2012-02-03 2023-09-12 Asml Netherlands B.V. Substrate holder and method of manufacturing a substrate holder
US9737934B2 (en) 2012-02-03 2017-08-22 Asml Netherlands B.V. Substrate holder and method of manufacturing a substrate holder
US9507274B2 (en) 2012-02-03 2016-11-29 Asml Netherlands B.V. Substrate holder and method of manufacturing a substrate holder
US11628498B2 (en) 2012-02-03 2023-04-18 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US10245641B2 (en) 2012-02-03 2019-04-02 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US9442395B2 (en) 2012-02-03 2016-09-13 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US11960213B2 (en) 2012-02-03 2024-04-16 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US11376663B2 (en) 2012-02-03 2022-07-05 Asml Netherlands B.V. Substrate holder and method of manufacturing a substrate holder
US11235388B2 (en) 2012-02-03 2022-02-01 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US10875096B2 (en) 2012-02-03 2020-12-29 Asml Netherlands B.V. Substrate holder and method of manufacturing a substrate holder
US10898955B2 (en) 2012-02-03 2021-01-26 Asme Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
EP3650416A1 (en) * 2014-07-02 2020-05-13 Pilkington Group Limited Coated glass pane comprising an underlayer and a smooth layer based on silica and/or organo silica
US10919800B2 (en) 2014-07-02 2021-02-16 Pilkington Group Limited Planarisation of a coating
CN106458728B (en) * 2014-07-02 2020-09-22 皮尔金顿集团有限公司 Smoothing of coatings
CN106458728A (en) * 2014-07-02 2017-02-22 皮尔金顿集团有限公司 Planarisation of a coating
WO2016001661A3 (en) * 2014-07-02 2016-02-25 Pilkington Group Limited Planarisation of a coating
CN104570307A (en) * 2014-12-29 2015-04-29 武汉开锐智能设备有限公司 Light-gathering structure of infrared heater
JP7055739B2 (en) 2015-09-09 2022-04-18 ピルキントン グループ リミテッド Deposit method
JP2018535905A (en) * 2015-09-09 2018-12-06 ピルキントン グループ リミテッド Deposition method
KR20200113005A (en) * 2018-02-22 2020-10-05 어플라이드 머티어리얼스, 인코포레이티드 Method for processing a mask substrate to enable better film quality
KR102539390B1 (en) 2018-02-22 2023-06-05 어플라이드 머티어리얼스, 인코포레이티드 Methods for processing mask substrates to enable better film quality
CN110349834A (en) * 2018-04-02 2019-10-18 优志旺电机株式会社 Excimer lamp, light irradiation device and ozone generating apparatus
CN110349834B (en) * 2018-04-02 2024-06-04 优志旺电机株式会社 Excimer lamp, light irradiation device and ozone generating device

Similar Documents

Publication Publication Date Title
US8408027B2 (en) Method for the production of a composite body from a basic body of opaque quartz glass and a tight sealing layer
US5742123A (en) Sealing structure for light-emitting bulb assembly and method of manufacturing same
JP2018165244A (en) Glass phosphor sheet having multilayered structure
JP5530870B2 (en) Translucent polycrystalline sintered body, method for producing translucent polycrystalline sintered body, and arc tube for high-intensity discharge lamp
JP2005029401A (en) Reflecting mirror for light source, and light source unit
JP3456212B2 (en) Arc tube sealing structure and manufacturing method
EP0667322B1 (en) Light-permeable ceramic material and method of manufacturing the same
CN1282716A (en) Manufacturing method of ceramic electric arc tube
CN1185681C (en) Electric lamp-reflector unit
US5780377A (en) Light-transmissive ceramics and method of manufacturing same
JP4101605B2 (en) Short arc discharge lamp device
WO2003034465A1 (en) Discharge tube for high-pressure discharge lamp and high-pressure discharge lamp
JP4069558B2 (en) Light source device
WO2008144117A2 (en) Translucent polycrystalline alumina ceramic
EP2190000B1 (en) Coating liquid for diffusing film of high-pressure discharge lamp and high-pressure discharge lamp
JP4061227B2 (en) Manufacturing method of concave reflector substrate using spherical silica
JP3225963B2 (en) Arc tube sealing structure
JP2008254980A (en) Manufacture method of opaque quartz glass product, silica granules used for use therein and its preparation method
JP4273814B2 (en) Reflector and light source device
JP4701901B2 (en) Reflector manufacturing method
JP3605065B2 (en) Method for manufacturing discharge tube sealing closure, discharge tube sealing closure, and discharge lamp
US20070152597A1 (en) Process for manufacturing a high-intensity discharge lamp
JPH04371802A (en) Manufacture of light emitting tube for high-brightness discharge lamp
JP2010182612A (en) Light source device and its manufacturing method
JP2007102144A (en) Optical reflector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090528