JP2005027395A - Controller of permanent magnetic motor - Google Patents

Controller of permanent magnetic motor Download PDF

Info

Publication number
JP2005027395A
JP2005027395A JP2003188010A JP2003188010A JP2005027395A JP 2005027395 A JP2005027395 A JP 2005027395A JP 2003188010 A JP2003188010 A JP 2003188010A JP 2003188010 A JP2003188010 A JP 2003188010A JP 2005027395 A JP2005027395 A JP 2005027395A
Authority
JP
Japan
Prior art keywords
permanent magnet
position detection
pass filter
magnet motor
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003188010A
Other languages
Japanese (ja)
Other versions
JP4434641B2 (en
Inventor
Masanori Murakami
正憲 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2003188010A priority Critical patent/JP4434641B2/en
Publication of JP2005027395A publication Critical patent/JP2005027395A/en
Application granted granted Critical
Publication of JP4434641B2 publication Critical patent/JP4434641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To cover a wide rotational frequency range for increased maximum rotational frequency and increased nominal efficiency, using a single rotor magnetic pole position detecting circuit. <P>SOLUTION: A method for controlling a sensorless permanent magnet motor comprises a position detecting circuit 10 which acquires a differential voltage between a virtual neutral point potential acquired from the resistor connected parallel to a stator coil and a motor neutral point potential of the stator coil, and outputs a position detection signal acquired by subtracting the signal other than third harmonics component from the signal of differential voltage. A control circuit 11 controls switching timing for energizing the stator coil based on the position detection signal from the position detecting circuit 10, and switches PWM energization pattern from sine wave driving to square wave driving according to operation states. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、センサレスの永久磁石電動機(ブラシレスDCモータ)の制御装置に関し、さらに詳しく言えば、最大回転数をより高めることができる特に空気調和機や電気冷蔵庫などのコンプレッサモータやファンモータに好適な永久磁石電動機の制御装置に関するものである。
【0002】
【従来の技術】
永久磁石電動機の回転数を制御する場合、古くはセンサを用いてロータの磁極位置を検出しながら最適な位相関係をもとにして制御していたが、エアコンや電気冷蔵庫などの家電製品用途の場合、低コスト化の要求により価格の高いセンサは敬遠され、また、コンプレッサモータに関しては高温・高圧の厳しい環境のもとで使用されるため、例えばホール素子などのセンサは特性劣化や破損などを生じやすいことから内蔵することが難しい。
【0003】
そこで現在では、センサを用いずにモータの電気的特性を利用してロータの磁極位置を検出・推定してモータを最適制御するセンサレス方式が主流になっており、そのセンサレス方式によるブラシレスDCモータモータの制御装置の一例を図10に示す。
【0004】
この制御装置は、所定の直流電源1の電圧Vdcを例えば6素子ブリッジ回路からなるインバータ回路2で任意の交流電圧に変換して永久磁石電動機3に印加するインバータ駆動制御装置で、ロータの磁極位置を検出してステータの巻線電流を切り替えるための位置検出回路4を備えている。
【0005】
位置検出回路4は、図示しない抵抗スター結線による仮想中性点電位に含まれる誘起電圧波形のゼロクロス点を検出し、その検出点を含む位置検出信号を制御回路(マイクロコンピュータ)5に出力する。
【0006】
制御回路5は、その位置検出信号によりロータの磁極位置を推定してインバータ回路2の所定スイッチング素子を駆動するために、その駆動信号をドライバ回路6を介してインバータ回路2に出力して、ステータ巻線の通電を切り替えるとともに、PWMデューティを調整して回転数を目標回転数に制御する。
【0007】
しかしながら、モータの回転数が高速領域になると誘起電圧のゼロクロスを正確に検出することが困難となるため、最大回転数に制限がある。この点を解決するため、2つの磁極位置検出回路を備えた発明が特許文献1として提案されている。
【0008】
すなわち、特許文献1においては、第1および第2の磁極位置検出回路を併用し、通電角の大小あるいは回転数の大小などにより、第1磁極位置検出回路と第2磁極位置検出回路の一方を選択し、この選択した磁極位置検出回路からの信号をもとにしてロータの磁極位置を検出する。
【0009】
第1磁極位置検出回路は非通電相に発生する誘起電圧を検出し、この誘起電圧波形を互いに比較して電気回転速度の3倍の周波数の信号を得、この信号からロータ磁極位置を検出する。第2磁極位置検出回路はモータ巻線と並列に接続した抵抗素子(Yスター結線)の中間点(仮想中性点電圧)とモータ巻線の中性点(モータ中性点電圧)との差(電位差変動)を検出してこの電位差変動によりロータ磁極位置を検出する。
【0010】
モータを通電角120゜で運転しているときには、第1磁極位置検出回路によってロータ磁極位置を検出する。その通電角が120°より広角であるときには、第1磁極位置検出回路による磁極位置検出が困難になることから、第2磁極位置検出回路によって磁極位置を検出する。
【0011】
このように、特許文献1によれば、低回転領域から高回転領域においてロータ磁極位置が適格に検出され、通電角が120゜から180°まで利用されるようになり、電源電圧を有効に利用して高速回転化が図れる。
【0012】
【特許文献1】
特開2002−186274号公報
【0013】
【発明が解決しようとする課題】
しかしながら、特許文献1の発明にあっては、低回転領域用と高回転領域用の2つの磁極位置検出回路を必要とするため、コスト的に好ましくない。したがって、本発明の課題は、1つの磁極位置検出回路を用いて最大回転数のアップと定格効率の向上とを実現することにある。
【0014】
【課題を解決するための手段】
上記課題を解決するため、本発明は、ロータの磁極位置をセンサレスで検出し、その位置検出信号に基づいてステータ巻線の通電を切り替えて上記ロータの回転数を制御する永久磁石電動機の制御装置において、上記ステータ巻線の端子にそれぞれ接続された抵抗を介して得られる仮想中性点電位と上記ステータ巻線の中性点電位との差電圧信号をフィルタに通して3次高調波成分以外の信号を低減し、主として上記3次高調波成分を含む位置検出信号を出力する位置検出手段を備え、上記位置検出手段からの位置検出信号に基づいて上記ステータ巻線の通電切り替えタイミングを制御するとともに、PWM通電パターンを運転状態に応じて正弦波駆動から矩形波駆動に切り替えることを特徴としている。
【0015】
上記PWM通電パターンの切り替えは、運転起動時およびPWM波形の変調率が1になるまでの回転数領域では正弦波駆動方式を採用し、PWM波形の変調率が1になったときで回転数をそれ以上高める場合には矩形波駆動方式に切り替えることが好ましい。
【0016】
また、上記正弦波駆動方式から上記矩形波駆動方式に切り替え直後は120度通電により駆動し、さらに回転数を高める場合には、あらかじめ決められた通電角と点弧位相とにより駆動することが好ましい。
【0017】
本発明において、上記フィルタには、2次のバンドパスフィルタまたは2次のハイパスフィルタと2次のローパスフィルタとを組み合わせたバンドパスフィルタを採用できる。また、上記フィルタは、1次のハイパスフィルタ,1次のローパスフィルタ,2次のハイパスフィルタ,2次のローパスフィルタのうちの少なくとも1つのフィルタを備えていればよく、いずれにしても既存の回路で安価に対応できる。
【0018】
また、負荷条件により、あらかじめ決められる通電角と点弧位相のパターンをテーブル化し、あるいはそのパターンを近似式で得て、運転モードに応じて最適条件で駆動することが好ましい。本発明は、モータの運転範囲を広くでき、また、定格効率の向上を図れることから、特に空気調和機あるいは電気冷蔵庫のコンプレッサモータやファンモータの制御装置として好適である。
【0019】
【発明の実施の形態】
以下、本発明の実施形態を図1ないし図9を参照して詳しく説明するが、本発明はこれに限定されるものではない。なお、図1中のインバータ回路2およびそのドライバ回路6は先に説明した図10の従来技術と同じであってよい。
【0020】
図1において、本発明の制御装置は、モータ巻線端子にそれぞれ抵抗をブリッジに挿入して得られる仮想中性点電位とモータ中性点電位との差電圧を検出し、この差電圧信号をフィルタに通して3次高調波成分以外の周波数成分を低減し、この3次高調波成分によるロータの位置検出信号を出力する位置検出回路10と、この位置検出回路10からの位置検出信号によりロータ磁極位置を検出・推定して通電切り替えタイミングを得る一方、永久磁石電動機3をPWM制御し、その永久磁石電動機3の運転途中でPWM通電パターンを運転状態に応じて正弦波駆動から矩形波駆動に切り替える制御回路(マイクロコンピュータ)11とを備えている。
【0021】
図2に示すように、位置検出回路10は、永久磁石電動機の各巻線端子にそれぞれ一端を接続した抵抗RaをY結線(スター結線)してなる抵抗ブリッジ回路10aと、この抵抗ブリッジ回路10aによって得た仮想中性点電位とモータ中性点電位との差電圧をとり、少なくともその差電圧に含まれたサージ電圧を抑制する所定容量のコンデンサ10bと、このサージ電圧を抑制した差電圧の信号を低インピーダンスとするオペンアンプを用いたボルテージフォロワ回路10cと、このボルテージフォロワ回路10cを介した差電圧の信号のうち、磁極位置検出に不必要な信号(高次高調波、基本波)を除去し、必要な信号成分(3次高調波成分)を得るためのフィルタ回路10dと、このフィルタ回路10dによる3次高調波成分の信号と基準値Mとの比較によりゼロクロス点を検出して位置検出信号を出力するコンパレータ10eとから構成される。
【0022】
フィルタ回路10dは、例えば図3に示すように、2次のバンドパスフィルタ(BPF)回路20で構成とするとよい。BPF回路20には、単一増幅器で実現するためにオペアンプ20a,抵抗R1,R2,R3および静電容量の等しいコンデンサC1,C2からなる2次の多重帰還型帯域通過フィルタを用いることができる。
【0023】
例えば、帯域通過利得Ho,Qおよび中心周波数(3次高調波)ωo=2πfが与えられると、抵抗R1,R2,R3は、R1=Q/(Ho・ωo・C)、R2=Q/(2・(Qの2乗)−Ho)・ωo・C)、R3=2・Q/ωo・Cで決められる。その通過帯域については、少なくとも3次高調波(基本波の3倍の高調波)付近の周波数帯域であり、3次高調波よりも低い周波数と3次高調波よりも高い周波数をカットする。
【0024】
また、上記BPF回路20に代えて、図4に示す2次のハイパスフィルタ(HPF)21と、図5に示す2次のローパスフィルタ(LPF)回路22とを組み合わせたフィルタを用いてもよい。
【0025】
HPF回路21は反転オペアンプ21a、抵抗R4,R5およびコンデンサC3,C4,C5によるハイパス・アクティブフィルタで、LPF回路22は非反転オペアンプ22a,22b、抵抗R6,R7およびコンデンサC6,C7による2次のVCVS(電圧制御源)型フィルタである。
【0026】
なお、HPF回路21およびLPF回路22およびは、BPF回路20と同じ機能となるように、各抵抗R4,R5およびC3,C4,C5を決定し、また各抵抗R6,R7およびコンデンサC6,C7を決定する。その決定に際し、高領域のカットについては当然従来のローパスフィルタと同じとし、低領域のカットについては少なくとも3次高調波(基本波の3倍の高調波)よりも低い周波数とすることを考慮する。
【0027】
例えば、HPF回路21については、Ho,Qおよびωc=2πfが与えられたときの、R4,R5,C3,C4,C5の値を決定する。便宜的にC3=C4とすると、抵抗R4,R5はR4=1/(Q・ωc・C1(2Ho+1)で、R5=(Q/ωc・C1)・(2Ho+1)で決められ、コンデンサC5はC5=C4/Ho)で決められる。
【0028】
さらに、上記の2次のHPF回路21およびLPF回路22に代えて、図6に示す低コストの1次のHPF回路23および図7に示す1次のLPF回路24を用いてもよい。HPF回路23はコンデンサC8および抵抗R8による回路からなり、LPF回路24は抵抗R9およびコンデンサC9によるCR回路からなる。なお、上記HPF回路21,23やLPF回路22,24のいずれか1つのフィルタ回路だけとしてもよく、つまり3次高調波成分より低い周波数成分をカットし、あるいは3次高調波成分よりも高い周波数成分をカットするだけもよい。
【0029】
上記フィルタにより、仮想中性点電位とモータ中性点電位との差電圧の信号は3次高調波より高い領域の信号等が除去され、それよりも低い領域の信号等が除去される。すなわち、ステータ巻線のインダクタンスの非線形による高調波成分および基本波成分が大きく低減され、少なくとも必要とする3次高調波成分の信号が得られる。このように、必要とする3次高調波成分が抽出されるため、位置検出の精度が向上し、広い運転範囲での位置検出が可能となる。
【0030】
上記制御回路11は、永久磁石電動機3のPWM通電パターンを切り替えるが、その起動時およびPWMのデューティがフルデューティ(PWM波形の変調率1)に達するまでの回転数領域では正弦波駆動方式を採用し、PWM波形の変調率が1に達したときには回転数をアップするためにPWMパターンを矩形波駆動方式に切り替えて回転数アップを可能としている。
【0031】
この制御装置の動作を図8および図9を参照して説明すると、制御回路11は、永久磁石電動機3を起動し、しかる後180度の正弦波駆動方式(正弦波PWM駆動)を適用して回転制御する(図8の実線矢印A参照)。なお、永久磁石電動機3の起動時には180度の正弦波駆動を行うが、予め設定したPWM波形を用いてインバータ回路2にモータ印加電圧を発生させる。
【0032】
このときの位置情報に関しては、位置検出回路10からの位置検出信号が入力することから、モータ磁極位置を適切に検出することができる。そのモータ磁極位置が適切に検出され、言い換えると細かな位置情報が得られることから、正弦波PWM駆動においてはPWMデューティを調節し、つまりPWM波形の変調率を順次調整してモータ印加電圧を正弦波化させる。
【0033】
この正弦波PWM駆動により永久磁石電動機3の回転数を目標回転数になるように上昇させる。PWM波形がフルデューティ(PWM波形の変調率1)になるまで、正弦波PWM駆動により制御が可能であることから、永久磁石電動機3の回転数を通常のモータ定格を超えてf1にまで上昇することが可能である。
【0034】
目標回転数がf1よりも高く、PWM波形の変調率が1になっても、永久磁石電動機3の回転数が目標回転数に達しなければ、モータのPWMパターンを矩形波駆動(120度〜180度通電)に切り替える(図8の実線矢印B参照)。
【0035】
正弦波駆動から矩形波駆動に切り替えた直後は、120度通電方式としたPWM矩形波によってモータ電圧を上昇させ、永久磁石電動機3の回転数が目標回転数になるように上昇させる。この120度通電の矩形波駆動において、PWMデューティが100%になっても、その回転数が目標回転数に達せず、例えば図8に示す回転数f2(<目標回転数)であれば、予め決めている通電角(広角;120度〜180度矩形波)と点弧位相のパターンを用い永久磁石電動機3を駆動する(同図の実線矢印C参照)。
【0036】
なお、通電角を広角にすることによりモータ電圧は上昇し、また点弧位相とは進み位相であり、弱め界磁制御を行うためのものである。上記通電角と点弧位相のパターンとしては、例えば図9に示すパターンとする。同図の実線矢印Dに示すパターンは通電角をあまり広げることなく、進み位相角を大きくするパターンであり、つまり弱め界磁制御を強調する。
【0037】
同図の波線矢印Eに示すパターンは通電角を広げるとともに、進み位相角を大きくするパターンであり、PWM矩形波駆動と弱め界磁制御を併用する。同図の点線矢印Fに示すパターンは位相をあまり進めず、通電角を大きくするパターンであり、PWM矩形波駆動を強調する。
【0038】
ここに、位置検出回路10において、仮想中性点電位とモータ中性点電位の差電圧によって得られた位置検出信号からロータ磁極位置を確実に検出することができるために、進み位相による弱め界磁制御、通電角の広角制御が可能となる。これら弱め界磁制御、通電角の広角制により、永久磁石電動機3の回転数がさらにアップし、また定格効率がアップされる。
【0039】
このように、位置検出手段として1つの位置検出回路11で済ませられることから、低コスト化が図れる。また、永久磁石電動機3の定格時には正弦波駆動方式を採用し、その定格以上のポイントでは矩形波駆動方式および進み位相制御方式を採用するためめ高速化が可能であり、最大回転数のアップ、定格効率のアップによってモータ能力を最大限に生かせるようになる。
【0040】
なお、例えば空気調和機のコンプレッサモータに適用するにあたっては、暖房運転や冷房運転などの各種モードに応じた負荷パターンを想定し、ロータ位置を基準として(例えば真のロータ位置位相を基準として)、その負荷パターンに応じて最適な点弧位相角および通電角(図9に相当するデータ)を経験的に求め、これら点弧位相角および通電角のパターンをテーブル化するとよい。
【0041】
図9に示すパターンに含まれる点弧位相角および通電角のパターンは、それぞれ近似式で表し例えばロータ磁極位置の検出ごとに進み位相や通電角をその近似式から算出するようにしてもよい。そのテーブルや近似式は図9の実線矢印Dあるいは波線矢印Eもしくは点線矢印Fに対応した形でメモリに記憶しておけばよい。
【0042】
そして、各負荷パターンに応じて所定テーブルを参照して進んだ点弧位相角を得、ロータ磁極位置検出ごとにその点弧位相角にしたがうPWMの電圧信号を与える。また、そのPWMの電圧信号には通電角についても加味することにより、進み位相角や通電角を制御してモータ電圧が制限された条件下(PWMデューティ100%)でも、さらに回転数のアップ、定格アップが実現される。これにより、空気調和機や電気冷蔵庫などのコンプレッサモータ、ファンモータの低コスト化、最大回転数の増大および空気調和機や冷蔵庫の定格効率の向上が図れる。
【0043】
【発明の効果】
以上説明したように、本発明によれば、PWM制御方式を採用して永久磁石電動機をインバータ制御する永久磁石電動機の制御装置において、ステータ巻線と並列に接続した抵抗より得られる仮想中性点電位とモータ中性点電位との差電圧を得るとともに、この差電圧信号の3次高調波成分以外を低減して3次高調波成分の位置検出信号を得る位置検出手段を有しており、その位置検出手段からの位置検出信号をもとにしてステータ巻線の通電を切り替える一方、PWM通電パターンをモータ運転状態に応じて正弦波駆動から矩形波駆動に切り替えるようにしていることから、低回転領域から高回転領域までロータ磁極位置検出を1つの位置検出回路で行え、モータの最大回転数および定格効率のアップをコスト増なしに実現することができる。
【図面の簡単な説明】
【図1】本発明の制御装置を示す概略的ブロック線図。
【図2】上記制御装置の位置検出回路を示す回路図。
【図3】上記位置検出回路に用いられるフィルタの回路図。
【図4】上記フィルタとして好適に使用されるフィルタの回路図。
【図5】上記フィルタとして好適に使用されるフィルタの回路図。
【図6】上記フィルタとして好適に使用されるフィルタの回路図。
【図7】上記フィルタとして好適に使用されるフィルタの回路図。
【図8】本発明の動作を説明する概略的なグラフ。
【図9】本発明の動作を説明する概略的なグラフ。
【図10】従来のモータの制御装置を示す概略的なブロック線図。
【符号の説明】
1 直流電源
2 インバータ回路
3 永久磁石電動機
10 位置検出回路
10a 抵抗ブリッジ回路
10b コンデンサ(サージ電圧抑制回路)
10c ボルテージフォロワ回路
10d フィルタ回路
10e コンパレータ部
11 制御回路
20a 2次のバンドパスフィルタ
20a,21a,22a,22b オペアンプ
21 2次のハイパスフィルタ
22 2次のローパスフィルタ
23 1次のハイパスフィルタ
24 1次のローパスフィルタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a sensorless permanent magnet motor (brushless DC motor). More specifically, the present invention is suitable for compressor motors and fan motors such as air conditioners and electric refrigerators that can further increase the maximum rotation speed. The present invention relates to a control device for a permanent magnet motor.
[0002]
[Prior art]
In the past, when controlling the rotation speed of a permanent magnet motor, it was controlled based on the optimal phase relationship while detecting the magnetic pole position of the rotor using a sensor, but it was used for home appliances such as air conditioners and electric refrigerators. In this case, high-priced sensors are avoided due to demands for cost reduction, and compressor motors are used in severe environments of high temperature and high pressure. It is difficult to build in because it tends to occur.
[0003]
Therefore, at present, a sensorless system that detects and estimates the magnetic pole position of the rotor by using the electrical characteristics of the motor without using a sensor and optimally controls the motor has become the mainstream, and a brushless DC motor motor based on the sensorless system An example of the control device is shown in FIG.
[0004]
This control device is an inverter drive control device that converts a voltage Vdc of a predetermined DC power source 1 into an arbitrary AC voltage by an inverter circuit 2 composed of, for example, a six-element bridge circuit, and applies it to the permanent magnet motor 3. And a position detection circuit 4 for switching the winding current of the stator.
[0005]
The position detection circuit 4 detects a zero-cross point of an induced voltage waveform included in a virtual neutral point potential by resistance star connection (not shown), and outputs a position detection signal including the detection point to a control circuit (microcomputer) 5.
[0006]
The control circuit 5 estimates the magnetic pole position of the rotor from the position detection signal and outputs the drive signal to the inverter circuit 2 via the driver circuit 6 in order to drive the predetermined switching element of the inverter circuit 2. The energization of the winding is switched and the PWM duty is adjusted to control the rotation speed to the target rotation speed.
[0007]
However, since it becomes difficult to accurately detect the zero crossing of the induced voltage when the rotational speed of the motor is in a high speed region, the maximum rotational speed is limited. In order to solve this point, Patent Document 1 proposes an invention including two magnetic pole position detection circuits.
[0008]
That is, in Patent Document 1, the first and second magnetic pole position detection circuits are used in combination, and one of the first magnetic pole position detection circuit and the second magnetic pole position detection circuit is changed depending on the energization angle or the rotation speed. The magnetic pole position of the rotor is detected based on the signal from the selected magnetic pole position detection circuit.
[0009]
The first magnetic pole position detection circuit detects an induced voltage generated in the non-energized phase, compares the induced voltage waveforms with each other to obtain a signal having a frequency three times the electric rotation speed, and detects the rotor magnetic pole position from this signal. . The second magnetic pole position detection circuit is the difference between the intermediate point (virtual neutral point voltage) of the resistance element (Y star connection) connected in parallel with the motor winding and the neutral point (motor neutral point voltage) of the motor winding. (Potential difference fluctuation) is detected, and the rotor magnetic pole position is detected by this potential difference fluctuation.
[0010]
When the motor is operated at a conduction angle of 120 °, the rotor magnetic pole position is detected by the first magnetic pole position detection circuit. When the energization angle is wider than 120 °, it is difficult to detect the magnetic pole position by the first magnetic pole position detection circuit. Therefore, the magnetic pole position is detected by the second magnetic pole position detection circuit.
[0011]
Thus, according to Patent Document 1, the rotor magnetic pole position is properly detected in the low rotation region to the high rotation region, and the conduction angle is used from 120 ° to 180 °, so that the power supply voltage is effectively used. Thus, high speed rotation can be achieved.
[0012]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-186274
[Problems to be solved by the invention]
However, the invention of Patent Document 1 is not preferable in terms of cost because it requires two magnetic pole position detection circuits for the low rotation region and the high rotation region. Accordingly, an object of the present invention is to realize an increase in the maximum rotational speed and an improvement in rated efficiency by using one magnetic pole position detection circuit.
[0014]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention detects a magnetic pole position of a rotor without a sensor, and switches the energization of a stator winding based on the position detection signal to control the rotational speed of the rotor. In this case, the differential voltage signal between the virtual neutral point potential obtained through the resistors connected to the terminals of the stator winding and the neutral point potential of the stator winding is passed through a filter to obtain a component other than the third harmonic component. And a position detection means for outputting a position detection signal mainly including the third harmonic component, and the energization switching timing of the stator winding is controlled based on the position detection signal from the position detection means. In addition, the PWM energization pattern is switched from sinusoidal wave driving to rectangular wave driving according to the operating state.
[0015]
The switching of the PWM energization pattern adopts a sine wave driving method at the time of starting the operation and in the rotation speed region until the PWM waveform modulation rate becomes 1, and the rotation speed is changed when the PWM waveform modulation rate becomes 1. In the case of further increase, it is preferable to switch to the rectangular wave driving method.
[0016]
Further, immediately after switching from the sine wave driving method to the rectangular wave driving method, driving is performed by 120-degree energization, and when the rotational speed is further increased, driving is preferably performed by a predetermined energization angle and ignition phase. .
[0017]
In the present invention, a second-order bandpass filter or a bandpass filter in which a second-order high-pass filter and a second-order low-pass filter are combined can be used as the filter. The above-described filter may include at least one of a primary high-pass filter, a primary low-pass filter, a secondary high-pass filter, and a secondary low-pass filter. Can be inexpensively supported.
[0018]
In addition, it is preferable that a predetermined energization angle and firing phase pattern is tabulated according to load conditions, or the pattern is obtained by an approximate expression, and driven under optimum conditions according to the operation mode. The present invention is particularly suitable as a control device for a compressor motor or a fan motor of an air conditioner or an electric refrigerator because the operating range of the motor can be widened and the rated efficiency can be improved.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 9, but the present invention is not limited thereto. The inverter circuit 2 and its driver circuit 6 in FIG. 1 may be the same as the prior art of FIG. 10 described above.
[0020]
In FIG. 1, the control device of the present invention detects a difference voltage between a virtual neutral point potential and a motor neutral point potential obtained by inserting resistances in the bridges of motor winding terminals, respectively. A position detection circuit 10 that passes a filter to reduce frequency components other than the third harmonic component and outputs a rotor position detection signal based on the third harmonic component, and a position detection signal from the position detection circuit 10 makes the rotor While detecting and estimating the magnetic pole position to obtain the energization switching timing, the permanent magnet motor 3 is PWM-controlled, and the PWM energization pattern is changed from sine wave driving to rectangular wave driving according to the operating state during the operation of the permanent magnet motor 3 A switching control circuit (microcomputer) 11 is provided.
[0021]
As shown in FIG. 2, the position detection circuit 10 includes a resistance bridge circuit 10a in which one end is connected to each winding terminal of the permanent magnet motor and Y connection (star connection), and the resistance bridge circuit 10a. The difference voltage between the obtained virtual neutral point potential and the motor neutral point potential is taken, and at least a capacitor 10b having a predetermined capacity for suppressing a surge voltage included in the difference voltage, and a signal of the difference voltage for suppressing the surge voltage A voltage follower circuit 10c using an open amplifier with low impedance and a signal of a difference voltage via the voltage follower circuit 10c, which is unnecessary for magnetic pole position detection (high-order harmonics, fundamental wave) is removed. A filter circuit 10d for obtaining a necessary signal component (third harmonic component), and a signal of the third harmonic component by the filter circuit 10d; Composed of a comparator 10e for outputting a position detection signal by detecting the zero-cross point by comparison with the standard value M.
[0022]
The filter circuit 10d may be composed of a second-order bandpass filter (BPF) circuit 20, for example, as shown in FIG. The BPF circuit 20 can be a secondary multiple-feedback band-pass filter including an operational amplifier 20a, resistors R1, R2, and R3 and capacitors C1 and C2 having the same capacitance to realize a single amplifier.
[0023]
For example, given the bandpass gains Ho, Q and the center frequency (third harmonic) ωo = 2πf, the resistors R1, R2, and R3 have R1 = Q / (Ho · ωo · C) and R2 = Q / ( 2 · (Q squared) −Ho) · ωo · C), R3 = 2 · Q / ωo · C. The pass band is a frequency band in the vicinity of at least the third harmonic (a harmonic that is three times the fundamental wave), and cuts a frequency lower than the third harmonic and a frequency higher than the third harmonic.
[0024]
In place of the BPF circuit 20, a filter combining a secondary high-pass filter (HPF) 21 shown in FIG. 4 and a secondary low-pass filter (LPF) circuit 22 shown in FIG. 5 may be used.
[0025]
The HPF circuit 21 is a high-pass active filter including an inverting operational amplifier 21a, resistors R4 and R5, and capacitors C3, C4, and C5. The LPF circuit 22 is a secondary filter including non-inverting operational amplifiers 22a and 22b, resistors R6 and R7, and capacitors C6 and C7. This is a VCVS (voltage control source) type filter.
[0026]
The HPF circuit 21 and the LPF circuit 22 determine the resistors R4, R5 and C3, C4, C5 so as to have the same function as the BPF circuit 20, and the resistors R6, R7 and capacitors C6, C7. decide. In the determination, it is assumed that the cut in the high region is the same as that of the conventional low-pass filter, and that the cut in the low region is at least a frequency lower than the third harmonic (three times the harmonic of the fundamental wave). .
[0027]
For example, for the HPF circuit 21, the values of R4, R5, C3, C4, and C5 are determined when Ho, Q and ωc = 2πf are given. For convenience, assuming that C3 = C4, the resistors R4 and R5 are determined by R4 = 1 / (Q · ωc · C1 (2Ho + 1), R5 = (Q / ωc · C1) · (2Ho + 1), and the capacitor C5 is C5. = C4 / Ho).
[0028]
Further, in place of the secondary HPF circuit 21 and the LPF circuit 22 described above, a low-cost primary HPF circuit 23 shown in FIG. 6 and a primary LPF circuit 24 shown in FIG. 7 may be used. The HPF circuit 23 includes a circuit including a capacitor C8 and a resistor R8, and the LPF circuit 24 includes a CR circuit including a resistor R9 and a capacitor C9. Note that only one filter circuit of the HPF circuits 21, 23 and the LPF circuits 22, 24 may be used, that is, a frequency component lower than the third harmonic component is cut, or a frequency higher than the third harmonic component is used. Just cut the ingredients.
[0029]
By the above filter, the signal of the difference voltage between the virtual neutral point potential and the motor neutral point potential is removed from the signal in the region higher than the third harmonic, and the signal in the region lower than that is removed. That is, the harmonic component and the fundamental component due to the nonlinearity of the inductance of the stator winding are greatly reduced, and at least the required third-order harmonic component signal can be obtained. Thus, since the required third harmonic component is extracted, the accuracy of position detection is improved, and position detection in a wide operation range is possible.
[0030]
The control circuit 11 switches the PWM energization pattern of the permanent magnet motor 3, and adopts a sine wave drive method at the time of starting and in the rotation speed range until the PWM duty reaches the full duty (PWM waveform modulation factor 1). When the modulation rate of the PWM waveform reaches 1, in order to increase the rotation speed, the PWM pattern is switched to the rectangular wave driving method to increase the rotation speed.
[0031]
The operation of this control apparatus will be described with reference to FIGS. 8 and 9. The control circuit 11 starts the permanent magnet motor 3, and then applies a 180-degree sine wave drive method (sine wave PWM drive). The rotation is controlled (see solid line arrow A in FIG. 8). In addition, 180 degrees sine wave drive is performed at the time of starting of the permanent magnet motor 3, but a motor applied voltage is generated in the inverter circuit 2 using a preset PWM waveform.
[0032]
Regarding the position information at this time, since the position detection signal from the position detection circuit 10 is input, the motor magnetic pole position can be appropriately detected. Since the motor magnetic pole position is detected appropriately, in other words, detailed position information can be obtained. In sinusoidal PWM driving, the PWM duty is adjusted, that is, the PWM waveform modulation rate is sequentially adjusted to sine the motor applied voltage. Wave.
[0033]
By this sine wave PWM drive, the rotational speed of the permanent magnet electric motor 3 is increased to the target rotational speed. Since control is possible by sinusoidal PWM drive until the PWM waveform reaches full duty (PWM waveform modulation factor 1), the rotational speed of the permanent magnet electric motor 3 exceeds the normal motor rating and increases to f1. It is possible.
[0034]
If the rotational speed of the permanent magnet motor 3 does not reach the target rotational speed even if the target rotational speed is higher than f1 and the modulation rate of the PWM waveform becomes 1, the PWM pattern of the motor is driven in a rectangular wave (120 to 180 degrees). (See solid arrow B in FIG. 8).
[0035]
Immediately after switching from the sine wave drive to the rectangular wave drive, the motor voltage is increased by the PWM rectangular wave of the 120-degree energization method so that the rotation speed of the permanent magnet motor 3 becomes the target rotation speed. In the 120-degree energization rectangular wave drive, even if the PWM duty becomes 100%, if the rotation speed does not reach the target rotation speed, for example, if the rotation speed is f2 (<target rotation speed) shown in FIG. The permanent magnet motor 3 is driven using a predetermined energization angle (wide angle; 120 ° to 180 ° rectangular wave) and a firing phase pattern (see solid arrow C in the figure).
[0036]
The motor voltage rises by making the energization angle wide, and the ignition phase is a lead phase, and is used for field weakening control. As the pattern of the conduction angle and the ignition phase, for example, the pattern shown in FIG. The pattern shown by the solid line arrow D in the figure is a pattern in which the advance phase angle is increased without increasing the energization angle so much, that is, the field weakening control is emphasized.
[0037]
The pattern indicated by the wavy arrow E in the figure is a pattern in which the energization angle is increased and the advance phase angle is increased, and PWM rectangular wave driving and field weakening control are used in combination. The pattern indicated by the dotted arrow F in the figure does not advance the phase so much and increases the energization angle, and emphasizes PWM rectangular wave driving.
[0038]
Here, the position detection circuit 10 can reliably detect the rotor magnetic pole position from the position detection signal obtained by the difference voltage between the virtual neutral point potential and the motor neutral point potential. The wide angle control of the conduction angle becomes possible. These field-weakening control and wide angle control of the energization angle further increase the rotational speed of the permanent magnet motor 3 and increase the rated efficiency.
[0039]
As described above, since one position detection circuit 11 is used as the position detection means, the cost can be reduced. In addition, a sine wave drive system is adopted when the permanent magnet motor 3 is rated, and a rectangular wave drive system and a lead phase control system are adopted at points above the rating, so that the speed can be increased, and the maximum rotational speed is increased. The motor efficiency can be maximized by increasing the rated efficiency.
[0040]
For example, in applying to a compressor motor of an air conditioner, assuming load patterns according to various modes such as heating operation and cooling operation, the rotor position is used as a reference (for example, the true rotor position phase is used as a reference), The optimum firing phase angle and energization angle (data corresponding to FIG. 9) are determined empirically according to the load pattern, and these firing phase angle and energization angle patterns may be tabulated.
[0041]
The patterns of the ignition phase angle and the conduction angle included in the pattern shown in FIG. 9 are each represented by an approximate expression, and for example, the advance phase and the conduction angle may be calculated from the approximate expression for each detection of the rotor magnetic pole position. The table and approximate expression may be stored in the memory in a form corresponding to the solid arrow D, the wavy arrow E, or the dotted arrow F in FIG.
[0042]
Then, an advanced ignition phase angle is obtained by referring to a predetermined table in accordance with each load pattern, and a PWM voltage signal according to the ignition phase angle is provided every time the rotor magnetic pole position is detected. In addition, the PWM voltage signal also includes the conduction angle, so that the rotational speed is further increased even under the condition that the motor voltage is limited by controlling the lead phase angle and the conduction angle (PWM duty 100%). The rating is increased. Thereby, cost reduction of compressor motors and fan motors such as an air conditioner and an electric refrigerator, an increase in the maximum rotation speed, and an improvement in rated efficiency of the air conditioner and the refrigerator can be achieved.
[0043]
【The invention's effect】
As described above, according to the present invention, a virtual neutral point obtained from a resistor connected in parallel with a stator winding in a control apparatus for a permanent magnet motor that employs a PWM control method and controls a permanent magnet motor by inverter. A position detecting means for obtaining a difference voltage between the electric potential and the motor neutral point potential and obtaining a position detection signal of the third harmonic component by reducing other than the third harmonic component of the difference voltage signal; While switching the energization of the stator winding based on the position detection signal from the position detection means, the PWM energization pattern is switched from sine wave drive to rectangular wave drive according to the motor operation state. The rotor magnetic pole position can be detected from the rotation range to the high rotation range with a single position detection circuit, and the maximum motor speed and rated efficiency can be increased without increasing costs. .
[Brief description of the drawings]
FIG. 1 is a schematic block diagram showing a control device of the present invention.
FIG. 2 is a circuit diagram showing a position detection circuit of the control device.
FIG. 3 is a circuit diagram of a filter used in the position detection circuit.
FIG. 4 is a circuit diagram of a filter suitably used as the filter.
FIG. 5 is a circuit diagram of a filter suitably used as the filter.
FIG. 6 is a circuit diagram of a filter suitably used as the filter.
FIG. 7 is a circuit diagram of a filter suitably used as the filter.
FIG. 8 is a schematic graph illustrating the operation of the present invention.
FIG. 9 is a schematic graph illustrating the operation of the present invention.
FIG. 10 is a schematic block diagram showing a conventional motor control device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 DC power supply 2 Inverter circuit 3 Permanent magnet motor 10 Position detection circuit 10a Resistance bridge circuit 10b Capacitor (surge voltage suppression circuit)
10c Voltage follower circuit 10d Filter circuit 10e Comparator unit 11 Control circuit 20a Secondary band pass filters 20a, 21a, 22a, 22b Operational amplifier 21 Secondary high pass filter 22 Secondary low pass filter 23 Primary high pass filter 24 Primary primary Low pass filter

Claims (7)

ロータの磁極位置をセンサレスで検出し、その位置検出信号に基づいてステータ巻線の通電を切り替えて上記ロータの回転数を制御する永久磁石電動機の制御装置において、
上記ステータ巻線の端子にそれぞれ接続された抵抗を介して得られる仮想中性点電位と上記ステータ巻線の中性点電位との差電圧信号をフィルタに通して3次高調波成分以外の信号を低減し、主として上記3次高調波成分を含む位置検出信号を出力する位置検出手段を備え、
上記位置検出手段からの位置検出信号に基づいて上記ステータ巻線の通電切り替えタイミングを制御するとともに、PWM通電パターンを運転状態に応じて正弦波駆動から矩形波駆動に切り替えることを特徴とする永久磁石電動機の制御装置。
In the control device of the permanent magnet motor that detects the magnetic pole position of the rotor without a sensor and switches the energization of the stator winding based on the position detection signal to control the rotation speed of the rotor.
A differential voltage signal between a virtual neutral point potential obtained through a resistor connected to each terminal of the stator winding and a neutral point potential of the stator winding is passed through a filter to obtain a signal other than the third harmonic component. A position detection means for outputting a position detection signal mainly including the third harmonic component,
A permanent magnet that controls energization switching timing of the stator winding based on a position detection signal from the position detection means and switches the PWM energization pattern from sinusoidal wave driving to rectangular wave driving according to an operating state. Electric motor control device.
運転起動時およびPWM波形の変調率が1になるまでの回転数領域では正弦波駆動方式を採用し、PWM波形の変調率が1になったときで回転数をそれ以上高める場合には矩形波駆動方式に切り替えることを特徴とする請求項1に記載の永久磁石電動機の制御装置。A sine wave drive method is adopted at the time of start-up and the rotation speed range until the PWM waveform modulation factor becomes 1, and a rectangular wave is used when the rotation rate is further increased when the PWM waveform modulation factor becomes 1. The control device for a permanent magnet motor according to claim 1, wherein the control method is switched to a drive system. 上記正弦波駆動方式から上記矩形波駆動方式に切り替え直後は120度通電により駆動し、さらに回転数を高める場合には、あらかじめ決められた通電角と点弧位相とにより駆動することを特徴とする請求項2に記載の永久磁石電動機の制御装置。Immediately after switching from the sine wave driving method to the rectangular wave driving method, driving is performed by 120 ° energization, and when the rotational speed is further increased, driving is performed by a predetermined energization angle and ignition phase. The control apparatus for the permanent magnet motor according to claim 2. 上記フィルタは、2次のバンドパスフィルタまたは2次のハイパスフィルタと2次のローパスフィルタとを組み合わせたバンドパスフィルタからなる請求項1ないし3のいずれか1項に記載の永久磁石電動機の制御装置。4. The control apparatus for a permanent magnet motor according to claim 1, wherein the filter is a secondary band pass filter or a band pass filter in which a secondary high pass filter and a secondary low pass filter are combined. . 上記フィルタは、1次のハイパスフィルタ,1次のローパスフィルタ,2次のハイパスフィルタ,2次のローパスフィルタのうちの少なくとも1つのフィルタを備えている請求項1ないし3のいずれか1項に記載の永久磁石電動機の制御装置。4. The filter according to claim 1, wherein the filter includes at least one of a primary high-pass filter, a primary low-pass filter, a secondary high-pass filter, and a secondary low-pass filter. Permanent magnet motor control device. 負荷条件により、あらかじめ決められる通電角と点弧位相のパターンをテーブル化し、あるいはそのパターンを近似式で得て、運転モードに応じて最適条件で駆動する請求項1ないし5のいずれか1項に記載の永久磁石電動機の制御装置。6. The method according to any one of claims 1 to 5, wherein a predetermined energization angle and firing phase pattern is tabulated according to load conditions, or the pattern is obtained by an approximate expression, and the driving is performed under an optimum condition according to an operation mode. The control apparatus of the permanent magnet motor of description. 上記永久磁石電動機の用途が空気調和機あるいは電気冷蔵庫のコンプレッサモータやファンモータである請求項1ないし6のいずれか1項に記載の永久磁石電動機の制御装置。The permanent magnet motor control device according to any one of claims 1 to 6, wherein the permanent magnet motor is used as a compressor motor or a fan motor of an air conditioner or an electric refrigerator.
JP2003188010A 2003-06-30 2003-06-30 Control device for permanent magnet motor Expired - Fee Related JP4434641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003188010A JP4434641B2 (en) 2003-06-30 2003-06-30 Control device for permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003188010A JP4434641B2 (en) 2003-06-30 2003-06-30 Control device for permanent magnet motor

Publications (2)

Publication Number Publication Date
JP2005027395A true JP2005027395A (en) 2005-01-27
JP4434641B2 JP4434641B2 (en) 2010-03-17

Family

ID=34186687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003188010A Expired - Fee Related JP4434641B2 (en) 2003-06-30 2003-06-30 Control device for permanent magnet motor

Country Status (1)

Country Link
JP (1) JP4434641B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172948A (en) * 2007-01-12 2008-07-24 Sharp Corp Controller for brushless motors
JP2008265730A (en) * 2007-03-24 2008-11-06 Hitachi Ltd Electric brake device and method of controlling electric brake device
EP2040367A1 (en) * 2006-07-10 2009-03-25 Nachi-Fujikoshi Corp. Servo motor monitoring device
KR101073325B1 (en) * 2007-12-06 2011-10-12 니혼 덴산 가부시키가이샤 Brushless Motor
JP2012178905A (en) * 2011-02-25 2012-09-13 Nakanishi:Kk Driving device for dc brushless motor
CN106787981A (en) * 2016-11-25 2017-05-31 广东明阳龙源电力电子有限公司 A kind of control method for improving efficiency of magneto
US9755565B2 (en) 2013-06-03 2017-09-05 Denso Corporation Motor drive device
CN111256291A (en) * 2018-11-30 2020-06-09 广东美的制冷设备有限公司 Drive control method and system, compressor, air conditioner and computer storage medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2040367A1 (en) * 2006-07-10 2009-03-25 Nachi-Fujikoshi Corp. Servo motor monitoring device
EP2040367A4 (en) * 2006-07-10 2013-10-23 Nachi Fujikoshi Corp Servo motor monitoring device
JP2008172948A (en) * 2007-01-12 2008-07-24 Sharp Corp Controller for brushless motors
JP2008265730A (en) * 2007-03-24 2008-11-06 Hitachi Ltd Electric brake device and method of controlling electric brake device
KR101073325B1 (en) * 2007-12-06 2011-10-12 니혼 덴산 가부시키가이샤 Brushless Motor
US8054024B2 (en) 2007-12-06 2011-11-08 Nidec Corporation Brushless motor
JP2012178905A (en) * 2011-02-25 2012-09-13 Nakanishi:Kk Driving device for dc brushless motor
US9755565B2 (en) 2013-06-03 2017-09-05 Denso Corporation Motor drive device
CN106787981A (en) * 2016-11-25 2017-05-31 广东明阳龙源电力电子有限公司 A kind of control method for improving efficiency of magneto
CN111256291A (en) * 2018-11-30 2020-06-09 广东美的制冷设备有限公司 Drive control method and system, compressor, air conditioner and computer storage medium

Also Published As

Publication number Publication date
JP4434641B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP6303354B2 (en) Motor drive device
WO2014196162A1 (en) Motor drive device
WO2014141345A1 (en) Motor drive device and electric device using same
KR101434047B1 (en) Apparatus and method for operating motor
WO2009093214A2 (en) Electric drive and method for controlling it
JP4434641B2 (en) Control device for permanent magnet motor
JP3239426B2 (en) Drive device for brushless DC motor
JP6634891B2 (en) Motor drive
JP2004343862A (en) Motor controller
JP2003199382A (en) Control method of brushless dc motor
KR101002956B1 (en) Electronic starting circuit of single-phase ac motor
JP2003219683A (en) Permanent magnet electric motor control method
JP2006067747A (en) Inverter device
JP5975830B2 (en) Motor control device and refrigeration equipment using the same
JP2004096880A (en) Control device for permanent_magnet motor
JP2004215331A (en) Control method and controller of brushless dc motor
JP2000253690A (en) Method and device for controlling motor for compressor
JP5975829B2 (en) Motor control device and refrigerator using the same
JP2004072909A (en) Controller for permanent-magnetic motor
JP2009240147A (en) Inverter apparatus
KR20200113642A (en) Motor driving apparatus and home appliance including the same
Bhagat et al. Design and development of sensorless controller for DC-operated mixer-grinder
Mohammed et al. Improved speed operation of sensorless BLDC motor drives using IIR digital filter
Singh et al. Complete position sensorless control of PMBLDC motor for variable speed applications
JP2004015902A (en) Motor, control device and method thereof and electric equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R151 Written notification of patent or utility model registration

Ref document number: 4434641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees