JP2005024436A - Temperature detection apparatus, fixing device, imaging forming apparatus, and temperature detecting apparatus - Google Patents

Temperature detection apparatus, fixing device, imaging forming apparatus, and temperature detecting apparatus Download PDF

Info

Publication number
JP2005024436A
JP2005024436A JP2003191573A JP2003191573A JP2005024436A JP 2005024436 A JP2005024436 A JP 2005024436A JP 2003191573 A JP2003191573 A JP 2003191573A JP 2003191573 A JP2003191573 A JP 2003191573A JP 2005024436 A JP2005024436 A JP 2005024436A
Authority
JP
Japan
Prior art keywords
temperature
measurement
temperature sensor
fixing
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003191573A
Other languages
Japanese (ja)
Other versions
JP4185411B2 (en
Inventor
Chuji Ishikawa
忠二 石川
Sunao Miyatake
直 宮武
Kazuharu Oike
一春 大池
Toshiaki Hinokigaya
敏明 桧ケ谷
Tomohiro Kataoka
朋宏 片岡
Kenji Shinohara
賢二 篠原
Yoritsugu Hiraishi
順嗣 平石
Yuji Yoshimura
雄二 吉村
Takao Yamauchi
崇生 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Ricoh Co Ltd
Original Assignee
Omron Corp
Ricoh Co Ltd
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Ricoh Co Ltd, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2003191573A priority Critical patent/JP4185411B2/en
Publication of JP2005024436A publication Critical patent/JP2005024436A/en
Application granted granted Critical
Publication of JP4185411B2 publication Critical patent/JP4185411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Fixing For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the occurrence of detection errors due to environmental temperature changes, stains in a detecting surface, etc. in a temperature detecting apparatus using a noncontact temperature sensor. <P>SOLUTION: This fixing device 18 is provided with both a fixing roller 20 having a heat source 22 and a pressing roller 21 to be pressed to the fixing roller 20. The noncontact temperature sensor 50 is opposed to the circumferential surface of the fixing roller as a target measurement object. The noncontact temperature sensor is fixed to a rotating plate 26 as a sensor module 25 and connected to a correction circuit 32. The rotating plate is freely rotated on a fulcrum 27 to a horizontal position and a vertical position. When the rotating plate is rotated to the vertical position, the detecting surface is horizontally directly to a measurement surface 28, a reference object of measurement. The measurement surface is provided with the approximately same measurement surface property as that of the circumferential surface of the fixing roller so as to have the same emissivity. The measurement surface is provided with a contact temperature sensor 30 such as a thermistor for detecting a reference temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、例えば、複写機、プリンタ、ファクシミリ、またはそれらの複合機など、用紙・OHPフィルム等のシート材に画像を記録する画像形成装置に関する。そのような画像形成装置において、シート材の未定着画像を定着する定着装置に関する。ならびに、そのような定着装置の他、電子調理器やエアコンディショナなどに備える温度検知装置、および温度検知方法に関する。特に、検知面が汚れやすい環境下において用いるのに好適な非接触式の温度検知装置、および温度検知方法に関する。
【0002】
【従来の技術】
従来、例えば電子写真方式を用いた画像形成装置では、像担持体上にトナー画像を形成し、そのトナー画像をシート材に転写し、その画像転写後のシート材を定着装置に入れて定着装置で熱と圧力とを加え、シート材上の未定着トナー画像をシート材上に定着して後、外部に排出していた。
【0003】
定着装置では、一般に、内部に熱源を有する定着ローラに加圧ローラを押し当てるローラ定着方式、定着ローラと、内部に熱源を有する加熱ローラとに定着ベルトを掛け回し、その定着ベルトを挟んで定着ローラに加圧ローラを押し当てるベルト定着方式、最近急速に普及してきた特開2001−242732号公報や特開2001−13805号公報に記載の誘導加熱定着方式などの熱定着装置を用いていた。
【0004】
ベルト定着方式では、定着ローラの熱容量を減らして定着装置の立ち上がり時間を早くすることができる。誘導加熱定着方式では、熱効率を上げて定着装置の消費電力を抑え、省エネ効果を上げることができる。
【0005】
そのような熱定着装置では、温度センサで定着ローラの温度を検知し、その検知温度に基づき熱源をオンオフして定着温度を制御していた。温度センサには、接触式のものと非接触式のものとがある。接触式の温度センサでは、一般に、サーミスタを、定着ローラ・定着ベルト等の加熱回転部材の表面に接触して温度を検知していた。
【0006】
しかし、接触式の温度センサは、サーミスタを加熱回転部材に接触することから、加熱回転部材に傷を付けるおそれがあり、傷を付けたときには加熱回転部材、またはそれを備える定着装置をユニットごと新しいものと交換しなければならず、メンテナンスコストがアップする問題があり、資源節約の上からも好ましいことではなかった。
【0007】
さらに、サーミスタは、通常定着装置に備えるから、定着装置を交換廃棄するときには、同時にサーミスタも廃棄することになり、その点からもメンテナンスコストがアップする問題があり、同じく資源節約の上からも好ましいことではなかった。
【0008】
また、特に最近では、省エネのため待機時は余熱モードとしておき、使用時に高速で立ち上げて使用する画像形成装置が多くなってきており、温度応答性のよい温度センサが求められている。しかし、サーミスタは、応答性が悪く、精密な制御を行うことが難しかった。
【0009】
【特許文献1】特開昭60−134271号公報
これに対し、非接触式の温度センサは、例えば特許文献1に記載されるように、サーモパイルを、定着ローラ等の加熱回転部材の表面に向けて温度を検知する。これまでは、素子や制御回路などがコスト高となったり、経時的に検知面に汚れが付着して温度検知精度が低下したりするなどの理由から商品化されていなかった。
【0010】
しかし、近年では、カラー画像形成装置の急速な普及にともない、非接触式の温度センサの商品化が強く要望されるようになってきている。なぜなら、カラー画像形成装置には、ローラやベルト等の加熱回転部材の表面にシリコンゴムを使用しており、高価である反面、傷が付きやすいので、傷を付けるおそれがある接触式の温度センサを使用したくないからである。また、上述したように、使用時に高速で立ち上げて使用する画像形成装置が多くなってきており、温度応答性のよい温度センサが求められるようになってきたからである。
【0011】
図9には、非接触式温度センサ1を用いるローラ定着式の定着装置の概要構成を示す。図中符号2は、内部に熱源3を有する定着ローラである。定着ローラ2には、加圧ローラ4を押し当てていた。非接触式温度センサ1としては、サーモパイルなどを用いる。
【0012】
そして、定着ローラ2の回転とともに加圧ローラ4を従動回転し、それら定着ローラ2と加圧ローラ4のニップ間にシート材5を通して図中矢示方向に搬送しながら熱と圧力とを加え、該定着装置でシート材5上の未定着トナー画像6を融着してシート材5に定着していた。
【0013】
また、このとき定着ローラ2から放射される赤外線を非接触式温度センサ1で受光し、受光した赤外線に応じた電気信号を出力してその電気信号に基づき熱源をオンオフして定着ローラ2の表面温度を一定範囲内に維持していた。
【0014】
【発明が解決しようとする課題】
ところで、非接触式温度センサ1には、焦電型センサ、サーモパイルなどを用いる。そのうち、サーモパイルは、素子の環境温度依存性が高く、素子自身の温度が変化すると出力も変化してしまうという特徴がある。
【0015】
一般には、定着ローラの温度は、次の式により求められる。
Vout=A×(Tb×Ts
ここで、Vout:非接触式温度センサ1の端子出力電圧
Tb:定着ローラ2の温度(K)
Ts:サーモパイル温度(K)
【0016】
このため、通常の場合、非接触式温度センサ1の内部に、図示しない温度補償用のサーミスタを内蔵し、サーミスタの出力を持ってサーモパイルの温度を認識し、補正を行うのが一般的である。このように、サーモパイルは、周囲の温度の影響を受けることから、サーミスタなどを用いて周囲の温度を検知して温度補償を行っていた。
【0017】
ところが、サーミスタは、温度応答性が悪いことから、急激に周囲温度が変化したときには、それに追従できなくなり、定着ローラ2の温度を正確に検知できなくなって定着温度の制御精度が悪くなる問題があった。
【0018】
一方、例えば電子写真式の画像形成装置では、オフセット画像を防止すべく、定着ローラ2の表面にシリコンオイルをわずかに塗布したり、トナー中にワックスを含有したりして、離型性を向上している。しかし、これらのシリコンオイルやワックスなどは、定着装置の熱によって蒸発してガス化し、画像形成装置本体内を浮遊する。また、画像形成時には、浮遊トナー等が発生し、画像形成装置本体内においてファンによって攪拌される。
【0019】
そして、長期の使用により、それらの浮遊物が非接触式温度センサ1の検知面に付着し、その検知面を汚して赤外線入射量を変化し、出力値を変化して実際の温度より高く検知したり低く検知したりし、定着温度が目標値よりも低くなったり高くなったりする問題があった。
【0020】
実験によると、汚れの初期においては、サーモパイルの出力が増加する。これは、ワックス等の汚れが検知面に非常に薄く付いてワックス表面の微細な凹凸により赤外線検知領域外からも赤外線を拾い、サーモパイルの出力が上昇するものと考えられる。そして、さらに汚れが検知面に付着すると、赤外線が吸収されてサーモパイルの出力が低下する。
【0021】
例えば、180℃を定着温度とし、それに相当するVoutが2Vとしたとき、定着ローラ2の温度が180℃であったにもかかわらず、初期汚れによって2.2Vに出力が上がったとする。つまり、検知温度が0.2V高くなり、2Vに戻そうと制御が働き、結果として160℃近くで定着制御することとなる。
【0022】
この汚れを放置しておくと、やがてはVoutが低下しはじめ、180℃の検知温度に対してついには1.8Vになったとする。すると、2Vに戻そうとする制御が働き、定着ローラ2の温度が上げられ、結果として200℃近くで定着制御することになる。
【0023】
そこで、この発明の第1の目的は、非接触式温度センサを用いる温度検知装置において、環境温度変化や検知面の汚れなどによる検知誤差の発生を防止することにある。
【0024】
この発明の第2の目的は、定着装置において、環境温度変化や検知面の汚れなどによる検知誤差の発生を防止して正確な温度制御を行うことにある。
【0025】
この発明の第3の目的は、画像形成装置において、環境温度変化や検知面の汚れなどによる検知誤差の発生を防止して正確な定着温度制御を行い、画像品質を向上することにある。
【0026】
この発明の第4の目的は、非接触式の温度センサを用いる温度検知方法において、環境温度変化や検知面の汚れなどによる検知誤差の発生を防止することにある。
【0027】
【課題を解決するための手段】
そのため、請求項1に記載の発明は、上述した第1の目的を達成すべく、温度検知装置にあって、複数の測定対象の温度を測定する非接触式温度センサを備えるとともに、複数の測定対象のいくつかの測定結果温度を基に他の測定対象の測定結果温度を補正する補正回路を設ける、ことを特徴とする。
【0028】
請求項2に記載の発明は、上述した第1の目的を達成すべく、請求項1に記載の温度検知装置において、非接触式温度センサを移動して複数の測定対象の温度を測定する、ことを特徴とする。
【0029】
請求項3に記載の発明は、上述した第1の目的を達成すべく、請求項1に記載の温度検知装置において、複数の測定対象を非接触式温度センサの赤外線検知領域内に移動して複数の測定対象の温度を測定する、ことを特徴とする。
【0030】
請求項4に記載の発明は、上述した第1の目的を達成すべく、請求項1ないし3のいずれか1に記載の温度検知装置において、複数の測定対象として、基準温度検知の対象である基準測定対象と、温度検知の対象である目標測定対象とを備える、ことを特徴とする。
【0031】
請求項5に記載の発明は、上述した第1の目的を達成すべく、請求項4に記載の温度検知装置において、基準測定対象の基準温度を検知する接触式温度センサを備える、ことを特徴とする。
【0032】
請求項6に記載の発明は、上述した第1の目的を達成すべく、請求項5に記載の温度検知装置において、接触式温度センサを非接触式温度センサの赤外線検知領域内に設ける、ことを特徴とする。
【0033】
請求項7に記載の発明は、上述した第1の目的を達成すべく、請求項4に記載の温度検知装置において、基準測定対象と目標測定対象の測定表面性状をほぼ同一とする、ことを特徴とする。
【0034】
請求項8に記載の発明は、上述した第2の目的を達成すべく、定着装置にあって、請求項1ないし7のいずれか1に記載の温度検知装置を備え、補正回路により補正して得た検知温度に基づき定着温度を制御する、ことを特徴とする。
【0035】
請求項9に記載の発明は、上述した第3の目的を達成すべく、画像形成装置にあって、請求項8に記載の定着装置を備える、ことを特徴とする。
【0036】
請求項10に記載の発明は、上述した第4の目的を達成すべく、温度検知方法にあって、非接触式温度センサで複数の測定対象の温度を測定し、次いでそのうちのいくつかの測定対象の測定結果温度を基に他の測定対象の測定結果温度を補正する、ことを特徴とする。
【0037】
【発明の実施の形態】
以下、図面を参照しつつ、この発明の実施の形態につき説明する。
図1には、電子写真式コピー機の要部の概略構成を示す。
【0038】
図中符号10は、ドラム状の像担持体である。像担持体10のまわりには、その像担持体10の表面を一様に帯電する帯電装置11、像担持体10の表面に、レーザ光Lを照射して書込みを行い、静電潜像を形成する不図示の露光装置、像担持体10の表面にトナーを付着することにより、その像担持体10表面の静電潜像を現像してトナー画像を形成する現像装置12、転写位置aでバイアス電圧を印加して、その像担持体10表面に形成したトナー画像を、用紙・OHPフィルム等のシート材に転写する転写装置13、画像転写後の像担持体10表面からシート材を分離する不図示の分離部材、画像転写後に像担持体10表面に残留するトナーを除去するクリーニング装置14、除電光を照射して画像転写後の像担持体10表面の残留電位を除去する不図示の除電装置などを設ける。
【0039】
像担持体10の下側には、像担持体10と転写装置13間の転写位置aを通り、図中右から左にシート材を搬送するシート搬送路15を形成する。シート搬送路15に沿って、転写位置aの上流には、搬送するシート材をガイドする一対のシートガイド板16、シート材の先端を突き当てて止め、像担持体10表面のトナー画像にタイミングを合わせて回転してシート材を送り出す一対のレジストローラ17を配置し、転写位置aの下流には、画像転写後のシート材に熱と圧力とを加えて転写画像を定着する定着装置18を配置する。
【0040】
そして、原稿画像をシート材にコピーするときは、像担持体10を時計まわりに回転し、帯電装置11でバイアス電圧を印加し、その像担持体10表面を一様に帯電する。次いで、不図示の原稿読取装置で読み取った原稿画像情報に基づき不図示の露光装置でレーザ光Lを照射して書込みを行い、像担持体10表面に静電潜像を形成する。それから、現像装置12でトナーを付着してその静電潜像を現像し、像担持体10表面にトナー画像を形成する。
【0041】
一方、シート材は、不図示のシートカセット等から繰り出してシート搬送路15に入れ、そのシート搬送路15を通して搬送し、一対のシートガイド板16で案内して先端を一対のレジストローラ17間に突き当てて止める。そして、上述した像担持体10表面のトナー画像にタイミングを合わせて一対のレジストローラ17を回転してシート材を送り出し、像担持体10と転写装置13間の転写位置aへと送り込む。
【0042】
その後、転写装置13にバイアス電圧を印加し、転写位置aで像担持体10表面のトナー画像をシート材に転写する。画像転写後のシート材は、不図示の分離部材で、像担持体10表面から分離する。そして、画像転写後のシート材を定着装置18に入れ、そこで熱と圧力とを加えて転写画像を定着する。画像定着後のシート材は、外部に排出して不図示の排紙スタック部上にスタックする。
【0043】
他方、画像転写後の像担持体10表面は、クリーニング装置14で清掃し、転写されずに像担持体10表面に残留するトナーを除去する。それから、不図示の除電装置で除電光を照射して初期化し、画像転写後の像担持体10表面の残留電位を除去して、帯電からはじまる再度の画像形成に備える。
【0044】
図2には、図1に示すコピー機に備える定着装置18の概要構成を示す。
【0045】
図1のコピー機に備える定着装置18は、ローラ定着方式であり、定着ローラ20とそれに押し当てる加圧ローラ21とを備える。定着ローラ20内には、ハロゲンヒータ等の熱源22を設ける。定着ローラ20の周面には、非接触式温度センサ50を対向して設ける。
【0046】
図3には非接触式温度センサ50の外観を、図4にはその縦断面を示す。
【0047】
これらの図から判るとおり、非接触式温度センサ50は、例えば、座板51上に、赤外線を吸収するサーモパイル素子52を取り付け、キャンケース53を被せて構成する。キャンケース53には、受光窓54を設け、その受光窓54を窓部材55で塞いでなる。窓部材55は、シリコンウェハなど、赤外線を透過する部材でつくり、受光窓54に対応する表面部分を検知面56とする。座板51からは、複数の端子57をのばす。
【0048】
図5には、その非接触式温度センサ50を取り付けたセンサモジュールを示す。非接触式温度センサ50は、端子57を半田付けしてプリント回路基板24上に搭載し、そのプリント回路基板24の回路に端子57を電気的に接続してセンサモジュール25を構成する。そして、そのセンサモジュール25を、図2に示すように回動板26に固定し、検知面56を下向きに設置して定着ローラ20の周面に向ける。すなわち、定着ローラ20の周面を、温度検知の対象である目標測定対象とする。
【0049】
回動板26は、支点27を中心として、図2中実線で示す水平位置と鎖線で示す垂直位置とに回動自在とする。そして、垂直位置としたときには、検知面56を横向きにして測定面28に向ける。測定面28は、基準温度を検知する基準測定対象であり、ローラ面として、目標測定対象である定着ローラ20の周面と互いの測定表面性状をほぼ同一とし、放射率が同じになるようにする。
【0050】
その測定面28には、基準温度を検知する、サーミスタ等の接触式温度センサ30を備える。この接触式温度センサ30は、非接触式温度センサ50の赤外線検知領域58内に設ける。そして、測定面28と定着ローラ20の周面との間には、熱の伝達を遮断する熱遮蔽部材29を設ける。
【0051】
一方、非接触式温度センサ50には、接触式温度センサ30の出力を用いて非接触式温度センサ50の出力を補正する補正回路32を接続する。補正回路32には、それにより補正して得た検知温度に基づき熱源22をオンオフして定着温度を制御する制御回路33を接続する。
【0052】
ところで、上述した例では、非接触式温度センサ50を移動して基準測定対象と目標測定対象の2つの測定対象の温度を測定した。しかし、反対にいくつかの測定対象を非接触式温度センサ50の赤外線検知領域58内に移動して複数の測定対象の温度を測定するようにしてもよい。
【0053】
例えば図6に示すように、基準板35をスライドして非接触式温度センサ50の赤外線検知領域58内に入れ、非接触式温度センサ50で、目標測定対象である定着ローラ20の周面と、基準測定対象である基準板35の測定面28双方の温度を測定するようにしてもよい。この図6には、対応する部分に、上述した例と同一の符号を付す。
【0054】
そして、図2および図6に示す例では、ともに、定着ローラ20の回転とともに加圧ローラ21を従動回転し、それら定着ローラ20と加圧ローラ21のニップ間にシート材Sを通して図中矢示方向に搬送しながら熱と圧力とを加え、該定着装置18でシート材S上の未定着トナー画像36を融着してシート材Sに定着する。
【0055】
図7には、上述した図2や図6に示すような定着装置18における定着温度検知のフローチャートを示す。
【0056】
まず、定着装置18は、初期設定で、補正係数Dを0とする(ステップS1)。そして、コピー機の電源スイッチがオン操作されると(ステップS2)、コピー機の電源をオンするとともに、定着ローラ20の熱源22をオンする(ステップS3)。それから、温度測定を開始し、定着ローラ20から放射された赤外線を、キャンケース53の受光窓54から窓部材55を透してサーモパイル素子52に照射する。サーモパイル素子52の感熱部は、熱電対で構成するから、温度応答性は数msであり、高速立ち上げ時の温度検知にも問題なく追従することができる。そして、非接触式温度センサ50の出力を補正回路32に入れ、補正係数Dを用いて補正することにより定着ローラ20の温度を検知する(ステップS4)。
【0057】
はじめは、補正係数Dは0であるから、補正回路32で補正は行わず、非接触式温度センサ50のセンサ出力がそのまま検知温度となり、それに基づき制御回路33で熱源22をオンオフして定着ローラ20の定着温度を制御する。
【0058】
その後、コピー機の電源スイッチがオフ操作されると(ステップS5)、基準測定対象である測定面28の測定状態となり(ステップS6)、接触式温度センサ30により測定面28の温度測定を行うとともに(ステップS7)、回動板26を図2に示す例では垂直位置とし、図6に示す例では基準板35を赤外線検知領域に入れ、非接触式温度センサ50により測定面28の温度測定を行う(ステップS8)。
【0059】
そして、その測定結果を補正回路32に入れ、サーモパイル素子52の出力1℃あたりの測定誤差を求めることから、新たな補正係数D′を算出する(ステップS9)。次いで、今の補正係数Dと新たな補正係数D′とを比較し(ステップS10)、それらの差が既定値以上のときは、今の補正係数Dを新たな補正係数D′に変更し(ステップS11)、既定値以下のときには、今の補正係数Dのまま、次の目標測定対象である定着ローラ20周面の温度測定状態とし(ステップS12)、コピー機の電源をオフし(ステップS13)、ステップS2に戻す。
【0060】
補正係数を新たな補正係数D′に変更したときは、その後はステップS4でその新たな補正係数を用いて非接触式温度センサ50の出力の補正を行い、目標測定対象である定着ローラ20周面の温度検知を行う。
【0061】
このように、非接触式温度センサ50の出力補正は、定着ローラ20周辺の温度変化が安定しているコピー機の電源オフの直前とすることが好ましい。
【0062】
次に、補正係数Dの求め方について、具体的に説明する。
いま、それぞれ以下のように設定する。
測定面28の測定値として、
接触式温度センサ30の出力温度換算値:T0
非接触式温度センサ50の出力温度換算値:Tx1
非接触式温度センサ50に内蔵する図示しない温度補償用サーミスタの出力温度換算値:Ta1
とする。
【0063】
また、定着ローラ20周面の測定値として、
非接触式温度センサ50の出力温度換算値:Tx2
非接触式温度センサ50に内蔵する温度補償用サーミスタの出力温度換算値:Ta2
とする。
【0064】
すると、例えば検知面56の汚れなどに起因してサーモパイル素子52に出力異常を発生することがあるが、そのときの非接触式温度センサ50の出力誤差は、サーモパイル素子52の出力(センサ出力−サーミスタ出力)にほぼ比例することから、
測定面28の温度測定時におけるサーモパイル素子52の出力は(Tx1−Ta1)、定着ローラ20周面の温度測定時におけるサーモパイル素子52の出力は(Tx2−Ta2)となる。一方、測定面28の温度測定時における非接触式温度センサ50の出力誤差は、(Tx1−T0)となる。
【0065】
そこで、測定面28の温度測定時における非接触式温度センサ50の出力誤差(Tx1−T0)から、定着ローラ20周面の温度測定時における非接触式温度センサ50の出力を補正する場合、測定面28と定着ローラ20周面の温度測定時におけるサーモパイル素子52の出力の比率に応じて誤差から補正値を計算することができる。
【0066】
すなわち、補正係数Dは、サーモパイル素子52の出力1℃あたりの測定誤差である
D=(Tx1−T0)/(Tx2−Ta2)
となる。
【0067】
定着ローラ20周面の温度測定時における非接触式温度センサ50の出力補正量は、
Tv=D(Tx2−Ta2)
となる。
【0068】
ここで、それぞれの値が図8の値であったとすると、
D=(Tx1−T0)/(Tx1−Ta1)=(84−90)/(84−44)=6/40となる。よって、
Tv=D(Tx2−Ta2)=(6/40)×(170−90)=12
【0069】
定着ローラ20周面の補正後の温度は、
Tx2′=Tx2+Tv=170+12=182
となる。
【0070】
さて、上述した例では、複数の測定対象が、基準温度検知の対象である測定面(基準測定対象)28と、温度検知の対象である定着ローラ20周面(目標測定対象)である場合について説明した。しかし、非接触式温度センサで3つ以上の複数の測定対象の温度を測定し、そのいくつかの測定結果温度を基に他の測定対象の測定結果温度を補正するようにしてもよい。
【0071】
また、上述した例では、ローラ定着方式の定着装置18に適用した場合について説明したが、ローラ定着方式に限らず、ベルト定着方式や、最近急速に普及してきた誘導加熱定着方式などの熱定着装置にも同様に適用することができる。さらに、この発明は、定着装置に限らず、画像形成装置、電子調理器、エアコンディショナなどに備える他の温度検知装置や温度検知方法にも適用することができる。
【0072】
【発明の効果】
以上説明したとおり、請求項1に記載の発明によれば、複数の測定対象の温度を測定する非接触式温度センサを備えるとともに、複数の測定対象のいくつかの測定結果温度を基に他の測定対象の測定結果温度を補正する補正回路を設けるので、非接触式温度センサを用いる温度検知装置において、基準測定対象となる複数の測定対象のいくつかの測定結果温度を用いて、目標測定対象となる他の測定対象の測定結果温度を補正して温度を検知し、環境温度変化や検知面の汚れなどによる検知誤差の発生を防止することができる。
【0073】
請求項2に記載の発明によれば、非接触式温度センサを移動して複数の測定対象の温度を測定するので、非接触式温度センサを移動することにより基準測定対象と目標測定対象の温度測定を行い、基準測定対象の測定結果温度を用いて目標測定対象の測定結果温度を補正して温度を検知し、環境温度変化や検知面の汚れなどによる検知誤差の発生を防止することができる。
【0074】
請求項3に記載の発明によれば、複数の測定対象を非接触式温度センサの赤外線検知領域内に移動して複数の測定対象の温度を測定するので、複数の測定対象を移動することにより基準測定対象と目標測定対象の温度測定を行い、基準測定対象の測定結果温度を用いて目標測定対象の測定結果温度を補正して温度を検知し、環境温度変化や検知面の汚れなどによる検知誤差の発生を防止することができる。
【0075】
請求項4に記載の発明によれば、複数の測定対象として、基準温度検知の対象である基準測定対象と、温度検知の対象である目標測定対象とを備えるので、2つの測定対象の温度測定を行うだけで、環境温度変化や検知面の汚れなどによる検知誤差の発生を防止することができる。
【0076】
請求項5に記載の発明によれば、基準測定対象の基準温度を検知する接触式温度センサを備えるので、接触式温度センサを用いて基準測定対象の温度測定を正確に行い、目標測定対象の測定結果温度を補正して温度を検知し、環境温度変化や検知面の汚れなどによる検知誤差の発生を一層確実に防止することができる。
【0077】
請求項6に記載の発明によれば、接触式温度センサを非接触式温度センサの赤外線検知領域内に設けるので、接触式温度センサと非接触式温度センサの温度検知領域を一致させて正確な温度補正を行い、環境温度変化や検知面の汚れなどによる検知誤差の発生を一層確実に防止することができる。
【0078】
請求項7に記載の発明によれば、基準測定対象と目標測定対象の測定表面性状をほぼ同一とするので、それら測定対象の放射率を同じくして正確な温度補正を行い、環境温度変化や検知面の汚れなどによる検知誤差の発生を一層確実に防止することができる。
【0079】
請求項8に記載の発明によれば、定着装置にあって、請求項1ないし7のいずれか1に記載の温度検知装置を備え、補正回路により補正して得た検知温度に基づき定着温度を制御するので、上記各効果を有する温度検知装置を備えた定着装置を提供することができる。
【0080】
請求項9に記載の発明によれば、画像形成装置にあって、請求項8に記載の定着装置を備えるので、上記効果を有する定着装置を備えた画像形成装置を提供することができる。
【0081】
請求項10に記載の発明によれば、温度検知方法にあって、非接触式温度センサで複数の測定対象の温度を測定し、次いでそのうちのいくつかの測定対象の測定結果温度を基に他の測定対象の測定結果温度を補正するので、非接触式温度センサを用いる温度検知装置において、基準測定対象となる複数の測定対象のいくつかの測定結果温度を用いて、目標測定対象となる他の測定対象の測定結果温度を補正して温度を検知し、環境温度変化や検知面の汚れなどによる検知誤差の発生を防止することができる。
【図面の簡単な説明】
【図1】電子写真式コピー機の要部の概略構成である。
【図2】そのコピー機に備える定着装置の概要構成図である。
【図3】その定着装置に備える非接触式温度センサの斜視図である。
【図4】その縦断面図である。
【図5】その非接触式温度センサを実装したセンサモジュールの縦断面図である。
【図6】定着装置の他例の概要構成図である。
【図7】図2や図6に示すような定着装置における定着温度検知のフローチャートである。
【図8】測定面および定着ローラ周面における温度測定時の出力温度の一例を示すグラフである。
【図9】従来の定着装置の概要構成図である。
【符号の説明】
18 定着装置
20 定着ローラ
28 測定面(基準測定対象)
30 接触式温度センサ
32 補正回路
50 非接触式温度センサ
58 赤外線検知領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an image forming apparatus for recording an image on a sheet material such as a paper / OHP film, such as a copying machine, a printer, a facsimile, or a complex machine thereof. The present invention relates to a fixing device for fixing an unfixed image on a sheet material in such an image forming apparatus. In addition to such a fixing device, the present invention also relates to a temperature detection device and a temperature detection method provided in an electronic cooker, an air conditioner, and the like. In particular, the present invention relates to a non-contact type temperature detection device and a temperature detection method suitable for use in an environment where the detection surface is easily contaminated.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in an image forming apparatus using, for example, an electrophotographic system, a toner image is formed on an image carrier, the toner image is transferred to a sheet material, and the sheet material after the image transfer is placed in a fixing device. Then, heat and pressure were applied to fix the unfixed toner image on the sheet material on the sheet material and then discharged to the outside.
[0003]
In general, a fixing device is a roller fixing method in which a pressure roller is pressed against a fixing roller having an internal heat source. The fixing belt is wound around a fixing roller and a heating roller having an internal heat source, and the fixing belt is sandwiched between the fixing rollers. A belt fixing method in which a pressure roller is pressed against a roller, and a heat fixing device such as an induction heating fixing method described in Japanese Patent Laid-Open Nos. 2001-242732 and 2001-13805, which have been rapidly spreading recently, have been used.
[0004]
In the belt fixing method, the heat capacity of the fixing roller can be reduced to increase the rise time of the fixing device. In the induction heating fixing method, it is possible to increase the thermal efficiency, reduce the power consumption of the fixing device, and increase the energy saving effect.
[0005]
In such a heat fixing device, the temperature of the fixing roller is detected by a temperature sensor, and the fixing temperature is controlled by turning on and off the heat source based on the detected temperature. The temperature sensor includes a contact type and a non-contact type. In a contact-type temperature sensor, generally, a thermistor is in contact with the surface of a heating rotating member such as a fixing roller or a fixing belt to detect the temperature.
[0006]
However, since the contact-type temperature sensor contacts the thermistor with the heating rotary member, there is a risk of scratching the heating rotary member. When the thermal sensor is scratched, the heating rotary member or the fixing device having the unit is replaced with a new unit. It has to be replaced with a new one, and there is a problem that the maintenance cost increases, which is not preferable in terms of resource saving.
[0007]
Further, since the thermistor is normally provided in the fixing device, when the fixing device is replaced and discarded, the thermistor is also discarded at the same time. This also raises a problem of increasing the maintenance cost, which is also preferable from the viewpoint of saving resources. It wasn't.
[0008]
In recent years, more and more image forming apparatuses have been used in order to save energy in standby mode in standby mode and start up at high speed during use, and a temperature sensor with good temperature response is required. However, the thermistor has poor responsiveness and it is difficult to perform precise control.
[0009]
[Patent Document 1] JP-A-60-134271
On the other hand, the non-contact type temperature sensor detects the temperature by directing the thermopile toward the surface of a heating rotation member such as a fixing roller, as described in Patent Document 1, for example. Until now, it has not been commercialized because the cost of elements, control circuits, etc. is increased, or the detection surface is contaminated with time and the temperature detection accuracy is lowered.
[0010]
However, in recent years, with the rapid spread of color image forming apparatuses, there is a strong demand for commercialization of non-contact temperature sensors. This is because the color image forming apparatus uses silicon rubber on the surface of a rotating heating member such as a roller or a belt, which is expensive, but it is easily damaged, so there is a risk of scratching it. Because I do not want to use. Further, as described above, there are an increasing number of image forming apparatuses that are started up and used at high speed during use, and a temperature sensor with good temperature responsiveness has been demanded.
[0011]
FIG. 9 shows a schematic configuration of a roller fixing type fixing device using the non-contact type temperature sensor 1. Reference numeral 2 in the figure denotes a fixing roller having a heat source 3 therein. The pressure roller 4 was pressed against the fixing roller 2. As the non-contact temperature sensor 1, a thermopile or the like is used.
[0012]
Then, the pressure roller 4 is driven to rotate along with the rotation of the fixing roller 2, and heat and pressure are applied while being conveyed in the direction indicated by the arrow through the sheet material 5 between the nips of the fixing roller 2 and the pressure roller 4, The unfixed toner image 6 on the sheet material 5 was fused and fixed on the sheet material 5 by the fixing device.
[0013]
At this time, infrared light radiated from the fixing roller 2 is received by the non-contact temperature sensor 1, an electric signal corresponding to the received infrared light is output, a heat source is turned on / off based on the electric signal, and the surface of the fixing roller 2 The temperature was maintained within a certain range.
[0014]
[Problems to be solved by the invention]
By the way, the non-contact temperature sensor 1 uses a pyroelectric sensor, a thermopile, or the like. Among them, the thermopile is highly dependent on the environmental temperature of the element, and the output is also changed when the temperature of the element itself is changed.
[0015]
In general, the temperature of the fixing roller is obtained by the following equation.
Vout = A × (Tb 4 × Ts 4 )
Where Vout: terminal output voltage of the non-contact temperature sensor 1
Tb: temperature of the fixing roller 2 (K)
Ts: Thermopile temperature (K)
[0016]
For this reason, generally, a non-illustrated temperature compensation thermistor is built in the non-contact temperature sensor 1, and the temperature of the thermopile is recognized and corrected by using the output of the thermistor. . Thus, since the thermopile is affected by the ambient temperature, the ambient temperature is detected by using a thermistor or the like to perform temperature compensation.
[0017]
However, the thermistor has poor temperature responsiveness, so that when the ambient temperature changes suddenly, it cannot follow the temperature, and the temperature of the fixing roller 2 cannot be detected accurately, resulting in poor fixing temperature control accuracy. It was.
[0018]
On the other hand, in an electrophotographic image forming apparatus, for example, a slight amount of silicone oil is applied to the surface of the fixing roller 2 or a wax is contained in the toner in order to prevent an offset image, thereby improving releasability. is doing. However, these silicon oil and wax are evaporated and gasified by the heat of the fixing device, and float in the image forming apparatus main body. Further, floating toner or the like is generated during image formation, and is agitated by a fan in the image forming apparatus main body.
[0019]
And by long-term use, those floating substances adhere to the detection surface of the non-contact type temperature sensor 1, stain the detection surface, change the amount of incident infrared rays, change the output value and detect higher than the actual temperature There is a problem that the fixing temperature becomes lower or higher than the target value.
[0020]
According to experiments, the output of the thermopile increases in the early stage of the dirt. This is presumably because dirt such as wax adheres very thinly to the detection surface, and infrared rays are picked up from outside the infrared detection region due to fine irregularities on the wax surface, and the output of the thermopile increases. If dirt further adheres to the detection surface, infrared rays are absorbed and the output of the thermopile is reduced.
[0021]
For example, when the fixing temperature is 180 ° C. and the corresponding Vout is 2V, the output is increased to 2.2V due to initial contamination even though the temperature of the fixing roller 2 is 180 ° C. That is, the detected temperature increases by 0.2V, and the control works to return to 2V. As a result, the fixing control is performed near 160 ° C.
[0022]
If this dirt is left unattended, it will be assumed that Vout begins to drop and eventually reaches 1.8 V with respect to the detected temperature of 180 ° C. Then, the control to return to 2 V is activated, and the temperature of the fixing roller 2 is raised, and as a result, the fixing control is performed near 200 ° C.
[0023]
Accordingly, a first object of the present invention is to prevent the occurrence of detection errors due to environmental temperature changes, detection surface contamination, and the like in a temperature detection device using a non-contact temperature sensor.
[0024]
A second object of the present invention is to perform accurate temperature control in a fixing device by preventing the occurrence of detection errors due to environmental temperature changes, detection surface contamination, and the like.
[0025]
A third object of the present invention is to improve the image quality by performing accurate fixing temperature control by preventing the occurrence of detection errors due to environmental temperature changes and contamination of the detection surface in the image forming apparatus.
[0026]
A fourth object of the present invention is to prevent the occurrence of detection errors due to environmental temperature changes, detection surface contamination, and the like in a temperature detection method using a non-contact temperature sensor.
[0027]
[Means for Solving the Problems]
Therefore, in order to achieve the first object described above, the invention described in claim 1 is a temperature detection device, which includes a non-contact temperature sensor that measures the temperature of a plurality of measurement objects, and a plurality of measurements. A correction circuit for correcting the measurement result temperature of another measurement object based on some measurement result temperatures of the object is provided.
[0028]
According to a second aspect of the present invention, in order to achieve the first object described above, in the temperature detection device according to the first aspect, the temperature of a plurality of measurement objects is measured by moving a non-contact temperature sensor. It is characterized by that.
[0029]
According to a third aspect of the present invention, in order to achieve the first object described above, in the temperature detection device according to the first aspect, a plurality of measurement objects are moved into the infrared detection region of the non-contact type temperature sensor. Measure the temperature of a plurality of measuring objects.
[0030]
According to a fourth aspect of the present invention, in order to achieve the first object described above, in the temperature detection device according to any one of the first to third aspects, the measurement target is a reference temperature detection target. A reference measurement object and a target measurement object that is a temperature detection object are provided.
[0031]
According to a fifth aspect of the present invention, in order to achieve the first object described above, the temperature detection device according to the fourth aspect further comprises a contact-type temperature sensor that detects a reference temperature of a reference measurement object. And
[0032]
According to a sixth aspect of the present invention, in order to achieve the first object described above, in the temperature detecting device according to the fifth aspect, the contact temperature sensor is provided in the infrared detection region of the non-contact temperature sensor. It is characterized by.
[0033]
According to a seventh aspect of the present invention, in order to achieve the first object described above, in the temperature detecting device according to the fourth aspect, the measurement surface properties of the reference measurement target and the target measurement target are substantially the same. Features.
[0034]
According to an eighth aspect of the present invention, in order to achieve the second object, the fixing device includes the temperature detecting device according to any one of the first to seventh aspects, and is corrected by a correction circuit. The fixing temperature is controlled based on the obtained detected temperature.
[0035]
According to a ninth aspect of the present invention, in order to achieve the third object described above, the image forming apparatus includes the fixing device according to the eighth aspect.
[0036]
According to a tenth aspect of the present invention, there is provided a temperature detection method for measuring the temperature of a plurality of objects to be measured with a non-contact type temperature sensor, and then measuring some of them. The measurement result temperature of another measurement object is corrected based on the measurement result temperature of the object.
[0037]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of a main part of an electrophotographic copying machine.
[0038]
Reference numeral 10 in the figure denotes a drum-shaped image carrier. Around the image carrier 10, a charging device 11 that uniformly charges the surface of the image carrier 10, and writing is performed by irradiating the surface of the image carrier 10 by irradiating a laser beam L, thereby generating an electrostatic latent image. An exposure device (not shown) to be formed, a developing device 12 that develops an electrostatic latent image on the surface of the image carrier 10 by attaching toner to the surface of the image carrier 10, and a transfer position a A bias voltage is applied to transfer the toner image formed on the surface of the image carrier 10 to a sheet material such as paper or an OHP film, and the sheet material is separated from the surface of the image carrier 10 after image transfer. A separation member (not shown), a cleaning device 14 that removes toner remaining on the surface of the image carrier 10 after image transfer, and a static elimination (not shown) that removes residual potential on the surface of the image carrier 10 after image transfer by irradiating with neutralizing light. Equipment is provided.
[0039]
A sheet conveyance path 15 is formed below the image carrier 10 so as to pass the transfer position a between the image carrier 10 and the transfer device 13 and convey the sheet material from right to left in the drawing. Along the sheet conveyance path 15, upstream of the transfer position a, a pair of sheet guide plates 16 that guide the sheet material to be conveyed, and the leading edge of the sheet material are abutted and stopped, and timing is applied to the toner image on the surface of the image carrier 10. A pair of registration rollers 17 that rotate and feed the sheet material are arranged, and a fixing device 18 that fixes the transferred image by applying heat and pressure to the sheet material after image transfer is disposed downstream of the transfer position a. Deploy.
[0040]
When copying a document image onto a sheet material, the image carrier 10 is rotated clockwise, and a bias voltage is applied by the charging device 11 to uniformly charge the surface of the image carrier 10. Next, writing is performed by irradiating a laser beam L with an exposure device (not shown) based on document image information read by a document reading device (not shown) to form an electrostatic latent image on the surface of the image carrier 10. Then, the developing device 12 attaches toner, develops the electrostatic latent image, and forms a toner image on the surface of the image carrier 10.
[0041]
On the other hand, the sheet material is unwound from a sheet cassette (not shown), put into the sheet conveyance path 15, conveyed through the sheet conveyance path 15, guided by the pair of sheet guide plates 16, and the leading end between the pair of registration rollers 17. Stop by hitting. Then, the pair of registration rollers 17 are rotated in synchronization with the toner image on the surface of the image carrier 10 described above to feed the sheet material, and are sent to the transfer position a between the image carrier 10 and the transfer device 13.
[0042]
Thereafter, a bias voltage is applied to the transfer device 13, and the toner image on the surface of the image carrier 10 is transferred to the sheet material at the transfer position a. The sheet material after the image transfer is separated from the surface of the image carrier 10 by a separation member (not shown). Then, the sheet material after the image transfer is put into the fixing device 18 where heat and pressure are applied to fix the transferred image. The sheet material after image fixing is discharged to the outside and stacked on a discharge stack unit (not shown).
[0043]
On the other hand, the surface of the image carrier 10 after image transfer is cleaned by a cleaning device 14 to remove toner remaining on the surface of the image carrier 10 without being transferred. Then, it is initialized by irradiating with a static elimination light with a static elimination device (not shown), and the residual potential on the surface of the image carrier 10 after the image transfer is removed to prepare for a second image formation starting from charging.
[0044]
FIG. 2 shows a schematic configuration of the fixing device 18 provided in the copier shown in FIG.
[0045]
The fixing device 18 provided in the copier of FIG. 1 is a roller fixing method, and includes a fixing roller 20 and a pressure roller 21 pressed against the fixing roller 20. A heat source 22 such as a halogen heater is provided in the fixing roller 20. A non-contact temperature sensor 50 is provided on the peripheral surface of the fixing roller 20 so as to face the fixing roller 20.
[0046]
FIG. 3 shows an appearance of the non-contact temperature sensor 50, and FIG. 4 shows a longitudinal section thereof.
[0047]
As can be seen from these drawings, the non-contact temperature sensor 50 is configured, for example, by mounting a thermopile element 52 that absorbs infrared rays on a seat plate 51 and covering a can case 53. The can case 53 is provided with a light receiving window 54, and the light receiving window 54 is closed by a window member 55. The window member 55 is made of a member that transmits infrared rays, such as a silicon wafer, and a surface portion corresponding to the light receiving window 54 is used as a detection surface 56. A plurality of terminals 57 are extended from the seat plate 51.
[0048]
FIG. 5 shows a sensor module to which the non-contact temperature sensor 50 is attached. In the non-contact temperature sensor 50, the terminal 57 is soldered and mounted on the printed circuit board 24, and the sensor module 25 is configured by electrically connecting the terminal 57 to the circuit of the printed circuit board 24. Then, the sensor module 25 is fixed to the rotating plate 26 as shown in FIG. 2, and the detection surface 56 is placed downward and directed toward the peripheral surface of the fixing roller 20. That is, the peripheral surface of the fixing roller 20 is set as a target measurement target that is a temperature detection target.
[0049]
The rotating plate 26 is rotatable about a fulcrum 27 between a horizontal position indicated by a solid line and a vertical position indicated by a chain line in FIG. When the vertical position is set, the detection surface 56 is directed sideways toward the measurement surface 28. The measurement surface 28 is a reference measurement target for detecting the reference temperature, and the surface of the measurement surface 28 and the peripheral surface of the fixing roller 20 that is the target measurement target are substantially the same, and the emissivity is the same. To do.
[0050]
The measurement surface 28 includes a contact temperature sensor 30 such as a thermistor for detecting a reference temperature. The contact temperature sensor 30 is provided in the infrared detection area 58 of the non-contact temperature sensor 50. A heat shielding member 29 that blocks heat transfer is provided between the measurement surface 28 and the peripheral surface of the fixing roller 20.
[0051]
On the other hand, the non-contact temperature sensor 50 is connected to a correction circuit 32 that corrects the output of the non-contact temperature sensor 50 using the output of the contact temperature sensor 30. A control circuit 33 is connected to the correction circuit 32 for controlling the fixing temperature by turning on and off the heat source 22 based on the detected temperature obtained by the correction.
[0052]
By the way, in the example mentioned above, the non-contact-type temperature sensor 50 was moved and the temperature of two measuring objects, a reference measuring object and a target measuring object, was measured. However, on the contrary, some measurement objects may be moved into the infrared detection region 58 of the non-contact temperature sensor 50 to measure the temperatures of a plurality of measurement objects.
[0053]
For example, as shown in FIG. 6, the reference plate 35 is slid into the infrared detection region 58 of the non-contact temperature sensor 50, and the non-contact temperature sensor 50 is used to detect the peripheral surface of the fixing roller 20 as a target measurement target. The temperature of both the measurement surfaces 28 of the reference plate 35 that is the reference measurement object may be measured. In FIG. 6, the same reference numerals as those in the above-described example are given to corresponding portions.
[0054]
2 and 6, the pressure roller 21 is driven to rotate along with the rotation of the fixing roller 20, and the sheet material S is passed through the nip between the fixing roller 20 and the pressure roller 21 in the direction indicated by the arrow in the figure. Heat and pressure are applied while being conveyed, and the unfixed toner image 36 on the sheet material S is fused and fixed to the sheet material S by the fixing device 18.
[0055]
FIG. 7 shows a flowchart of fixing temperature detection in the fixing device 18 as shown in FIGS.
[0056]
First, the fixing device 18 sets the correction coefficient D to 0 in the initial setting (step S1). When the power switch of the copier is turned on (step S2), the copier is turned on and the heat source 22 of the fixing roller 20 is turned on (step S3). Then, temperature measurement is started, and infrared rays emitted from the fixing roller 20 are irradiated from the light receiving window 54 of the can case 53 through the window member 55 to the thermopile element 52. Since the thermosensitive element of the thermopile element 52 is composed of a thermocouple, the temperature responsiveness is several ms, and it can follow the temperature detection at the time of high-speed startup without any problem. Then, the temperature of the fixing roller 20 is detected by inputting the output of the non-contact temperature sensor 50 into the correction circuit 32 and correcting it using the correction coefficient D (step S4).
[0057]
Initially, since the correction coefficient D is 0, the correction circuit 32 does not perform correction, and the sensor output of the non-contact temperature sensor 50 becomes the detected temperature as it is. Based on this, the heat source 22 is turned on / off by the control circuit 33, and the fixing roller The fixing temperature of 20 is controlled.
[0058]
Thereafter, when the power switch of the copier is turned off (step S5), the measurement state of the measurement surface 28 which is the reference measurement object is set (step S6), and the temperature of the measurement surface 28 is measured by the contact temperature sensor 30. (Step S7), in the example shown in FIG. 2, the rotating plate 26 is set to the vertical position. In the example shown in FIG. 6, the reference plate 35 is placed in the infrared detection region, and the temperature of the measurement surface 28 is measured by the non-contact temperature sensor 50. Perform (step S8).
[0059]
Then, the measurement result is input to the correction circuit 32, and a measurement error per 1 ° C. output of the thermopile element 52 is obtained, so that a new correction coefficient D ′ is calculated (step S9). Next, the current correction coefficient D is compared with the new correction coefficient D ′ (step S10). When the difference between them is equal to or greater than a predetermined value, the current correction coefficient D is changed to the new correction coefficient D ′ ( In step S11), when the value is equal to or less than the predetermined value, the current correction coefficient D is maintained as the temperature measurement state of the fixing roller 20 peripheral surface as the next target measurement target (step S12), and the power of the copier is turned off (step S13). ), The process returns to step S2.
[0060]
When the correction coefficient is changed to the new correction coefficient D ′, the output of the non-contact type temperature sensor 50 is corrected using the new correction coefficient in step S4, and the fixing roller 20 circumference that is the target measurement target is corrected. Detect surface temperature.
[0061]
As described above, the output correction of the non-contact temperature sensor 50 is preferably performed immediately before turning off the power of the copying machine in which the temperature change around the fixing roller 20 is stable.
[0062]
Next, how to obtain the correction coefficient D will be specifically described.
Now, set as follows.
As a measurement value of the measurement surface 28,
Contact temperature sensor 30 output temperature conversion value: T0
Output temperature converted value of the non-contact type temperature sensor 50: Tx1
Output temperature converted value of a temperature compensation thermistor (not shown) built in the non-contact temperature sensor 50: Ta1
And
[0063]
Further, as a measurement value of the fixing roller 20 circumferential surface,
Non-contact temperature sensor 50 output temperature conversion value: Tx2
Output temperature conversion value of temperature compensation thermistor built in non-contact temperature sensor 50: Ta2
And
[0064]
Then, an output abnormality may occur in the thermopile element 52 due to, for example, contamination of the detection surface 56. The output error of the non-contact type temperature sensor 50 at that time is caused by the output of the thermopile element 52 (sensor output− Because it is almost proportional to thermistor output)
The output of the thermopile element 52 when measuring the temperature of the measurement surface 28 is (Tx1-Ta1), and the output of the thermopile element 52 when measuring the temperature of the peripheral surface of the fixing roller 20 is (Tx2-Ta2). On the other hand, the output error of the non-contact temperature sensor 50 when measuring the temperature of the measurement surface 28 is (Tx1-T0).
[0065]
Therefore, when correcting the output of the non-contact temperature sensor 50 when measuring the temperature of the fixing roller 20 peripheral surface from the output error (Tx1-T0) of the non-contact temperature sensor 50 when measuring the temperature of the measurement surface 28, the measurement is performed. The correction value can be calculated from the error according to the ratio of the output of the thermopile element 52 when measuring the temperature of the surface 28 and the peripheral surface of the fixing roller 20.
[0066]
That is, the correction coefficient D is a measurement error per 1 ° C. output of the thermopile element 52.
D = (Tx1-T0) / (Tx2-Ta2)
It becomes.
[0067]
The output correction amount of the non-contact type temperature sensor 50 at the time of measuring the temperature of the fixing roller 20 is as follows.
Tv = D (Tx2-Ta2)
It becomes.
[0068]
Here, if each value is the value of FIG.
D = (Tx1-T0) / (Tx1-Ta1) = (84-90) / (84-44) = 6/40. Therefore,
Tv = D (Tx2-Ta2) = (6/40) × (170-90) = 12.
[0069]
The temperature after correction of the circumferential surface of the fixing roller 20 is
Tx2 '= Tx2 + Tv = 170 + 12 = 182
It becomes.
[0070]
In the example described above, a plurality of measurement objects are a measurement surface (reference measurement object) 28 that is a reference temperature detection object and a fixing roller 20 circumferential surface (target measurement object) that is a temperature detection object. explained. However, the temperature of three or more measurement objects may be measured with a non-contact type temperature sensor, and the measurement result temperatures of other measurement objects may be corrected based on some of the measurement result temperatures.
[0071]
In the above-described example, the case where the present invention is applied to the roller fixing type fixing device 18 has been described. However, the present invention is not limited to the roller fixing method, but a heat fixing device such as a belt fixing method or an induction heating fixing method that has been rapidly spread recently. It can be similarly applied to. Furthermore, the present invention can be applied not only to the fixing device but also to other temperature detection devices and temperature detection methods provided in an image forming apparatus, an electronic cooking device, an air conditioner, and the like.
[0072]
【The invention's effect】
As described above, according to the first aspect of the present invention, the non-contact type temperature sensor that measures the temperatures of the plurality of measurement objects is provided, and the other measurement results are obtained based on some measurement result temperatures of the plurality of measurement objects. Since a correction circuit for correcting the measurement result temperature of the measurement target is provided, in the temperature detection device using a non-contact type temperature sensor, the target measurement target is measured using several measurement result temperatures of a plurality of measurement targets that are reference measurement targets. It is possible to detect the temperature by correcting the measurement result temperature of the other measurement object to prevent occurrence of a detection error due to environmental temperature change, detection surface contamination, or the like.
[0073]
According to the second aspect of the present invention, since the temperature of the plurality of measurement objects is measured by moving the non-contact temperature sensor, the temperature of the reference measurement object and the target measurement object is moved by moving the non-contact temperature sensor. Measurement is performed and the measurement result temperature of the reference measurement target is used to correct the measurement result temperature of the target measurement target to detect the temperature, thereby preventing detection errors due to environmental temperature changes and detection surface contamination. .
[0074]
According to the invention described in claim 3, since the plurality of measurement objects are moved into the infrared detection region of the non-contact temperature sensor and the temperatures of the plurality of measurement objects are measured, the plurality of measurement objects are moved. Measures the temperature of the reference measurement target and target measurement target, detects the temperature by correcting the measurement result temperature of the target measurement target using the measurement result temperature of the reference measurement target, and detects due to changes in environmental temperature, contamination on the detection surface, etc. Generation of errors can be prevented.
[0075]
According to the invention described in claim 4, since the reference measurement object that is the object of the reference temperature detection and the target measurement object that is the object of the temperature detection are provided as the plurality of measurement objects, the temperature measurement of the two measurement objects It is possible to prevent detection errors due to environmental temperature changes, detection surface contamination, and the like.
[0076]
According to the invention described in claim 5, since the contact type temperature sensor for detecting the reference temperature of the reference measurement object is provided, the temperature measurement of the reference measurement object is accurately performed using the contact type temperature sensor, and the target measurement object is measured. By correcting the measurement result temperature and detecting the temperature, it is possible to more reliably prevent the occurrence of detection errors due to environmental temperature changes, detection surface contamination, and the like.
[0077]
According to the invention described in claim 6, since the contact-type temperature sensor is provided in the infrared detection region of the non-contact type temperature sensor, the temperature detection regions of the contact-type temperature sensor and the non-contact-type temperature sensor are made coincident and accurate. By performing temperature correction, it is possible to more reliably prevent the occurrence of detection errors due to environmental temperature changes, detection surface contamination, and the like.
[0078]
According to the invention described in claim 7, since the measurement surface properties of the reference measurement object and the target measurement object are substantially the same, the temperature emissivity of the measurement object is made the same and an accurate temperature correction is performed, Generation of detection errors due to contamination on the detection surface can be prevented more reliably.
[0079]
According to an eighth aspect of the present invention, there is provided a fixing device comprising the temperature detection device according to any one of the first to seventh aspects, wherein the fixing temperature is determined based on a detected temperature obtained by correction by a correction circuit. Therefore, it is possible to provide a fixing device including a temperature detecting device having the above-described effects.
[0080]
According to the ninth aspect of the present invention, since the image forming apparatus includes the fixing device according to the eighth aspect, it is possible to provide an image forming apparatus including the fixing device having the above effects.
[0081]
According to the invention described in claim 10, in the temperature detection method, the temperature of a plurality of measurement objects is measured by a non-contact temperature sensor, and then, based on the measurement result temperatures of some of the measurement objects, Because the measurement result temperature of the measurement target is corrected, the temperature detection device using the non-contact temperature sensor is used as a target measurement target by using several measurement result temperatures of a plurality of measurement targets that are reference measurement targets. It is possible to correct the measurement result temperature of the object to be measured and detect the temperature, thereby preventing detection errors due to environmental temperature changes and contamination of the detection surface.
[Brief description of the drawings]
FIG. 1 is a schematic configuration of a main part of an electrophotographic copying machine.
FIG. 2 is a schematic configuration diagram of a fixing device provided in the copier.
FIG. 3 is a perspective view of a non-contact temperature sensor provided in the fixing device.
FIG. 4 is a longitudinal sectional view thereof.
FIG. 5 is a longitudinal sectional view of a sensor module on which the non-contact temperature sensor is mounted.
FIG. 6 is a schematic configuration diagram of another example of the fixing device.
FIG. 7 is a flowchart of fixing temperature detection in the fixing device as shown in FIG. 2 or FIG.
FIG. 8 is a graph showing an example of an output temperature at the time of temperature measurement on the measurement surface and the peripheral surface of the fixing roller.
FIG. 9 is a schematic configuration diagram of a conventional fixing device.
[Explanation of symbols]
18 Fixing device
20 Fixing roller
28 Measurement surface (reference measurement object)
30 Contact temperature sensor
32 Correction circuit
50 Non-contact temperature sensor
58 Infrared detection area

Claims (10)

複数の測定対象の温度を測定する非接触式温度センサを備えるとともに、複数の測定対象のいくつかの測定結果温度を基に他の測定対象の測定結果温度を補正する補正回路を設けることを特徴とする、温度検知装置。A non-contact temperature sensor for measuring the temperature of a plurality of measurement objects and a correction circuit for correcting the measurement result temperatures of other measurement objects based on some measurement result temperatures of the plurality of measurement objects are provided. A temperature detector. 前記非接触式温度センサを移動して複数の測定対象の温度を測定することを特徴とする、請求項1に記載の温度検知装置。The temperature detection apparatus according to claim 1, wherein the temperature of the plurality of measurement objects is measured by moving the non-contact temperature sensor. 複数の測定対象を前記非接触式温度センサの赤外線検知領域内に移動して複数の測定対象の温度を測定することを特徴とする、請求項1に記載の温度検知装置。The temperature detection apparatus according to claim 1, wherein a plurality of measurement objects are moved into an infrared detection region of the non-contact temperature sensor to measure temperatures of the plurality of measurement objects. 複数の測定対象として、基準温度検知の対象である基準測定対象と、温度検知の対象である目標測定対象とを備えることを特徴とする、請求項1ないし3のいずれか1に記載の温度検知装置。The temperature detection according to any one of claims 1 to 3, comprising a reference measurement object that is a reference temperature detection object and a target measurement object that is a temperature detection object as the plurality of measurement objects. apparatus. 前記基準測定対象の基準温度を検知する接触式温度センサを備えることを特徴とする、請求項4に記載の温度検知装置。The temperature detection device according to claim 4, further comprising a contact temperature sensor that detects a reference temperature of the reference measurement target. 前記接触式温度センサを前記非接触式温度センサの赤外線検知領域内に設けることを特徴とする、請求項5に記載の温度検知装置。The temperature detection device according to claim 5, wherein the contact temperature sensor is provided in an infrared detection region of the non-contact temperature sensor. 前記基準測定対象と前記目標測定対象の測定表面性状をほぼ同一とすることを特徴とする、請求項4に記載の温度検知装置。The temperature detection device according to claim 4, wherein the measurement surface properties of the reference measurement object and the target measurement object are substantially the same. 請求項1ないし7のいずれか1に記載の温度検知装置を備え、前記補正回路により補正して得た検知温度に基づき定着温度を制御することを特徴とする、定着装置。A fixing device comprising the temperature detecting device according to claim 1, wherein the fixing temperature is controlled based on a detected temperature obtained by correction by the correction circuit. 請求項8に記載の定着装置を備えることを特徴とする、画像形成装置。An image forming apparatus comprising the fixing device according to claim 8. 非接触式温度センサで複数の測定対象の温度を測定し、次いでそのうちのいくつかの測定対象の測定結果温度を基に他の測定対象の測定結果温度を補正することを特徴とする、温度検知方法。Temperature detection characterized by measuring the temperature of several measurement objects with a non-contact temperature sensor and then correcting the measurement result temperatures of other measurement objects based on the measurement result temperatures of some of the measurement objects Method.
JP2003191573A 2003-07-04 2003-07-04 Image forming apparatus Expired - Fee Related JP4185411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003191573A JP4185411B2 (en) 2003-07-04 2003-07-04 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003191573A JP4185411B2 (en) 2003-07-04 2003-07-04 Image forming apparatus

Publications (2)

Publication Number Publication Date
JP2005024436A true JP2005024436A (en) 2005-01-27
JP4185411B2 JP4185411B2 (en) 2008-11-26

Family

ID=34189092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003191573A Expired - Fee Related JP4185411B2 (en) 2003-07-04 2003-07-04 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP4185411B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275408A (en) * 2004-03-22 2005-10-06 Toshiba Corp Fixing device and temperature control method
US7881625B2 (en) 2007-04-02 2011-02-01 Kabushiki Kaisha Toshiba Fixing device with non-contact temperature sensor and contact temperature sensor
US7949273B2 (en) 2006-09-20 2011-05-24 Konica Minolta Business Technologies, Inc. Fixing device, fixing device temperature control method and image forming apparatus
US8271124B2 (en) 2008-01-17 2012-09-18 Toyota Jidosha Kabushiki Kaisha Decompressing type heater, its heating method, and electronic product manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191679A (en) * 1984-10-11 1986-05-09 Fuji Xerox Co Ltd Detecting device for surface temperature of heat roll of fixing device
JPH06235662A (en) * 1993-02-09 1994-08-23 Tokai Carbon Co Ltd Temperature correction method for radiation thermometer
JPH1114460A (en) * 1997-06-25 1999-01-22 Anritsu Keiki Kk Method and device for temperature measurement by non-contact surface thermometer
JPH11190663A (en) * 1997-10-23 1999-07-13 Fujitsu Ltd Correcting method for infrared detector real-time sensitivity and infrared image pickup device
JP2001242743A (en) * 2000-02-29 2001-09-07 Oki Data Corp Method for correcting non-contact temperature sensor for temperature detection of fixing unit and method for performing temperature control of fixing unit
JP2001349786A (en) * 2000-06-06 2001-12-21 Denso Corp Calibration method for non-contact temperature sensor
JP2002318160A (en) * 2001-04-20 2002-10-31 Fuji Xerox Co Ltd Temperature measuring device and fixing device
JP2003078786A (en) * 2001-08-31 2003-03-14 Fujitsu Ltd Infrared ray photographing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191679A (en) * 1984-10-11 1986-05-09 Fuji Xerox Co Ltd Detecting device for surface temperature of heat roll of fixing device
JPH06235662A (en) * 1993-02-09 1994-08-23 Tokai Carbon Co Ltd Temperature correction method for radiation thermometer
JPH1114460A (en) * 1997-06-25 1999-01-22 Anritsu Keiki Kk Method and device for temperature measurement by non-contact surface thermometer
JPH11190663A (en) * 1997-10-23 1999-07-13 Fujitsu Ltd Correcting method for infrared detector real-time sensitivity and infrared image pickup device
JP2001242743A (en) * 2000-02-29 2001-09-07 Oki Data Corp Method for correcting non-contact temperature sensor for temperature detection of fixing unit and method for performing temperature control of fixing unit
JP2001349786A (en) * 2000-06-06 2001-12-21 Denso Corp Calibration method for non-contact temperature sensor
JP2002318160A (en) * 2001-04-20 2002-10-31 Fuji Xerox Co Ltd Temperature measuring device and fixing device
JP2003078786A (en) * 2001-08-31 2003-03-14 Fujitsu Ltd Infrared ray photographing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275408A (en) * 2004-03-22 2005-10-06 Toshiba Corp Fixing device and temperature control method
US7949273B2 (en) 2006-09-20 2011-05-24 Konica Minolta Business Technologies, Inc. Fixing device, fixing device temperature control method and image forming apparatus
US7881625B2 (en) 2007-04-02 2011-02-01 Kabushiki Kaisha Toshiba Fixing device with non-contact temperature sensor and contact temperature sensor
US8271124B2 (en) 2008-01-17 2012-09-18 Toyota Jidosha Kabushiki Kaisha Decompressing type heater, its heating method, and electronic product manufacturing method

Also Published As

Publication number Publication date
JP4185411B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
US7894735B2 (en) Fixing device of image forming apparatus
US20070122173A1 (en) Temperature control device, temperature control method, fixing device, image forming apparatus, temperature control program, computer-readable recording medium, and computer data signal
US9217991B2 (en) Image forming apparatus
US7471911B2 (en) Image fixing apparatus
US7978993B2 (en) Image forming apparatus, computer program product for forming image, and image forming method
US8472826B2 (en) Image forming apparatus
JP2008225471A (en) Fixing device and fixing method of image forming apparatus
US8521050B2 (en) Image forming device and fuser
KR950011880B1 (en) Image forming apparatus
JP4185411B2 (en) Image forming apparatus
JP2003241566A (en) Fixing device and image forming apparatus
JP3913597B2 (en) Fixing apparatus and image forming apparatus
US11143995B2 (en) Fixing belt and fixing device
JP2006220977A (en) Temperature detecting device, temperature control means and fixing device using the same
JP4134642B2 (en) Fixing device and image forming apparatus including the same
US20110305476A1 (en) Fixing apparatus and image forming apparatus
JP2007058061A (en) Image recorder
JP2002318160A (en) Temperature measuring device and fixing device
JP2001228735A (en) Fixing device and image forming device equipped the same
JP2005024330A (en) Noncontact temperature detection apparatus, fixing device, and imaging forming apparatus
JP2003162177A (en) Fixing device and image forming apparatus
JP2005024440A (en) Noncontact temperature detecting apparatus
JP2004325637A (en) Image forming apparatus
JPH08278721A (en) Fixing device
JP2000259035A (en) Image forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees