JP2006220977A - Temperature detecting device, temperature control means and fixing device using the same - Google Patents

Temperature detecting device, temperature control means and fixing device using the same Download PDF

Info

Publication number
JP2006220977A
JP2006220977A JP2005035143A JP2005035143A JP2006220977A JP 2006220977 A JP2006220977 A JP 2006220977A JP 2005035143 A JP2005035143 A JP 2005035143A JP 2005035143 A JP2005035143 A JP 2005035143A JP 2006220977 A JP2006220977 A JP 2006220977A
Authority
JP
Japan
Prior art keywords
temperature
temperature detection
heated
detection means
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005035143A
Other languages
Japanese (ja)
Inventor
Daigo Matsuura
大悟 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005035143A priority Critical patent/JP2006220977A/en
Publication of JP2006220977A publication Critical patent/JP2006220977A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature detecting device and a temperature control means capable of appropriately correcting a detection error caused by the staining of the surface of a non-contact temperature detection means. <P>SOLUTION: The temperature detecting device has an infrared temperature detection means as a first temperature detection means capable of detecting temperature at least at two or more spots from one aperture, and has a second temperature detection means near at least one spot out of the spots where the temperature is detected by the infrared temperature detection means or a spot where temperature estimated as nearly the same temperature as that at the one spot is detected. The temperature control means has a heating source and a member to be heated which is heated by the heating source, and controls the temperature of the member to be heated by using the temperature detected by the second temperature detection means as defined in the claim 1 and the infrared temperature detection means. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、加熱源により加熱される被加熱部材の表面温度を検知する温度検知装置に関する。特に赤外線を検知する赤外線温度検知手段の改良に関する。   The present invention relates to a temperature detection device that detects a surface temperature of a heated member heated by a heating source. In particular, the present invention relates to an improvement in infrared temperature detecting means for detecting infrared rays.

従来から、複写機等の画像形成装置では、定着装置に用いられる温度検出手段として、サーミスタが広く用いられている。しかし、サーミスタは定着手段である定着ローラに接触して温度を検出するため、定着ローラの摩耗や破損により画像不良が発生するという問題を抱えている。   Conventionally, in an image forming apparatus such as a copying machine, a thermistor has been widely used as a temperature detecting means used in a fixing device. However, since the thermistor detects the temperature by contacting a fixing roller as a fixing unit, it has a problem that an image defect occurs due to wear or damage of the fixing roller.

非接触式の温度検出手段としては、例えばサーモパイル等の赤外線センサが代表的である。赤外線センサは、被測定物の温度をその物体温度に応じて放射される赤外線量から検出するため非接触による温度検出が可能である。   As the non-contact type temperature detecting means, an infrared sensor such as a thermopile is representative. Since the infrared sensor detects the temperature of the object to be measured from the amount of infrared rays radiated according to the object temperature, temperature detection by non-contact is possible.

又、1つの温度センサにより、複数箇所を測定する非接触式の定着装置が既に提案されている(例えば、特許文献1参照)。   In addition, a non-contact type fixing device that measures a plurality of locations with one temperature sensor has already been proposed (for example, see Patent Document 1).

特開2003−066761号公報JP 2003-066761 A 特開平5−149790号公報JP-A-5-149790

しかしながら、赤外線センサはその表面に汚れが付着すると、赤外線センサの出力低下が起こり、実際の温度より低い温度を検出してしまうため、画像形成装置においては定着ローラの温度を必要以上に上昇させてしまう可能性がある。   However, if dirt is attached to the surface of the infrared sensor, the output of the infrared sensor is reduced and a temperature lower than the actual temperature is detected. Therefore, in the image forming apparatus, the temperature of the fixing roller is increased more than necessary. There is a possibility.

又、非画像形成部にサーミスタを接触させて、温度測定を行うことで画像不良が発生することを防ぐことができるが、非画像形成部と画像形成部とでは温度差があり、正確な温度制御が難しい。   In addition, it is possible to prevent the occurrence of image defects by bringing a thermistor into contact with the non-image forming unit and performing temperature measurement. However, there is a temperature difference between the non-image forming unit and the image forming unit, and the accurate temperature It is difficult to control.

この問題を解決する手段として、例えば、赤外線センサの他に、更に接触型の温度検出手段であるサーミスタを備え、このサーミスタを定着ローラに定期的に接触させることにより赤外線センサとサーミスタとの両者による定着ローラの検出温度差を補正する、つまり赤外線センサの汚れによる出力低下を補正する手段が提案されている(例えば、特許文献2参照)。   As a means for solving this problem, for example, in addition to the infrared sensor, a thermistor which is a contact-type temperature detecting means is provided, and the thermistor is brought into contact with the fixing roller periodically to thereby use both the infrared sensor and the thermistor. Means for correcting the detected temperature difference of the fixing roller, that is, correcting output decrease due to contamination of the infrared sensor has been proposed (for example, see Patent Document 2).

しかし、この手段において、サーミスタを定着ローラから脱着させるときの駆動機構が必要になり構成が複雑になる。又、サーミスタの浮きによる温度誤検知を引き起こす要因となり改善が求められている。   However, this means necessitates a drive mechanism for detaching the thermistor from the fixing roller, which complicates the configuration. In addition, there is a need for improvement as a cause of erroneous temperature detection due to the thermistor floating.

従って、本発明の目的は、非接触温度検出手段の表面の汚れにより生ずる検出誤差を適正に補正できる温度検知装置、温度制御手段及びこれを用いた定着装置を提供することである。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a temperature detection device, a temperature control means, and a fixing device using the temperature detection device that can appropriately correct a detection error caused by contamination on the surface of the non-contact temperature detection means.

上記目的を達成するため、請求項1記載の温度検知装置は、1つの開口部から少なくとも2箇所以上の温度を検知できる第1温度検出手段としての赤外線温度検知手段を有し、前記赤外線温度検知手段の検知する箇所のうち、少なくとも1箇所の近傍若しくは略同一温度と推測される箇所に第2温度検知手段を有することを特徴とする。   In order to achieve the above object, the temperature detection device according to claim 1 has infrared temperature detection means as first temperature detection means capable of detecting at least two or more temperatures from one opening, and the infrared temperature detection means. Of the locations detected by the means, the second temperature detection means is provided in the vicinity of at least one location or a location estimated to be substantially the same temperature.

請求項2記載の温度制御手段は、加熱源と、前記加熱源により加熱される被加熱部材を有し、請求項1記載の第2温度検知手段と前記赤外線温度検知手段の検知温度を用いて被加熱部材の温度を制御することを特徴とする。   The temperature control means according to claim 2 has a heating source and a member to be heated that is heated by the heating source, and uses the temperature detected by the second temperature detection means and the infrared temperature detection means according to claim 1. The temperature of the member to be heated is controlled.

請求項3記載の発明は、加熱源と、上記加熱源により加熱される被加熱部材と、上記被加熱部材と対向して配置される加圧部材と、上記被加熱部材と上記加圧部材に挟持搬送して、記録材上の未定着トナー像を定着する定着装置において、1つの開口部から上記被加熱部材の少なくとも2箇所以上の温度を検知できる第1の温度検出手段としての赤外線温度検知手段と、上記赤外線温度検知手段の検知する箇所のうち、少なくとも1箇所の近傍若しくは略同一温度と推測される箇所に設けられた第2の温度検知手段と、上記第1の温度検知手段としての赤外線検知手段が検知した値と、上記第2の温度検知手段の検知した値を用いて、被加熱部材の温度を制御する温度制御手段を有することを特徴とする。   According to a third aspect of the present invention, there is provided a heating source, a heated member heated by the heating source, a pressure member disposed to face the heated member, the heated member, and the pressure member. Infrared temperature detection as a first temperature detecting means capable of detecting at least two temperatures of the member to be heated from one opening in a fixing device that nipping and conveying and fixing an unfixed toner image on a recording material And a second temperature detection means provided in the vicinity of at least one of the locations detected by the infrared temperature detection means or a location estimated to be substantially the same temperature, and the first temperature detection means It has a temperature control means for controlling the temperature of the member to be heated using the value detected by the infrared detecting means and the value detected by the second temperature detecting means.

請求項4記載の発明は、請求項3記載の発明において、前記第1の温度検知手段の検知箇所の少なくとも1つが被加熱部材軸方向の最小サイズ通紙域内であり、上記第2の温度検知手段の検知箇所が被加熱部材軸方向の最大サイズ通紙域外であることを特徴とする。   According to a fourth aspect of the present invention, in the third aspect of the invention, at least one of the detection portions of the first temperature detection means is within a minimum size sheet passing area in the heated member axial direction, and the second temperature detection is performed. The detection location of the means is outside the maximum size sheet passing area in the axial direction of the heated member.

請求項5記載の発明は、請求項3記載の発明において、前記被加熱部材が回転体であり、前記第1の温度検知手段の検知箇所の1つと上記第2の温度検知手段の検知箇所が上記加熱部材の略同一円周上且つ略同じ高さであることを特徴とする。   The invention according to claim 5 is the invention according to claim 3, wherein the member to be heated is a rotating body, and one of the detection points of the first temperature detection unit and the detection point of the second temperature detection unit are The heating member has substantially the same circumference and substantially the same height.

請求項6記載の発明は、請求項3記載の発明において、前記加熱手段は、加熱部材の記録材搬送方向と直交する方向の中央付近の発熱量が端部付近の発熱量より大きい第1の加熱手段と、加熱部材の記録材搬送方向と直交する方向の端部付近の発熱量が中央付近の発熱量より大きい第2の加熱手段とから成り、前記第1の温度検知手段の検知箇所の少なくとも1つが、被加熱部材中央付近の第1の加熱手段の発熱量の多い部分に相当する箇所であり、第1の温度検知手段の検知箇所の少なくとも1つが、被加熱部材端部付近の第2の加熱手段の発熱量の多い部分に相当する箇所であり、前記第2の温度検知手段の検知箇所が被加熱部材軸方向の最大サイズ通紙域外であることを特徴とする。   According to a sixth aspect of the present invention, in the invention according to the third aspect, the heating means has a first heat generation amount near the center in a direction orthogonal to the recording material conveyance direction of the heating member larger than a heat generation amount near the end portion. A heating unit and a second heating unit having a heat generation amount near the end of the heating member in a direction orthogonal to the recording material conveyance direction being larger than a heat generation amount near the center. At least one of the first heating means near the center of the heated member is a portion corresponding to a large amount of heat generated, and at least one of the detection points of the first temperature detecting means is the first portion near the end of the heated member. 2 is a portion corresponding to a portion of the heating unit that generates a large amount of heat, and the detection portion of the second temperature detection unit is outside the maximum size sheet passing region in the heated member axial direction.

請求項1記載の発明によれば、第1の温度検出手段が非接触のため、被測定物を傷付けることなく測定でき、且つ、第1の温度検出手段は1つの開口面から測定点(被測定物上の測定したい箇所)と校正点(第2の温度検出手段と略同一温度の箇所)を検知するため、開口面にトナー等の汚れが付着した場合においても、構成点における第1の温度検出手段の検出値と第2の温度検出手段を比較し補正することで、汚れに影響されず、正確な値を測定することができる。   According to the first aspect of the present invention, since the first temperature detecting means is non-contact, measurement can be performed without damaging the object to be measured. In order to detect the point to be measured on the object to be measured) and the calibration point (the part having the same temperature as that of the second temperature detecting means), even when dirt such as toner adheres to the opening surface, By comparing and correcting the detection value of the temperature detection means and the second temperature detection means, an accurate value can be measured without being affected by dirt.

請求項2記載の温度制御手段により、請求項1の発明同様に、第1の温度検出手段の汚れに影響されず、被加熱部材をより正確な温度で制御することができる。   The temperature control means according to claim 2 can control the member to be heated at a more accurate temperature without being affected by the contamination of the first temperature detection means, similarly to the invention according to claim 1.

請求項3記載の発明によれば、第1の温度検出手段の汚れに影響されず、上記被加熱部材を正確な温度で制御することができるので、温度誤検知等による画像不良の無い定着装置を提供することができる。   According to the third aspect of the present invention, since the heated member can be controlled at an accurate temperature without being affected by the contamination of the first temperature detecting means, the fixing device free from image defects due to erroneous temperature detection or the like. Can be provided.

請求項4記載の発明によれば、第2の温度検知手段を非通紙域に配置することで、例えば接触式サーミスタ等を用いることができるのでより正確な温度補正が可能になる。その結果、第1の温度検知手段により通紙域内で被加熱部材のより正確な温度制御が可能になり、温度誤検知等による画像不良のない定着装置を提供することができる。   According to the fourth aspect of the invention, by arranging the second temperature detecting means in the non-sheet passing area, for example, a contact type thermistor can be used, so that more accurate temperature correction can be performed. As a result, the first temperature detection means can control the temperature of the heated member more accurately in the sheet passing area, and can provide a fixing device free from image defects due to erroneous temperature detection or the like.

請求項5記載の発明によれば、上記第1の温度検知手段の検知箇所近傍に上記第2の温度検知手段を配置するスペースがない場合においても、上記の構成をとれば熱の対流等で被加熱体に温度分布の影響が少なく、上記第1の温度検知手段の検知箇所の1つと上記第2の温度検知手段の検知箇所の温度が、略同一温度と見なせるため、正確な温度補正が可能になり、温度誤検知等による画像不良の無い定着装置を提供することができる。   According to the fifth aspect of the present invention, even when there is no space for disposing the second temperature detection means in the vicinity of the detection location of the first temperature detection means, if the above configuration is adopted, heat convection or the like may occur. The temperature of the object to be heated is less affected by the temperature distribution, and the temperature at one of the detection points of the first temperature detection means and the detection point of the second temperature detection means can be regarded as substantially the same temperature. This makes it possible to provide a fixing device free from image defects due to erroneous temperature detection or the like.

請求項6記載の発明によれば、中高ヒータ、端部高ヒータ制御用にそれぞれ赤外線センサユニットを用いるのに比べ、1つの温度補正回路を用いるだけで済むので、簡易な構成で軸方向で温度ムラが少なく、汚れによる誤検知から発生する画像不良を防ぐことができる。   According to the sixth aspect of the present invention, since only one temperature correction circuit is used as compared with the case where the infrared sensor unit is used for controlling each of the middle-high heater and the end-high heater, the temperature in the axial direction can be reduced with a simple configuration. There is little unevenness, and it is possible to prevent image defects caused by erroneous detection due to dirt.

以下に本発明の実施の形態を添付図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

<実施の形態1>
[画像形成装置の概要]
図1に本発明に係る温度検知装置を有する定着装置を具備したデジタル複写機としての画像形成装置の一実施形態を示す。
<Embodiment 1>
[Outline of image forming apparatus]
FIG. 1 shows an embodiment of an image forming apparatus as a digital copying machine provided with a fixing device having a temperature detecting device according to the present invention.

本実施の形態に係る画像形成装置は、装置本体上部にリーダ部1を、下部にプリンタ部2を備えている。   The image forming apparatus according to the present embodiment includes a reader unit 1 in the upper part of the apparatus body and a printer unit 2 in the lower part.

リーダ部1は、原稿が載置される原稿台11、載置された原稿を上方から押圧する原稿圧板12、原稿の画像面を照射する光源13、画像面からの反射光を導く複数のミラー14とレンズ15及び反射光をCCDにより光電変換を行い、得られた電気信号に対して種々の画像処理を行う画像処理部16を主要構成部材としている。   The reader unit 1 includes a document table 11 on which a document is placed, a document pressure plate 12 that presses the placed document from above, a light source 13 that irradiates an image surface of the document, and a plurality of mirrors that guide reflected light from the image surface. 14, the lens 15, and reflected light are subjected to photoelectric conversion by a CCD, and an image processing unit 16 that performs various image processing on the obtained electric signal is a main constituent member.

画像処理部16は、不図示のCCD、A/D変換、S/H、シェーディング補正、マスキング補正、変倍、LOG変換等の画像処理機能を有している。   The image processing unit 16 has image processing functions such as a CCD (not shown), A / D conversion, S / H, shading correction, masking correction, scaling, and LOG conversion.

上述構成のリーダ部1の動作は次の通りである。   The operation of the reader unit 1 configured as described above is as follows.

原稿台11上に原稿をその画像面が下方を向くように載置し、その上から原稿圧板12で押さえる。光源13は、光を照射しながら矢印K1方向に移動し、原稿の画像面を走査する。画像面からの反射光像は、複数のミラー14及びレンズ15を介してCCD上に結像され、ここで電気信号に光電変換される。電気信号となった画像信号は、画像処理部16において、種々の画像処理が施された後、次のプリンタ部2に送出される。   A document is placed on the document table 11 so that the image surface faces downward, and is pressed by the document pressure plate 12 from above. The light source 13 moves in the direction of the arrow K1 while irradiating light, and scans the image surface of the document. The reflected light image from the image plane is formed on the CCD via a plurality of mirrors 14 and lenses 15 and is photoelectrically converted into electric signals here. The image signal that has become an electrical signal is subjected to various image processing in the image processing unit 16 and then sent to the next printer unit 2.

プリンタ部2は、図1に示すように、リーダ部1から送出されてきた電気信号を、レーザ素子18を駆動するための信号に変換する画像制御部17、感光ドラム30の表面をレーザ光Lによって走査し、静電潜像を形成するポリゴンスキャナ19、感光ドラム30を含む画像形成部3及び最下流側に配設された定着ユニット(定着装置)39を主要構成部材としている。   As shown in FIG. 1, the printer unit 2 converts the electric signal sent from the reader unit 1 into a signal for driving the laser element 18 and the surface of the photosensitive drum 30 with the laser beam L. The main components are a polygon scanner 19 that scans the image and forms an electrostatic latent image, an image forming unit 3 including a photosensitive drum 30, and a fixing unit (fixing device) 39 disposed on the most downstream side.

又、上述の画像形成部3は、矢印方向に回転自在に支持された感光ドラム30、その周辺にその回転方向に沿ってほぼ順に配設された、感光ドラム30表面を一様に帯電する一次帯電器31、感光ドラム30上に形成された静電潜像をトナー像として現像する現像器20、感光ドラム30上のトナー像を転写材Pに転写する転写帯電器35、感光ドラム30の転写残トナーを除去するクリーナ34、除電を行う補助帯電器33及び残量電荷を除去する前露光ランプ32を備えている。   Further, the image forming unit 3 described above is a primary drum that is uniformly charged on the surface of the photosensitive drum 30 that is rotatably supported in the direction of the arrow and that is disposed around the photosensitive drum 30 approximately in the rotational direction. The charger 31, the developing device 20 that develops the electrostatic latent image formed on the photosensitive drum 30 as a toner image, the transfer charger 35 that transfers the toner image on the photosensitive drum 30 to the transfer material P, and the transfer of the photosensitive drum 30 A cleaner 34 that removes residual toner, an auxiliary charger 33 that performs charge removal, and a pre-exposure lamp 32 that removes remaining charge are provided.

現像器20は感光ドラム30に対向配置された現像ローラ20aを有し、現像ローラ20aが感光ドラム30と反対方向に回転することにより、感光ドラム30上の静電潜像をトナー像として現像する。   The developing device 20 has a developing roller 20a disposed opposite to the photosensitive drum 30, and the developing roller 20a rotates in the opposite direction to the photosensitive drum 30, thereby developing the electrostatic latent image on the photosensitive drum 30 as a toner image. .

感光ドラム30上のトナー像は転写帯電器35によって転写材Pに転写され、トナー像が転写された転写材Pは、定着前ベルト37によって定着ユニット39に搬送される。定着ユニット39では、定着手段としての定着ローラ39a,39bが回転して転写材Pを搬送することにより加圧され、加熱加圧を受けて表面のトナー像が定着される。定着後の転写材Pは、装置本体外部のトレイ41上に排出される。   The toner image on the photosensitive drum 30 is transferred to the transfer material P by the transfer charger 35, and the transfer material P to which the toner image is transferred is conveyed to the fixing unit 39 by the pre-fixing belt 37. In the fixing unit 39, fixing rollers 39a and 39b as fixing means are rotated to convey the transfer material P and pressurized, and the toner image on the surface is fixed by receiving heat and pressure. After the fixing, the transfer material P is discharged onto the tray 41 outside the apparatus main body.

転写材Pの給搬送を行う給搬送部は、転写材Pの搬送路を有し、その転写材Pの搬送方向についての最上流側に、給紙カセット36、給紙ローラ36a、搬送ローラ36b等を有する用紙送り装置を備えている。   A feeding / conveying section that feeds and conveys the transfer material P has a conveyance path for the transfer material P, and is provided with a sheet feeding cassette 36, a sheet feeding roller 36a, and a conveyance roller 36b on the most upstream side in the conveyance direction of the transfer material P. And a sheet feeding device having the above.

この用紙送り装置の他に、マルチ用紙送り装置38が設けられている。このマルチ用紙送り装置38からは、その紙送りパスがストレートであることから、画像形成部3に対して、材質、大きさ等の性状の異なる種々の転写材Pを供給することができる。
[画像形成に関する基本構成及び動作]
次に、図2及び図3により、画像形成に関わる基本構成及び動作について説明する。
In addition to the paper feeding device, a multi paper feeding device 38 is provided. Since the paper feeding path is straight from the multi-sheet feeding device 38, various transfer materials P having different properties such as material and size can be supplied to the image forming unit 3.
[Basic configuration and operation for image formation]
Next, a basic configuration and operation relating to image formation will be described with reference to FIGS.

システムコントローラ71は、画像形成装置の各種制御を行うものであり、内部のCPU71aによって統括的に制御を行う。例えば、リーダ部1の一部を構成する画像入力部72、画像処理部16及び定着ユニット39等の制御を行う。画像処理部にて得られた画像データに基づき、レーザ駆動回路17により半導体レーザ18を変調駆動する。   The system controller 71 performs various controls of the image forming apparatus, and performs overall control by an internal CPU 71a. For example, the image input unit 72, the image processing unit 16, the fixing unit 39, and the like that constitute a part of the reader unit 1 are controlled. Based on the image data obtained by the image processing unit, the laser driving circuit 17 modulates and drives the semiconductor laser 18.

又、半導体レーザ18の出力光により感光ドラム30の表面には静電潜像が形成される。静電潜像は現像器20によってトナー像として現像され、次いで、転写帯電器35により転写材Pに転写される。   Further, an electrostatic latent image is formed on the surface of the photosensitive drum 30 by the output light of the semiconductor laser 18. The electrostatic latent image is developed as a toner image by the developing device 20 and then transferred to the transfer material P by the transfer charger 35.

更に、定着ユニット39は、定着ローラ39a、加圧ローラ39b及び非接触温度検出手段である定着ローラ温度センサ39c、非通紙部接触サーミスタ39dから概略構成され、転写材Pに転写されたトナー像を加熱加圧して転写材Pに定着させる。   Further, the fixing unit 39 includes a fixing roller 39a, a pressure roller 39b, a fixing roller temperature sensor 39c which is a non-contact temperature detecting means, and a non-sheet-passing portion contact thermistor 39d, and a toner image transferred onto the transfer material P. Is fixed to the transfer material P by heating and pressing.

次に、図3を用いて定着ユニット39における定着ローラ39aの温度制御について説明する。   Next, temperature control of the fixing roller 39a in the fixing unit 39 will be described with reference to FIG.

本装置では、定着ローラ39aの温度を測定するために、定着ローラ39aから発せられる赤外線を計測し、受光した赤外線量より温度を測定する赤外線センサユニット39cを使用している。前述のように、定着ローラの温度検出手段としては、従来からサーミスタが広く用いられているが、サーミスタを定着ローラに接触させる状態にするため、定着ローラの摩耗やサーミスタの摩耗、破損、更には定着ローラからの浮き等による温度誤検知の不具合が発生していた。そこで、本装置では、非接触の赤外線温度センサユニット39cを採用している。   In this apparatus, in order to measure the temperature of the fixing roller 39a, an infrared sensor unit 39c that measures infrared rays emitted from the fixing roller 39a and measures the temperature from the amount of received infrared rays is used. As described above, a thermistor has been widely used as a temperature detection means for the fixing roller. However, in order to bring the thermistor into contact with the fixing roller, the fixing roller is worn or thermistor is worn or damaged. There was a problem of erroneous temperature detection due to floating from the fixing roller. Therefore, this apparatus employs a non-contact infrared temperature sensor unit 39c.

赤外線センサユニット39cにより検出された定着ローラ39aの温度検出信号は、A/D変換部211を介してシステムコントローラ71に入力される。   The temperature detection signal of the fixing roller 39a detected by the infrared sensor unit 39c is input to the system controller 71 via the A / D converter 211.

定着ローラ39aの加熱を行なう加熱体としての定着ヒータ208にはハロゲンヒータを用いている。定着ヒータ208は、システムコントローラ71からの制御信号により、ヒータ制御部210を介してON/OFFが制御される。ヒータ制御部210は、ハロゲンヒータ208がAC駆動のため、その内部にはSSRを内蔵し、システムコントローラ71からの制御指令に基づいて、ヒータ供給用AC電源のON/OFFを行っている。   A halogen heater is used as the fixing heater 208 as a heating body for heating the fixing roller 39a. The fixing heater 208 is controlled to be turned on / off by the control signal from the system controller 71 via the heater control unit 210. Since the halogen heater 208 is AC driven, the heater control unit 210 incorporates an SSR therein and turns on / off the AC power supply for heater supply based on a control command from the system controller 71.

システムコントローラ71は、入力された赤外線センサユニット39cからの定着ローラ39aの温度検出信号を定着ローラ温度に換算し、この温度を基に、定着ローラ39aが規定温度になるように、ヒータ制御部210を介して統括的に定着ヒータのON/OFFを行ない温度制御を実施している。   The system controller 71 converts the input temperature detection signal of the fixing roller 39a from the infrared sensor unit 39c into a fixing roller temperature, and based on this temperature, the heater controller 210 adjusts the fixing roller 39a to a specified temperature. The temperature is controlled by turning the fixing heater on and off in a unified manner.

ここで、赤外線センサユニット39cの表面、つまり赤外線受光部に、装置内に飛散しているトナーやシリコンミスト等が付着すると、その部分の赤外線が遮断されてしまうので、温度検出信号の出力低下を起こし、システムコントローラ71には本来の温度検出信号より低いレベルの温度検出信号が入力される。   Here, if toner or silicon mist scattered in the apparatus adheres to the surface of the infrared sensor unit 39c, that is, the infrared light receiving part, the infrared ray in that part is cut off, so that the output of the temperature detection signal is reduced. As a result, the system controller 71 receives a temperature detection signal at a level lower than the original temperature detection signal.

システムコントローラ71では、本来より低い温度検出信号は、本来より低い温度として判断してしまうので、実際は、定着ローラ39aが目標温度にあるのにも拘らず、それ以上に温度を上昇させる処理を行ってしまう。最悪の場合には定着ローラ39aの破損をも引き起こしてしまう。
[赤外線センサユニット]
本実施の形態における赤外線センサユニット39cについて詳述する。
In the system controller 71, since the temperature detection signal lower than the original is determined as the temperature lower than the original, actually, although the fixing roller 39a is at the target temperature, a process for further increasing the temperature is performed. End up. In the worst case, the fixing roller 39a is also damaged.
[Infrared sensor unit]
The infrared sensor unit 39c in the present embodiment will be described in detail.

図7は赤外線センサユニット39cの断面図である。赤外線センサユニット39cは、赤外線検知素子S1,S2、開口部O、レンズL等で構成されている。開口部Oを通して入射してくる定着ローラ39aの発する熱放射エネルギーを赤外線検知素子S1,S2で電気信号に変換することで、定着ローラ39aの温度を検知することができる。赤外線検知素子S1,S2としては、例えば、サーモパイル、焦電素子等を用いることができる。   FIG. 7 is a cross-sectional view of the infrared sensor unit 39c. The infrared sensor unit 39c includes infrared detection elements S1 and S2, an opening O, a lens L, and the like. By converting the heat radiation energy emitted from the fixing roller 39a incident through the opening O into an electric signal by the infrared detection elements S1 and S2, the temperature of the fixing roller 39a can be detected. As the infrared detection elements S1 and S2, for example, a thermopile, a pyroelectric element, or the like can be used.

図7のように、本実施の形態における赤外線センサユニット39cは、赤外線検知素子S1,S2を複数個有し、複数箇所の測定を1つの赤外線センサユニット39cで測定することができる構成になっている。このとき、開口部OにおけるレンズL表面の汚れムラの影響を少なくするために、図7のように赤外線検知素子S1,S2に入射する被測定物の発する赤外線の光路x1,x2は、レンズL表面で略同一箇所を通過することが望ましい。
[長手構成]
本実施の形態の構成では、図4のように、定着ローラ39aの非通紙部には、第2の温度検知手段としての接触サーミスタ39dが接している。第1の温度検知手段としての赤外線センサユニット39cは、定着ローラ39a中央部aと非通紙部のサーミスタ近傍bの温度を検知する構成になっている。又、このとき、非通紙部サーミスタ39dは、連続通紙時の非通紙部昇温による過昇温検知を兼ねても問題ない。
[温度検出信号誤差の補正制御]
次に、赤外線センサユニット表面の汚れによる温度検出信号の誤差の補正制御を図4及び図5を用いて説明する。
As shown in FIG. 7, the infrared sensor unit 39c in the present embodiment has a plurality of infrared detection elements S1 and S2, and can measure a plurality of locations with one infrared sensor unit 39c. Yes. At this time, in order to reduce the influence of uneven dirt on the surface of the lens L in the opening O, the optical paths x1 and x2 of the infrared rays emitted from the object to be measured incident on the infrared detection elements S1 and S2 as shown in FIG. It is desirable to pass through substantially the same location on the surface.
[Longitudinal configuration]
In the configuration of the present embodiment, as shown in FIG. 4, the contact thermistor 39d as the second temperature detecting means is in contact with the non-sheet passing portion of the fixing roller 39a. The infrared sensor unit 39c as the first temperature detecting means is configured to detect the temperatures of the fixing roller 39a central portion a and the thermistor vicinity b of the non-sheet passing portion. At this time, there is no problem even if the non-sheet passing portion thermistor 39d also serves as an excessive temperature rise detection due to the temperature rise of the non-sheet passing portion during continuous feeding.
[Temperature detection signal error correction control]
Next, correction control of an error in the temperature detection signal due to contamination on the surface of the infrared sensor unit will be described with reference to FIGS.

先ず、赤外線センサユニット39cによって非通紙部接触サーミスタ39d近傍(検知位置b)の温度を検出する。この検知位置bの温度検出信号は補正回路100に入力される。この時に同時に、非通紙部接触サーミスタ39dの温度検出信号も補正回路100に入力される。   First, the temperature in the vicinity (detection position b) of the non-sheet passing portion contact thermistor 39d is detected by the infrared sensor unit 39c. The temperature detection signal at the detection position b is input to the correction circuit 100. At the same time, the temperature detection signal of the non-sheet passing portion contact thermistor 39d is also input to the correction circuit 100.

補正回路100では、非通紙部接触サーミスタ39dの温度検出信号を一旦システムコントローラ71に入力して温度を算出するが、その温度に対応して本来得られるべき赤外線センサユニット39cの温度検出信号Er[V]と、実際の赤外線センサユニット39cの温度検出信号Eb[V]とが比較されその差E[V]が信号に補正を行うための補正値であり、この補正値E[V]を内部の記憶手段であるメモリ103(図5参照)に格納する。   In the correction circuit 100, the temperature detection signal of the non-sheet passing portion contact thermistor 39d is temporarily input to the system controller 71 to calculate the temperature. The temperature detection signal Er of the infrared sensor unit 39c that should be originally obtained corresponding to the temperature is calculated. [V] is compared with the temperature detection signal Eb [V] of the actual infrared sensor unit 39c, and the difference E [V] is a correction value for correcting the signal, and this correction value E [V] The data is stored in the memory 103 (see FIG. 5) which is an internal storage unit.

赤外線センサユニット39cによって検出された定着ローラ39aの検知箇所aの温度検出信号Ea[V]には、補正回路100において、先ほどメモリ103に格納された補正値E[V]が加算され、補正温度検出値Eo[ V] が出力される。   In the correction circuit 100, the correction value E [V] stored in the memory 103 is added to the temperature detection signal Ea [V] at the detection point a of the fixing roller 39a detected by the infrared sensor unit 39c. The detection value Eo [V] is output.

次に、以上の補正回路100の動作を、その内部ブロック図を示す図5により説明する。   Next, the operation of the correction circuit 100 will be described with reference to FIG.

補正回路100は、演算手段としての演算回路102、メモリ103及び加算手段としての加算回路104を備えている。   The correction circuit 100 includes a calculation circuit 102 as a calculation unit, a memory 103, and an addition circuit 104 as an addition unit.

赤外線センサユニット39cの検知位置bの検出信号と非通紙部接触サーミスタ39dの検出信号が演算回路102に入力されている。又、赤外線センサユニット39cの検出位置aの検出信号が加算回路104に入力されている。   The detection signal of the detection position b of the infrared sensor unit 39 c and the detection signal of the non-sheet passing portion contact thermistor 39 d are input to the arithmetic circuit 102. A detection signal at the detection position a of the infrared sensor unit 39 c is input to the adder circuit 104.

赤外線センサユニット39cからの温度検出信号Eaと、非通紙部接触サーミスタ39dの温度検出信号Erとが演算回路102に入力される。ここで、算出される補正値Eはメモリ103へと格納される。   The temperature detection signal Ea from the infrared sensor unit 39c and the temperature detection signal Er from the non-sheet passing portion contact thermistor 39d are input to the arithmetic circuit 102. Here, the calculated correction value E is stored in the memory 103.

赤外線センサユニット39cの検知位置aからの温度検出信号Eaは、加算回路104に入力され、ここで温度検出信号Eaに、メモリ103に格納された補正値Eが加算されて、赤外線センサユニット39cの温度検出信号Eaが補正された補正温度検出値Eo(=Ea+E)が出力される。   The temperature detection signal Ea from the detection position a of the infrared sensor unit 39c is input to the addition circuit 104, where the correction value E stored in the memory 103 is added to the temperature detection signal Ea, and the infrared sensor unit 39c A corrected temperature detection value Eo (= Ea + E) in which the temperature detection signal Ea is corrected is output.

次に、図6を参照して本制御に関するアルゴリズムについて説明する。   Next, an algorithm related to this control will be described with reference to FIG.

画像形成装置の電源がオンされると(S0)、先ず、赤外線センサユニット39cにより測定点bの温度検出信号を検出する(S1)。このとき同時に、非通紙部接触サーミスタ39dにより温度検出信号を検出する(S2)。両者の温度検出信号が補正回路100に入力され、内部の演算回路102において非通紙部接触サーミスタ39dからの温度検出結果と、赤外線センサユニット39cの測定点bの温度信号検出値とから温度補正値を演算し、この補正値をメモリ103に格納する(S3)。   When the power source of the image forming apparatus is turned on (S0), first, a temperature detection signal at the measurement point b is detected by the infrared sensor unit 39c (S1). At the same time, a temperature detection signal is detected by the non-sheet passing portion contact thermistor 39d (S2). Both temperature detection signals are input to the correction circuit 100, and the internal correction circuit 102 corrects the temperature based on the temperature detection result from the non-sheet passing portion contact thermistor 39d and the temperature signal detection value at the measurement point b of the infrared sensor unit 39c. The value is calculated, and this correction value is stored in the memory 103 (S3).

次に、定着ローラ39aを赤外線センサユニット39cの測定点aによりモニタし、温度検出信号を検出する(S4)。温度検出信号が補正回路100に入力され、内部の加算回路104において、温度検出信号にメモリ103に格納された補正値が加算されて、赤外線センサユニット39cの温度検出信号が補正された補正温度検出値が出力される(S5)。   Next, the fixing roller 39a is monitored by the measurement point a of the infrared sensor unit 39c, and a temperature detection signal is detected (S4). The temperature detection signal is input to the correction circuit 100, and the internal addition circuit 104 adds the correction value stored in the memory 103 to the temperature detection signal, thereby correcting the temperature detection signal of the infrared sensor unit 39c. A value is output (S5).

次いで、定着ローラ39aの温度調整が以下のように行われる。   Next, the temperature adjustment of the fixing roller 39a is performed as follows.

補正温度検出値を基にシステムコントローラ71により定着ローラ温度Ta[℃]が換算される(S6)。定着ローラ温度Ta[℃]と定着ヒータ208をオンさせるべき定着ローラ温度T[℃]とを比較する(S7)。   The fixing roller temperature Ta [° C.] is converted by the system controller 71 based on the corrected temperature detection value (S6). The fixing roller temperature Ta [° C.] is compared with the fixing roller temperature T [° C.] at which the fixing heater 208 is to be turned on (S7).

定着ローラ温度Ta[℃]がTより低いときには定着ヒータ208をオンして定着ローラ39aを加熱する(S8)。   When the fixing roller temperature Ta [° C.] is lower than T, the fixing heater 208 is turned on to heat the fixing roller 39a (S8).

ここで、定着ローラ温度TaがTより高い時に定着ヒータ208をオフする(S9)。   Here, when the fixing roller temperature Ta is higher than T, the fixing heater 208 is turned off (S9).

上記のように、本実施の形態によれば、赤外線センサユニット39cの表面に汚れが生じた場合においても、汚れが付着した赤外線センサユニット開口部Oを通して定着ローラ39aの非通紙部に接触させたサーミスタ付近bの温度と校正用の非通紙部接触サーミスタ39dの温度を検知し補正を行うことで、定着ローラ通紙域a表面の温度を非接触に正確に検知でき、ローラ傷、温度誤検知等による画像不良等の発生を防ぐことができる。   As described above, according to the present embodiment, even when the surface of the infrared sensor unit 39c is soiled, it is brought into contact with the non-sheet passing portion of the fixing roller 39a through the infrared sensor unit opening O where the soil is attached. By detecting and correcting the temperature near the thermistor b and the temperature of the non-sheet passing portion contact thermistor 39d for calibration, the temperature of the surface of the fixing roller sheet passing area a can be accurately detected in a non-contact manner. Occurrence of image defects due to erroneous detection or the like can be prevented.

<実施の形態2>
実施の形態1では、第2の温度検知手段としての非通紙部接触サーミスタ39dを赤外線センサユニット39cの検知位置b近傍に配置したが、本実施の形態では、図8のように、非通紙部接触サーミスタ39dを赤外線センサユニット39cの検知位置bの定着ローラ39a同一円周上で同じ高さになるように構成した。
<Embodiment 2>
In the first embodiment, the non-sheet-passing portion contact thermistor 39d as the second temperature detecting means is disposed in the vicinity of the detection position b of the infrared sensor unit 39c. However, in the present embodiment, as shown in FIG. The paper portion contact thermistor 39d is configured to have the same height on the same circumference of the fixing roller 39a at the detection position b of the infrared sensor unit 39c.

この構成により、赤外線センサユニット39cの検知位置b近傍の非通紙域に校正用の非通紙部接触サーミスタ39dを配置するスペースが無い場合においても、上記の構成を採れば、熱の対流等で被加熱体に温度分布の影響が少なく、赤外線センサユニット39cの検知位置bと校正用の非通紙部接触サーミスタ39dの温度が略同一と見なせるため、正確な温度補正が可能になり、温度誤検知等による画像不良の無い定着装置を提供することができる。   With this configuration, even when there is no space for arranging the non-sheet passing portion contact thermistor 39d for calibration in the non-sheet passing area in the vicinity of the detection position b of the infrared sensor unit 39c, if the above configuration is adopted, heat convection, etc. Thus, the temperature distribution of the heated object is small and the temperature of the detection position b of the infrared sensor unit 39c and the temperature of the non-sheet passing portion contact thermistor 39d for calibration can be regarded as substantially the same. It is possible to provide a fixing device free from image defects due to erroneous detection or the like.

<実施の形態3>
本実施の形態では、図9で示すように、実施の形態1の加熱源としての定着ヒータ208に代えて、非通紙部昇温対策のために小サイズ用の中央部に発熱量の多い中高ヒータ208aと大サイズ用の端部に発熱量の多い端部高ヒータ208cの2本で構成している。このときのそれぞれのヒータの配光特性を図10に示した。
<Embodiment 3>
In the present embodiment, as shown in FIG. 9, instead of the fixing heater 208 as the heating source of the first embodiment, a large amount of heat is generated in the central portion for small size in order to prevent the temperature increase in the non-sheet passing portion. The middle and high heaters 208a and the large size end part are composed of two end high heaters 208c that generate a large amount of heat. The light distribution characteristics of each heater at this time are shown in FIG.

又、赤外線センサユニット39cの測定箇所は、定着ローラ軸方向中央部の検知位置a(中高ヒータ208aの高発熱領域に対応する箇所)、定着ローラ軸方向端部の検知位置c(端部高ヒータ208cの高発熱領域に対応する箇所)、最大サイズ紙の通過しない非通紙部の検知位置bであり、実施の形態1同様に、非通紙部の検知位置b近傍に第2の温度検知手段としての非通紙部接触サーミスタ39dが配置されている。   In addition, the measurement position of the infrared sensor unit 39c is the detection position a (the position corresponding to the high heat generation area of the middle / high heater 208a) in the fixing roller axial direction center, and the detection position c (end high heater) at the fixing roller axial end. 208c, the position corresponding to the high heat generation area 208c), the detection position b of the non-sheet passing portion through which the maximum size paper does not pass, and the second temperature detection in the vicinity of the detection position b of the non-sheet passing portion as in the first embodiment. A non-sheet passing portion contact thermistor 39d as a means is disposed.

赤外線センサユニット39cの検知位置a,cの検出値は共に、赤外線センサユニット39cの非通紙部検知位置bの検出値とと非通紙部接触サーミスタ39dの検出値との差から補正される。補正制御としては、実施の形態1とほぼ同様なので、これについての説明は省略する。   The detection values of the detection positions a and c of the infrared sensor unit 39c are both corrected from the difference between the detection value of the non-sheet passing portion detection position b of the infrared sensor unit 39c and the detection value of the non-sheet passing portion contact thermistor 39d. . Since the correction control is substantially the same as that of the first embodiment, description thereof will be omitted.

次に、図11を参照して本制御に関するアルゴリズムについて説明する。   Next, an algorithm related to this control will be described with reference to FIG.

画像形成装置の電源がオンされると(S0’)、先ず、赤外線センサユニット39cにより測定点bの温度検出信号を検出する(S1’)。このとき同時に、非通紙部接触サーミスタ39dにより温度検出信号を検出する(S2’)。両者の温度検出信号が補正回路100に入力され、内部の演算回路102において非通紙部接触サーミスタ39dからの温度検出結果と、赤外線センサユニット39cの測定点bの温度信号検出値とから温度補正値を演算し、この補正値をメモリ103に格納する(S3’)。   When the power of the image forming apparatus is turned on (S0 '), first, the temperature detection signal at the measurement point b is detected by the infrared sensor unit 39c (S1'). At the same time, a temperature detection signal is detected by the non-sheet passing portion contact thermistor 39d (S2 '). Both temperature detection signals are input to the correction circuit 100, and the internal correction circuit 102 corrects the temperature based on the temperature detection result from the non-sheet passing portion contact thermistor 39d and the temperature signal detection value at the measurement point b of the infrared sensor unit 39c. The value is calculated and this correction value is stored in the memory 103 (S3 ′).

次に、定着ローラ39aを赤外線センサユニット39cの測定点a,cによりモニタし、温度検出信号を検出する(S4’)。温度検出信号が補正回路100に入力され、内部の加算回路104において、温度検出信号にメモリ103に格納された補正値がそれぞれ加算されて、赤外線センサユニット39cの温度検出信号が補正された補正温度検出値が出力される(S5’)。   Next, the fixing roller 39a is monitored by the measurement points a and c of the infrared sensor unit 39c, and a temperature detection signal is detected (S4 '). The temperature detection signal is input to the correction circuit 100, and the internal addition circuit 104 adds the correction value stored in the memory 103 to the temperature detection signal, thereby correcting the temperature detection signal of the infrared sensor unit 39c. The detection value is output (S5 ′).

次いで、定着ローラ39aの温度調整が以下のように行われる。   Next, the temperature adjustment of the fixing roller 39a is performed as follows.

補正温度検出値を基にシステムコントローラ71により測定点a,cそれぞれの定着ローラ温度Ta,Tc[℃]が換算される(S6’)。測定点aの定着ローラ温度Ta[℃]と中高ヒータ208aをオンさせるべき定着ローラ温度T1[℃]とを比較する(S7’)。   Based on the corrected temperature detection value, the system controller 71 converts the fixing roller temperatures Ta and Tc [° C.] at the measurement points a and c (S6 ′). The fixing roller temperature Ta [° C.] at the measurement point a is compared with the fixing roller temperature T1 [° C.] at which the middle / high heater 208a is to be turned on (S7 ′).

測定点aの定着ローラ温度Ta[℃]がT1より低いときには中高ヒータ208aをオンして定着ローラ39aを加熱する(S8’)。   When the fixing roller temperature Ta [° C.] at the measurement point a is lower than T1, the middle / high heater 208a is turned on to heat the fixing roller 39a (S8 ').

ここで、定着ローラ温度TaがT1より高い時に中高ヒータ208aをオフする(S9’)。   Here, when the fixing roller temperature Ta is higher than T1, the middle / high heater 208a is turned off (S9 ').

次に、測定点cの定着ローラ温度Tc[℃]と端部高ヒータ208cをオンさせるべき定着ローラ温度T2[℃]とを比較する(S10’)。   Next, the fixing roller temperature Tc [° C.] at the measurement point c is compared with the fixing roller temperature T2 [° C.] at which the end high heater 208c is to be turned on (S10 ′).

測定点cの定着ローラ温度Tc[℃]がT2より低いときには端部高ヒータ208cをオンして定着ローラ39aを加熱する(S11’)。   When the fixing roller temperature Tc [° C.] at the measurement point c is lower than T2, the end high heater 208c is turned on to heat the fixing roller 39a (S11 ').

ここで、定着ローラ温度TcがT2より高い時に端部高ヒータ208cをオフする(S12’)。   Here, when the fixing roller temperature Tc is higher than T2, the end high heater 208c is turned off (S12 ').

上記の構成を採れば、中高ヒータ208a、端部高ヒータ208c制御用にそれぞれ赤外線センサユニットを用いるのに比べ、1つの温度補正回路を用いるだけで済むので、簡易な構成で軸方向で温度ムラが少なく、汚れによる誤検知から発生する画像不良を防ぐことができる。   If the above configuration is adopted, it is only necessary to use one temperature correction circuit as compared with the case where the infrared sensor unit is used for controlling the middle-high heater 208a and the end-high heater 208c, respectively. Therefore, it is possible to prevent image defects caused by erroneous detection due to dirt.

画像形成装置の一例を示す構成図である。1 is a configuration diagram illustrating an example of an image forming apparatus. 画像形成部の詳細を説明するための図である。It is a figure for demonstrating the detail of an image formation part. 定着部の温度制御系を示すブロック図である。3 is a block diagram illustrating a temperature control system of a fixing unit. FIG. 本発明の実施の形態1の構成との非接触温度センサユニットの温度補正系を示すブロック図である。It is a block diagram which shows the temperature correction system of the non-contact temperature sensor unit with the structure of Embodiment 1 of this invention. 非接触温度センサユニットの温度補正系における補正回路内部を示すブロック図である。It is a block diagram which shows the inside of the correction circuit in the temperature correction system of a non-contact temperature sensor unit. 本発明の実施の形態1における非接触温度センサユニットの補正制御に係るフローチャートである。It is a flowchart which concerns on correction | amendment control of the non-contact temperature sensor unit in Embodiment 1 of this invention. 非接触温度センサユニットの断面図である。It is sectional drawing of a non-contact temperature sensor unit. 本発明の実施の形態2の構成との非接触温度センサユニットの温度補正系を示すブロック図である。It is a block diagram which shows the temperature correction system of the non-contact temperature sensor unit with the structure of Embodiment 2 of this invention. 本発明の実施の形態3の構成との非接触温度センサユニットの温度補正系を示すブロック図である。It is a block diagram which shows the temperature correction system of the non-contact temperature sensor unit with the structure of Embodiment 3 of this invention. 本発明の実施の形態3における(a)中高ヒータ及び(b)端部高ヒータの配光特性を示すグラフ図である。It is a graph which shows the light distribution characteristic of (a) middle-high heater and (b) edge part high heater in Embodiment 3 of this invention. 本発明の実施の形態3における非接触温度センサユニットの補正制御に係るフローチャートである。It is a flowchart which concerns on correction | amendment control of the non-contact temperature sensor unit in Embodiment 3 of this invention.

符号の説明Explanation of symbols

39a 定着ローラ
39c 非接触温度センサユニット
39d 非通紙部接触サーミスタ
100 補正回路
208 定着ヒータ
208a 中高ヒータ
208b 端部高ヒータ
39a Fixing roller 39c Non-contact temperature sensor unit 39d Non-sheet passing portion contact thermistor 100 Correction circuit 208 Fixing heater 208a Middle high heater 208b End high heater

Claims (6)

1つの開口部から少なくとも2箇所以上の温度を検知できる第1温度検出手段としての赤外線温度検知手段を有し、前記赤外線温度検知手段の検知する箇所のうち、少なくとも1箇所の近傍若しくは略同一温度と推測される箇所に第2温度検知手段を有することを特徴とする温度検知装置。   It has infrared temperature detection means as first temperature detection means that can detect at least two or more temperatures from one opening, and the vicinity detected by the infrared temperature detection means or at substantially the same temperature. A temperature detection device comprising second temperature detection means at a location estimated to be. 加熱源と、前記加熱源により加熱される被加熱部材を有し、請求項1記載の第2温度検知手段と前記赤外線温度検知手段の検知温度を用いて被加熱部材の温度を制御することを特徴とする温度制御手段。   A heating source and a heated member heated by the heating source are provided, and the temperature of the heated member is controlled using the detected temperature of the second temperature detecting means and the infrared temperature detecting means according to claim 1. Characteristic temperature control means. 加熱源と、上記加熱源により加熱される被加熱部材と、上記被加熱部材と対向して配置される加圧部材と、上記被加熱部材と上記加圧部材に挟持搬送して、記録材上の未定着トナー像を定着する定着装置において、
1つの開口部から上記被加熱部材の少なくとも2箇所以上の温度を検知できる第1の温度検出手段としての赤外線温度検知手段と、上記赤外線温度検知手段の検知する箇所のうち、少なくとも1箇所の近傍若しくは略同一温度と推測される箇所に設けられた第2の温度検知手段と、上記第1の温度検知手段としての赤外線検知手段が検知した値と、上記第2の温度検知手段の検知した値を用いて、被加熱部材の温度を制御する温度制御手段を有することを特徴とする定着装置。
A heating source, a heated member heated by the heating source, a pressure member disposed opposite to the heated member, and being nipped and conveyed between the heated member and the pressure member, In a fixing device for fixing an unfixed toner image of
Infrared temperature detecting means as first temperature detecting means capable of detecting the temperature of at least two locations of the heated member from one opening, and the vicinity of at least one location detected by the infrared temperature detecting means Or the value detected by the 2nd temperature detection means provided in the location presumed that it is substantially the same temperature, the infrared detection means as said 1st temperature detection means, and the value which the said 2nd temperature detection means detected And a temperature control means for controlling the temperature of the member to be heated.
前記第1の温度検知手段の検知箇所の少なくとも1つが被加熱部材軸方向の最小サイズ通紙域内であり、上記第2の温度検知手段の検知箇所が被加熱部材軸方向の最大サイズ通紙域外であることを特徴とする請求項3記載の定着装置。   At least one of the detection locations of the first temperature detection means is within the minimum size paper passing area in the heated member axial direction, and the detection location of the second temperature detection means is outside the maximum size paper passing area in the heated member axial direction. The fixing device according to claim 3, wherein: 前記被加熱部材が回転体であり、前記第1の温度検知手段の検知箇所の1つと上記第2の温度検知手段の検知箇所が上記加熱部材の略同一円周上且つ略同じ高さであることを特徴とする請求項3記載の定着装置。   The member to be heated is a rotating body, and one of the detection points of the first temperature detection unit and the detection point of the second temperature detection unit are on substantially the same circumference and the same height of the heating member. The fixing device according to claim 3. 前記加熱手段は、加熱部材の記録材搬送方向と直交する方向の中央付近の発熱量が端部付近の発熱量より大きい第1の加熱手段と、加熱部材の記録材搬送方向と直交する方向の端部付近の発熱量が中央付近の発熱量より大きい第2の加熱手段とから成り、前記第1の温度検知手段の検知箇所の少なくとも1つが、被加熱部材中央付近の第1の加熱手段の発熱量の多い部分に相当する箇所であり、第1の温度検知手段の検知箇所の少なくとも1つが、被加熱部材端部付近の第2の加熱手段の発熱量の多い部分に相当する箇所であり、前記第2の温度検知手段の検知箇所が被加熱部材軸方向の最大サイズ通紙域外であることを特徴とする請求項3記載の定着装置。   The heating means includes a first heating means in which the heat generation amount near the center in the direction orthogonal to the recording material conveyance direction of the heating member is larger than the heat generation amount near the end, and a direction orthogonal to the recording material conveyance direction of the heating member. A second heating unit having a larger amount of heat generation near the end than a heat generation amount near the center, and at least one of the detection points of the first temperature detection unit is the first heating unit near the center of the heated member; It is a portion corresponding to a portion with a large amount of heat generation, and at least one of the detection portions of the first temperature detection means is a portion corresponding to a portion with a large amount of heat generation of the second heating means near the heated member end. The fixing device according to claim 3, wherein the detection portion of the second temperature detection means is outside the maximum size sheet passing area in the heated member axial direction.
JP2005035143A 2005-02-10 2005-02-10 Temperature detecting device, temperature control means and fixing device using the same Withdrawn JP2006220977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005035143A JP2006220977A (en) 2005-02-10 2005-02-10 Temperature detecting device, temperature control means and fixing device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035143A JP2006220977A (en) 2005-02-10 2005-02-10 Temperature detecting device, temperature control means and fixing device using the same

Publications (1)

Publication Number Publication Date
JP2006220977A true JP2006220977A (en) 2006-08-24

Family

ID=36983341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035143A Withdrawn JP2006220977A (en) 2005-02-10 2005-02-10 Temperature detecting device, temperature control means and fixing device using the same

Country Status (1)

Country Link
JP (1) JP2006220977A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009098364A (en) * 2007-10-16 2009-05-07 Konica Minolta Business Technologies Inc Fixing device, image forming apparatus, and control method for fixing device
JP2013092718A (en) * 2011-10-27 2013-05-16 Konica Minolta Business Technologies Inc Fixing device
JP2016004249A (en) * 2014-06-19 2016-01-12 京セラドキュメントソリューションズ株式会社 Fixing device and image forming apparatus including the same
JP2020190622A (en) * 2019-05-21 2020-11-26 コニカミノルタ株式会社 Image forming apparatus, and heater switching method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009098364A (en) * 2007-10-16 2009-05-07 Konica Minolta Business Technologies Inc Fixing device, image forming apparatus, and control method for fixing device
JP2013092718A (en) * 2011-10-27 2013-05-16 Konica Minolta Business Technologies Inc Fixing device
JP2016004249A (en) * 2014-06-19 2016-01-12 京セラドキュメントソリューションズ株式会社 Fixing device and image forming apparatus including the same
JP2020190622A (en) * 2019-05-21 2020-11-26 コニカミノルタ株式会社 Image forming apparatus, and heater switching method

Similar Documents

Publication Publication Date Title
JP2008225471A (en) Fixing device and fixing method of image forming apparatus
US6654571B2 (en) Image heating device with temperature sensors provided in sheet passing portion and non-sheet passing portion
JP2006220977A (en) Temperature detecting device, temperature control means and fixing device using the same
JP2004151471A (en) Image forming apparatus and its control method
JP4682661B2 (en) Image forming apparatus
JP2009015107A (en) Safety device, fixing device and image forming apparatus
JP4821215B2 (en) Image recording device
JP2008134332A (en) Fixing device and image forming apparatus
JP6137050B2 (en) Fixing apparatus and image forming apparatus
JP6988257B2 (en) Fixing device and image forming device
JP2016014860A (en) Fixing device and image forming apparatus
JP2001272877A (en) Image forming apparatus
JP3708834B2 (en) Fixing device and image forming device
JP4432318B2 (en) Image forming apparatus
JP5747589B2 (en) Fixing apparatus and image forming apparatus
JP2004325637A (en) Image forming apparatus
JP2000259038A (en) Image forming device
JP2000259035A (en) Image forming device
JP2003043852A (en) Fixing device
JP4784621B2 (en) Fixing apparatus and image forming apparatus
JP2007053730A (en) Image reading device
JP2006184071A (en) Temperature detector and temperature controller
JP6907808B2 (en) Fixing device and image forming device
JP2005024436A (en) Temperature detection apparatus, fixing device, imaging forming apparatus, and temperature detecting apparatus
JP6225456B2 (en) Image forming apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513