JP2005024132A - Evaporator - Google Patents

Evaporator Download PDF

Info

Publication number
JP2005024132A
JP2005024132A JP2003188012A JP2003188012A JP2005024132A JP 2005024132 A JP2005024132 A JP 2005024132A JP 2003188012 A JP2003188012 A JP 2003188012A JP 2003188012 A JP2003188012 A JP 2003188012A JP 2005024132 A JP2005024132 A JP 2005024132A
Authority
JP
Japan
Prior art keywords
evaporator
evaporation
evaporation part
present
heat flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003188012A
Other languages
Japanese (ja)
Inventor
Jinsai Cho
仁才 儲
Toshiya Shintani
俊哉 新谷
Kanichi Kadotani
▲皖▼一 門谷
Toshinobu Tanimura
利伸 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2003188012A priority Critical patent/JP2005024132A/en
Publication of JP2005024132A publication Critical patent/JP2005024132A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporator capable of satisfactorily performing evaporation and securely enabling a reduction in size. <P>SOLUTION: In this evaporator 10 for a thermoelectric generating device, an evaporation part 12 is is formed of the opposed faces 14A of plate-like parts 14, spaces between the opposed faces 14A are allowed to communicate with each other along the flow direction of a hot medium, and a critical heat flow flux rising means is formed by the opposed faces 14A themselves. Accordingly, in the spaces of the evaporation part 12, the bypassing of a liquid (condensed heat medium) from the downstream side can be produced in a specified portion, and the critical heat flow flux in the evaporation part 12 can be increased. By this, even if the evaporation part 12 is heated to a high temperature, film boiling is hard to be produced, and the condensed heat medium can be satisfactorily evaporated by nucleate boiling. As a result, since the evaporation of the condensed heat medium can be performed without any problem even if the evaporation part 12 is reduced in size to such a degree that is easily heated to a high temperature, the evaporation part 12 can be reduced in size accordingly to promote a reduction in size of the entire evaporator. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高温媒体で液体を加熱することにより当該液体の蒸気を生成する蒸発器に関する。
【0002】
【背景技術】
近年、例えばエンジンから排出される排気ガスによりフッ素系不活性液体等の液体の蒸気を生成し、この蒸気によって熱電モジュールの凝縮面を加熱するとともに、冷却面を冷却水によって冷却することにより、当該熱電モジュールの凝縮面および冷却面の温度差によって発電するようにしたサーモサイフォン型の熱電発電装置の開発が行われている。
【0003】
このような熱電発電装置では、排気ガスが流れるダクトを利用して凝縮熱媒体を蒸発させる蒸発器が設けられている(例えば特許文献1)。蒸発器の構造を具体的にいうと先ず、ダクトは排気ガスが略水平方向に流れるように設けられ、このダクトには排気ガスの水平な流れに対して直交する向き(上下方向)に蒸発部となる伝熱管が貫通している。そして、貯留された凝縮熱媒体中にダクトが浸されていることにより、伝熱管は外周側から排気ガスで加熱されるとともに、この加熱によって伝熱管の内部に入り込む液体が蒸発する。
【0004】
また、特許文献1によれば、以下の構成を採用することで蒸発器の小型化を図っている。すなわち、蒸発器において、排気ガスの流れ方向に沿った温度分布は上流側が高く、下流に向かうに従って低くなるのであるが、このような温度部分布にもかかわらず、限界熱流束が等しい同径の伝熱管を上流から下流に向けて一様に配置すると、下流側の伝熱管では低い温度の排気ガスに対して限界熱流束が十分すぎるほど大きくなり、使用する伝熱管としては性能過剰となる。そこで、この点に着目して特許文献1では、下流側の伝熱管ほど限界熱流束の小さいもの、つまり径寸法の小さいものを使用し、必要にして十分な限界熱流束を維持しつつ、小型化を実現しているのである。
【0005】
【特許文献1】
特開2003−156201
【0006】
【発明が解決しようとする課題】
ところで、蒸発器のさらなる小型化を推進しようとすると、伝熱管の径寸法を一層小さくする必要があるが、しかしそれでは、伝熱管の限界熱流束が小さくなり過ぎてしまうため、伝熱管の限界熱流束を容易に越えてしまう事態が生じる。このような事態になると、伝熱管が極度に加熱され、伝熱管内部では液体の核沸騰が妨げられて代わりに膜沸騰が生じてしまうから、液体が容易に蒸発しなくなって蒸発効率が低下する。
【0007】
本発明の目的は、蒸発を良好に行え、かつ確実に小型化できる蒸発器を提供することにある。
【0008】
【課題を解決するための手段と作用効果】
本発明の請求項1に係る蒸発器は、高温媒体を流す流路部と、流路部を流れる前記高温媒体で液体を加熱して当該液体の蒸気を生成する蒸発部とを備え、この蒸発部には、当該蒸発部の限界熱流束を上げる限界熱流束上昇手段が設けられていることを特徴とする。
このような本発明によれば、限界熱流束上昇手段を蒸発部に設けるため、蒸発部がより高温になっても膜沸騰が生じにくくなり、核沸騰によって液体の蒸発が良好に行われるようになる。また、蒸発部をより高温になり易い程度に小さくしても液体の蒸発が支障なく行えるから、蒸発部の小型化により蒸発器全体の小型化も促進される。
【0009】
本発明の請求項2に係る蒸発器は、請求項1に記載の蒸発器において、前記限界熱流束上昇手段は、前記蒸発部に入り込んだ前記液体が接触する面であって、凹凸状の表面で形成されていることを特徴とする。
ここで、凹凸状の形状は、機械加工等による表面の微細な粗面加工や、表面への金属結晶体の貼設、あるいは表面に微細なフィン(ローフィン)を設けることなどで形成される。
このような本発明によれば、表面の凹凸状の部分による毛細管現象により、液体が蒸発部に良好に入り込むようになって限界熱流束が大きくなるから、膜沸騰がより生じにくくなって小型化が確実に促進される。
【0010】
本発明の請求項3に記載の蒸発器は、請求項1または請求項2に記載の蒸発器において、前記蒸発部は、前記高温媒体の流れ方向に対して直交する方向に並設された少なくとも一対のプレート状部を備えているとともに、これらのプレート状部間に前記液体が入り込むように構成され、前記限界熱流束上昇手段は、互いに対向する各プレート状部の対向面で形成されていることを特徴とする。
このような本発明によれば、蒸発部を構成するプレート状部の対向面間は、高温媒体の流れ方向に沿って上流から下流まで連通するので、閉断面を有した従来の伝熱管を用いる場合に比し、蒸発部の所定部位に対する下流側からの液体の回り込みが生じて限界熱流束が大きくなり、蒸発器の小型化が一層促進される。
【0011】
本発明の請求項4に記載の蒸発器は、請求項3に記載の蒸発器において、前記対向面の一部には、前記流路部側に膨出した膨出部が設けられていることを特徴とする。
このような本発明によれば、膨出部を設けることにより、この膨出部に向かって上流側および下流側から液体がより容易に回り込むようになり、限界熱流束がより確実に大きくなり、一層の小型化を実現できる。
また、流路部を流れる高温媒体は、膨出部を通過した下流側で渦を生じて剥離効果を奏するうえ、高温媒体が自励振動し、これらにより高温媒体から蒸発部への熱伝達効率が向上して効率のよい蒸発が行われるようになる。
【0012】
【発明の実施の形態】
以下、本発明の各実施形態を図面に基づいて説明する。なお、後述する第2実施形態以降において、以下の第1実施形態で説明する構成部材と同じ部材および同じ機能部材には同一符号を付し、第2実施形態以降でのそれらの説明を省略または簡略化する。
【0013】
〔第1実施形態〕
図1は、本実施形態に係る蒸発器10が適用された熱電発電装置1の概略全体を示す側断面図。図2は、熱電発電装置1の蒸発器10を模式的に示す斜視図。図3は、(A)が蒸発器10の平断面図で、(B)がその側断面図((A)のB−B線断面図)。図4は、熱電発電装置1の熱電変換部20を示す平断面図。
【0014】
図1において、熱電発電装置1は、例えばエンジン等の内燃機関から排出される排気ガス等を高温媒体(黒矢印参照)として蒸発器10に流通させて加熱するとともに、この蒸発器10によりフッ素系不活性液体等の凝縮熱媒体(液体)の蒸気を生成して上方の熱電変換部20に供給し、この熱電変換部20にて蒸気の熱エネルギを電気エネルギに変換して発電する装置であり、概略これら蒸発器10および熱電変換部20をハウジング30で覆った構成である。
【0015】
蒸発器10は、ハウジング30の下方に設けられた凝縮熱媒体の貯留部31を水平方向に貫通しており、上面近傍位置まで当該凝縮媒体中に浸されているとともに、図2、図3(A)、(B)にも示すように、高温媒体が通過する複数の流路部11と、貯留部31内の凝縮熱媒体が下方から入り込む複数の蒸発部12とを幅方向に交互に備えている。
【0016】
各流路部11は、縦長の矩形状に開口した入口部11Aおよび出口部11Bを備えている。流路部11の内部には、補強を兼ねた複数のフィン13が上下に間隔をあけて複数設けられている。これらのフィン13は、入口部11Aから出口部11Bにかけて連続して設けられており、実効伝熱面積を大きくして熱伝達効率を向上させている。
【0017】
各蒸発部12は、上下に開口した入口部12Aおよび出口部12Bを備え、これらの入出口部12A,12Bが横長の矩形状とされている。これにより蒸発部12の内部は、高温媒体の流れ方向に沿って上流から下流まで連続した空間とされ、また、この空間が上下に連通している。
【0018】
流路部11と蒸発部12とを隔てる隔壁部分、および幅方向両側の蒸発部12と外部とを隔てる隔壁部分は、高温媒体の流れ方向に対して直交する方向(幅方向に同じ)に並設された金属製のプレート状部14とされ、やはり高温媒体の流れ方向に沿って連続し、また、上下方向にも連続している。そして、高温媒体から熱伝達されたプレート状部14により、蒸発部12の下方の入口部12Aから入り込んだ凝縮熱媒体が加熱されて蒸気となり、上方の出口部12Bから熱電変換部20側に供給される。
【0019】
ここで、蒸発部12を形成する各プレート状部14の平坦な一対の対向面14Aにより、本発明に係る限界熱流束上昇手段が形成されている。つまり、対向面14A間に形成される前記空間が高温媒体の流れ方向に連続していることにより、この空間内では、凝縮熱媒体の蒸発にあたって、より下流側の凝縮熱媒体が上流側に回り込むようになり、回り込んでくる下流側の凝縮熱媒体が蒸発部12の限界熱流束を上昇させる。
【0020】
加えて本実施形態では、対向面14Aの表面は凹凸状に加工されており、この凹凸状に加工された対向面14Aによっても本発明に係る別な限界熱流束上昇手段が形成されている。この際、凹凸状の形状は、機械加工等による表面の微細な粗面加工や、表面への金属結晶体の貼設、あるいは表面に微細なフィン(ローフィン)を上下に連続させて設けることなどで形成される。そして、凹凸状の対向面14Aによる毛細管現象により、貯留部31から蒸発部12内への凝縮熱媒体の吸い上げ供給を促進し、このことが蒸発部12の限界熱流束を上昇させる。
【0021】
以上が蒸発器10の構成であり、このような蒸発器10では、従来と同様に高温媒体の流れ方向において、その上流側の蒸発量が多く、下流に向かうに従って蒸発量が少なくなる(図2中の白抜き矢印参照)。
【0022】
一方、図4において、熱電変換部20は、高温媒体の流れ方向に沿って並設された複数の発電プレート21を備えている。発電プレート21は、中空板状の冷却板22の表裏両面に複数の熱電モジュール23を配置した構成であり、冷却水が図示しない冷却水循環手段から冷却板22内に供給されて熱電モジュール23の冷却面23Aを冷却する。これに対して、熱電モジュール23の表面は凝縮面23Bとなっており、蒸発器10からの蒸気が凝縮面23Bを加熱するとともに、この凝縮面23B上で凝縮する。そして、この時の冷却面23Aおよび凝縮面23Bの温度差に応じて熱電モジュール23で発電される。
【0023】
これらの発電プレート21は、熱電モジュール23の凝縮面23Bが高温媒体の流れ方向に対して直角となるように垂設されており、流れ方向での各発電プレート21のピッチが上流側で小さく、下流に向かうに従って大きくなっている。つまり、上流側で密に配置され、下流に向かって粗になるように配置されているのである。これにより、上流で生成される多くの蒸気に対しては、より大きな凝縮面23Bで受け、下流で生成される少ない蒸気に対して、より小さな凝縮面23Bで受けることが可能であり、上流から下流にかけての凝縮面23Bでの凝縮量も、蒸発量と略同じ分布となる。
【0024】
そして、凝縮面23B上で凝縮した凝縮熱媒体は、貯留部31に落下して戻り、再び蒸発器10で加熱されて蒸発し、この蒸発、凝縮を繰り返す。
ところで、ハウジング30の上部中央には、熱電変換部20(ハウジング30内)と外部とを連通させる連通孔32が設けられている。この連通孔32は、ハウジング30内を略大気圧に保つ役目を有しており、熱電発電装置1の動作開始時においては、ハウジング30内にある空気が蒸発器10からの蒸気で上方に追いやられ、連通孔32から外部に排気される。
【0025】
なお、図示しないが、連通孔32には、空気を通過させるが、蒸気を通過させないフィルタ等が設けられており、蒸気が排出されないようになっている。また、ハウジング30内を大気圧ではなく、予め設定された所定の圧力に維持したい場合などには、連通孔32に圧力調整弁等を設けてもよい。
【0026】
このような本実施形態によれば、以下のような効果がある。
すなわち、熱電発電装置1の蒸発器10においては、蒸発部12がプレート状部14の対向面14Aで形成され、対向面14A間の空間が高温媒体の流れ方向に沿って連通し、この対向面14Aで限界熱流束上昇手段が形成されているので、閉断面を有した従来の伝熱管の場合と異なって蒸発部12の空間内では、所定部位に対し下流側からの凝縮熱媒体の回り込みを生じさせることができ、蒸発部12の限界熱流束を大きくできる。このことにより、蒸発部12がより高温になっても膜沸騰を生じにくくでき、核沸騰によって凝縮熱媒体を良好に蒸発させることができる。従って、蒸発部12をより高温になり易い程度に小さくしても凝縮熱媒体の蒸発を支障なく行え、そのぶん蒸発部12を小型化できて蒸発器全体の小型化を促進できる。
【0027】
また、対向面14Aの表面は凹凸状とされ、この凹凸状部分によっても限界熱流束上昇手段が形成されているため、表面の凹凸状の部分による毛細管現象により、凝縮熱媒体の蒸発部12への供給が積極的に行われて限界熱流束をさらに大きくでき、膜沸騰をより生じにくくして小型化をより確実に促進できる。
【0028】
そして、対向面14Aはプレート状部14に形成されているので、例えば板金等の折曲加工や鑞付け加工等による蒸発器10の組立以前に、その板金表面に凹凸状の部分を容易に形成できる。このため、蒸発器10の生産性を向上させることができ、生産コストも削減できる。
【0029】
〔第2実施形態〕
図5(A)、(B)には、本発明の第2実施形態に係る蒸発器10の平断面図および側断面図((A)のB−B線断面図)が示されている。
本実施形態では、流路部11内に設けられたフィン13の形状が第1実施形態とは大きく異なる。対向面14Aに表面加工が施されている点など、その他の構成は第1実施形態の蒸発器10と略同じである。
【0030】
本実施形態でのフィン13は、高温媒体の流れ方向に沿って複数段(本実施形態では5段)に分割された形状であり、各段間において千鳥状となるように配置されている。各段でのフィン13の長さは同一である。また、各段間には僅かな隙間((A)参照)が形成されているが、この隙間の大きさは任意であり、隙間がなくともよい。また、前段のフィン13間に後段のフィン13が入り込む等により、前後段でフィン13によるオーバーラップ部分を設けてもよい。
【0031】
このフィン13によれば、図5(C)に示すように、前段の一対のフィン13間を通過する高温媒体は、当該一対のフィン13に接する部分で熱が奪われ、温度が幾分低下するが、後段のフィン13側にあっては、前記温度の低下した高温媒体(白抜き矢印参照)は後段側のフィン13に接触せず、前段での温度降下の小さい中央寄りの高温媒体(黒色矢印)が後段側のフィン13に触れることになる。このため、後段のフィン13での熱流束は、前段のフィン13での熱流束と略同じ(実際には僅かに小さい)となり、蒸発部12における各段に対応する部分での蒸発量の均一化が図られる。すなわち、蒸発部12においては、高温媒体の流れ方向に沿った凝縮熱媒体の蒸発量の分布が上流から下流にかけて略一定になる。
【0032】
以上の本実施形態では、フィン13が高温媒体の流れ方向に沿って複数段に分割されて千鳥配置されていることにより、凝縮熱媒体の蒸発量の分布を高温媒体の流れ方向に沿って略同じにできるから、図示を省略するが、熱電変換部20の凝縮面23Bでの凝縮量の分布を蒸発量の分布と同じにするには、各発電プレート21の配置ピッチを上流から下流かけて同じにすればよく、設計等を簡単にできる。
【0033】
〔第3実施形態〕
図6(A)、(B)には、本発明の第3実施形態に係る蒸発器10の平断面図および側断面図((A)のB−B線断面図)が示されている。
本実施形態でも、流路部11内に設けられたフィン13の形状が第1、第2実施形態とは大きく異なる。その他の構成は第1、第2実施形態の蒸発器10と略同じである。
【0034】
本実施形態でのフィン13は、高温媒体の流れ方向に沿って複数段(本実施形態では6段)に分割され、第2実施形態と同様に千鳥配置されている。しかし、本実施形態では、第1段目のフィン13Aが最も長さが大きく、次いで第2、第3段目のフィン13Bが長く、第4〜第6段目のフィン13Cの長さが最も短い。フィン13が短いほど単位面積あたりの伝熱性能が良いのである。
【0035】
従って、本実施形態によれば、下流側に向かうに従って各段の伝熱性能が良くなるので、蒸発部12においては、下流側に向かうに従って蒸発量を確実に大きくでき、第2実施形態に比して、上流から下流にかけての蒸発量の分布をより均一化できる。また、フィン13C等の長さ寸法を短くすることにより、全体で同じ蒸発量を得るためには蒸発器10の流れ方向の大きさを小さくでき、蒸発器自身の小型化を実現できる。
【0036】
そして、さらにフィン13Aを最も粗に配置し、フィン13B、13Cの順で密に配置することにより、フィン13C全体の伝熱面積が最も大きく、次いでフィン13B全体の伝熱面積が大きく、フィン13Aの伝熱面積が最も小さい。
また、フィン13Aが最も粗に配置され、フィン13B、13Cの順で密に配置されている。これを伝熱面積でいえば、フィン13C全体の伝熱面積が最も大きく、次いでフィン13B全体の伝熱面積が大きく、フィン13Aの伝熱面積が最も小さい。
【0037】
従って、本実施形態によれば、下流側に向かうに従って各段の伝熱面積が大きいので、蒸発部12においては、下流側に向かうに従って蒸発量を確実に大きくでき、第2実施形態に比して、上流から下流にかけての蒸発量の分布をさらに均一化できる。
さらに、フィン13C等の長さ寸法を短くすることにより、全体で同じ蒸発量を得るためには蒸発器10の流れ方向の大きさを小さくでき、さらなる小型化を実現できる。
【0038】
〔第4実施形態〕
図7(A)、(B)には、本発明の第4実施形態に係る蒸発器10の平断面図および側断面図((A)のB−B線断面図)が示されている。
本実施形態では、蒸発部12(流路部11)の内部空間の形状が前記第3実施形態とは大きく異なる。その他の構成は第3実施形態の蒸発器10と略同じである。
【0039】
すなわち、本実施形態の蒸発部12の内部空間は、上流側が幅広とされ、下流に向かうに従って幅狭となる。また、流路部11でいえば、上流側で幅狭とされ、下流に向かうに従って幅広となる。このため、フィン13A、13B,13Cが設けられた各段間での伝熱面積の差を、第3実施形態での伝熱面積の差よりも大きくでき、下流側の熱流束をさらに大きくして蒸発量を増やすことができ、蒸発量の分布を一層均一にできる。
【0040】
さらに、本実施形態では、蒸発部12が上流側に向かって拡開していることで、上流側での蒸発部12の限界熱流束も大きくできる。このことにより蒸発部12では、高温媒体の流れ方向の寸法を短くでき、蒸発器10をより一層小型化できる。
【0041】
〔第5実施形態〕
図8(A)、(B)には、本発明の第5実施形態に係る蒸発器10の平断面図および側断面図((A)のB−B線断面図)が示されている。
本実施形態によれば、蒸発部12の対向面14Aの一部には、流路部11側に膨出した断面半円状の膨出部14Bが設けられており、この点が第3実施形態とは大きく異なる。その他の構成は第3実施形態の蒸発器10と略同じである。
【0042】
膨出部14Bは、フィン13の各段の境界部分に対応し、かつ上下方向(蒸気の立ち上り方向に同じ)に連続して設けられている。このような構成によれば、図8(C)に示すように、流路部11側において、膨出部14Bを通過した高温媒体が対向面14C(対向面14Aの反対側の面)に衝突して剥離効果を奏し、また、高温媒体に自励振動が生じるため、高温媒体側での熱伝達効率を向上させることができ、凝縮熱媒体を効率よく蒸発させることができる。
【0043】
さらに、膨出部14Bを設けることで蒸発部12側では、膨出部14Bの上流側および下流側から当該膨出部14B内への凝縮熱媒体の回り込みが誘発されるし、また膨出部自身は上、下流側の隙間部への凝縮熱媒体供給の貯留部にもなるため、第4実施形態とでは構成は異なるが、やはり蒸発部12の限界熱流束を大きくでき、蒸発部12ひいては蒸発器10のさらなる小型化を実現できる。
【0044】
なお、本発明は、前記各実施形態に限定されるものではなく、本発明の目的を達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。
例えば、前記各実施形態では、蒸発部12はプレート状部14によって形成されていたが、本発明に係る蒸発部を従来のような伝熱管を用いて形成してもよい。ただしこの場合には、伝熱管の内面に表面加工等による限界熱流束上昇手段を設け、本発明の請求項2等の構成要件を満足させる必要がある。
そして、蒸発部12をプレート状部14によって形成した場合には、その表面を必ずしも凹凸状に形成する必要はなく、このような場合でも本発明の請求項3等の発明に含まれる。
【0045】
前記実施形態では、本発明の蒸発器を熱電発電装置1に適用した蒸発器10の例で説明したが、本発明の蒸発器としてはこれに限定されず、ボイラーシステム等に適用されてもよく、蒸発器の用途は任意である。
【0046】
その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、かつ、説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。
従って、上記に開示した形状、数量などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、数量などの限定の一部もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る蒸発器が適用された熱電発電装置の概略全体を示す側断面図。
【図2】蒸発器を模式的に示す斜視図。
【図3】(A)が蒸発器の平断面図で、(B)がその側断面図((A)のB−B線断面図)。
【図4】熱電発電装置の熱電変換部を示す平断面図。
【図5】(A)が本発明の第2実施形態に係る蒸発器の平断面図、(B)がその側断面図((A)のB−B線断面図)、(C)が要部の平断面図。
【図6】(A)が本発明の第3実施形態に係る蒸発器の平断面図、(B)がその側断面図((A)のB−B線断面図)。
【図7】(A)が本発明の第4実施形態に係る蒸発器の平断面図、(B)がその側断面図((A)のB−B線断面図)。
【図8】(A)が本発明の第5実施形態に係る蒸発器の平断面図、(B)がその側断面図((A)のB−B線断面図)、(C)が要部の平断面図。
【符号の説明】
10…蒸発器、11…流路部、12…蒸発部、14…プレート状部、14A…対向面、14B…膨出部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an evaporator that generates a vapor of the liquid by heating the liquid with a high-temperature medium.
[0002]
[Background]
In recent years, for example, a liquid vapor such as a fluorine-based inert liquid is generated by exhaust gas exhausted from an engine, the condensation surface of the thermoelectric module is heated by this vapor, and the cooling surface is cooled by cooling water. Thermosiphon type thermoelectric generators that generate electricity based on the temperature difference between the condensation surface and the cooling surface of a thermoelectric module have been developed.
[0003]
Such a thermoelectric generator is provided with an evaporator that evaporates a condensed heat medium using a duct through which exhaust gas flows (for example, Patent Document 1). Specifically, the structure of the evaporator is such that the duct is provided so that the exhaust gas flows in a substantially horizontal direction, and in this duct, the evaporating portion is oriented in a direction (vertical direction) perpendicular to the horizontal flow of the exhaust gas. The heat transfer tube becomes through. And since the duct is immersed in the stored condensed heat medium, the heat transfer tube is heated by the exhaust gas from the outer peripheral side, and the liquid entering the heat transfer tube is evaporated by this heating.
[0004]
According to Patent Literature 1, the evaporator is miniaturized by adopting the following configuration. That is, in the evaporator, the temperature distribution along the flow direction of the exhaust gas is higher on the upstream side and lower toward the downstream side, but the critical heat flux has the same diameter regardless of the temperature part distribution. If the heat transfer tubes are arranged uniformly from the upstream side to the downstream side, the heat transfer tubes on the downstream side have an excessively large critical heat flux with respect to the exhaust gas at a low temperature, resulting in excessive performance as the heat transfer tubes to be used. Accordingly, in Patent Document 1, focusing on this point, a downstream heat transfer tube having a smaller limit heat flux, that is, having a smaller diameter, is used to maintain a sufficient limit heat flux while maintaining a small size. Is realized.
[0005]
[Patent Document 1]
JP2003-156201A
[0006]
[Problems to be solved by the invention]
By the way, in order to promote further downsizing of the evaporator, it is necessary to further reduce the diameter of the heat transfer tube. A situation occurs that easily exceeds the bundle. In such a situation, the heat transfer tube is extremely heated, and the nucleate boiling of the liquid is prevented inside the heat transfer tube and instead film boiling occurs, so that the liquid does not easily evaporate and the evaporation efficiency decreases. .
[0007]
An object of the present invention is to provide an evaporator that can perform evaporation well and can be reliably reduced in size.
[0008]
[Means for solving the problems and effects]
An evaporator according to claim 1 of the present invention includes a flow path section for flowing a high temperature medium, and an evaporation section for heating a liquid with the high temperature medium flowing through the flow path section to generate vapor of the liquid. The section is provided with a limit heat flux raising means for raising the limit heat flux of the evaporation section.
According to the present invention, since the limiting heat flux increasing means is provided in the evaporation section, film boiling is less likely to occur even when the evaporation section becomes higher in temperature, and liquid evaporation is performed well by nucleate boiling. Become. In addition, since the liquid can be evaporated without hindrance even if the evaporator is made small enough to be hotter, the miniaturization of the evaporator facilitates the miniaturization of the entire evaporator.
[0009]
An evaporator according to a second aspect of the present invention is the evaporator according to the first aspect, wherein the critical heat flux increasing means is a surface in contact with the liquid that has entered the evaporation section, and has an uneven surface. It is formed by.
Here, the concavo-convex shape is formed by processing a fine rough surface by machining or the like, pasting a metal crystal on the surface, or providing a fine fin (low fin) on the surface.
According to the present invention, the capillarity due to the uneven portion of the surface causes the liquid to enter the evaporation portion and the critical heat flux is increased, so that film boiling is less likely to occur and the size is reduced. Is surely promoted.
[0010]
According to a third aspect of the present invention, there is provided the evaporator according to the first or second aspect, wherein the evaporation section is arranged in parallel in a direction orthogonal to the flow direction of the high temperature medium. A pair of plate-like portions are provided, and the liquid is configured to enter between these plate-like portions, and the critical heat flux increasing means is formed by facing surfaces of the plate-like portions facing each other. It is characterized by that.
According to the present invention as described above, the opposed surfaces of the plate-like portions constituting the evaporation portion communicate with each other from the upstream to the downstream along the flow direction of the high-temperature medium, so that a conventional heat transfer tube having a closed cross section is used. In comparison with the case, the liquid flows from the downstream side to the predetermined part of the evaporation section, the critical heat flux is increased, and the miniaturization of the evaporator is further promoted.
[0011]
The evaporator according to claim 4 of the present invention is the evaporator according to claim 3, wherein a part of the facing surface is provided with a bulging part bulging to the flow path part side. It is characterized by.
According to the present invention as described above, by providing the bulging portion, the liquid more easily flows from the upstream side and the downstream side toward the bulging portion, and the critical heat flux is more reliably increased, Further downsizing can be realized.
In addition, the high-temperature medium flowing through the flow path section produces a vortex on the downstream side that has passed through the bulging section, and exerts a peeling effect, and the high-temperature medium self-vibrates, thereby heat transfer efficiency from the high-temperature medium to the evaporation section This improves the efficiency of evaporation.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, each embodiment of the present invention will be described with reference to the drawings. In the second and later embodiments described later, the same members and the same functional members as the components described in the first embodiment will be denoted by the same reference numerals, and descriptions thereof in the second and subsequent embodiments will be omitted or omitted. Simplify.
[0013]
[First Embodiment]
FIG. 1 is a side cross-sectional view showing an overall outline of a thermoelectric generator 1 to which an evaporator 10 according to the present embodiment is applied. FIG. 2 is a perspective view schematically showing the evaporator 10 of the thermoelectric generator 1. 3A is a cross-sectional plan view of the evaporator 10, and FIG. 3B is a side cross-sectional view thereof (cross-sectional view taken along the line BB in FIG. 3A). FIG. 4 is a plan sectional view showing the thermoelectric conversion unit 20 of the thermoelectric generator 1.
[0014]
In FIG. 1, a thermoelectric generator 1 circulates an exhaust gas or the like discharged from an internal combustion engine such as an engine as a high-temperature medium (see a black arrow) through an evaporator 10 and heats it. It is a device that generates steam of a condensed heat medium (liquid) such as an inert liquid and supplies it to the upper thermoelectric conversion unit 20, and converts the heat energy of the vapor into electric energy in the thermoelectric conversion unit 20 to generate electricity. In general, the evaporator 10 and the thermoelectric converter 20 are covered with a housing 30.
[0015]
The evaporator 10 penetrates the condensing heat medium storage portion 31 provided below the housing 30 in the horizontal direction, is immersed in the condensing medium up to a position near the upper surface, and FIGS. As also shown in A) and (B), a plurality of flow path portions 11 through which the high-temperature medium passes and a plurality of evaporation portions 12 into which the condensed heat medium in the storage portion 31 enters from below are alternately provided in the width direction. ing.
[0016]
Each flow path portion 11 includes an inlet portion 11A and an outlet portion 11B that are opened in a vertically long rectangular shape. A plurality of fins 13 that also serve as reinforcements are provided in the interior of the flow path portion 11 with an interval in the vertical direction. These fins 13 are continuously provided from the inlet portion 11A to the outlet portion 11B, and the heat transfer efficiency is improved by increasing the effective heat transfer area.
[0017]
Each evaporating unit 12 includes an inlet portion 12A and an outlet portion 12B that are opened up and down, and these inlet / outlet portions 12A and 12B have a horizontally long rectangular shape. Thereby, the inside of the evaporation part 12 is made into the space which continued from the upstream to the downstream along the flow direction of the high-temperature medium, and this space is connected up and down.
[0018]
The partition wall part that separates the flow path part 11 and the evaporation part 12 and the partition wall part that separates the evaporation part 12 on both sides in the width direction and the outside are arranged in a direction perpendicular to the flow direction of the high-temperature medium (the same in the width direction). The metal plate-like portion 14 is provided, which is also continuous along the flow direction of the high-temperature medium and is also continuous in the vertical direction. Then, the condensed heat medium that has entered from the inlet portion 12A below the evaporator 12 is heated by the plate-like portion 14 that is transferred from the high-temperature medium into steam, and is supplied from the upper outlet portion 12B to the thermoelectric converter 20 side. Is done.
[0019]
Here, the limit heat flux raising means according to the present invention is formed by a pair of flat opposing surfaces 14A of each plate-like portion 14 forming the evaporation portion 12. That is, since the space formed between the opposed surfaces 14A is continuous in the flow direction of the high-temperature medium, the condensed heat medium on the downstream side circulates upstream in the space when the condensed heat medium evaporates. Thus, the condensing heat medium on the downstream side that wraps around raises the critical heat flux of the evaporation section 12.
[0020]
In addition, in the present embodiment, the surface of the facing surface 14A is processed into a concavo-convex shape, and another limiting heat flux increasing means according to the present invention is also formed by the facing surface 14A processed into the concavo-convex shape. At this time, the uneven shape is such that the surface is finely roughened by machining or the like, the metal crystal is attached to the surface, or fine fins (low fins) are continuously provided on the surface. Formed with. Then, the capillary phenomenon caused by the concavo-convex facing surface 14 </ b> A promotes the sucking supply of the condensed heat medium from the storage unit 31 into the evaporation unit 12, and this increases the critical heat flux of the evaporation unit 12.
[0021]
The above is the configuration of the evaporator 10. In such an evaporator 10, the amount of evaporation on the upstream side is large in the flow direction of the high-temperature medium as in the conventional case, and the amount of evaporation decreases toward the downstream (FIG. 2). (See the white arrow inside.)
[0022]
On the other hand, in FIG. 4, the thermoelectric conversion part 20 is provided with the several electric power generation plate 21 arranged in parallel along the flow direction of a high temperature medium. The power generation plate 21 has a configuration in which a plurality of thermoelectric modules 23 are arranged on both front and back surfaces of a hollow plate-like cooling plate 22, and cooling water is supplied into the cooling plate 22 from a cooling water circulation means (not shown) to cool the thermoelectric module 23. The surface 23A is cooled. In contrast, the surface of the thermoelectric module 23 is a condensing surface 23B, and the vapor from the evaporator 10 heats the condensing surface 23B and condenses on the condensing surface 23B. Then, electric power is generated by the thermoelectric module 23 according to the temperature difference between the cooling surface 23A and the condensing surface 23B.
[0023]
These power generation plates 21 are suspended so that the condensation surface 23B of the thermoelectric module 23 is perpendicular to the flow direction of the high-temperature medium, and the pitch of each power generation plate 21 in the flow direction is small on the upstream side, It becomes larger as it goes downstream. That is, they are densely arranged on the upstream side and are arranged so as to become rough toward the downstream side. As a result, a large amount of steam generated upstream can be received by the larger condensing surface 23B, and a small amount of steam generated downstream can be received by the smaller condensing surface 23B. The amount of condensation on the condensing surface 23B toward the downstream also has substantially the same distribution as the amount of evaporation.
[0024]
Then, the condensed heat medium condensed on the condensing surface 23B falls back to the storage unit 31 and is heated again by the evaporator 10 to evaporate, and this evaporation and condensation are repeated.
By the way, a communication hole 32 is provided in the upper center of the housing 30 to allow the thermoelectric converter 20 (inside the housing 30) to communicate with the outside. The communication hole 32 has a role of maintaining the inside of the housing 30 at a substantially atmospheric pressure, and when the operation of the thermoelectric generator 1 is started, air in the housing 30 is driven upward by steam from the evaporator 10. Then, the air is exhausted from the communication hole 32 to the outside.
[0025]
Although not shown, the communication hole 32 is provided with a filter or the like that allows air to pass but does not allow steam to pass through, so that the steam is not discharged. Further, when it is desired to maintain the interior of the housing 30 at a predetermined pressure that is not atmospheric pressure, a pressure adjustment valve or the like may be provided in the communication hole 32.
[0026]
According to this embodiment, there are the following effects.
That is, in the evaporator 10 of the thermoelectric generator 1, the evaporation part 12 is formed by the opposing surface 14A of the plate-like part 14, and the space between the opposing surfaces 14A communicates along the flow direction of the high-temperature medium. Since the limiting heat flux increasing means is formed at 14A, unlike the conventional heat transfer tube having a closed cross section, in the space of the evaporation section 12, the condensing heat medium wraps around the predetermined portion from the downstream side. The critical heat flux of the evaporation part 12 can be increased. This makes it difficult for film boiling to occur even when the temperature of the evaporating unit 12 becomes higher, and the condensed heat medium can be evaporated well by nucleate boiling. Therefore, even if the evaporation section 12 is made small enough to easily reach a higher temperature, the condensed heat medium can be evaporated without hindrance, and the evaporation section 12 can be downsized to facilitate the downsizing of the entire evaporator.
[0027]
Further, the surface of the facing surface 14A has an uneven shape, and the limiting heat flux raising means is also formed by this uneven portion, so that the condensed heat medium is evaporated to the evaporation portion 12 by the capillary phenomenon due to the uneven portion of the surface. Is actively performed, the limit heat flux can be further increased, film boiling is less likely to occur, and downsizing can be promoted more reliably.
[0028]
Since the facing surface 14A is formed on the plate-like portion 14, an uneven portion is easily formed on the surface of the sheet metal before assembly of the evaporator 10 by, for example, bending or brazing of the sheet metal. it can. For this reason, productivity of the evaporator 10 can be improved and production cost can also be reduced.
[0029]
[Second Embodiment]
FIGS. 5A and 5B show a plan sectional view and a side sectional view (a sectional view taken along line BB in FIG. 5A) of the evaporator 10 according to the second embodiment of the present invention.
In the present embodiment, the shape of the fins 13 provided in the flow path portion 11 is greatly different from that of the first embodiment. Other configurations, such as the surface processing on the facing surface 14A, are substantially the same as the evaporator 10 of the first embodiment.
[0030]
The fins 13 in the present embodiment have a shape divided into a plurality of stages (in this embodiment, five stages) along the flow direction of the high-temperature medium, and are arranged in a staggered manner between the stages. The length of the fin 13 in each step is the same. In addition, a slight gap (see (A)) is formed between the steps, but the size of the gap is arbitrary, and there may be no gap. Further, an overlap portion by the fins 13 may be provided at the front and rear stages, for example, by the rear fins 13 entering between the front fins 13.
[0031]
According to the fin 13, as shown in FIG. 5C, the high-temperature medium passing between the pair of fins 13 in the previous stage is deprived of heat at the portion in contact with the pair of fins 13, and the temperature is somewhat lowered. However, on the fin 13 side in the rear stage, the high-temperature medium whose temperature has decreased (see the white arrow) does not come into contact with the fin 13 on the rear stage side, and the high-temperature medium near the center with a small temperature drop in the front stage ( A black arrow) touches the fin 13 on the rear stage side. For this reason, the heat flux at the fins 13 at the rear stage is substantially the same as the heat flux at the fins 13 at the front stage (actually slightly smaller), and the amount of evaporation at the portion corresponding to each stage in the evaporator 12 is uniform. Is achieved. That is, in the evaporation unit 12, the distribution of the evaporation amount of the condensed heat medium along the flow direction of the high-temperature medium becomes substantially constant from upstream to downstream.
[0032]
In the above-described embodiment, the fins 13 are divided into a plurality of stages along the flow direction of the high-temperature medium and are arranged in a staggered manner, whereby the distribution of the evaporation amount of the condensed heat medium is substantially reduced along the flow direction of the high-temperature medium. Although it is possible to make the same, the illustration is omitted, but in order to make the distribution of the condensation amount on the condensation surface 23B of the thermoelectric converter 20 the same as the distribution of the evaporation amount, the arrangement pitch of each power generation plate 21 is increased from upstream to downstream. It is sufficient to make them the same, and the design can be simplified.
[0033]
[Third Embodiment]
FIGS. 6A and 6B show a plan sectional view and a side sectional view (a sectional view taken along line BB in FIG. 6A) of the evaporator 10 according to the third embodiment of the present invention.
Also in this embodiment, the shape of the fin 13 provided in the flow path part 11 is greatly different from the first and second embodiments. Other configurations are substantially the same as those of the evaporator 10 of the first and second embodiments.
[0034]
The fins 13 in the present embodiment are divided into a plurality of stages (six stages in the present embodiment) along the flow direction of the high-temperature medium, and are arranged in a staggered manner as in the second embodiment. However, in the present embodiment, the first-stage fin 13A has the longest length, the second and third-stage fins 13B have the longest length, and the fourth to sixth-stage fins 13C have the longest length. short. The shorter the fins 13, the better the heat transfer performance per unit area.
[0035]
Therefore, according to the present embodiment, the heat transfer performance of each stage is improved toward the downstream side. Therefore, in the evaporation unit 12, the evaporation amount can be reliably increased toward the downstream side, compared with the second embodiment. Thus, the distribution of the evaporation amount from the upstream to the downstream can be made more uniform. In addition, by reducing the length of the fins 13C and the like, the size of the evaporator 10 in the flow direction can be reduced in order to obtain the same evaporation amount as a whole, and the evaporator itself can be downsized.
[0036]
Further, by arranging the fins 13A most coarsely and densely in the order of the fins 13B and 13C, the heat transfer area of the entire fin 13C is the largest, and then the heat transfer area of the entire fin 13B is large. The heat transfer area is the smallest.
Further, the fins 13A are arranged most coarsely, and are arranged densely in the order of the fins 13B and 13C. In terms of heat transfer area, the heat transfer area of the entire fin 13C is the largest, the heat transfer area of the entire fin 13B is then large, and the heat transfer area of the fin 13A is the smallest.
[0037]
Therefore, according to the present embodiment, the heat transfer area of each stage increases toward the downstream side. Therefore, in the evaporation unit 12, the amount of evaporation can be reliably increased toward the downstream side, compared to the second embodiment. Thus, the distribution of the evaporation amount from the upstream to the downstream can be made more uniform.
Furthermore, by reducing the length of the fins 13C and the like, the size in the flow direction of the evaporator 10 can be reduced in order to obtain the same evaporation amount as a whole, and further miniaturization can be realized.
[0038]
[Fourth Embodiment]
FIGS. 7A and 7B show a plan sectional view and a side sectional view (a sectional view taken along line BB in FIG. 7A) of the evaporator 10 according to the fourth embodiment of the present invention.
In the present embodiment, the shape of the internal space of the evaporation section 12 (flow path section 11) is significantly different from that in the third embodiment. Other configurations are substantially the same as those of the evaporator 10 of the third embodiment.
[0039]
That is, the internal space of the evaporation unit 12 of the present embodiment is wide on the upstream side and narrows toward the downstream. Further, in the flow path portion 11, the width is narrowed on the upstream side and becomes wider toward the downstream side. For this reason, the difference in heat transfer area between the stages provided with the fins 13A, 13B, and 13C can be made larger than the difference in heat transfer area in the third embodiment, and the heat flux on the downstream side can be further increased. Thus, the evaporation amount can be increased, and the evaporation amount distribution can be made more uniform.
[0040]
Furthermore, in this embodiment, since the evaporation part 12 is expanded toward the upstream side, the critical heat flux of the evaporation part 12 on the upstream side can be increased. Thereby, in the evaporation part 12, the dimension of the flow direction of a high temperature medium can be shortened, and the evaporator 10 can be further reduced in size.
[0041]
[Fifth Embodiment]
FIGS. 8A and 8B are a plan sectional view and a side sectional view (a sectional view taken along line BB in FIG. 8A) of the evaporator 10 according to the fifth embodiment of the present invention.
According to the present embodiment, a part of the facing surface 14A of the evaporation part 12 is provided with the semicircular bulging part 14B that bulges toward the flow path part 11 side. It is very different from the form. Other configurations are substantially the same as those of the evaporator 10 of the third embodiment.
[0042]
The bulging portion 14B corresponds to the boundary portion of each stage of the fin 13 and is provided continuously in the vertical direction (same as the rising direction of the steam). According to such a configuration, as shown in FIG. 8C, the high-temperature medium that has passed through the bulging portion 14B collides with the facing surface 14C (the surface on the opposite side of the facing surface 14A) on the flow path portion 11 side. Thus, a peeling effect is produced, and self-excited vibration is generated in the high temperature medium, so that the heat transfer efficiency on the high temperature medium side can be improved, and the condensed heat medium can be efficiently evaporated.
[0043]
Further, by providing the bulging portion 14B, the evaporation portion 12 side induces the wraparound portion 14B to circulate into the bulging portion 14B from the upstream side and the downstream side of the bulging portion 14B. Since it also serves as a storage part for supplying the condensed heat medium to the upper and downstream gaps, the configuration is different from that of the fourth embodiment, but the limit heat flux of the evaporation part 12 can also be increased, and the evaporation part 12 and therefore Further downsizing of the evaporator 10 can be realized.
[0044]
Note that the present invention is not limited to the above-described embodiments, and includes other configurations that can achieve the object of the present invention, and includes the following modifications and the like.
For example, in each of the above embodiments, the evaporation part 12 is formed by the plate-like part 14, but the evaporation part according to the present invention may be formed by using a conventional heat transfer tube. However, in this case, it is necessary to provide a critical heat flux increasing means by surface processing or the like on the inner surface of the heat transfer tube to satisfy the constituent requirements of claim 2 of the present invention.
And when the evaporation part 12 is formed by the plate-shaped part 14, it is not necessary to form the surface in uneven | corrugated form, and even in such a case, it is included in invention of Claim 3 etc. of this invention.
[0045]
In the above embodiment, the example of the evaporator 10 in which the evaporator of the present invention is applied to the thermoelectric generator 1 has been described. However, the evaporator of the present invention is not limited to this and may be applied to a boiler system or the like. The use of the evaporator is arbitrary.
[0046]
In addition, the best configuration, method and the like for carrying out the present invention have been disclosed in the above description, but the present invention is not limited to this. That is, the invention has been illustrated and described primarily with respect to particular embodiments, but may be configured for the above-described embodiments without departing from the scope and spirit of the invention. Various modifications can be made by those skilled in the art in terms of quantity, other details, and the like.
Therefore, the description limited to the shape, quantity and the like disclosed above is an example for easy understanding of the present invention, and does not limit the present invention. The description by the name of the member which remove | excluded the limitation of one part or all of such restrictions is included in this invention.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing a schematic overall configuration of a thermoelectric power generator to which an evaporator according to a first embodiment of the present invention is applied.
FIG. 2 is a perspective view schematically showing an evaporator.
3A is a plan sectional view of an evaporator, and FIG. 3B is a side sectional view thereof (sectional view taken along line BB in FIG. 3A).
FIG. 4 is a plan sectional view showing a thermoelectric conversion part of a thermoelectric generator.
5A is a plan sectional view of an evaporator according to a second embodiment of the present invention, FIG. 5B is a side sectional view thereof (sectional view taken along line BB in FIG. 5A), and FIG. 5C is necessary. FIG.
6A is a plan sectional view of an evaporator according to a third embodiment of the present invention, and FIG. 6B is a side sectional view thereof (sectional view taken along line BB in FIG. 6A).
7A is a plan sectional view of an evaporator according to a fourth embodiment of the present invention, and FIG. 7B is a side sectional view thereof (sectional view taken along line BB in FIG. 7A).
8A is a plan sectional view of an evaporator according to a fifth embodiment of the present invention, FIG. 8B is a side sectional view thereof (sectional view taken along line BB in FIG. 8A), and FIG. 8C is necessary. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Evaporator, 11 ... Channel part, 12 ... Evaporating part, 14 ... Plate-shaped part, 14A ... Opposite surface, 14B ... Swelling part.

Claims (4)

蒸発器(10)において、
高温媒体を流す流路部(11)と、
流路部(11)を流れる前記高温媒体で液体を加熱して当該液体の蒸気を生成する蒸発部(12)とを備え、
この蒸発部(12)には、当該蒸発部の限界熱流束を上げる限界熱流束上昇手段が設けられている
ことを特徴とする蒸発器(10)。
In the evaporator (10)
A flow path section (11) for flowing a high-temperature medium;
An evaporation section (12) for heating the liquid with the high-temperature medium flowing through the flow path section (11) to generate vapor of the liquid,
The evaporator (10) characterized in that the evaporator (12) is provided with a limit heat flux raising means for increasing the limit heat flux of the evaporator.
請求項1に記載の蒸発器(10)において、
前記限界熱流束上昇手段は、前記蒸発部(12)に入り込んだ前記液体が接触する面(14A)であって、凹凸状の表面(14A)で形成されている
ことを特徴とする蒸発器(10)。
The evaporator (10) according to claim 1,
The limit heat flux increasing means is an evaporator (12A), which is a surface (14A) that comes into contact with the liquid that has entered the evaporation section (12), and has an uneven surface (14A). 10).
請求項1または請求項2に記載の蒸発器(10)において、
前記蒸発部(12)は、前記高温媒体の流れ方向に対して直交する方向に並設された少なくとも一対のプレート状部(14)を備えているとともに、これらのプレート状部(14)間に前記液体が入り込む蒸発部(12)が構成され、
前記限界熱流束上昇手段は、互いに対向する各プレート状部(14)の対向面(14A)で形成されている
ことを特徴とする蒸発器(10)。
In the evaporator (10) according to claim 1 or 2,
The evaporation section (12) includes at least a pair of plate-like portions (14) arranged in parallel to a direction orthogonal to the flow direction of the high-temperature medium, and between these plate-like portions (14). An evaporation part (12) into which the liquid enters is configured,
The evaporator (10), wherein the limiting heat flux increasing means is formed by opposing surfaces (14A) of the plate-like portions (14) facing each other.
請求項3に記載の蒸発器(10)において、
前記対向面(14A)の一部には、前記流路部(11)側に膨出した膨出部(14B)が設けられている
ことを特徴とする蒸発器(10)。
The evaporator (10) according to claim 3,
An evaporator (10), wherein a part of the facing surface (14A) is provided with a bulging part (14B) bulging toward the flow path part (11).
JP2003188012A 2003-06-30 2003-06-30 Evaporator Pending JP2005024132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003188012A JP2005024132A (en) 2003-06-30 2003-06-30 Evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003188012A JP2005024132A (en) 2003-06-30 2003-06-30 Evaporator

Publications (1)

Publication Number Publication Date
JP2005024132A true JP2005024132A (en) 2005-01-27

Family

ID=34186688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003188012A Pending JP2005024132A (en) 2003-06-30 2003-06-30 Evaporator

Country Status (1)

Country Link
JP (1) JP2005024132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008018429A1 (en) * 2006-08-10 2009-12-24 隆啓 阿賀田 Evaporator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008018429A1 (en) * 2006-08-10 2009-12-24 隆啓 阿賀田 Evaporator
JP4917048B2 (en) * 2006-08-10 2012-04-18 隆啓 阿賀田 Evaporator

Similar Documents

Publication Publication Date Title
JP4366114B2 (en) Thermoelectric generator
JP5895301B2 (en) Heat exchanger
US20090293461A1 (en) Exhaust Heat Recovery Device
EP1383369A2 (en) Thermosiphon for electronics cooling with high performance boiling and condensing surfaces
JP2007278623A (en) Exhaust heat recovery system
JPWO2009051001A1 (en) Unidirectional fluid transfer device
JP2004056151A (en) Thermosyphon for electronics cooled by uneven airflow
US20150060028A1 (en) Heat exchanger
JP7015284B2 (en) Water spray cooling device
JP6747937B2 (en) Thermoelectric power generation system
JP2010249424A (en) Exhaust heat recovery device
JP2007211748A (en) Heat exchanger and thermoelectric generator
JP4627254B2 (en) Heat pipe equipment
JP2005024132A (en) Evaporator
US20210302076A1 (en) System and method for an energy recovery condenser
JP2010210202A (en) Heat exchange body
CN109154253B (en) Thermoelectric power generation device
JP2845566B2 (en) Heat exchanger
KR102055708B1 (en) Draft type condenser with improved of cooling efficiency by using heat pipe inserted in the steam turbine output steam pipe
JP2006202800A (en) Cooler of semiconductor device
JP6284734B2 (en) Rankine cycle system
JP2006153375A (en) Heat exchanging device and combustion device
JPS62170731A (en) Gas turbine provided with heat exchanger
JPH04164A (en) Heat exchanger
CN108699947B (en) Intercooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060515

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070705

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512