JP2005023022A - Method for producing high-purity 1,1-bis(4-hydroxyphenyl)cyclohexanes - Google Patents

Method for producing high-purity 1,1-bis(4-hydroxyphenyl)cyclohexanes Download PDF

Info

Publication number
JP2005023022A
JP2005023022A JP2003190786A JP2003190786A JP2005023022A JP 2005023022 A JP2005023022 A JP 2005023022A JP 2003190786 A JP2003190786 A JP 2003190786A JP 2003190786 A JP2003190786 A JP 2003190786A JP 2005023022 A JP2005023022 A JP 2005023022A
Authority
JP
Japan
Prior art keywords
hydroxyphenyl
bis
cyclohexanes
purity
filtrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003190786A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yao
和彦 八尾
Toru Nakaguchi
徹 中口
Kenji Egawa
健志 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honshu Chemical Industry Co Ltd
Original Assignee
Honshu Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honshu Chemical Industry Co Ltd filed Critical Honshu Chemical Industry Co Ltd
Priority to JP2003190786A priority Critical patent/JP2005023022A/en
Priority to US10/879,436 priority patent/US6875896B2/en
Priority to DE102004032189A priority patent/DE102004032189A1/en
Priority to NL1026555A priority patent/NL1026555C2/en
Publication of JP2005023022A publication Critical patent/JP2005023022A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/84Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for industrially producing high-purity 1,1-bis(4-hydroxyphenyl)cyclohexanes containing little metallic impurity in good production efficiency. <P>SOLUTION: A primarily crystallized and filtered product is obtained by reacting cyclohexanone with phenols represented by general formula (I) (wherein, R is a hydrogen atom or an alkyl group) in the presence of an acid catalyst, neutralizing the obtained reaction mixture with an alkali, primarily crystallizing the formed 1,1-bis(4-hydroxyphenyl)cyclohexanes, and filtering the crystallized product. A solution is obtained by dissolving 100 pts.wt. of the primarily crystallized and filtered product in 200-400 pts.wt. of a mixed solvent comprising 5-10 pts.wt. of water and 100-200 pts.wt. of a lower aliphatic ketone solvent, or a lower aliphatic alcohol solvent. The high-purity 1,1-bis(4-hydroxyphenyl)cyclohexanes represented by general formula (II) (wherein, R is the same as the above) is obtained by filtering the solution with a zeta potential filter, secondarily crystallizing the 1,1-bis(4-hydroxyphenyl)cyclohexanes from the filtrate in the presence of the water, and filtering the crystallized product. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、芳香族ポリカーボネート、芳香族ポリエーテルスルホン、芳香族ポリエーテルケトン、芳香族ポリエーテルイミド等、種々のポリマーの原料として有用な1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類の高純度品を生産効率よく、工業的に有利に製造する方法に関する。
【0002】
【従来の技術】
ビスフェノール類の1種である1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類は、通常、シクロヘキサノンとフェノール類を酸触媒の存在下に反応させることによって得ることができる。このような方法によって得られる1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類の高純度品を工業的に得るには、従来、例えば、シクロヘキサノンとフェノール類を酸触媒の存在下に反応させ、得られた反応生成物をアルカリで中和した後、生成した1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類を1次晶析し、濾過して、反応生成物を塩化メチレンで洗浄した後、メタノールと水の混合溶媒から再結晶して、純度99.2%の1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類を得ることができることが知られている。また、上記反応生成物を塩化メチレンで洗浄し、乾燥することによっても、同様に、高純度品を得ることができることが知られている(特許文献1参照)。
【0003】
他方、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類をフェノール類との混晶とした後、真空中で加熱することによって、純度99.3%の1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類を得ることができることも知られている(特許文献2参照)。
【0004】
しかし、近年、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類の利用が拡大するにつれて、更なる高純度品を工業的に一層、生産効率よく製造することが強く要望されるに至っているが、上述した方法ではこのような要望に応えることができず、また、得られた反応混合物を中和するために用いる水酸化ナトリウム等のアルカリに由来する反応生成物中の微量の金属不純物の除去については、従来、何も対策が講じられていない。
【0005】
【特許文献1】特開昭64−22833号公報
【特許文献2】特開平5−78270号公報
【0006】
【発明が解決しようとする課題】
本発明は、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類の製造における上述した問題を解決するためになされたものであって、高純度であり、しかも、金属不純物の少ない1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類を工業的に生産効率よく製造する方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明によれば、シクロヘキサノンと一般式(I)
【0008】
【化3】

Figure 2005023022
【0009】
(式中、Rは水素原子又はアルキル基を示す。)
で表されるフェノール類を酸触媒の存在下に反応させ、得られた反応混合物をアルカリで中和した後、生成した1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類を1次晶析し、濾過して、1次晶析濾過物を得、次いで、この1次晶析濾過物100重量部を水5〜10重量部と低級脂肪族ケトン溶媒100〜200重量部とからなる混合溶媒又は低級脂肪族アルコール溶媒200〜400重量部に溶解させて溶液とし、この溶液をゼータ電位フィルターで濾過し、かくして、得られた濾液から水の存在下に1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類を2次晶析し、濾過することを特徴とする一般式(II)
【0010】
【化4】
Figure 2005023022
【0011】
(式中、Rは上記と同じである。)
で表される高純度1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類の製造方法が提供される。
【0012】
【発明の実施の形態】
本発明において用いるフェノール類は、一般式(I)
【0013】
【化5】
Figure 2005023022
【0014】
(式中、Rは水素原子又はアルキル基を示す。)
で表される。Rは水素原子又はアルキル基であり、Rがアルキル基であるとき、そのアルキル基は、炭素原子数1〜3のものであることが好ましく、具体的には、メチル基、エチル基、直鎖状又は分岐鎖状のプロピル基を挙げることができる。従って、上記フェノール類の具体例として、例えば、フェノール、2−メチルフェノール、2−エチルフェノール、2−プロピルフェノール、2−イソプロピルフェノール等を挙げることができる。これらのなかでは、フェノール又は2−メチルフェノールが好ましく、特に、2−メチルフェノールが好ましく用いられる。
【0015】
このようなフェノール類にシクロヘキサノンを反応させるに際して、シクロヘキサノンに対するフェノール類の仕込みモル比は、特に限定されるものではないが、少なくとも、理論値(2.0)以上が必要であり、通常、2〜8の範囲であり、特に、3〜6の範囲が好ましい。
【0016】
本発明の方法によれば、先ず、シクロヘキサノンとフェノール類を酸触媒の存在下に反応させ、得られた反応混合物をアルカリで中和した後、晶析し、濾過して、1次晶析濾過物を得る。
【0017】
シクロヘキサノンとフェノール類との反応において用いられる酸触媒としては、塩酸、塩化水素、硫酸、リン酸、フッ化水素、臭化水素、三フッ化ホウ素、塩化リン等の無機酸、ベンゼンスルホン酸、メタンスルホン酸等の有機酸を挙げることができるが、好ましくは、濃塩酸、塩化水素ガス、50〜98%硫酸、85%リン酸、メタンスルホン酸等が用いられる。なかでも、濃塩酸又は塩化水素ガスが好ましく用いられる。これらの酸触媒は、単独で用いてもよく、また、2種以上を併用してもよい。
【0018】
本発明において、酸触媒の使用量は、特に限定されるものではないが、例えば、濃塩酸では、シクロヘキサノンに対して50〜100モル%の範囲で用いられ、塩化水素ガスの場合は、反応系内が飽和になるまで吹き込んで用いられる。また、反応に際して、必要に応じて、例えば、脂肪族メルカプタン類のような助触媒を上記酸触媒と共に用いてもよい。上記脂肪族メルカプタン類としては、例えば、メチルメルカプタン、エチルメルカプタン、プロピルメルカプタン、ブチルメルカプタン、n−オクチルメルカプタン、n−ドデシルメルカプタン等を挙げることができる。
【0019】
本発明によれば、シクロヘキサノンとフェノール類との反応に際して、不活性ガスを用いて、置換等の方法によって、反応前に反応系内の酸素を十分に除去した後、原料フェノール類とシクロヘキサノンとを反応させるのがよい。反応温度は、通常、20〜60℃の範囲が好ましい。原料フェノール類とシクロヘキサノンの反応は、液体クロマトグラフィー分析又はガスクロマトグラフィー分析によって追跡することができるので、未反応シクロヘキサノンが消失し、目的物の増加が認められなくなった時点を反応の終点とするのが好ましい。
【0020】
このようにして、シクロヘキサノンとフェノール類とを酸触媒の存在下に反応させた後、得られた反応混合物にアルカリを加えて、酸触媒を中和する。この中和に用いるアルカリは、特に限定されるものではないが、通常、水酸化ナトリウム水溶液、水酸化カリウム水溶液、第二リン酸ナトリウム水溶液等の希薄アルカリ水溶液が好ましく用いられる。これらのなかでは、水酸化ナトリウム水溶液が好ましく用いられる。この中和によって、得られた反応混合物のpHを4〜7の範囲とするのが好ましい。
【0021】
本発明によれば、このようにして、得られた反応混合物を中和した後、この反応混合物から反応生成物をそれ自体として、又は反応生成物と原料フェノール類との付加物として晶析させ、これを濾過して(1次晶析濾過)、反応生成物を反応混合物から1次晶析濾過物として取り出す。
【0022】
この1次晶析濾過は、従来より知られている適宜の方法によればよく、特に制限されないが、例えば、反応終了後、反応混合物を上述したようにアルカリで中和した後、反応生成物をそれ自体か、又は原料フェノールとの付加物として、濾過によって反応混合物から分離し、これを原料フェノール類と水との混合溶媒か、又は芳香族炭化水素類で洗浄し、濾過して、かくして、反応混合物から1次晶析濾過物を得る。
【0023】
また、別の方法として、反応終了後、反応混合物を上述したようにアルカリで中和した後、ケトン系等の溶媒を加え、加温して、反応混合物中に析出している反応生成物それ自体か、又は原料フェノール類との付加物を溶解させた後、水相を油相から分離し、残留油相から溶媒を溜去し、濾過して、1次晶析濾過物を得ることもできる。
【0024】
このようにして得られる1次晶析濾過物中の目的物の純度は、通常、目的物、残存原料フェノール類、副生物及び不純物の合計量に対して、95〜98%である。また、1次晶析濾過物中の金属不純物分は、塩素、鉄又はナトリウム等のアルカリ金属が主体である。例えば、シクロヘキサノンとフェノール類とを酸触媒の存在下に反応させた後、得られた反応混合物に水酸化ナトリウム水溶液を加えて、酸触媒を中和した場合であれば、1次晶析濾過物中の金属不純物分は、ナトリウムとして、通常、1〜10ppm程度である。
【0025】
本発明によれば、このようにして1次晶析濾過を行って、1次晶析濾過物を得、かくして、得られた1次晶析濾過物から微量の金属不純物を除去するために、ゼータ電位フィルターを用いて濾過を行う。本発明において用いるゼータ電位フィルターは、所謂ゼータ電位による吸着作用によって、微量の金属不純物を除去できると共に、有機溶媒中で用いることができるフィルターであればよい。フィルターの形態は、特に制限はないが、例えば、濾過原液の入口と濾液の出口を備えたフィルターハウジングの中に所謂積層セルタイプのフィルターカートリッジが装填されたフィルター装置を例示することができる。このようなフィルター装置に使用できるフィルターカートリッジとしては、例えば、「ゼータープラスフィルター」(登録商標、キュノ製)を挙げることができる。
【0026】
ゼータ電位フィルターによる濾過に際しては、微量の金属不純物を十分に除去することができるように、濾過温度は、70℃以下であることが肝要である。そこで、目的物の結晶析出温度を70℃以下とし、しかも、工業的に受容可能な容積効率とするために、得られた1次晶析濾過物100重量部に対して、目的物の良溶媒である低級脂肪族ケトン100〜200重量部に水5〜10重量部を加えた混合溶媒又は低級脂肪族アルコール溶媒200〜400重量部に溶解させれば、目的物は、このような溶液からの結晶析出温度が50〜60℃程度に低下し、しかも、容積効率は工業的に受容可能な範囲であり、かくして、ゼータ電位フィルターによって微量の金属不純物を工業的に有効に除去することができる。
【0027】
本発明において、上記低級脂肪族ケトンとは、炭素原子数1〜4のアルキル基を有するジアルキルケトンであり、従って、具体例としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン等を挙げることができる。これらのなかでは、特に、メチルイソブチルケトンが好ましく用いられる。また、上記低級脂肪族アルコール溶媒とは、炭素原子数1〜4のアルキルアルコールであり、従って、具体例として、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、2−ブタノール等を挙げることができる。
【0028】
このようにして、1次晶析濾過物を上記混合溶媒に溶解させてなる溶液をゼータ電位フィルターで濾過した後、得られた濾液から水の存在下に目的物を晶析し、得られた晶析物を濾過することによって(2次晶析濾過)、高純度の、即ち、金属不純物含有量の極めて少ない1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類を得ることができる。
【0029】
上記2次晶析濾過においては、例えば、濾液100重量部に対して、水100〜200重量部を加えた後、上記溶媒の調製に用いた良溶媒を留去して、目的物と残留水との混合物を得た後、これに更に溶媒を加えて、常圧又は加圧下で溶解し、その後、冷却し、晶析して、濾過する。上記目的物と残留水との混合物に新たに加える溶媒としては、1次晶析濾過の際に用いた低級脂肪族ケトンや低級脂肪族アルコール等を挙げることができる。
【0030】
このようにして、本発明によれば、用いるフェノール類に対応して、一般式(II)で表される1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類を得ることができる。従って、その具体例として、例えば、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(3−メチルー4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(3−エチル−4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(3−イソプロピル−4−ヒドロキシフェニル)シクロヘキサン等を挙げることができる。
【0031】
特に、本発明によれば、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン又は1,1−ビス(3−メチル−4−ヒドロキシフェニル)シクロヘキサンを好ましい具体例として挙げることができ、なかでも、1,1−ビス(3−メチル−4−ヒドロキシフェニル)シクロヘキサンを特に好ましい具体例として挙げることができ。
【0032】
このようにして、本発明の方法によれば、99%以上の純度を有し、金属不純物量の極めて低い1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類の高純度品、例えば、前述したように、得られた反応混合物中の酸触媒を水酸化ナトリウム水溶液を用いて中和した場合であれば、金属不純物がナトリウムとして0.1ppm以下であり、好ましくは、0.05ppm以下の1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類を得ることができる。また、本発明の方法によれば、原料シクロヘキサノンに対する収率は、通常、70%以上である。
【0033】
【発明の効果】
本発明によれば、高純度で金属不純物の少ない1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類を生産効率よく、工業的に有利に製造することができる。
【0034】
【実施例】
以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。
【0035】
参考例1
温度計、滴下漏斗、冷却器及び攪拌装置を備えた1L容量の四つ口フラスコにo−クレゾール194.4g(1.8モル)と水3.8gを仕込み、内温を40℃に保って、反応系内を窒素置換した後、塩化水素ガスを飽和するまで吹き込んだ。
【0036】
温度を40℃に維持しつつ、これにシクロヘキサノン58.8g(0.6モル)とo−クレゾール64.8g(0.6モル)の混合物を4時間かけて滴下した後、同じ温度で更に18時間、反応させた。
【0037】
反応終了後、得られた反応混合物に16%水酸化ナトリウム水溶液を加えて中和した後、メチルイソブチルケトン176gを加え、100℃まで昇温し、反応生成物を溶解させた。この後、反応混合物から水層を分液除去し、水洗した。得られた混合物から水層を除去し、残留油層に水92gを加え、メチルイソブチルケトンを留去した後、冷却、濾過して、1次晶析濾過物150gを得た。この1次晶析濾過物中の目的物の純度は97%(液体クロマトグラフィー分析による測定)、不純物金属ナトリウムは1600ppb(原子吸光法による測定)であった。
【0038】
実施例1
(メチルイソブチルケトン溶媒を用いる精製)
温度計、冷却器及び攪拌装置を備えた1L容量の四つ口フラスコに上記1次晶析濾過物150g、メチルイソブチルケトン225g及び水7.5gを仕込み、100℃に昇温して、溶解させた。その後、この混合溶液を70℃に維持して、キュノフィルター濾過を行った。
【0039】
得られた濾液に水216gを加え、常圧蒸留にてメチルイソブチルケトンを全量留出させた後、温度90℃でこれにメチルイソブチルケトン30gを加え、この後、冷却し、晶析させ、濾過し、乾燥して、目的物である1,1−ビス(3−メチル−4−ヒドロキシフェニル)シクロヘキサンの白色結晶(融点192℃(メトラー法))を得た。純度99.9%、金属不純物(ナトリウム)20ppbであった。また、1次晶析濾過物に対する収率は95%であった。
【0040】
実施例2
(メタノール溶媒を用いる精製)
温度計、冷却器及び攪拌装置を備えた1L容量の四つ口フラスコに上記1次晶析濾過物150gとメタノール450gを仕込み、65℃に昇温して、溶解させた。その後、この混合溶液を50℃に維持して、キュノフィルター濾過を行った。
【0041】
得られた濾液から常圧蒸留にてメタノール210gを留出させた後、温度65℃でこれに水240gを加え、この後、冷却し、濾過し、乾燥して、目的物である1,1−ビス(3−メチル−4−ヒドロキシフェニル)シクロヘキサンの白色結晶(融点192℃(メトラー法))を得た。純度99.9%、金属不純物(ナトリウム)20ppbであった。また、1次晶析濾過物に対する収率は95%であった。
【0042】
比較例1
(トルエン溶媒を用いる精製)
温度計、冷却器及び攪拌装置を備えた1L容量の四つ口フラスコに上記1次晶析濾過物150gとトルエン300gと水150gを仕込み、85℃に昇温した。その後、この混合溶液を70℃に維持して、キュノフィルター濾過を行ったが、結晶が完全に溶解しないために、フィルターが目詰まりを起こした。
【0043】
そこで、温度計、冷却器及び攪拌装置を備えた1L容量の四つ口フラスコに上記1次晶析濾過物150gとトルエン300gと水150gを仕込み、135℃に昇温して、溶解させた。その後、この混合溶液を同じ温度に静置して、水層を分液、除去した。
【0044】
その後、攪拌しながら、バルブを徐々に開けて、系内の圧力を解放すると共に、系内に残存する水分を回収し、結晶を析出させた。その後、冷却し、濾過、乾燥して、目的物である1,1−ビス(3−メチル−4−ヒドロキシフェニル)シクロヘキサンの白色結晶(融点192℃(メトラー法))を得た。純度99.9%、金属不純物(ナトリウム)200ppbであった。また、1次晶析濾過物に対する収率は97%であった。
【0045】
比較例2
(キュノフィルターを用いずに、メタノール溶媒を用いる精製)
温度計、冷却器及び攪拌装置を備えた1L容量の四つ口フラスコに上記1次晶析濾過物150gとメタノール450gを仕込み、65℃に昇温して、溶解させた。その後、常圧蒸留にてメタノール210gを留出させた後、温度65℃でこれに水240gを加え、この後、冷却し、濾過し、乾燥して、目的物である1,1−ビス(3−メチル−4−ヒドロキシフェニル)シクロヘキサンの白色結晶(融点192℃(メトラー法))を得た。純度99.9%、金属不純物(ナトリウム)200ppbであった。また、1次晶析濾過物に対する収率は95%であった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high 1,1-bis (4-hydroxyphenyl) cyclohexane compound useful as a raw material for various polymers such as aromatic polycarbonate, aromatic polyethersulfone, aromatic polyetherketone, and aromatic polyetherimide. The present invention relates to a method for producing a purified product with good production efficiency and industrially advantageous.
[0002]
[Prior art]
1,1-bis (4-hydroxyphenyl) cyclohexanes, which is a kind of bisphenols, can usually be obtained by reacting cyclohexanone and phenols in the presence of an acid catalyst. In order to industrially obtain a high-purity product of 1,1-bis (4-hydroxyphenyl) cyclohexanes obtained by such a method, conventionally, for example, cyclohexanone and phenols are reacted in the presence of an acid catalyst, After neutralizing the obtained reaction product with an alkali, the produced 1,1-bis (4-hydroxyphenyl) cyclohexanes were subjected to primary crystallization, filtered, and the reaction product was washed with methylene chloride. It is known that 1,1-bis (4-hydroxyphenyl) cyclohexanes having a purity of 99.2% can be obtained by recrystallization from a mixed solvent of methanol and water. It is also known that a high-purity product can be obtained in the same manner by washing the reaction product with methylene chloride and drying it (see Patent Document 1).
[0003]
On the other hand, 1,1-bis (4-hydroxyphenyl) cyclohexanes were mixed with phenols and then heated in a vacuum to obtain 99.3% pure 1,1-bis (4-hydroxyphenyl). It is also known that cyclohexanes can be obtained (see Patent Document 2).
[0004]
However, in recent years, as the use of 1,1-bis (4-hydroxyphenyl) cyclohexanes has expanded, there has been a strong demand for industrially and more efficiently producing higher purity products. In addition, the above-described method cannot meet such a demand, and also removes a trace amount of metal impurities in the reaction product derived from an alkali such as sodium hydroxide used for neutralizing the obtained reaction mixture. For the past, no measures have been taken.
[0005]
[Patent Document 1] Japanese Patent Application Laid-Open No. 64-22833 [Patent Document 2] Japanese Patent Application Laid-Open No. 5-78270 [0006]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-mentioned problems in the production of 1,1-bis (4-hydroxyphenyl) cyclohexanes, and has a high purity and a small amount of metal impurities. An object of the present invention is to provide a method for industrially producing bis (4-hydroxyphenyl) cyclohexanes with high production efficiency.
[0007]
[Means for Solving the Problems]
According to the invention, cyclohexanone and general formula (I)
[0008]
[Chemical 3]
Figure 2005023022
[0009]
(In the formula, R represents a hydrogen atom or an alkyl group.)
The reaction mixture is reacted in the presence of an acid catalyst, the resulting reaction mixture is neutralized with an alkali, and the resulting 1,1-bis (4-hydroxyphenyl) cyclohexanes are subjected to primary crystallization. And filtered to obtain a primary crystallization filtrate, and then 100 parts by weight of the primary crystallization filtrate is a mixed solvent consisting of 5 to 10 parts by weight of water and 100 to 200 parts by weight of a lower aliphatic ketone solvent or A solution is prepared by dissolving in 200 to 400 parts by weight of a lower aliphatic alcohol solvent, and this solution is filtered with a zeta potential filter. Thus, 1,1-bis (4-hydroxyphenyl) is removed from the obtained filtrate in the presence of water. General formula (II) characterized by secondary crystallization of cyclohexanes and filtration
[0010]
[Formula 4]
Figure 2005023022
[0011]
(In the formula, R is the same as above.)
The manufacturing method of the high purity 1,1-bis (4-hydroxyphenyl) cyclohexane represented by these is provided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The phenols used in the present invention have the general formula (I)
[0013]
[Chemical formula 5]
Figure 2005023022
[0014]
(In the formula, R represents a hydrogen atom or an alkyl group.)
It is represented by R is a hydrogen atom or an alkyl group, and when R is an alkyl group, the alkyl group is preferably one having 1 to 3 carbon atoms, specifically, a methyl group, an ethyl group, a straight chain And a branched propyl group. Therefore, specific examples of the phenols include phenol, 2-methylphenol, 2-ethylphenol, 2-propylphenol, 2-isopropylphenol, and the like. Among these, phenol or 2-methylphenol is preferable, and 2-methylphenol is particularly preferably used.
[0015]
When cyclohexanone is reacted with such a phenol, the charging molar ratio of the phenol to cyclohexanone is not particularly limited, but at least the theoretical value (2.0) is required. It is the range of 8, and the range of 3-6 is especially preferable.
[0016]
According to the method of the present invention, first, cyclohexanone and phenols are reacted in the presence of an acid catalyst, and the resulting reaction mixture is neutralized with an alkali, then crystallized, filtered, and subjected to primary crystallization filtration. Get things.
[0017]
Acid catalysts used in the reaction of cyclohexanone with phenols include hydrochloric acid, hydrogen chloride, sulfuric acid, phosphoric acid, hydrogen fluoride, hydrogen bromide, boron trifluoride, phosphorus chloride and other inorganic acids, benzenesulfonic acid, methane Organic acids such as sulfonic acid can be mentioned, and concentrated hydrochloric acid, hydrogen chloride gas, 50 to 98% sulfuric acid, 85% phosphoric acid, methanesulfonic acid and the like are preferably used. Of these, concentrated hydrochloric acid or hydrogen chloride gas is preferably used. These acid catalysts may be used alone or in combination of two or more.
[0018]
In the present invention, the amount of the acid catalyst used is not particularly limited. For example, concentrated hydrochloric acid is used in a range of 50 to 100 mol% with respect to cyclohexanone, and in the case of hydrogen chloride gas, the reaction system is used. It is used by blowing until the inside is saturated. In the reaction, if necessary, a cocatalyst such as aliphatic mercaptans may be used together with the acid catalyst. Examples of the aliphatic mercaptans include methyl mercaptan, ethyl mercaptan, propyl mercaptan, butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, and the like.
[0019]
According to the present invention, when the reaction between cyclohexanone and phenols is performed, an inert gas is used to sufficiently remove oxygen in the reaction system before the reaction by a method such as substitution, and then the raw material phenols and cyclohexanone are combined. It is better to react. The reaction temperature is usually preferably in the range of 20-60 ° C. The reaction between the raw material phenols and cyclohexanone can be traced by liquid chromatography analysis or gas chromatography analysis. Therefore, when the unreacted cyclohexanone disappears and the increase in the target product is no longer observed, the reaction end point is determined. Is preferred.
[0020]
Thus, after making cyclohexanone and phenols react in presence of an acid catalyst, an alkali is added to the obtained reaction mixture, and an acid catalyst is neutralized. The alkali used for this neutralization is not particularly limited, but usually a dilute alkaline aqueous solution such as an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution or an aqueous dibasic sodium phosphate solution is preferably used. Of these, an aqueous sodium hydroxide solution is preferably used. By this neutralization, the pH of the resulting reaction mixture is preferably in the range of 4-7.
[0021]
According to the present invention, after neutralizing the reaction mixture thus obtained, the reaction product is crystallized from the reaction mixture as it is or as an adduct of the reaction product and raw phenols. This is filtered (primary crystallization filtration), and the reaction product is taken out from the reaction mixture as a primary crystallization filtrate.
[0022]
The primary crystallization filtration may be performed by an appropriate method known in the art, and is not particularly limited. For example, after completion of the reaction, the reaction mixture is neutralized with alkali as described above, and then the reaction product. From the reaction mixture by filtration, either as an adduct with the raw material phenol or by filtration, washed with a mixed solvent of raw material phenols and water, or with aromatic hydrocarbons, filtered and thus The primary crystallization filtrate is obtained from the reaction mixture.
[0023]
As another method, after completion of the reaction, the reaction mixture is neutralized with alkali as described above, and a solvent such as a ketone is added and heated to react with the reaction product precipitated in the reaction mixture. After dissolving the adduct itself or the raw material phenols, the aqueous phase is separated from the oil phase, the solvent is distilled off from the residual oil phase, and filtration is performed to obtain a primary crystallization filtrate. it can.
[0024]
The purity of the target product in the primary crystallization filtrate thus obtained is usually 95 to 98% with respect to the total amount of the target product, residual raw material phenols, by-products and impurities. The metal impurity content in the primary crystallization filtrate is mainly alkali metal such as chlorine, iron or sodium. For example, if cyclohexanone and phenols are reacted in the presence of an acid catalyst and then an aqueous sodium hydroxide solution is added to the resulting reaction mixture to neutralize the acid catalyst, the primary crystallization filtrate The metal impurity content is usually about 1 to 10 ppm as sodium.
[0025]
According to the present invention, primary crystallization filtration is performed in this way to obtain a primary crystallization filtrate, and thus, in order to remove a trace amount of metal impurities from the obtained primary crystallization filtrate, Filtration is performed using a zeta potential filter. The zeta potential filter used in the present invention may be any filter that can remove a trace amount of metal impurities and can be used in an organic solvent by an adsorption action by a so-called zeta potential. The form of the filter is not particularly limited. For example, a filter device in which a so-called laminated cell type filter cartridge is loaded in a filter housing having an inlet for filtrate and an outlet for filtrate can be exemplified. As a filter cartridge that can be used in such a filter device, for example, “Zeta Plus Filter” (registered trademark, manufactured by Cuno) can be mentioned.
[0026]
In the filtration with the zeta potential filter, it is important that the filtration temperature is 70 ° C. or less so that a trace amount of metal impurities can be sufficiently removed. Therefore, in order to set the crystal precipitation temperature of the target product to 70 ° C. or lower and to achieve industrially acceptable volume efficiency, the good solvent of the target product is used with respect to 100 parts by weight of the obtained primary crystallization filtrate. If the product is dissolved in a mixed solvent obtained by adding 5 to 10 parts by weight of water to 100 to 200 parts by weight of a lower aliphatic ketone or 200 to 400 parts by weight of a lower aliphatic alcohol solvent, the target product is obtained from such a solution. The crystal precipitation temperature is reduced to about 50 to 60 ° C., and the volumetric efficiency is in an industrially acceptable range. Thus, a trace amount of metal impurities can be industrially effectively removed by the zeta potential filter.
[0027]
In the present invention, the lower aliphatic ketone is a dialkyl ketone having an alkyl group having 1 to 4 carbon atoms. Therefore, specific examples include, for example, acetone, methyl ethyl ketone, diethyl ketone, methyl isopropyl ketone, methyl isobutyl. A ketone etc. can be mentioned. Of these, methyl isobutyl ketone is particularly preferably used. The lower aliphatic alcohol solvent is an alkyl alcohol having 1 to 4 carbon atoms, and therefore, specific examples include methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol and the like. Can be mentioned.
[0028]
In this way, a solution obtained by dissolving the primary crystallization filtrate in the above mixed solvent was filtered with a zeta potential filter, and then the desired product was crystallized from the obtained filtrate in the presence of water. By filtering the crystallized product (secondary crystallizing filtration), it is possible to obtain 1,1-bis (4-hydroxyphenyl) cyclohexanes having a high purity, that is, an extremely low metal impurity content.
[0029]
In the secondary crystallization filtration, for example, 100 to 200 parts by weight of water is added to 100 parts by weight of the filtrate, and then the good solvent used in the preparation of the solvent is distilled off to obtain the target product and residual water. A solvent is further added to the mixture and dissolved under normal pressure or pressure, and then cooled, crystallized, and filtered. Examples of the solvent newly added to the mixture of the target product and residual water include lower aliphatic ketones and lower aliphatic alcohols used in the primary crystallization filtration.
[0030]
Thus, according to the present invention, 1,1-bis (4-hydroxyphenyl) cyclohexanes represented by the general formula (II) can be obtained corresponding to the phenols used. Therefore, as specific examples thereof, for example, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (3-methyl-4-hydroxyphenyl) cyclohexane, 1,1-bis (3-ethyl-4-) Hydroxyphenyl) cyclohexane, 1,1-bis (3-isopropyl-4-hydroxyphenyl) cyclohexane and the like can be mentioned.
[0031]
In particular, according to the present invention, 1,1-bis (4-hydroxyphenyl) cyclohexane or 1,1-bis (3-methyl-4-hydroxyphenyl) cyclohexane can be mentioned as preferred specific examples, 1,1-bis (3-methyl-4-hydroxyphenyl) cyclohexane can be mentioned as a particularly preferred specific example.
[0032]
Thus, according to the method of the present invention, a high-purity product of 1,1-bis (4-hydroxyphenyl) cyclohexanes having a purity of 99% or more and an extremely low amount of metal impurities, for example, as described above Thus, when the acid catalyst in the obtained reaction mixture is neutralized using an aqueous sodium hydroxide solution, the metal impurity is 0.1 ppm or less as sodium, preferably 0.05 ppm or less, 1-bis (4-hydroxyphenyl) cyclohexanes can be obtained. Moreover, according to the method of the present invention, the yield relative to the raw material cyclohexanone is usually 70% or more.
[0033]
【The invention's effect】
According to the present invention, 1,1-bis (4-hydroxyphenyl) cyclohexanes having high purity and few metal impurities can be produced industrially advantageously with high production efficiency.
[0034]
【Example】
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
[0035]
Reference example 1
A 1 L four-necked flask equipped with a thermometer, a dropping funnel, a condenser and a stirrer was charged with 194.4 g (1.8 mol) of o-cresol and 3.8 g of water, and the internal temperature was kept at 40 ° C. After replacing the inside of the reaction system with nitrogen, hydrogen chloride gas was blown in until saturated.
[0036]
While maintaining the temperature at 40 ° C., a mixture of 58.8 g (0.6 mol) of cyclohexanone and 64.8 g (0.6 mol) of o-cresol was added dropwise over 4 hours, and then further 18 at the same temperature. Reacted for hours.
[0037]
After completion of the reaction, the resulting reaction mixture was neutralized by adding a 16% aqueous sodium hydroxide solution, 176 g of methyl isobutyl ketone was added, the temperature was raised to 100 ° C., and the reaction product was dissolved. Thereafter, the aqueous layer was separated from the reaction mixture and washed with water. The aqueous layer was removed from the resulting mixture, 92 g of water was added to the residual oil layer, and methyl isobutyl ketone was distilled off, followed by cooling and filtration to obtain 150 g of a primary crystallization filtrate. The purity of the target product in the primary crystallization filtrate was 97% (measured by liquid chromatography analysis), and the impurity metal sodium was 1600 ppb (measured by atomic absorption method).
[0038]
Example 1
(Purification using methyl isobutyl ketone solvent)
Into a 1 L four-necked flask equipped with a thermometer, a cooler and a stirrer is charged 150 g of the primary crystallization filtrate, 225 g of methyl isobutyl ketone and 7.5 g of water, and the temperature is raised to 100 ° C. to dissolve. It was. Then, this mixed solution was maintained at 70 ° C. and subjected to cunofilter filtration.
[0039]
After adding 216 g of water to the obtained filtrate and distilling out the whole amount of methyl isobutyl ketone by atmospheric distillation, 30 g of methyl isobutyl ketone was added thereto at a temperature of 90 ° C., followed by cooling, crystallization, and filtration. Then, it was dried to obtain white crystals of 1,1-bis (3-methyl-4-hydroxyphenyl) cyclohexane (melting point: 192 ° C. (Mettler method)), which was the target product. The purity was 99.9% and the metal impurity (sodium) was 20 ppb. The yield based on the primary crystallization filtrate was 95%.
[0040]
Example 2
(Purification using methanol solvent)
150 g of the primary crystallization filtrate and 450 g of methanol were charged into a 1 L four-necked flask equipped with a thermometer, a cooler and a stirrer, and the temperature was raised to 65 ° C. and dissolved. Then, this mixed solution was maintained at 50 ° C. and subjected to cunofilter filtration.
[0041]
After distilling 210 g of methanol from the obtained filtrate by atmospheric distillation, 240 g of water was added thereto at a temperature of 65 ° C., and then cooled, filtered and dried to obtain the target 1,1 White crystals of bis (3-methyl-4-hydroxyphenyl) cyclohexane (melting point 192 ° C. (Mettler method)) were obtained. The purity was 99.9% and the metal impurity (sodium) was 20 ppb. The yield based on the primary crystallization filtrate was 95%.
[0042]
Comparative Example 1
(Purification using toluene solvent)
150 g of the primary crystallization filtrate, 300 g of toluene and 150 g of water were charged into a 1 L four-necked flask equipped with a thermometer, a cooler and a stirrer, and the temperature was raised to 85 ° C. Thereafter, the mixed solution was maintained at 70 ° C. and filtered with a Cuno filter, but the filter was clogged because the crystals were not completely dissolved.
[0043]
Therefore, 150 g of the primary crystallization filtrate, 300 g of toluene, and 150 g of water were charged in a 1 L four-necked flask equipped with a thermometer, a cooler, and a stirrer, and the temperature was raised to 135 ° C. and dissolved. Thereafter, this mixed solution was allowed to stand at the same temperature, and the aqueous layer was separated and removed.
[0044]
Thereafter, while stirring, the valve was gradually opened to release the pressure in the system, and water remaining in the system was collected to precipitate crystals. Then, it cooled, filtered, and dried and the white crystal | crystallization (melting | fusing point 192 degreeC (Mettler method)) of 1,1-bis (3-methyl-4-hydroxyphenyl) cyclohexane which is a target object was obtained. The purity was 99.9% and the metal impurity (sodium) was 200 ppb. The yield based on the primary crystallization filtrate was 97%.
[0045]
Comparative Example 2
(Purification using methanol solvent without using Kuno filter)
150 g of the primary crystallization filtrate and 450 g of methanol were charged into a 1 L four-necked flask equipped with a thermometer, a cooler and a stirrer, and the temperature was raised to 65 ° C. and dissolved. Then, after distilling 210 g of methanol by atmospheric distillation, 240 g of water was added thereto at a temperature of 65 ° C., and then cooled, filtered and dried, and 1,1-bis ( White crystals of 3-methyl-4-hydroxyphenyl) cyclohexane (melting point 192 ° C. (Mettler method)) were obtained. The purity was 99.9% and the metal impurity (sodium) was 200 ppb. The yield based on the primary crystallization filtrate was 95%.

Claims (1)

シクロヘキサノンと一般式(I)
Figure 2005023022
(式中、Rは水素原子又はアルキル基を示す。)
で表されるフェノール類を酸触媒の存在下に反応させ、得られた反応混合物をアルカリで中和した後、生成した1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類を1次晶析し、濾過して、1次晶析濾過物を得、次いで、この1次晶析濾過物100重量部を水5〜10重量部と低級脂肪族ケトン溶媒100〜200重量部とからなる混合溶媒又は低級脂肪族アルコール溶媒200〜400重量部に溶解させて溶液とし、この溶液をゼータ電位フィルターで濾過し、かくして、得られた濾液から水の存在下に1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類を2次晶析し、濾過することを特徴とする一般式(II)
Figure 2005023022
(式中、Rは上記と同じである。)
で表される高純度1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン類の製造方法。
Cyclohexanone and general formula (I)
Figure 2005023022
(In the formula, R represents a hydrogen atom or an alkyl group.)
The reaction mixture is reacted in the presence of an acid catalyst, the resulting reaction mixture is neutralized with an alkali, and the resulting 1,1-bis (4-hydroxyphenyl) cyclohexanes are subjected to primary crystallization. And filtered to obtain a primary crystallization filtrate, and then 100 parts by weight of the primary crystallization filtrate is a mixed solvent consisting of 5 to 10 parts by weight of water and 100 to 200 parts by weight of a lower aliphatic ketone solvent or A solution is prepared by dissolving in 200 to 400 parts by weight of a lower aliphatic alcohol solvent, and this solution is filtered with a zeta potential filter. Thus, 1,1-bis (4-hydroxyphenyl) is removed from the obtained filtrate in the presence of water. General formula (II) characterized by secondary crystallization of cyclohexanes and filtration
Figure 2005023022
(In the formula, R is the same as above.)
The manufacturing method of the high purity 1,1-bis (4-hydroxyphenyl) cyclohexane represented by these.
JP2003190786A 2003-07-03 2003-07-03 Method for producing high-purity 1,1-bis(4-hydroxyphenyl)cyclohexanes Pending JP2005023022A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003190786A JP2005023022A (en) 2003-07-03 2003-07-03 Method for producing high-purity 1,1-bis(4-hydroxyphenyl)cyclohexanes
US10/879,436 US6875896B2 (en) 2003-07-03 2004-06-29 Method for producing high purity 1,1-bis(4-hydroxyphenyl)cyclohexanes
DE102004032189A DE102004032189A1 (en) 2003-07-03 2004-07-02 Process for the preparation of 1,1-bis (4-hydroxyphenyl) cyclohexanes with high purity
NL1026555A NL1026555C2 (en) 2003-07-03 2004-07-02 Process for the preparation of high purity 1,1-bis (4-hydroxypheny) cyclohexanes.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003190786A JP2005023022A (en) 2003-07-03 2003-07-03 Method for producing high-purity 1,1-bis(4-hydroxyphenyl)cyclohexanes

Publications (1)

Publication Number Publication Date
JP2005023022A true JP2005023022A (en) 2005-01-27

Family

ID=33549826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003190786A Pending JP2005023022A (en) 2003-07-03 2003-07-03 Method for producing high-purity 1,1-bis(4-hydroxyphenyl)cyclohexanes

Country Status (4)

Country Link
US (1) US6875896B2 (en)
JP (1) JP2005023022A (en)
DE (1) DE102004032189A1 (en)
NL (1) NL1026555C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038968A1 (en) * 2015-09-04 2017-03-09 三菱瓦斯化学株式会社 Compound purification method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301160A (en) * 2015-11-02 2016-02-03 万特制药(海南)有限公司 Method for measuring chemical purity of clinofibrate midbody by adopting gas chromatography separation
CN114436780A (en) * 2020-11-02 2022-05-06 中国石油化工股份有限公司 Preparation method of bisphenol Z and bisphenol Z

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3673262A (en) * 1968-12-20 1972-06-27 Hooker Chemical Corp Crystallization of diphenylol alkanes
US4113974A (en) * 1976-12-30 1978-09-12 General Electric Company Process for purifying impure diphenols
JPS59175444A (en) * 1983-03-25 1984-10-04 Sanko Kaihatsu Kagaku Kenkyusho:Kk Phenolic compound and thermally sensitive recorder containing the same
JPS62178534A (en) * 1986-01-31 1987-08-05 Idemitsu Kosan Co Ltd Purification of bisphenol compound
NO170326C (en) * 1988-08-12 1992-10-07 Bayer Ag DIHYDROKSYDIFENYLCYKLOALKANER
JP4035287B2 (en) * 2000-12-11 2008-01-16 本州化学工業株式会社 Method for producing isatin bis (o-cresol)
JP2003342218A (en) * 2002-05-24 2003-12-03 Taoka Chem Co Ltd Large particle diameter 1,1-bis(4-hydroxyphenyl) cyclohexane and method for producing the same
US6646097B1 (en) * 2002-10-31 2003-11-11 General Electric Company Method for purifying 1,1-bis(4′-hydroxy-3′-methylphenyl)cyclohexane and methods of producing polycarbonates therefrom

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038968A1 (en) * 2015-09-04 2017-03-09 三菱瓦斯化学株式会社 Compound purification method
CN108026011A (en) * 2015-09-04 2018-05-11 三菱瓦斯化学株式会社 The purification process of compound
JPWO2017038968A1 (en) * 2015-09-04 2018-06-21 三菱瓦斯化学株式会社 Compound purification method

Also Published As

Publication number Publication date
NL1026555C2 (en) 2006-09-27
US6875896B2 (en) 2005-04-05
US20050004405A1 (en) 2005-01-06
NL1026555A1 (en) 2005-01-04
DE102004032189A1 (en) 2005-05-12

Similar Documents

Publication Publication Date Title
WO2014103811A1 (en) Method for producing purified form of amine compound
US8183404B2 (en) Process for producing dicyanonorbornane and zerovalent nickel complex catalyst
JP2000128820A (en) Production of 3,3,5-trimethylcyclohexylidenebisphenols
JP5246516B2 (en) Method for isolating methyl-4-formylbenzoate and dimethyl terephthalate
JP2005023022A (en) Method for producing high-purity 1,1-bis(4-hydroxyphenyl)cyclohexanes
CN101298414A (en) Preparation of 4-hydroxy benzophenone
JP5285830B2 (en) Process for producing 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
US6720426B2 (en) Process for producing 2-(4-pyridyl)ethanethiol
JP5752361B2 (en) Process for producing 1- (4-hydroxyphenyl) -1-cyclohexenes
JP4472923B2 (en) Process for producing 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
JP5572430B2 (en) Process for producing 9,9-bis (4-hydroxyphenyl) fluorenes
JP4127017B2 (en) Method for producing benzylcarbazate compound
JP3337326B2 (en) Process for producing bis (hydroxyaryl) pentanoic acids
JPS6315252B2 (en)
US7002046B2 (en) Process for the recovery of dihydroxybiaryl compounds
JP4336513B2 (en) Novel 4,4 &#39;-(hexahydro-4,7-methanoindane-5-ylidene) bis (substituted phenol) s
JP4035286B2 (en) Method for producing isatin bis (o-cresol)
JP4829927B2 (en) 4,4 &#34;&#34;-Dihydroxy-P-quarterphenyls and process for producing the same
JP4262977B2 (en) Process for producing 1,1-bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
JP2001058968A (en) Production of 1,3-di(2-parahydroxyphenyl-2-propyl)benzene
JP2005060371A (en) Method for producing pyridylethylthio compound, method for producing modified ion-exchanger and bisphenol comound
JPS60190729A (en) Production of trimethylol heptane
CN113735693A (en) Synthesis method of resveratrol monomethyl ether
WO2006059774A1 (en) Method for purifying diallylbisphenol compound
JPH11255734A (en) Manufacture of high purity aromatic cyanate ester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127