JP2005021678A - Pad base for percutaneous admistration and its manufacturing method - Google Patents
Pad base for percutaneous admistration and its manufacturing method Download PDFInfo
- Publication number
- JP2005021678A JP2005021678A JP2004173104A JP2004173104A JP2005021678A JP 2005021678 A JP2005021678 A JP 2005021678A JP 2004173104 A JP2004173104 A JP 2004173104A JP 2004173104 A JP2004173104 A JP 2004173104A JP 2005021678 A JP2005021678 A JP 2005021678A
- Authority
- JP
- Japan
- Prior art keywords
- skin
- fine
- pad base
- needle
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
- A61M2037/0038—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles having a channel at the side surface
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dermatology (AREA)
- Medical Informatics (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
Description
本発明は、生体に作用する薬剤を生体内に経皮的に投与する際に用いる経皮投薬用パッドベース、及びその製造方法、並びに注射針に関するものである。尚該パッドベースとは、経皮投薬用パッドにおける薬剤の経皮的投与を担う部分であり、経皮投薬用パッドとはこのパッドベースをその反皮膚側面から例えば粘着シートで覆ったもの等であって、使用にあたってはパッドベース面を皮膚に貼り付ける様にする。 The present invention relates to a transdermal dosing pad base used when a drug acting on a living body is transdermally administered into a living body, a method for producing the same, and an injection needle. The pad base is a part responsible for transdermal administration of a drug in a transdermal drug pad, and the transdermal drug pad is a pad base covered with, for example, an adhesive sheet from the side opposite to the skin. Therefore, in use, the pad base surface should be affixed to the skin.
皮膚は身体を保護するバリアーとしての機能を担っており、生体内への異物の侵入を阻止している。殊に、異物と直接接触する再外層の角質層は、バリアーとしての役割が大きい。尤も、生体外の異物と直接接触するという点では消化管も同じであるが、消化管には皮膚のような角質層といったバリアーがなく、むしろ生体外の異物、すなわち食物から栄養成分を積極的に取り込む機能を有する栄養吸収細胞から構成され、この点で両者は大きく異なる。 The skin functions as a barrier that protects the body, and prevents foreign substances from entering the living body. In particular, the outer stratum corneum, which is in direct contact with foreign matter, plays a major role as a barrier. However, the gastrointestinal tract is the same in terms of direct contact with foreign matter in vitro, but the digestive tract has no barrier such as a stratum corneum like skin. It is composed of nutrient-absorbing cells that have the function of being taken up by the two, and in this respect both are greatly different.
一方において皮膚は生体外に排出する機能(不感蒸泄機能)も有しており、この様に皮膚は単純な保護膜というのではなく、物質が透過する調節機能を有する器官であると考えられる。 On the other hand, the skin also has a function of discharging out of the living body (insensitive steaming function). Thus, the skin is not a simple protective film, but is considered to be an organ having a regulating function through which a substance permeates. .
ところで生体への薬剤の投与手法としては、筋肉注射や経口からの投与、また座剤による結腸からの投与が知られているが、上記の様な皮膚の機能に着目し、皮膚から投与する経皮吸収法が提案されている。この経皮吸収法によれば殆ど無痛であり、投薬のコントロールが容易で副作用も生じ難く、また投与形態の利便性から患者のQOL(Quality Of Life)も飛躍的に向上することが期待される。そして経皮吸収型医薬品としてはニトログリセリンを始めとし、硝酸イソソルビド、エストラジオール、ツロブテロール、ニコチン、クロニジン、スコポラミン、フェンタニル、リドカインなどが開発されるに至っている。 By the way, as a method for administering a drug to a living body, intramuscular injection, oral administration, and administration from the colon by a suppository are known. However, paying attention to the skin function as described above, administration from the skin is important. Skin absorption methods have been proposed. According to this percutaneous absorption method, it is almost painless, administration of medication is easy and side effects are not likely to occur, and the quality of life (QOL) of patients is expected to improve dramatically from the convenience of administration form. . As transdermal drugs, nitroglycerin, isosorbide nitrate, estradiol, tulobuterol, nicotine, clonidine, scopolamine, fentanyl, lidocaine and the like have been developed.
上記経皮吸収型製剤の登場によって薬剤の経皮吸収の研究が進み、この進展に伴ってどの様にしても経皮吸収させることができない薬剤が多くあることが判った。 With the advent of the above-mentioned percutaneous absorption-type preparations, research on transdermal absorption of drugs has progressed, and it has been found that there are many drugs that cannot be absorbed percutaneously in any way.
そこで、これまでの様に薬剤を角質層から皮膚内へ単純に拡散・吸収させるという手法ではなく、次世代の経皮吸収法として、細胞内への遺伝子導入に用いられるエレクトロポレーション(Electoroporation)の手法を利用し、皮膚に瞬間的に極微小な穿孔を開けることで薬剤を導入する方法や、電気泳動の技術を用いてイオン化した薬剤を皮膚へ導入するイオンフォーレーシス(Iontophoreiss)といった方法、またこれらを組み合わせた投与方法が考案された。 Therefore, electroporation (Electoroporation) used for gene transfer into cells as a next-generation transdermal absorption method, rather than simply spreading and absorbing drugs from the stratum corneum into the skin as before. This method is used to introduce a drug by momentarily opening a microscopic perforation in the skin, or a method such as iontophoresis (Iontophoreiss) to introduce a drug ionized using electrophoresis technology to the skin. Also, administration methods combining these were devised.
更に、エレクトロポレーションと同様に皮膚に微小な穿孔を開ける手段として、無数の小さな針がついたパッドを皮膚に当て、その刺針部位から薬剤を注入するマイクロパッチ(MicroPatch)という方法が提案された。 In addition, as with electroporation, a micropatch (MicroPatch) method has been proposed in which a pad with countless small needles is applied to the skin and a drug is injected from the puncture site as a means to open a fine perforation in the skin. .
マイクロパッチ法についてより詳しく説明すると、このマイクロパッチ法で用いる経皮投薬用パッドは、ピラミッド型に尖った10〜50μmの太短い中実の針(シリコン,金属,あるいはプラスチック製)複数本と、薬液槽であるリザーバーを備えたものであり、使用に際しては上記針を皮膚に刺した状態とし、この針と皮膚との接触面をバイブレーション装置(100MHz〜2000MHz)で揺さぶることにより隙間を広げ、この皮膚の極微小穿孔箇所から上記リザーバーよりの薬液を皮内へ侵入させる様にしたものである(例えば、非特許文献1参照)。 The micropatch method will be described in more detail. The transdermal dosage pad used in this micropatch method includes a plurality of 10-50 μm thick and short solid needles (made of silicon, metal, or plastic) pointed in a pyramid shape, It is equipped with a reservoir that is a chemical solution tank. In use, the needle is stabbed into the skin, and the contact surface between the needle and the skin is shaken with a vibration device (100 MHz to 2000 MHz) to widen the gap. The drug solution from the reservoir is allowed to enter the skin from a very fine perforation site on the skin (for example, see Non-Patent Document 1).
このマイクロパッチ法による投与薬剤としては、インスリン、モルヒネ、α−インターフェロン、副甲状腺ホルモン、エリスロポイエチン等が開発されており(Altea Therapeutics社、アトランタ、米国)、インスリンなどは既に臨床試験の第1相に入り、実用化に向けた研究が進んでいる。 Insulin, morphine, α-interferon, parathyroid hormone, erythropoietin, etc. have been developed as drugs to be administered by this micropatch method (Altea Therapeutics, Atlanta, USA). Insulin has already been the first clinical trial. Research into practical use is in progress.
投与方法としてはその他に、上記方法とは対照的な無針注射法も提案されており、具体的には注射液に高圧をかけて皮下に投与する方法、あるいは薬剤の粉体をそのまま高圧ガスをかけて皮下に打ち込む高圧ガスを使用する方法等が提案され、実際にその一部は既に商品化されている。 As another administration method, a needleless injection method, which is in contrast to the above method, has also been proposed. Specifically, the injection solution is administered subcutaneously by applying high pressure to the injection solution, or the drug powder is directly used as a high-pressure gas. A method of using a high-pressure gas that is injected subcutaneously over the skin is proposed, and some of them have already been commercialized.
これらいずれの投与方法も一長一短があるものの、マイクロパッチ法は専用の機器を必要とせず、誰もが容易に使用できるという観点からすると優れた方法である。
上述の様にマイクロパッチ法は中実の針で穿刺し、この針と皮膚の隙間から薬剤を注入するものであることから、この注入にあたってはバイブレーション装置により振動させることが必要であり、この為の電源等が必須であることから、より簡便な手法が望まれる。 As described above, the micropatch method punctures with a solid needle and injects a drug from the gap between the needle and the skin. Therefore, it is necessary to vibrate with a vibration device for this injection. Therefore, a simpler method is desired.
そこで本発明は上記の様な事情に着目してなされたものであって、その目的は、マイクロパッチ法において振動させなくても薬剤を皮膚内に投与することのできる経皮投薬用パッドベースを提供することにある。またこの様な経皮投薬用パッドベースを容易に得ることのできる製造方法を提供することを目的とする。 Therefore, the present invention has been made paying attention to the circumstances as described above, and the purpose thereof is to provide a pad base for transdermal administration that can administer a drug into the skin without vibration in the micropatch method. It is to provide. Another object of the present invention is to provide a production method capable of easily obtaining such a pad base for transdermal administration.
また通常の注射針において痛みを和らげる為に、細いものが要望されているが、あまりに細いと折れる懸念があり、仮に折れると、皮膚内に残存して生体に悪影響を及ぼす懸念がある。 Moreover, in order to relieve pain in a normal injection needle, a thin one is required, but there is a concern that it will break if it is too thin, and if it breaks, there is a concern that it will remain in the skin and adversely affect the living body.
そこで本発明の注射針においては、針が容易に折れることにないものを提供することを目的とする。 Accordingly, an object of the present invention is to provide an injection needle that does not easily break the needle.
本発明に係る経皮投薬用パッドベースは、皮膚への貼付基材における皮膚側面に微細針を立設したものであって、前記微細針が中空の管状体であり、その外壁が前記貼付基材に向かって裾広がりに太くなったものであることを特徴とする。 The pad base for transdermal administration according to the present invention has a fine needle provided upright on the skin side surface of a base material for application to the skin, the fine needle being a hollow tubular body, and its outer wall is the application base. It is characterized by being thickened to spread out toward the material.
上記の如く微細針自身が中空の管状物であるから、この中空部分に投与薬剤(液状の薬剤等)を充填しておくことで、このパッドベースを有する経皮投薬用パッドを皮膚に貼付した際、上記微細針が皮膚に刺さり、該微細針内の薬剤が皮膚内に投与されることとなる。しかも微細針は裾広がりに太くなっているから折れ難く、微細針が皮膚内に残存する懸念が少ない。この様に本発明の経皮投薬用パッドベースによれば、従来の様に針と皮膚との接触面を揺さぶって隙間を広げるという操作を行わなくても投与でき、従ってバイブレーション装置やその電源等が不要であり、より簡便に薬剤を投与できる。 Since the fine needle itself is a hollow tube as described above, the pad for transdermal administration having this pad base was affixed to the skin by filling the hollow portion with the administration medicine (liquid medicine, etc.). At this time, the fine needle pierces the skin, and the medicine in the fine needle is administered into the skin. In addition, since the fine needles are thickened to spread the hem, they are difficult to break, and there is little concern that the fine needles remain in the skin. As described above, according to the pad base for transdermal administration of the present invention, administration can be performed without performing the operation of shaking the contact surface between the needle and the skin to widen the gap as in the prior art. Is unnecessary, and the drug can be administered more easily.
そして上記の様な経皮投薬用パッドベースを製造することのできる本発明に係る方法は、合成樹脂原料溶液に金属製細線の一方端を縦方向に浸漬して該金属製細線周りに前記合成樹脂原料溶液を付着させ、該合成樹脂原料溶液を硬化させた後、前記金属製細線を引き抜いて管状の前記微細針を形成することを特徴とする。また前記金属製細線が複数本であり、前記微細針が複数形成される様にしても良い。尚上記「硬化」とは、合成樹脂原料溶液の溶媒が蒸発して原料樹脂成分が析出する場合や、液状原料樹脂成分を反応させて固化する場合等を含む。 Then, the method according to the present invention capable of manufacturing the above-mentioned pad base for percutaneous administration comprises the step of immersing one end of a fine metal wire in a synthetic resin raw material solution in the vertical direction and surrounding the synthetic wire around the fine metal wire. After the resin raw material solution is adhered and the synthetic resin raw material solution is cured, the metal fine wire is drawn to form the tubular fine needle. Further, there may be a plurality of the fine metal wires, and a plurality of the fine needles may be formed. The “curing” includes a case where the solvent of the synthetic resin raw material solution evaporates and the raw material resin component is precipitated, a case where the liquid raw material resin component is reacted and solidified.
上記の方法により、裾広がりに太くなった微細針が得られる機構について説明すると、例えば合成樹脂原料溶液として、合成樹脂を溶媒に薄めに溶解したものを用い、これに金属製細線の一方端を縦方向に浸漬した状態で上記溶媒を蒸発させると、金属製細線のない箇所の原料溶液の液面が次第に下がると共に、金属製細線の周りでは当初の液面の位置に原料溶液が付着して残る様になって上記下がった液面に向かって裾広がりの形状を呈することとなる。この様にして溶媒の蒸発により硬化した合成樹脂は、金属製細線の部分が穴となって裾広がりの管状体(微細針)を形成することとなる。 Explaining the mechanism by which the fine needles that are thickened with the above method are obtained by the above method, for example, as a synthetic resin raw material solution, a synthetic resin is used that is dissolved in a solvent, and one end of a metal fine wire is attached to this. When the solvent is evaporated while immersed in the vertical direction, the liquid level of the raw material solution in the portion without the metal fine wire gradually decreases, and the raw material solution adheres to the original liquid level around the metal fine wire. It will remain, and will exhibit the shape of a hem spreading toward the said liquid level which fell. The synthetic resin cured by the evaporation of the solvent in this manner forms a tubular body (fine needle) having a hem spreading with the fine metal wire portion serving as a hole.
また合成樹脂として熱可塑性樹脂を用いた場合には、加熱溶融した樹脂である合成樹脂原料溶液に金属製細線の一方端を浸漬し、合成樹脂原料溶液の液面が金属製細線の部分においてせり上がる様な形体とし、この状態で硬化する。尚金属製細線周りに合成樹脂原料溶液がせり上がる様に付着させる手法としては、金属製細線を合成樹脂原料溶液に一旦深めに漬けてから上昇させる方法、金属製細線の一方端を漬けた状態で合成樹脂原料溶液を振動させて金属製細線表面に該溶液を伝い上げさせる方法、また合成樹脂原料溶液の粘度を適当に調整し、自然に該溶液が伝い上がる様にする方法等がある。そして樹脂の硬化後、金属製細線を引き抜くと、該金属製細線の部分が穴となって裾広がりの管状体(微細針)を形成することとなる。 When a thermoplastic resin is used as the synthetic resin, one end of the fine metal wire is immersed in the synthetic resin raw material solution that is a heat-melted resin, and the liquid level of the synthetic resin raw material solution is lowered at the portion of the fine metal wire. The shape is raised and cured in this state. In addition, as a method of attaching the synthetic resin raw material solution so that it rises around the metal thin wire, the method of raising the metal thin wire once deeply immersed in the synthetic resin raw material solution, the state where one end of the metal thin wire is immersed There are a method of vibrating the synthetic resin raw material solution to convey the solution to the surface of the fine metal wire, and a method of adjusting the viscosity of the synthetic resin raw material solution appropriately so that the solution naturally propagates. Then, after the resin is cured, when the metal fine wire is pulled out, the portion of the metal fine wire becomes a hole to form a tubular body (fine needle) that spreads at the bottom.
前記合成樹脂原料溶液における合成樹脂材料としては、ポリプロピレン、ポリウレタン、アラミド、含フッ素ポリイミド等が挙げられ、殊に生分解性樹脂が好適である。 Examples of the synthetic resin material in the synthetic resin raw material solution include polypropylene, polyurethane, aramid, fluorine-containing polyimide, and the like, and biodegradable resins are particularly preferable.
前記微細針が生分解性樹脂からなるものであれば、仮に微細針の先端等が欠けて皮膚内に残存する様なこととなっても、生分解性樹脂からなる微細針は生体内で分解され、生体に悪影響を殆ど及ぼさない。また前記微細針が生分解性樹脂と投与薬剤からなるものであれば、上記と同様に欠けて皮膚内に残存することとなっても生体内で分解され、生体に悪影響を殆ど及ぼさない上、微細針自身が生体で解ける(分解する)ことによって薬剤が投与されることにもなる。 If the fine needle is made of a biodegradable resin, the fine needle made of the biodegradable resin is decomposed in vivo even if the tip of the fine needle is missing and remains in the skin. And has little adverse effect on the living body. In addition, if the fine needle is made of a biodegradable resin and a drug to be administered, it is broken down in the living body even if it is lacking and remains in the skin as described above, and has almost no adverse effect on the living body. The drug is also administered when the fine needle itself is unwound (decomposes) by the living body.
生分解性樹脂としては、ポリ乳酸、ポリエチレンサクシネート、ポリブチレンサクシネート・アジペート、ポリブチレンサクシネート・カーボネート、ポリカプロラクトン、ポリエステルアミド、ポリエステルカーボネート、ポリビニルアルコール、ポリヒドロキシブチレート、マントリオース、セルロース、酢酸セルロース、コラーゲン、並びにこれらの混合物が推奨され、殊にポリ乳酸、または乳酸とグリコール酸の共重合体であることが好ましい。例えば、乳酸・グリコール酸共重合体は、医薬品として既に使用されており、組織内で加水分解されて乳酸になり、徐々に消失する。 Biodegradable resins include polylactic acid, polyethylene succinate, polybutylene succinate adipate, polybutylene succinate carbonate, polycaprolactone, polyester amide, polyester carbonate, polyvinyl alcohol, polyhydroxybutyrate, mantriose, cellulose, acetic acid Cellulose, collagen, and mixtures thereof are recommended, and polylactic acid or a copolymer of lactic acid and glycolic acid is particularly preferable. For example, a lactic acid / glycolic acid copolymer has already been used as a pharmaceutical, and is hydrolyzed into lactic acid in the tissue and gradually disappears.
更にポリ乳酸の場合にその分子量が100000〜500000であるものの場合は、製造にあたって上記金属製細線への付着量が適当なものとなり、また樹脂の硬化後における上記金属製細線の引き抜き性が良く、出来上がりの膜(管状物)の品質も優れていることから、より好ましい。 Further, in the case of polylactic acid having a molecular weight of 100,000 to 500,000, the amount attached to the metal fine wire is appropriate in production, and the metal fine wire is easily drawn after the resin is cured, Since the quality of the finished film (tubular material) is also excellent, it is more preferable.
尚前記合成樹脂原料溶液として、生分解性樹脂に投与薬剤を添加したものを用いても良い。 As the synthetic resin raw material solution, a biodegradable resin added with an administration drug may be used.
また本発明に係る注射針は、注射針の針部分の外壁が、注射針におけるシリンジとの接続箇所に向かって裾広がりに太くなったものであることを特徴とする。この様に針部分の外壁が裾広がりに太くなっているから折れ難く、皮膚内に残存する懸念が少ない。 Further, the injection needle according to the present invention is characterized in that the outer wall of the needle portion of the injection needle is thickened so as to spread toward the connection portion with the syringe in the injection needle. Thus, since the outer wall of the needle portion is thickened so as to spread out, it is difficult to break, and there is little fear of remaining in the skin.
本発明に係る経皮投薬用パッドベースによれば、微細針が裾広がりに太くなっているから折れ難く、従って微細針を皮膚内に残存させる懸念が少ない。また微細針の中空部に薬剤を充填可能であるので、この薬剤を充填した微細針を皮膚に穿刺することで、バイブレーション装置等を用いずとも薬剤を皮膚内に投与することができ、簡便である。 According to the pad base for transdermal administration according to the present invention, since the fine needle is thickened so as to spread out at the bottom, it is difficult to break, and therefore there is little concern that the fine needle remains in the skin. Since the hollow portion of the fine needle can be filled with a medicine, the fine needle filled with the medicine can be punctured into the skin so that the medicine can be administered into the skin without using a vibration device or the like. is there.
また本発明に係る経皮投薬用パッドベースの製造方法によれば、管状の微細針が貼付基材から立設し、且つ微細針の外壁が貼付基材に向かって裾広がりに太くなったものを容易に作製することができる。 Further, according to the method for manufacturing a pad base for transdermal administration according to the present invention, the tubular fine needle is erected from the sticking base material, and the outer wall of the fine needle is widened toward the sticking base material. Can be easily manufactured.
本発明に係る注射針によれば、針部分が折れ難く、皮膚内に残存する懸念が少ない。 According to the injection needle according to the present invention, the needle portion is difficult to break, and there is little fear of remaining in the skin.
以下、本発明に係る経皮投薬用パッドベース及びその製造方法に関して、例を示す図面を参照しつつ具体的に説明するが、本発明はもとより図示例に限定される訳ではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the pad base for transdermal administration and the method for producing the same according to the present invention will be described in detail with reference to the drawings showing examples. However, the present invention is not limited to the illustrated examples. The present invention can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention, and all of them are included in the technical scope of the present invention.
先ず本発明に係る経皮投薬用パッドベースの製造方法の一例について説明する。 First, an example of a method for producing a pad base for transdermal administration according to the present invention will be described.
合成樹脂原料溶液として例えばポリ乳酸をクロロホルムに溶解したものを準備する。浅めの金属製バットに上記原料溶液を注ぎ入れ、これに複数の金属製細線の一方端をそれぞれ縦方向に浸漬し、これら金属製細線の周表面に上記原料溶液を付着させる様にする。溶媒であるクロロホルムを乾燥により除去し、これにより金属製細線の周表面に原料溶液が付着した状態で原料溶液液面を下げ、ポリ乳酸を硬化させる。その後この硬化したポリ乳酸から金属製細線を引き抜き、金属製バットから取り出す。 As a synthetic resin raw material solution, for example, a polylactic acid dissolved in chloroform is prepared. The raw material solution is poured into a shallow metal bat, and one ends of a plurality of fine metal wires are respectively immersed in the vertical direction so that the raw material solution adheres to the peripheral surface of the fine metal wires. Chloroform, which is a solvent, is removed by drying, thereby lowering the surface of the raw material solution with the raw material solution adhering to the peripheral surface of the fine metal wire, thereby curing polylactic acid. Thereafter, a thin metal wire is drawn from the cured polylactic acid and taken out from the metal bat.
これにより図2[(a):本発明の一実施形態に係る経皮投薬用パッドベースを表す断面図、(b):該パッドベースの上面図]に示す様な経皮投薬用パッドベースが得られる。得られたパッドベースは、多数の微細針1が貼付基材2に立設したものであり、該微細針1は皮膚面側が開口した有底円筒状で、その外壁が貼付基材2に向かって裾広がりに太くなっている。尚図2(a)における上側が皮膚への貼付面となる。また図2では微細針1と貼付基材2が別体に構成されたものの様に描かれているが、上述の製造方法から分かる様にこれらは一体成形で製造されたものである。
As a result, a transdermal drug pad base as shown in FIG. 2 [(a): sectional view showing a transdermal drug pad base according to an embodiment of the present invention, (b): top view of the pad base] can get. The obtained pad base has a large number of
経皮投薬用パッドとしては、上記パッドベースの反皮膚面側(図2(a)における下側)から粘着シートを覆ったものが挙げられ、この粘着シートによって皮膚に貼り付けて用いる。もしくは粘着剤なしで皮膚に押さえつけることによって針を刺して注射の様に中空部分より薬剤を送り込み投薬する場合もある。 Examples of the transdermal medication pad include a pad base covered with an adhesive sheet from the anti-skin surface side (the lower side in FIG. 2 (a)) of the pad base. Alternatively, there is a case where the drug is fed from the hollow portion and administered as in the case of injection by piercing the needle by pressing it against the skin without an adhesive.
使用にあたっては、予め薬液容器から薬液を吸い取る様にして微細針1の中空部3に充填しておき、このパッドベースを備えた経皮投薬用パッドを皮膚に貼付する。貼付基材2に圧力をかけることにより、微細針1が生体内に穿刺されると共に微細針1の先端から中空部3内の薬液が生体内に注入される。尚微細針1の管内(中空部3内)に充填する投与薬剤としては、液状、クリーム状、ゲル状、懸濁液状、粉末状のいずれであっても良く、経皮的な投与に適さない薬剤を除き、実質的に制限されるものではない。
In use, the
また微細針1の中空部3の深さとしては図2に示すよりも深いものであっても良い。具体的には図1[微細針の中空部の形体を説明する為の断面図]の(b)に示す様に、微細針1の高さHと中空部3の深さLが同じもの[H=L(全中空型:TYPE2)]、図1の(c)に示す様に貼付基材2の厚みhの途中まで中空部3が至るもの[H<L<H+h(半貫通型:TYPE3)]、図1の(d)に示す様に中空部3が貼付基材2を貫通するもの[H+h=L(全貫通型:TYPE4)]であっても良い。尚図2のものは図1の(a)に示す様に、微細針1の高さHよりも中空部3の深さLが浅いものである[H>L(半中空型:TYPE1)]。尤も微細針1と貼付基材2が一体成形により作製されたものは、微細針1と支持部2を明確に分ける境界を定義しにくいが、ここでは曲率が無限大、即ち平面状の部分を境界面としてこの平面上以下の部分を貼付基材2、ここから立設する部分を微細針1と言うこととする。
Further, the depth of the
複数の微細針1を備えるパッドベースにおける各微細針1の中空部3の深さとしては、図2に示す様に全て同じとしても良く、或いは異なる深さのものを組み合わせても良い。また上記TYPE4の様に(図1(d))、中空部3が微細針1から貼付基材2を貫通するものの場合は、貼付基材2の反皮膚側面に薬剤収容槽を設けておき、ここから薬剤を供給して連続的に薬剤投与を行える様にしても良い。
The depth of the
本発明の一実施形態に係る注射針としても、上記と同様に、合成樹脂原料溶液に金属製細線の一方端を縦方向に浸漬して該金属製細線周りに前記合成樹脂原料溶液を付着させ、該合成樹脂原料溶液を硬化させた後、前記金属製細線を引き抜いて管状の針部分を形成すると良い。この様にして得られた注射針の針部分はその外壁が裾広がりとなる。 As in the case of the injection needle according to one embodiment of the present invention, similarly to the above, one end of a metal fine wire is immersed in the vertical direction in the synthetic resin raw material solution to adhere the synthetic resin raw material solution around the metal thin wire. After the synthetic resin raw material solution is cured, the metal fine wire is preferably drawn to form a tubular needle portion. The outer wall of the needle portion of the injection needle obtained in this manner is widened.
<例1〜3>
微細針を成形する為の型材として、長さ約30mm,太さφ280μmのステンレス鋼線(金属製細線)をゴム板に2mm間隔で縦に5本、横に6本ずつ格子状に差し込んだものを作製した。次に、ステンレス鋼製の皿の底に上記型材のステンレス鋼線先端を垂直に接触させる様にし、このステンレス鋼製皿に分子量101,700のポリ乳酸のクロロホルム溶液(合成樹脂原料溶液)3mlを注入した。これを静置し、自然乾燥によりクロロホルムを蒸発させ、これによりステンレス鋼線の周表面にポリ乳酸のクロロホルム溶液を付着させた状態で該溶液の液面を下げ、ポリ乳酸を固化させた。その後、ステンレス鋼線を抜き取り、ステンレス鋼製皿から取り出して経皮投薬用パッドベースを得た。尚上記ポリ乳酸のクロロホルム溶液におけるポリ乳酸の濃度として5、6、7wt%のものを調整し、それぞれについて得たパッドベースを例1、2、3とした。
<Examples 1-3>
As a mold material for forming fine needles, a stainless steel wire (metal fine wire) with a length of about 30 mm and a thickness of φ280 μm is inserted into a rubber plate in the form of a grid at 5 mm length and 6 width by 2 mm intervals. Was made. Next, the tip of the stainless steel wire of the above-mentioned mold material is brought into vertical contact with the bottom of the stainless steel dish, and 3 ml of a polylactic acid chloroform solution (synthetic resin raw material solution) having a molecular weight of 101,700 is placed on the stainless steel dish. Injected. This was allowed to stand, and chloroform was evaporated by natural drying. With this, the liquid level of the solution was lowered with the chloroform solution of polylactic acid adhering to the peripheral surface of the stainless steel wire to solidify the polylactic acid. Thereafter, the stainless steel wire was pulled out and removed from the stainless steel dish to obtain a pad base for transdermal administration. The polylactic acid concentration in the chloroform solution of polylactic acid was adjusted to 5, 6, and 7 wt%, and the pad bases obtained for each were designated as Examples 1, 2, and 3, respectively.
上記例1〜3はいずれも図1の(d)に示す様な形状の微細針を複数有する経皮投薬用パッドベースであった。 All of Examples 1 to 3 described above were a pad base for transdermal administration having a plurality of fine needles having a shape as shown in FIG.
<例4〜6>
上記例1〜3と同様の微細針の型材を用い、この型材のステンレス鋼線先端をステンレス鋼製皿の底に垂直に接触させた。該ステンレス鋼製皿に分子量67,400のポリ乳酸のクロロホルム溶液3mlを注入し、静置して自然乾燥することによりポリ乳酸を固化させた。その後、ステンレス鋼線を抜き取り、ステンレス鋼製皿から取り出して経皮投薬用パッドベースを得た。尚上記ポリ乳酸のクロロホルム溶液におけるポリ乳酸の濃度として10、11、12wt%のものを調整し、それぞれについて得たパッドベースを例4、5、6とした。
<Examples 4 to 6>
Using the same fine needle mold as in Examples 1 to 3, the tip of the stainless steel wire of the mold was brought into contact with the bottom of the stainless steel dish vertically. Into the stainless steel dish, 3 ml of a polylactic acid chloroform solution having a molecular weight of 67,400 was poured and allowed to stand to dry naturally to solidify the polylactic acid. Thereafter, the stainless steel wire was pulled out and removed from the stainless steel dish to obtain a pad base for transdermal administration. The concentration of polylactic acid in the chloroform solution of polylactic acid was adjusted to 10, 11, and 12 wt%, and the pad bases obtained for each were designated as Examples 4, 5, and 6.
上記例4〜6はいずれも図1の(d)に示す様な形状の微細針を複数有する経皮投薬用パッドベースであった。 Each of Examples 4 to 6 described above was a pad base for transdermal administration having a plurality of fine needles having a shape as shown in FIG.
<例7〜9>
上記例1〜3と同様の微細針の型材を用い、この型材のステンレス鋼線先端をステンレス鋼製皿の底に垂直に接触させた。該ステンレス鋼製皿に分子量258,700のポリ乳酸のクロロホルム溶液3mlを注入し、静置して自然乾燥することによりポリ乳酸を固化させた。その後、ステンレス鋼線を抜き取り、ステンレス鋼製皿から取り出して経皮投薬用パッドベースを得た。尚上記ポリ乳酸のクロロホルム溶液におけるポリ乳酸の濃度として1、2、3wt%のものを調整し、それぞれについて得たパッドベースを例7、8、9とした。
<Examples 7 to 9>
Using the same fine needle mold as in Examples 1 to 3, the tip of the stainless steel wire of the mold was brought into contact with the bottom of the stainless steel dish vertically. 3 ml of a polylactic acid chloroform solution having a molecular weight of 258,700 was poured into the stainless steel dish and allowed to stand and air-dried to solidify the polylactic acid. Thereafter, the stainless steel wire was pulled out and removed from the stainless steel dish to obtain a pad base for transdermal administration. The polylactic acid concentrations in the polylactic acid chloroform solution were adjusted to 1, 2, and 3 wt%, and the pad bases obtained for each were designated as Examples 7, 8, and 9, respectively.
上記例7〜9はいずれも図1の(d)に示す様な形状の微細針を複数有する経皮投薬用パッドベースであった。 Each of Examples 7 to 9 described above was a pad base for transdermal administration having a plurality of fine needles having a shape as shown in FIG.
<例10〜12>
上記例1〜3と同様の微細針の型材を用い、この型材のステンレス鋼線先端をステンレス鋼製皿の底面から少し空間を空ける様にしつつ該底に対して垂直に立てる様に配置した。分子量101,700のポリ乳酸(高分子量PLA)のクロロホルム溶液に分子量10,000のポリ乳酸(低分子量PLA)を上記高分子量PLAの0.1重量部添加し、この混合溶液3mlを上記ステンレス鋼製皿に注入してステンレス鋼線の一方端が浸かる様にし、静置して自然乾燥することによりポリ乳酸を固化させた。その後、ステンレス鋼線を抜き取り、ステンレス鋼製皿から取り出して経皮投薬用パッドベースを得た。尚上記高分子量PLAのクロロホルム溶液におけるポリ乳酸の濃度として5、6、7wt%のものを調整し、それぞれについて得たパッドベースを例10、11、12とした。
<Examples 10 to 12>
The same fine needle mold material as in Examples 1 to 3 was used, and the tip of the stainless steel wire of the mold material was arranged so as to stand vertically with respect to the bottom while leaving a little space from the bottom surface of the stainless steel dish. To a chloroform solution of polylactic acid (molecular weight PLA) having a molecular weight of 101,700, 0.1 part by weight of polylactic acid (low molecular weight PLA) having a molecular weight of 10,000 is added, and 3 ml of the mixed solution is added to the stainless steel. The polylactic acid was solidified by pouring into a dish so that one end of the stainless steel wire was immersed and allowing to stand and air dry. Thereafter, the stainless steel wire was pulled out and removed from the stainless steel dish to obtain a pad base for transdermal administration. The concentration of polylactic acid in the chloroform solution of the above high molecular weight PLA was adjusted to 5, 6, and 7 wt%, and the pad bases obtained for each were designated as Examples 10, 11, and 12, respectively.
上記例10〜12はいずれも図1の(c)に示す様な形状の微細針を複数有する経皮投薬用パッドベースであった。得られた例10における微細針の顕微鏡写真(倍率40)を図3(a)に示す。また図3(b)にその模式図を示す。 Each of Examples 10 to 12 described above was a pad base for transdermal administration having a plurality of fine needles having a shape as shown in FIG. A micrograph (magnification 40) of the fine needle in Example 10 obtained is shown in FIG. Moreover, the schematic diagram is shown in FIG.3 (b).
<例13〜15>
上記例1〜3と同様の微細針の型材を用い、この型材のステンレス鋼線先端をステンレス鋼製皿の底に対して隙間を空けつつ垂直に立てる様に配置した。分子量67,400のポリ乳酸(高分子量PLA)のクロロホルム溶液に分子量10,000のポリ乳酸(低分子量PLA)を上記高分子量PLAの0.1重量部添加し、この混合溶液3mlを上記ステンレス鋼製皿に注入し、該溶液にステンレス鋼線の一方端を漬けると共に該ステンレス鋼線表面にせり上がらせ、静置して自然乾燥することによりポリ乳酸を固化させた。その後、ステンレス鋼線を抜き取り、ステンレス鋼製皿から取り出して経皮投薬用パッドベースを得た。尚上記高分子量PLAのクロロホルム溶液におけるポリ乳酸の濃度として10、11、12wt%のものを調整し、それぞれについて得たパッドベースを例13、14、15とした。
<Examples 13 to 15>
The same fine needle mold as in Examples 1 to 3 was used, and the tip of the stainless steel wire of the mold was arranged to stand vertically with a gap from the bottom of the stainless steel dish. To a chloroform solution of polylactic acid (high molecular weight PLA) having a molecular weight of 67,400, 0.1 part by weight of polylactic acid (low molecular weight PLA) having a molecular weight of 10,000 is added, and 3 ml of the mixed solution is added to the stainless steel. The polylactic acid was solidified by pouring into a dish and dipping one end of a stainless steel wire in the solution, allowing it to rise on the surface of the stainless steel wire, and allowing it to stand and air dry. Thereafter, the stainless steel wire was pulled out and removed from the stainless steel dish to obtain a pad base for transdermal administration. The concentrations of polylactic acid in the high molecular weight PLA chloroform solution were adjusted to 10, 11, and 12 wt%, and the pad bases obtained for the concentrations were designated as Examples 13, 14, and 15, respectively.
上記例13〜15はいずれも図1の(c)に示す様な形状の微細針を複数有する経皮投薬用パッドベースであった。 Each of Examples 13 to 15 described above was a pad base for transdermal administration having a plurality of fine needles having a shape as shown in FIG.
<例16〜18>
上記例1〜3と同様の微細針の型材を用い、この型材のステンレス鋼線先端をステンレス鋼製皿の底に対して隙間を空けつつ垂直に立てる様に配置した。分子量258,700のポリ乳酸(高分子量PLA)のクロロホルム溶液に分子量10,000のポリ乳酸(低分子量PLA)を上記高分子量PLAの0.1重量部添加し、この混合溶液3mlを上記ステンレス鋼製皿に注入してステンレス鋼線の一方端を漬けると共に、該溶液をステンレス鋼線にせり上がらせ、静置して自然乾燥することによりポリ乳酸を固化させた。その後、ステンレス鋼線を抜き取り、ステンレス鋼製皿から取り出して経皮投薬用パッドベースを得た。尚上記高分子量PLAのクロロホルム溶液におけるポリ乳酸の濃度として1、2、3wt%のものを調整し、それぞれについて得たパッドベースを例16、17、18とした。
<Examples 16 to 18>
The same fine needle mold as in Examples 1 to 3 was used, and the tip of the stainless steel wire of the mold was arranged to stand vertically with a gap from the bottom of the stainless steel dish. To a chloroform solution of polylactic acid (high molecular weight PLA) having a molecular weight of 258,700, 0.1 part by weight of polylactic acid (low molecular weight PLA) having a molecular weight of 10,000 is added, and 3 ml of the mixed solution is added to the stainless steel. The solution was poured into a plate and immersed on one end of a stainless steel wire, and the solution was placed on a stainless steel wire and allowed to stand and air-dried to solidify polylactic acid. Thereafter, the stainless steel wire was pulled out and removed from the stainless steel dish to obtain a pad base for transdermal administration. The polylactic acid concentrations in the chloroform solution of the above high molecular weight PLA were adjusted to 1, 2, and 3 wt%, and the pad bases obtained for each were designated as Examples 16, 17, and 18, respectively.
上記例16〜18はいずれも図1の(c)に示す様な形状の微細針を複数有する経皮投薬用パッドベースであった。 Each of Examples 16 to 18 described above was a pad base for transdermal administration having a plurality of fine needles having a shape as shown in FIG.
尚上記例1〜9を表1に、上記例10〜18を表2にまとめて示すと共に、ポリ乳酸のクロロホルム溶液(合成樹脂原料溶液)のステンレス鋼線(金属製細線)への付着性、及びポリ乳酸硬化後におけるステンレス鋼線の引き抜き易さについてのそれぞれの評価を記載する。 The above Examples 1 to 9 are summarized in Table 1, and the above Examples 10 to 18 are summarized in Table 2, and the adhesion of a polylactic acid chloroform solution (synthetic resin raw material solution) to a stainless steel wire (metal thin wire); And each evaluation about the ease of drawing | extracting of the stainless steel wire after polylactic acid hardening is described.
上述の如く例1〜18において図1の(c),(d)に示す様な微細針を有する経皮投薬用パッドベースが得られる。また上記例1〜18のパッドベース(貼付基材及び微細針)はいずれもポリ乳酸で構成されているから、使用時に微細針が折れて皮膚内に残存しても、生分解されると予想される。 As described above, a pad base for transdermal administration having fine needles as shown in FIGS. 1C and 1D in Examples 1 to 18 can be obtained. In addition, since the pad bases (the pasting base material and the fine needles) of Examples 1 to 18 are all composed of polylactic acid, even if the fine needles break and remain in the skin during use, they are expected to be biodegraded. Is done.
尚上記表1,2から分かる様に、ステンレス鋼線へのポリ乳酸の付着量や膜品質、またステンレス鋼線の引き抜きやすさの観点から、上記各例のうち例1〜3,10〜12がより好ましい。 As can be seen from Tables 1 and 2 above, Examples 1 to 3 and 10 to 12 among the above examples from the viewpoint of the amount of polylactic acid adhered to the stainless steel wire, the film quality, and the ease of drawing the stainless steel wire. Is more preferable.
1 微細針
2 貼付基材
3 中空部
DESCRIPTION OF
Claims (6)
合成樹脂原料溶液に金属製細線の一方端を縦方向に浸漬して該金属製細線周りに前記合成樹脂原料溶液を付着させ、該合成樹脂原料溶液を硬化させた後、前記金属製細線を引き抜いて管状の前記微細針を形成することを特徴とする経皮投薬用パッドベースの製造方法。 A method for producing a pad base for transdermal administration in which fine needles are erected on the skin side surface of a base material for application to the skin,
One end of a fine metal wire is vertically immersed in the synthetic resin raw material solution to adhere the synthetic resin raw material solution around the metal fine wire, and after the synthetic resin raw material solution is cured, the metal fine wire is pulled out. A method for producing a transdermal dosing pad base, characterized in that the tubular fine needle is formed.
前記微細針が中空の管状体であって、その外壁が前記貼付基材に向かって裾広がりに太くなったものであることを特徴とする経皮投薬用パッドベース。 A pad base for transdermal administration in which fine needles are erected on the side of the skin of the base material for application to the skin,
A pad base for transdermal administration, wherein the fine needle is a hollow tubular body, and its outer wall is thickened so as to spread toward the pasting base material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004173104A JP2005021678A (en) | 2003-06-10 | 2004-06-10 | Pad base for percutaneous admistration and its manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003165250 | 2003-06-10 | ||
JP2004173104A JP2005021678A (en) | 2003-06-10 | 2004-06-10 | Pad base for percutaneous admistration and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005021678A true JP2005021678A (en) | 2005-01-27 |
Family
ID=34196933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004173104A Pending JP2005021678A (en) | 2003-06-10 | 2004-06-10 | Pad base for percutaneous admistration and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005021678A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006138719A2 (en) | 2005-06-17 | 2006-12-28 | Georgia Tech Research Corporation | Coated microstructures and method of manufacture thereof |
JP2006346008A (en) * | 2005-06-14 | 2006-12-28 | Nabtesco Corp | Method and device of manufacturing skin needle |
KR100793615B1 (en) * | 2006-07-21 | 2008-01-10 | 연세대학교 산학협력단 | A biodegradable solid type microneedle and methods for preparing it |
WO2008010682A1 (en) * | 2006-07-21 | 2008-01-24 | Industry-Academic Cooperation Foundation, Yonsei University | A hollow type microneedle and methods for preparing it |
JP2008029386A (en) * | 2006-07-26 | 2008-02-14 | Toppan Printing Co Ltd | Method for manufacturing plate for needle-like body and method for manufacturing needle-like body |
WO2008139786A1 (en) * | 2007-05-15 | 2008-11-20 | Cosmed Pharmaceutical Co., Ltd. | Microneedle device and method for producing the same |
WO2009072830A2 (en) * | 2007-12-07 | 2009-06-11 | Incyto Co., Ltd. | Hollow microneedle array |
JP2010069253A (en) * | 2008-09-22 | 2010-04-02 | Fujifilm Corp | Transdermal absorption sheet and method for manufacturing the same |
JP2010535591A (en) * | 2007-08-06 | 2010-11-25 | トランスダーム, インコーポレイテッド | Microneedle array formed from polymer film |
WO2010143689A1 (en) | 2009-06-10 | 2010-12-16 | 久光製薬株式会社 | Microneedle device |
WO2011010605A1 (en) | 2009-07-23 | 2011-01-27 | 久光製薬株式会社 | Microneedle array |
JP2012500104A (en) * | 2008-08-21 | 2012-01-05 | ナインポイント メディカル, インコーポレイテッド | Devices and methods for drug evaluation and topical treatment |
WO2014050787A1 (en) * | 2012-09-26 | 2014-04-03 | 産機電業株式会社 | Method for manufacturing injection needle |
JP2015521910A (en) * | 2012-06-29 | 2015-08-03 | イーエルシー マネージメント エルエルシー | Soluble microneedles containing one or more encapsulated cosmetic ingredients |
JP2015522342A (en) * | 2012-06-29 | 2015-08-06 | イーエルシー マネージメント エルエルシー | Microneedles containing one or more cosmetic ingredients |
JP2016007311A (en) * | 2014-06-24 | 2016-01-18 | 凸版印刷株式会社 | Manufacturing method of hollow needle-like body and hollow needle-like body |
CN108785847A (en) * | 2013-06-13 | 2018-11-13 | 微德米克斯公司 | metal micro-needle |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5428369A (en) * | 1977-08-03 | 1979-03-02 | Yamakawa Tsuneko | Method of forming needleelike projection of thermoplastic resin on sheet |
JPS58216117A (en) * | 1982-06-09 | 1983-12-15 | Mitsui Toatsu Chem Inc | Preparation of rod-shaped slow-releasing formed drug |
JP2001149485A (en) * | 1999-09-22 | 2001-06-05 | Becton Dickinson & Co | Method and device for percutaneous dosage of substance |
WO2002007813A1 (en) * | 2000-07-21 | 2002-01-31 | Smithkline Beecham Biologicals S.A. | Vaccines |
JP2002517300A (en) * | 1998-06-10 | 2002-06-18 | ジョージア テック リサーチ コーポレイション | Microneedle devices and methods of manufacture and uses thereof |
JP2003501161A (en) * | 1999-06-09 | 2003-01-14 | ザ プロクター アンド ギャンブル カンパニー | Method for producing intradermal microneedle structure |
JP2003033439A (en) * | 2001-07-24 | 2003-02-04 | Terumo Corp | Coating stent and method for producing the same |
-
2004
- 2004-06-10 JP JP2004173104A patent/JP2005021678A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5428369A (en) * | 1977-08-03 | 1979-03-02 | Yamakawa Tsuneko | Method of forming needleelike projection of thermoplastic resin on sheet |
JPS58216117A (en) * | 1982-06-09 | 1983-12-15 | Mitsui Toatsu Chem Inc | Preparation of rod-shaped slow-releasing formed drug |
JP2002517300A (en) * | 1998-06-10 | 2002-06-18 | ジョージア テック リサーチ コーポレイション | Microneedle devices and methods of manufacture and uses thereof |
JP2003501161A (en) * | 1999-06-09 | 2003-01-14 | ザ プロクター アンド ギャンブル カンパニー | Method for producing intradermal microneedle structure |
JP2001149485A (en) * | 1999-09-22 | 2001-06-05 | Becton Dickinson & Co | Method and device for percutaneous dosage of substance |
WO2002007813A1 (en) * | 2000-07-21 | 2002-01-31 | Smithkline Beecham Biologicals S.A. | Vaccines |
JP2004504120A (en) * | 2000-07-21 | 2004-02-12 | グラクソスミスクライン バイオロジカルズ ソシエテ アノニム | vaccine |
JP2003033439A (en) * | 2001-07-24 | 2003-02-04 | Terumo Corp | Coating stent and method for producing the same |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006346008A (en) * | 2005-06-14 | 2006-12-28 | Nabtesco Corp | Method and device of manufacturing skin needle |
WO2006138719A2 (en) | 2005-06-17 | 2006-12-28 | Georgia Tech Research Corporation | Coated microstructures and method of manufacture thereof |
US9364426B2 (en) | 2005-06-17 | 2016-06-14 | Georgia Tech Research Corporation | Method of making coated microstructures |
EP1893130A4 (en) * | 2005-06-17 | 2015-08-26 | Georgia Tech Res Inst | Coated microstructures and method of manufacture thereof |
KR100793615B1 (en) * | 2006-07-21 | 2008-01-10 | 연세대학교 산학협력단 | A biodegradable solid type microneedle and methods for preparing it |
WO2008010682A1 (en) * | 2006-07-21 | 2008-01-24 | Industry-Academic Cooperation Foundation, Yonsei University | A hollow type microneedle and methods for preparing it |
JP2008029386A (en) * | 2006-07-26 | 2008-02-14 | Toppan Printing Co Ltd | Method for manufacturing plate for needle-like body and method for manufacturing needle-like body |
WO2008139786A1 (en) * | 2007-05-15 | 2008-11-20 | Cosmed Pharmaceutical Co., Ltd. | Microneedle device and method for producing the same |
US8167852B2 (en) | 2007-05-15 | 2012-05-01 | Cosmed Pharmaceutical Co., Ltd. | Microneedle device and method for producing the same |
JP2010535591A (en) * | 2007-08-06 | 2010-11-25 | トランスダーム, インコーポレイテッド | Microneedle array formed from polymer film |
WO2009072830A2 (en) * | 2007-12-07 | 2009-06-11 | Incyto Co., Ltd. | Hollow microneedle array |
WO2009072830A3 (en) * | 2007-12-07 | 2009-07-23 | Incyto Co Ltd | Hollow microneedle array |
JP2012500104A (en) * | 2008-08-21 | 2012-01-05 | ナインポイント メディカル, インコーポレイテッド | Devices and methods for drug evaluation and topical treatment |
JP2010069253A (en) * | 2008-09-22 | 2010-04-02 | Fujifilm Corp | Transdermal absorption sheet and method for manufacturing the same |
WO2010143689A1 (en) | 2009-06-10 | 2010-12-16 | 久光製薬株式会社 | Microneedle device |
KR20120037910A (en) | 2009-07-23 | 2012-04-20 | 도판 인사츠 가부시키가이샤 | Microneedle array |
WO2011010605A1 (en) | 2009-07-23 | 2011-01-27 | 久光製薬株式会社 | Microneedle array |
US8696638B2 (en) | 2009-07-23 | 2014-04-15 | Hisamitsu Pharmaceutical Co., Inc. | Microneedle array |
JP2015521910A (en) * | 2012-06-29 | 2015-08-03 | イーエルシー マネージメント エルエルシー | Soluble microneedles containing one or more encapsulated cosmetic ingredients |
JP2015522342A (en) * | 2012-06-29 | 2015-08-06 | イーエルシー マネージメント エルエルシー | Microneedles containing one or more cosmetic ingredients |
WO2014050787A1 (en) * | 2012-09-26 | 2014-04-03 | 産機電業株式会社 | Method for manufacturing injection needle |
CN108785847A (en) * | 2013-06-13 | 2018-11-13 | 微德米克斯公司 | metal micro-needle |
CN108785847B (en) * | 2013-06-13 | 2020-10-20 | 微德米克斯公司 | Metallic microneedle |
JP2016007311A (en) * | 2014-06-24 | 2016-01-18 | 凸版印刷株式会社 | Manufacturing method of hollow needle-like body and hollow needle-like body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005021677A (en) | Pad base for percutaneous administration and injection needle | |
US7347835B2 (en) | Process for producing pad base for endermism, and pad base for endermism, and injection needle | |
JP2005021678A (en) | Pad base for percutaneous admistration and its manufacturing method | |
JP5063544B2 (en) | Transdermal absorption sheet and method for producing the same | |
US11998711B2 (en) | Microneedle patch and production method therefor | |
US8419708B2 (en) | Transdermal drug administration apparatus having microneedles | |
JP5267910B2 (en) | Microneedle array | |
WO2008020632A1 (en) | Microneedle and microneedle patch | |
JP2010233673A (en) | Percutaneous absorption sheet and method for producing the same | |
JP5063543B2 (en) | Method for producing transdermal absorption sheet | |
JP2005533625A (en) | Microneedle device and microneedle delivery device | |
CN106853271B (en) | Method for producing microstructure | |
KR101724654B1 (en) | Micro-needle patch and menufacturing method thereof | |
JP2015116335A (en) | Percutaneous drug delivery system and method of manufacturing percutaneous drug delivery system | |
KR101621945B1 (en) | Nano-porous microneedle having two layers and its manufacturing method | |
CN112295100A (en) | Method for manufacturing microneedle array, and microneedle array unit | |
JP2011224308A (en) | Microneedle welding method | |
JP2018122081A (en) | Microneedle and manufacturing method thereof | |
CN105031744B (en) | A kind of hyperplastic scar micropin and preparation method thereof | |
CN113842377A (en) | PDMS microneedle patch for transdermal delivery of elemene and preparation method thereof | |
JP6003338B2 (en) | Acicular package | |
CN116899093A (en) | Novel plaster microneedle patch and preparation method thereof | |
CN114533651A (en) | Inactivated virus microneedle vaccine and preparation method and application thereof | |
KR102127123B1 (en) | Manufacturing method for micro-structure | |
CN217014772U (en) | Bubble type hollow microneedle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070507 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091124 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100330 |