JP2005019902A - Semiconductor light emitting element using zener tunneling effect - Google Patents

Semiconductor light emitting element using zener tunneling effect Download PDF

Info

Publication number
JP2005019902A
JP2005019902A JP2003185976A JP2003185976A JP2005019902A JP 2005019902 A JP2005019902 A JP 2005019902A JP 2003185976 A JP2003185976 A JP 2003185976A JP 2003185976 A JP2003185976 A JP 2003185976A JP 2005019902 A JP2005019902 A JP 2005019902A
Authority
JP
Japan
Prior art keywords
semiconductor
type
light emitting
emitting element
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003185976A
Other languages
Japanese (ja)
Inventor
Hideo Ono
英男 大野
Keita Otani
啓太 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003185976A priority Critical patent/JP2005019902A/en
Publication of JP2005019902A publication Critical patent/JP2005019902A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem; it is difficult to manufacture a semiconductor light emitting element which emits light between a conduction band and a valence band when a p-type or n-type semiconductor is difficult to manufacture in a conventional semiconductor light emitting element which is constituted of junction between a p-type semiconductor and an n-type semiconductor. <P>SOLUTION: In the element, two electrode layers are both constituted of an n-type semiconductor or a p-type semiconductor and light is emitted by injecting a hole (when an electrode is constituted of an n-type semiconductor) or an electron (when an electrode is constituted of a p-type semiconductor) inside an active layer by Zener tunneling effect. A semiconductor light emitting element can be realized in a semiconductor material wherein p-type or n-type doping cannot be realized and an inexpensive and compact semiconductor light source can be supplied in various wavelength regions. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ツェナートンネル効果を用いた半導体発光ダイオードや半導体レーザーなどの半導体発光素子に関する。
【0002】
【従来の技術】
半導体を用いた発光ダイオードやレーザーなどの発光素子はpn接合から構成され、活性層中で電子と正孔を結合させ、緩和エネルギーをフォトンとして放出する現象を用いており、p型、n型双方の伝導型が得られる材料で形成されるのが普通である。
【0003】
【発明が解決しようとする課題】
従来の半導体発光素子は、主に、p型半導体とn型半導体の接合から構成されるが、p型又はn型の半導体が作製困難な場合には伝導帯と価電子帯の間で発光する半導体発光素子を作製することが難しい。
【0004】
【課題を解決するための手段】
ツェナートンネル効果(バンド間トンネル効果)により、n型半導体又はp型半導体を用いることなしに電子又は正孔を生成し、活性領域に注入することによってバンド間発光する半導体発光素子を作製した。
【0005】
本発明は、2つの電極層がいずれもn型半導体又はp型半導体から構成され、ツェナートンネル効果(バンド間トンネル効果)によって活性層内に正孔(n型半導体により電極が構成される場合)又は電子(p型により電極が構成される場合)を注入し発光する素子に関するものである。
【0006】
【発明の実施の形態】
図1に、本発明によるn−i−n構造の発光素子の概念を示す。▲1▼及び▲3▼のn層は電極層でn型にドーピングされている。▲2▼のi層は超格子構造から構成され、i層の超格子構造はツェナートンネル効果が起こる程度の電界が印加されるまで電子の流れをブロックする。高電界が印加されるとツェナートンネルによりi層及び電極層近傍の空乏層で正孔が発生し、それらが活性領域で電子と再結合することで発光する。
【0007】
同様に、図2に、本発明によるp−i−p構造の発光素子の概念を示す、▲4▼及び▲6▼のp層は電極層でp型にドーピングされている。▲5▼のi層はn−i−n構造の発光素子と同様に超格子構造から構成され、i層の超格子構造はツェナートンネル効果が起こる程度の電界が印加されるまで正孔の流れをブロックする。高電界が印加されるとツェナートンネルによりi層及び電極層近傍の空乏層で電子が発生し、それらが活性領域で正孔と再結合することで発光する。
【0008】
【実施例】
実施例1
表1に、InAsをベースにした発光ダイオードの図1の▲1▼〜▲3▼に対応する各層の膜厚を示す。上部及び下部電極層は5×1018cm−3にドーピングされたInAs層からなる。
【0009】
【表1】

Figure 2005019902
【0010】
また、表2に、InAs/AlSb超格子構造を35回繰り返した発光領域の構造を示す。
【0011】
【表2】
Figure 2005019902
【0012】
実施例2
表3に、InAsをベースにした半導体レーザーの図1の▲1▼〜▲3▼に対応する各層の膜厚を示す。
【0013】
【表3】
Figure 2005019902
【0014】
上部及び下部電極層である5×1018cm−3にドーピングされたInAs層は発生した光を閉じ込めるクラッド領域の役目をする。また、発光領域であるInAs/AlSb超格子構造を挟む2つのInAs層(厚さが3μm、ドーピング濃度が3×1016cm−3)はクラッド領域における自由キャリア吸収を減少させるためにコア領域として挿入されている。InAs/AlSb超格子構造は表2に示す構造を35回繰り返した構造から構成される。
【0015】
この素子構造は分子線エピタキシー法によりn型InAs(100)基板上にAsバルブドクラッカー砒素セル、及びSbクラッカーセルがついた分子線エピタキシー装置により作製した。成長中の基板温度は410℃で、量子カスケード構造成長時には成長速度をInAsでは0.2原子層毎秒、AlSbでは0.4原子層毎秒とした。
【0016】
成長後、幅30ミクロンのリッジ構造をウエットエッチング及びフォトリソグラフィーで作製した。パッシベーション膜としてSiOを用いた。コンタクトをとるためにストライプ上のSiOをエッチングで除去し、その上にCr/Au電極を蒸着した。また、InAs基板の裏側を薄く研磨し、Cr/Auを蒸着して下部電極を形成した。リッジレーザー構造の共振器長は0.5mmから1.5mmである。
【0017】
図3に、作製した発光素子の測定温度4Kにおける発光スペクトルの注入電流依存性を示す。リッジ構造のストライプの長さはおよそ1mmである。エミッション測定はステップスキャンフーリエ赤外分光器を用いて行い、素子には5KHzでデューティ比0.05%の電流パルス電流を印加した。
【0018】
注入電流が1.8A以下では、InAs/AlSb超格子構造のサブバンド間発光(エネルギー160meV)が主に観測されるが、注入電流を増大させ、1.9A以上になると410meV付近のInAsのバンド間発光が観測されるようになる。これは1.9A以上の注入電流では、高電界がかかりツェナートンネル効果が起こっていることを意味する。さらに電流を増大してゆくと、InAs/AlSb超格子のサブバンド間発光は減少して消滅し、ツェナートンネル効果によるInAsのバンド間発光が主となり、注入電流が3A以上になると、レーザー発振に至る。
【0019】
【発明の効果】
これまで、p型又はn型ドーピングが実現できなかった半導体材料において半導体発光素子が実現でき、さまざまな波長領域において安価でコンパクトな半導体光源を供給できる。
【図面の簡単な説明】
【図1】図1は、n−i−n構造の発光素子の概念図である。
【図2】図2は、p−i−p構造の発光素子の概念図である。
【図3】図3は、実施例2により作成した半導体レーザーの発光スペクトル及び発振スペクトルである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor light emitting device such as a semiconductor light emitting diode or a semiconductor laser using a Zener tunnel effect.
[0002]
[Prior art]
Light-emitting elements such as light-emitting diodes and lasers using semiconductors are composed of pn junctions and use a phenomenon in which electrons and holes are combined in the active layer and the relaxation energy is released as photons. Both p-type and n-type In general, it is formed of a material that can obtain the conductivity type.
[0003]
[Problems to be solved by the invention]
Conventional semiconductor light emitting devices are mainly composed of a junction of a p-type semiconductor and an n-type semiconductor, but emit light between a conduction band and a valence band when it is difficult to produce a p-type or n-type semiconductor. It is difficult to manufacture a semiconductor light emitting device.
[0004]
[Means for Solving the Problems]
A semiconductor light emitting device that emits light between bands by generating electrons or holes by using a Zener tunnel effect (interband tunnel effect) without using an n-type semiconductor or a p-type semiconductor and injecting them into an active region was produced.
[0005]
In the present invention, the two electrode layers are both composed of an n-type semiconductor or a p-type semiconductor, and holes are formed in the active layer by the Zener tunnel effect (interband tunnel effect) (when the electrode is composed of an n-type semiconductor). Alternatively, the present invention relates to an element that emits light by injecting electrons (when an electrode is formed of p-type).
[0006]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a concept of a light-emitting element having an nin structure according to the present invention. The n layers of (1) and (3) are n-type doped with electrode layers. The i layer of (2) is composed of a superlattice structure, and the superlattice structure of the i layer blocks the flow of electrons until an electric field that causes a Zener tunnel effect is applied. When a high electric field is applied, holes are generated in the depletion layer near the i layer and the electrode layer by the Zener tunnel, and light is emitted by recombining with electrons in the active region.
[0007]
Similarly, FIG. 2 shows the concept of a light emitting device having a pip structure according to the present invention. The p layers of (4) and (6) are doped p-type in the electrode layer. The i layer of (5) is composed of a superlattice structure in the same manner as the light emitting element of the n-i-n structure, and the i-layer superlattice structure flows holes until an electric field that causes a Zener tunnel effect is applied. Block. When a high electric field is applied, electrons are generated in the depletion layer near the i layer and the electrode layer by the Zener tunnel, and light is emitted by recombination with holes in the active region.
[0008]
【Example】
Example 1
Table 1 shows the film thickness of each layer corresponding to (1) to (3) in FIG. 1 of the light-emitting diode based on InAs. The upper and lower electrode layers are composed of InAs layers doped to 5 × 10 18 cm −3 .
[0009]
[Table 1]
Figure 2005019902
[0010]
Table 2 shows the structure of the light emitting region in which the InAs / AlSb superlattice structure is repeated 35 times.
[0011]
[Table 2]
Figure 2005019902
[0012]
Example 2
Table 3 shows the film thickness of each layer corresponding to (1) to (3) in FIG. 1 of the semiconductor laser based on InAs.
[0013]
[Table 3]
Figure 2005019902
[0014]
The InAs layer doped to 5 × 10 18 cm −3 as the upper and lower electrode layers serves as a cladding region for confining the generated light. In addition, two InAs layers (thickness: 3 μm, doping concentration: 3 × 10 16 cm −3 ) sandwiching the InAs / AlSb superlattice structure, which is a light emitting region, serve as a core region in order to reduce free carrier absorption in the cladding region. Has been inserted. The InAs / AlSb superlattice structure is formed by repeating the structure shown in Table 2 35 times.
[0015]
This device structure was fabricated by a molecular beam epitaxy apparatus in which an As valved cracker arsenic cell and an Sb cracker cell were provided on an n-type InAs (100) substrate by a molecular beam epitaxy method. The substrate temperature during growth was 410 ° C., and the growth rate was set to 0.2 atomic layer per second for InAs and 0.4 atomic layer per second for AlSb during quantum cascade structure growth.
[0016]
After the growth, a ridge structure having a width of 30 microns was produced by wet etching and photolithography. SiO 2 was used as a passivation film. In order to make a contact, SiO 2 on the stripe was removed by etching, and a Cr / Au electrode was deposited thereon. Further, the back side of the InAs substrate was thinly polished, and Cr / Au was deposited to form a lower electrode. The resonator length of the ridge laser structure is 0.5 mm to 1.5 mm.
[0017]
FIG. 3 shows the injection current dependence of the emission spectrum of the manufactured light-emitting element at a measurement temperature of 4K. The length of the ridge structure stripe is about 1 mm. Emission measurement was performed using a step-scan Fourier infrared spectrometer, and a current pulse current with a duty ratio of 0.05% was applied to the element at 5 KHz.
[0018]
When the injection current is 1.8 A or less, the intersubband emission (energy 160 meV) of the InAs / AlSb superlattice structure is mainly observed. However, when the injection current is increased to 1.9 A or more, the InAs band near 410 meV is observed. Light emission is observed. This means that at an injection current of 1.9 A or more, a high electric field is applied and the Zener tunnel effect occurs. When the current is further increased, the light emission between the subbands of the InAs / AlSb superlattice decreases and disappears, and the light emission between the InAs bands due to the Zener tunnel effect becomes the main. When the injection current becomes 3 A or more, laser oscillation occurs. It reaches.
[0019]
【The invention's effect】
A semiconductor light emitting device can be realized in a semiconductor material that has not been realized with p-type or n-type doping so far, and an inexpensive and compact semiconductor light source can be supplied in various wavelength regions.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a light-emitting element having an nin structure.
FIG. 2 is a conceptual diagram of a light-emitting element having a pip structure.
FIG. 3 shows an emission spectrum and an oscillation spectrum of a semiconductor laser produced according to Example 2.

Claims (1)

n型又はp型の半導体のみから構成され、ツェナートンネル効果によりキャリアを注入しバンド間発光する半導体発光素子。A semiconductor light-emitting element that is composed of only an n-type or p-type semiconductor and emits light between bands by injecting carriers by the Zener tunnel effect.
JP2003185976A 2003-06-27 2003-06-27 Semiconductor light emitting element using zener tunneling effect Pending JP2005019902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003185976A JP2005019902A (en) 2003-06-27 2003-06-27 Semiconductor light emitting element using zener tunneling effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003185976A JP2005019902A (en) 2003-06-27 2003-06-27 Semiconductor light emitting element using zener tunneling effect

Publications (1)

Publication Number Publication Date
JP2005019902A true JP2005019902A (en) 2005-01-20

Family

ID=34185224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003185976A Pending JP2005019902A (en) 2003-06-27 2003-06-27 Semiconductor light emitting element using zener tunneling effect

Country Status (1)

Country Link
JP (1) JP2005019902A (en)

Similar Documents

Publication Publication Date Title
TWI282182B (en) Thin-film LED with an electric current expansion structure
US7821019B2 (en) Triple heterostructure incorporating a strained zinc oxide layer for emitting light at high temperatures
JPH02114591A (en) Wide band gap semiconductor light emitting device
RU2396655C1 (en) Tunnel-coupled semi-conducting heterostructure
JP5023419B2 (en) Semiconductor quantum dot device
JP4837012B2 (en) Light emitting element
JPS6244434B2 (en)
Wang et al. High-power quantum dot superluminescent diode with integrated optical amplifier section
JPS63220591A (en) Semiconductor device
US20100065811A1 (en) SINGLE PHOTON SOURCE WITH AllnN CURRENT INJECTION LAYER
JP4531583B2 (en) Single photon generator
JP2005019902A (en) Semiconductor light emitting element using zener tunneling effect
JPH04112584A (en) Semiconductor device
TWI240470B (en) Single-mode laser diode using strain-compensated multi-quantum-wells
JP2002368342A (en) Multiplex quantum well semiconductor element
CA2477989A1 (en) A laser diode with a low absorption diode junction
RU2154324C1 (en) Semiconductor infrared radiation source (design versions)
JP2005019840A (en) Optical semiconductor device
Komirenko et al. Laterally doped heterostructures for III–N lasing devices
JPH0479273A (en) Optical transmission electric signal amplifier device
JP3033625B2 (en) Quantized Si optical semiconductor device
JP2508649B2 (en) Semiconductor light emitting device
CN114336270B (en) Silicon-based semiconductor laser and manufacturing method thereof
JP2014183055A (en) Light emitter, and method of manufacturing the same
JPS63136591A (en) Seniconductor laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603