JP2005018990A - Stacked lithium ion secondary battery - Google Patents

Stacked lithium ion secondary battery Download PDF

Info

Publication number
JP2005018990A
JP2005018990A JP2003177716A JP2003177716A JP2005018990A JP 2005018990 A JP2005018990 A JP 2005018990A JP 2003177716 A JP2003177716 A JP 2003177716A JP 2003177716 A JP2003177716 A JP 2003177716A JP 2005018990 A JP2005018990 A JP 2005018990A
Authority
JP
Japan
Prior art keywords
battery
container
lithium ion
ion secondary
peripheral portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003177716A
Other languages
Japanese (ja)
Inventor
Takeo Mizui
健雄 水井
Shigeru Sano
茂 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003177716A priority Critical patent/JP2005018990A/en
Publication of JP2005018990A publication Critical patent/JP2005018990A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stacked lithium ion secondary battery having a structure reasonably durable against unavoidable shock although a power generation element is stored in a soft battery case. <P>SOLUTION: This stacked lithium ion secondary battery 1 is composed by airtightly enclosing a cell 2 in the battery case 4 formed of a laminated armoring material 34. A fusion bonding margin 11 for keeping the inside of the case airtight is formed on the battery case 4. The outer peripheral part 11b out of the fusion bonding margin 11 is bent inward with respect to a battery plate surface direction WL. The inner peripheral part 11a out of the fusion bonding margin 11 is so adjusted as to project in the direction WL. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電極およびセパレータを備えた発電単位の複数を積層することにより板状の発電要素が組立てられ、その発電要素が軟質容器内に気密封止されてなる積層型リチウムイオン二次電池に関する。
【0002】
【従来の技術】
昨今、電解液を電極内で膨潤保持可能なリチウムイオン二次電池(リチウムポリマー二次電池の概念を含む)においては、液漏れの恐れが小さいため、発電要素(セル)を、可撓性を有するラミネート外装材からなる電池容器に収容することが行なわれている。この手法によれば、金属製の容器を使用しないで済むため、電池の薄型化が容易である。また、後述する積層型リチウムイオン二次電池に至っては、形状の自由度が極めて高いという特徴を持っている。
【0003】
ラミネート外装材は、アルミニウム箔の両面に樹脂をラミネートしたものが一般的である。容器内に露出する側には、ポリプロピレン等の熱融着性樹脂がラミネートされる。この構成によれば、熱融着性樹脂を溶融および固化させるだけで、容器を封口することが可能である。熱融着性樹脂が溶融および固化された箇所には、融着代が形成される。この融着代は、電池内部への水分の透過を防止するために、少なくとも数ミリ幅は設けなければならない。小型の電池においては、この融着代が比較的大きな面積を占めるようになる。そこで、この融着代を電池の側面にぴったりと折り畳んで、電池が実質的に占有する面積を低減する試みがなされている(下記特許文献1〜3参照)。
【0004】
【特許文献1】
特開2000−58013号公報
【特許文献2】
特開2001−202931号公報
【特許文献3】
特開2001−357824号公報
【0005】
【発明が解決しようとする課題】
ところで、軟質な電池容器を用いた板状のリチウムイオン二次電池は、元々、薄くて小型というところがセールスポイントであるため、電池容器が剥き出しで使用される場合がしばしばある。このような場合、電気製品への組み込み時、さらには実使用時等において不可避的な衝撃が電池に加わり、発電要素の変形等を招く恐れがある。
【0006】
特に、積層型リチウムイオン二次電池においては、正極、負極およびセパレータからなる発電単位を個別に複数作製し、これらを積層することで発電要素が組立てられているため、発電要素に変形が生じたときに、充放電サイクル特性、内部抵抗などの特性の劣化を招きやすい。
【0007】
本発明の課題は、軟質の電池容器に発電要素が収容されていながら、不可避的な衝撃にも適度に耐え得る構造を持った積層型リチウムイオン二次電池を提供することにある。
【0008】
【課題を解決するための手段及び作用・効果】
上記課題を解決するために本発明は、電極およびセパレータを備えた発電単位を複数積層することにより板状の発電要素が構成され、金属箔に熱融着性樹脂がラミネートされてなる外装材で構成された電池容器に、発電要素を気密封止した積層型リチウムイオン二次電池において、内側に位置する熱融着性樹脂の溶融および固化により上下の外装材が貼り合わさって電池容器内の気密を保持する融着代が発電要素の形状に沿って形成され、電池板面方向に対して融着代の外周部分が90度以上折り曲げられ、折り曲げられた外周部分に隣接する内周部分が電池板面方向に張り出すように調整されていることを特徴とする。
【0009】
上記本発明は、電池容器の外周に形成される融着代の一部を折り曲げずに少し残し、電池板面方向からの外力に抗する衝撃吸収代として機能するように構成したものである。確かに、電池の実質的な大きさ、換言すれば、発電に直接寄与しないデッドスペースを最大限に減ずるという観点では、融着代はその内周縁に沿って全部折り曲げたほうがよい。しかし、本発明においては、融着代の外周部分のみが折り曲げられており、その外周部分に隣接する内周部分が電池板面方向に張り出すように調整されている。そして、この構成により電池板面方向から急激な機械的衝撃が加わった場合にも、可撓性を有する融着代の内周部分に衝撃の運動エネルギーを吸収させ、発電要素に伝わる衝撃を緩和することができるようになる。これにより、発電要素に変形等が生じることを防止でき、充放電サイクル特性、内部抵抗などの特性の劣化が抑制される。もちろん、折り曲げた分のデッドスペースが削減されるので、電池のコンパクト化も図れる。
【0010】
好適な態様において、融着代には、多角形状を有する発電要素のコーナに個別に対応して当該融着代を内側方向に切欠いた形の切欠き部が設けられ、それら切欠き部が形成された位置における融着代の残存幅に応じて、該融着代を外周部分と内周部分とに区分けする折り線が形成される。多角形状の発電要素の隣接する2辺に対応して形成された融着代を折り曲げようとすると、折り皺等が形成される。そこで、発電要素のコーナに個別に対応して切欠き部を設ける。切欠き部における融着代の残存幅(切欠きの先端から電池容器内までの距離に対応)に応じて、折り線の形成位置が定まる。このような折り線に沿って融着代を折り曲げれば、折り皺等が生じない。折り皺が形成されないことにより、電気機器の電池収容部への収納等の作業をスムーズにする効果を期待できる。
【0011】
また、切欠きの先には円弧形状を付与することが好ましい。このようにすれば、切欠きの先から外装材の破断が進行し、容器内に空気がリークすることを効果的に防止できる。
【0012】
また、円弧形状の両端から延びる1組の切欠き線を仮想的に延長したとき、それらが交わって鋭角を呈するか、もしくはそれら切欠き線が平行に延びるように、切欠き部が形成されていると尚良い。このようにすれば、高い水分遮断性を保つことができる。本発明のようなリチウムイオン二次電池は、水分の存在を非常に嫌う。水は、リチウムイオンと反応して不活性な化合物を生成し、充放電サイクル特性を劣化させる。また、電解液内のリチウム塩と反応してフッ酸等のガスを発生させ、電池の特性劣化を招く可能性がある。一般に、外装材の厚さ方向にはアルミニウム等の金属箔が存在するので、その方向には水はほとんど透過しない。水は、外装材の断面から容器内に侵入する。断面から容器内までの距離が長ければ長いほど、水分遮断性が高い。そこで、上記のようにして切欠き部を形成すれば、断面から容器内までの距離を極力長く取ることができ、高い水分遮断性を保てるというわけである。
【0013】
より好適な態様において、電池容器は、発電要素を収容するための凹部が形成された容器本体と、該容器本体に被さる蓋部とから構成することができる。この場合、容器本体における凹部の開口周縁部と蓋部との重なり合いにより融着代が形成され、融着代の外周部分が電池板面方向から容器本体側に90度以上折り曲げられて該容器本体の側面に接触して固定されることにより空隙が形成され、電池板面方向からの外力が吸収されるように構成することができる。このような空隙が形成されるように融着代を折り曲げれば、融着代の揺動スペースが確保され、高い衝撃吸収性能を実現することができる。
【0014】
また、融着代の外周部分が容器本体側に折り畳まれて内周部分に固定されている態様も好適である。このようにすれば、電池板面方向に張り出す融着代の厚さが増し、該融着代の剛性が高まる。
【0015】
【発明の実施の形態】
以下、添付の図面を参照しつつ本発明の実施形態を説明する。
図1は、本発明にかかるリチウムイオン二次電池1(以下、単に電池1ともいう)の断面模式図である。電池1は、発電要素であるセル2が、電池容器4の中に密封された構造を有する。板状のセル2は、個別に作製された複数の発電単位20が外周縁を上下方向で一致させる形で積層されたものである。図2に発電単位20の断面模式図を示す。
【0016】
図2に示すように、発電単位20は、セパレータ3,3を正極7,7と負極10とにより挟んだバイセル構造をなすものである。正極7は、正極集電体5に正極活物質層6を積層させた構造をなす。他方、負極10は、負極集電体8に負極活物質層9,9を積層させた構造をなす。本実施形態では、負極10が2つのセパレータ3,3に挟まれる形にてこれらに共用され、各セパレータ3,3の負極10に面していない側が、個別に正極7,7に覆われている。負極10の面積は、正極7と等しくすることもできるが、正極7よりも大きくすることが望ましい。また、セパレータ3,3は、各電極7,10よりも大きい面積を有している。正極7および負極10の配置は、相互に入れ替わってもよい。また、セル2の形状は方形、方形以外の多角形など種々の形状を採用できる。
【0017】
正極集電体5は、AlまたはAl合金からなる箔または金属メッシュで構成することができる。負極集電体8は、CuまたはCu合金からなる箔または金属メッシュで構成することができる。金属メッシュとしては、エキスパンドメタル、エッチングメタルおよびパンチングメタルのいずれも使用できる。
【0018】
正極活物質層6は、正極活物質、導電助剤および高分子基質(ポリマー)を含んで構成される。同様に、負極活物質層9は、負極活物質、導電助剤および高分子基質を含んで構成される。セパレータ3、正極活物質層6および負極活物質層9は多孔質形態を有し、LiPFなどのリチウム塩を、エチレンカーボネート、プロピレンカーボネートのような有機溶媒に溶解させた非水電解液が含浸されている。
【0019】
正極活物質層6および負極活物質層9を構成する高分子基質としては、ポリフッ化ビニリデン(PVDF)、ヘキサフルオロプロピレン(HFP)、ポリテトラフルオロエチレン(PTEF)などのフッ素樹脂や、あるいはこれらのフッ素樹脂の共重合体を使用することができる。
【0020】
正極活物質層6を構成する正極活物質としては、LiMnO、LiCoO、LiNiOなど、遷移金属あるいは典型金属を含むリチウム複合酸化物を使用できる。負極活物質層9を構成する負極活物質としては、メソフューズカーボン材などの黒鉛系炭素材料が好適である。また、導電助剤(導電性物質)としてはアセチレンブラックなどの導電性カーボンを使用できる。
【0021】
セパレータ3は、正極活物質層6および負極活物質層9に含まれる高分子基質と同様の材料、たとえばPVDFやHFP、あるいはそれらの共重合体により構成される(SiOなどのフィラーを混入させてもよい)。あるいは、ポリエチレンやポリプロピレンなどの微多孔膜、ポリエチレンをポリプロピレンで挟んだ複数層構造を持つ微多孔膜、ポリエチレンやポリプロピレンなどの樹脂層と、PVDFやHFP、あるいはそれらの共重合体からなる樹脂層とを有する微多孔膜などを使用してもよい。
【0022】
図1に示すように、セル2には、帯状のリード端子12,13の一端が接続されている。リード端子12,13の他端は、電池容器4の融着代11(封口部)を経て外側に延び出ている。具体的には、正極集電体5の電力取出部50に正極用のリード端子12の一端が接続されており、負極集電体8の電力取出部80に負極用のリード端子13の一端が接続されている。正極集電体5の電力取出部50は、発電単位20の各々に設けられており、これら複数の電力取出部50は1つに束ねられている。正極用のリード端子12は、たとえばアルミニウムまたはアルミニウム合金にて構成するとよい。負極用のリード端子13は、銅、銅合金、ニッケル、ニッケル合金、ニッケルメッキを施した銅またはニッケルメッキを施した銅合金にて構成するとよい。
【0023】
セル2を収容する電池容器4は、図7に示すように、アルミニウム箔などの金属箔32の両面に樹脂層31,33を設けた可撓性を有するシート状の外装材34で構成されている。電池容器4の外側に露出する樹脂層31としては、たとえばポリエチレンテレフタラートや2軸延伸ナイロンなどが使用され、内側にくる樹脂層33には、ポリエチレンやポリプロピレンなど、熱融着性、電解液に対する耐性および低水蒸気透過性を備えた材料が使用されている。
【0024】
図1に示すように、容器の内側にくる樹脂層33の溶融および固化により、上下の外装材34同士が貼り合わさり、融着代11が形成される。具体的には、図8に示すように、電池容器4は、セル2を収容するための凹部4pを有する容器本体4bと、蓋部4aとで構成することができる。容器本体4bの凹部4pにセル2を収容させた後に、蓋部4aを被せる。容器本体4bの凹部4pの開口を完全に塞ぐように蓋部4aを配置し、容器本体4bおよび蓋部4aの外周縁部をシールバー90,91(熱融着治具)で挟む。シールバー90,91に内側の樹脂層33,33が加熱されて溶融する。シールバー90,91を離間させれば、容器本体4bおよび蓋部4aの溶融した樹脂層33,33が一体になりながら固化し、これにより電池容器4内の気密を保持する融着代11が形成される。なお、1枚の外装材34を成形して蓋部4aと容器本体4bとを一体に作製する場合と、蓋部4aと容器本体4bとを別々に作製する場合とがある。
【0025】
融着代11は、リード端子12,13の引き出し位置だけでなく、セル2を囲うように形成されるものである。図3に示すのは、電池1の上面図であり、電池1における融着代11の形成位置を幾何模様にて表している。符号14は、リード端子12,13の取り出し位置での絶縁性および気密性を高めるための樹脂フィルムを示している。
【0026】
本発明の電池1は、図2に示したように、複数の発電単位20を個別に作製して、それらを積層および圧着させて得られる積層型のリチウムイオン二次電池である。図3に示すように、セル2の形状に制限が無いに等しく、方形以外の多角形状の電池を容易に製造することができる。電池容器4は、セル2の形状にあわせて成形される。すなわち、融着代11は、セル2の形状に沿うように設けられることとなる。図3に示す電池1は、融着代11を形成した直後を示している。融着代11は発電に寄与しないが、電池1が実質的に占有する面積を大きく拡げている。したがって、以下に説明するように、この融着代11を電池1の厚さ方向に折り曲げて、電池1のコンパクト化を図ることができる。
【0027】
ただし、薄い板状のセル2を、ラミネート外装材34からなる軟質な電池容器4に収容させる場合、電池1に横方向(電池板面方向)から急激な機械的衝撃が加わったとき、セル2の変形を招くことがある。そこで、本発明においては、電池容器4の外周に形成される融着代11の内寄りの一部分(内周部分)を折り曲げずに残し、これを衝撃吸収代として機能させる。これにより、コンパクト化、耐衝撃性の強化の両立を図ることができる。
【0028】
図6は、融着代11の折り曲げ形態を示す断面模式図である。ここでは、融着代11の外周部分11bを電池板面方向WLに対して90度以上折り曲げ、当該電池1の実質的な大きさ(占有面積)を減少させる、2通りの好適な具体例を示している。図6(a)に示す実施形態は、電池板面方向WLに延びるように形成された融着代11のうち外周部分11bについて、電池容器4を構成する容器本体4bの側面4fに接触するように折り曲げたものである。容器本体4bの側面4fに外周部分11bが接触した状態に保持されるよう、折り曲げられた融着代11は、粘着テープ、熱収縮フィルム、接着剤等の固定手段(図示省略)により固定される。他方、融着代11のうち内周部分11aは、電池板面方向WLに張り出すように調整される。これにより、容器本体4bの側面4fと、折り曲げられた融着代11との間に、わずかに空隙HSが形成される。この空隙HSは、電池板面方向WLに突き出た融着代11の可撓性を補って、耐衝撃性の一層の向上に寄与する。
【0029】
図6(b)に示す実施形態は、外周部分11bが内周部分11aに接して重なり合うように、電池容器4を構成する容器本体4b側にほぼ180度折り返したものである。折り返された外周部分11bは、接着剤や粘着テープにより内周部分11aに密着固定される。この実施形態によれば、融着代11の厚さが元の約2倍になっており、該融着代11の持つ耐衝撃性の向上が図られている。外周部分11bと内周部分11aとの幅を一致させる必要はなく、たとえば外周部分11bが容器本体4bの側面4fに沿って延びるように融着代11を折り曲げるようにしてもよい。
【0030】
ところで、図3に示すように、セル2の形状との関係から融着代11についても多角形状をなしており、隣り合う2辺を構成する融着代11を折り曲げに供する場合においては、コーナに折り皺ができてしまう。また、折り線(外周部分11bと内周部分11aの境界)の形成位置の調整も面倒である。そこで、融着代11を折り曲げる工程に先立って、図4に示すように、多角形状のセル2の各コーナに対応する位置において、切欠き部40〜45を形成する。これにより、折り曲げ容易性の向上を図ることができ、折り皺も発生しにくい。
【0031】
セル2の各辺に対応するように形成された融着代11は、切欠き部40〜45が両端に設けられることにより、個別に折り曲げ可能とされている。また、たとえば切欠き部40,41のように隣り合う1組の切欠き部にまたがって、該融着代11を外周部分11bと内周部分11aとに区分けする折り線KLが設定される。切欠き部40,41の形成位置における融着代11の残存幅dは、融着代11の内周縁から折り線KLまでの幅を決定する。すなわち、切欠き部40〜45を形成するための切り込み深さを調整することが、折り曲げ位置を定めることに兼用されていることとなる。
【0032】
具体的には、図5の拡大模式図に示すように、各部を調整することができる。まず、融着代11の形成幅dは、たとえば2.0mm以上6.0mm以下に調整することが望ましい。融着代11の形成幅dを小さく調整しすぎると、十分な耐水分透過性が得られなくなる恐れがある。逆に、融着代11の形成幅dを大きく調整しすぎると、デッドスペースの増大を招くので好ましくない。また、切欠き部42(全ての切欠き部を代表する)の形成位置においては、融着代11の残存幅dを0.5mm以上確保することが望ましい。残存幅dを小さくし過ぎると、容器内への水分透過が活発になり、電池1の特性劣化を加速させる恐れがあるうえ、図6(a)に示す融着代11の内周部分11aの幅Dを十分確保できなくなる。
【0033】
また、図5(b)に示すように、切欠き部42の底、つまり切欠きの先端には、電池容器4の内部側に凹の適度な円弧形状が付与されていることが望ましい。切欠き部42の形成は、切断刃を用いて行うことができるが、切欠きの先端が鋭くなっていると、融着代11の折り曲げ作業中等において、切欠きの先端から破断が進行したりして、電池容器4内に空気がリークする恐れがある。他方、図5(a)(b)に示すように、切欠いた断面に円弧形状が付与されている場合には、破断が生じ難い。円弧の半径Rは、たとえば0.1mm程度とすることができる。また、融着代11の残存幅dにほぼ等しい半径の円弧形状を付与するようにしてもよい。
【0034】
また、図5(b)に示すように、切欠き部42は、円弧形状の両端から延びる1組の切欠き線を仮想的に延長したとき、それら切欠き線が鋭角θで交わるように設けられていること好ましい。つまり、先端は円弧形状を付与しつつ鋭角に切り欠いて切欠き部42を形成すれば、耐水分透過性の保持効果と、破断防止効果とをバランスよく保つことができる。同様の理由から、図5(c)に示すように、一定幅の切欠きを設けつつ、切欠きの先端に円弧形状を付与する形態も好適である。
【図面の簡単な説明】
【図1】本発明にかかるリチウムイオン二次電池の断面模式図。
【図2】図1の電池を構成する発電単位の断面模式図。
【図3】融着代を折り曲げる前の図1の電池の上面図。
【図4】切欠き部を形成した後の図1の電池の上面図。
【図5】切欠き部の形成形態を説明する模式図。
【図6】融着代の折り曲げ形態を示す断面模式図。
【図7】電池容器の材料である外装材の構成を示す断面模式図。
【図8】電池容器の封止手順を示す断面模式図。
【符号の説明】
1 リチウムイオン二次電池
2 セル(発電要素)
3 セパレータ
4 電池容器
4a 蓋部
4b 容器本体
4p 凹部
4f 容器本体の側面
7 正極
10 負極
11 融着代
11a 融着代の内周部分
11b 融着代の外周部分
20 発電単位
32 金属箔
31,33 樹脂層
34 外装材
40〜45,42’ 切欠き部
KL 折り線
HS 空隙
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stacked lithium ion secondary battery in which a plate-shaped power generation element is assembled by laminating a plurality of power generation units each including an electrode and a separator, and the power generation element is hermetically sealed in a soft container. .
[0002]
[Prior art]
Recently, in lithium ion secondary batteries (including the concept of a lithium polymer secondary battery) that can swell and hold an electrolyte in an electrode, there is little risk of liquid leakage. It has been carried out in a battery container made of a laminate exterior material. According to this method, since it is not necessary to use a metal container, it is easy to thin the battery. In addition, a laminated lithium ion secondary battery described later has a feature that the degree of freedom in shape is extremely high.
[0003]
The laminate exterior material is generally a laminate of resin on both sides of an aluminum foil. A heat-fusible resin such as polypropylene is laminated on the side exposed in the container. According to this configuration, the container can be sealed only by melting and solidifying the heat-fusible resin. A fusion allowance is formed at a location where the heat-fusible resin is melted and solidified. This fusion allowance must be at least several millimeters wide to prevent moisture from penetrating into the battery. In a small battery, the fusion allowance occupies a relatively large area. In view of this, attempts have been made to reduce the area substantially occupied by the battery by folding the fusion allowance exactly on the side of the battery (see Patent Documents 1 to 3 below).
[0004]
[Patent Document 1]
JP 2000-58013 A [Patent Document 2]
JP 2001-202931 A [Patent Document 3]
Japanese Patent Laid-Open No. 2001-357824
[Problems to be solved by the invention]
By the way, a plate-like lithium ion secondary battery using a soft battery container is originally thin and small in size, so the battery container is often used by being exposed. In such a case, an unavoidable impact may be applied to the battery when it is incorporated into an electric product or even during actual use, and the power generation element may be deformed.
[0006]
In particular, in a stacked lithium ion secondary battery, a plurality of power generation units composed of a positive electrode, a negative electrode, and a separator are individually manufactured, and the power generation element is assembled by stacking these units. Sometimes, characteristics such as charge / discharge cycle characteristics and internal resistance are easily deteriorated.
[0007]
An object of the present invention is to provide a stacked lithium ion secondary battery having a structure that can appropriately withstand inevitable impacts while a power generation element is housed in a soft battery container.
[0008]
[Means for solving the problems and actions / effects]
In order to solve the above problems, the present invention is an exterior material in which a plate-shaped power generation element is configured by laminating a plurality of power generation units including electrodes and separators, and a heat-fusible resin is laminated on a metal foil. In a laminated lithium ion secondary battery in which the power generation element is hermetically sealed to the constructed battery container, the upper and lower exterior materials are bonded together by melting and solidifying the heat-fusible resin located inside, and the air-tightness in the battery container Is formed along the shape of the power generation element, the outer peripheral portion of the fusion allowance is bent 90 degrees or more with respect to the battery plate surface direction, and the inner peripheral portion adjacent to the bent outer peripheral portion is the battery. It is characterized by being adjusted to project in the plate surface direction.
[0009]
In the present invention, a part of the fusion allowance formed on the outer periphery of the battery container is left a little without being bent, and functions as an impact absorption allowance against an external force from the battery plate surface direction. Certainly, from the standpoint of maximizing the substantial size of the battery, in other words, the dead space that does not directly contribute to power generation, it is better to bend the entire fusion allowance along its inner periphery. However, in the present invention, only the outer peripheral portion of the fusion allowance is bent, and the inner peripheral portion adjacent to the outer peripheral portion is adjusted so as to project in the battery plate surface direction. And even when a sudden mechanical impact is applied from the battery plate surface direction, this structure absorbs the kinetic energy of the impact to the inner peripheral portion of the flexible fusion allowance and mitigates the impact transmitted to the power generation element. Will be able to. Thereby, it can prevent that a deformation | transformation etc. arise in a power generation element, and deterioration of characteristics, such as charging / discharging cycling characteristics and internal resistance, is suppressed. Of course, since the dead space corresponding to the bent portion is reduced, the battery can be made compact.
[0010]
In a preferred embodiment, the fusion allowance is provided with a notch having a shape in which the fusion allowance is notched inwardly corresponding to each corner of the power generation element having a polygonal shape, and these notches are formed. Depending on the remaining width of the fusion allowance at the position, a folding line is formed that divides the fusion allowance into an outer peripheral portion and an inner peripheral portion. When an attempt is made to fold the fusion allowance formed corresponding to two adjacent sides of the polygonal power generation element, a crease or the like is formed. Therefore, a notch is provided corresponding to each corner of the power generation element. The formation position of the fold line is determined according to the remaining width of the fusion allowance at the notch (corresponding to the distance from the tip of the notch to the inside of the battery container). If the fusion allowance is bent along such a fold line, no crease or the like will occur. Since the crease is not formed, it is possible to expect an effect of smoothing work such as storage of the electric device in the battery storage portion.
[0011]
Moreover, it is preferable to give circular arc shape to the tip of a notch. If it does in this way, fracture of an exterior material advances from the tip of a notch, and it can prevent effectively that air leaks in a container.
[0012]
In addition, when a set of notch lines extending from both ends of the arc shape is virtually extended, the notch portions are formed so that they intersect to form an acute angle or the notch lines extend in parallel. It is even better if there is. In this way, a high moisture barrier property can be maintained. Lithium ion secondary batteries such as the present invention are very reluctant to the presence of moisture. Water reacts with lithium ions to produce an inactive compound, which deteriorates charge / discharge cycle characteristics. Moreover, it reacts with the lithium salt in the electrolytic solution to generate a gas such as hydrofluoric acid, which may cause deterioration of battery characteristics. Generally, since a metal foil such as aluminum exists in the thickness direction of the exterior material, water hardly permeates in that direction. Water enters the container from the cross section of the exterior material. The longer the distance from the cross section to the inside of the container, the higher the moisture barrier property. Therefore, if the notch is formed as described above, the distance from the cross section to the inside of the container can be made as long as possible, and a high moisture barrier property can be maintained.
[0013]
In a more preferred aspect, the battery container can be composed of a container main body in which a recess for accommodating the power generation element is formed, and a lid that covers the container main body. In this case, a fusion allowance is formed by the overlap of the opening peripheral edge of the recess in the container main body and the lid, and the outer peripheral portion of the fusion allowance is bent 90 degrees or more from the battery plate surface direction toward the container main body. By being fixed in contact with the side surface, a gap is formed, and an external force from the battery plate surface direction can be absorbed. If the fusion allowance is bent so that such a gap is formed, a rocking space for the fusion allowance is secured, and high shock absorption performance can be realized.
[0014]
Moreover, the aspect by which the outer peripheral part of the fusion allowance is folded by the container main body side, and is being fixed to the inner peripheral part is also suitable. By doing so, the thickness of the fusion allowance extending in the battery plate surface direction increases, and the rigidity of the fusion allowance increases.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic cross-sectional view of a lithium ion secondary battery 1 (hereinafter also simply referred to as battery 1) according to the present invention. The battery 1 has a structure in which a cell 2 as a power generation element is sealed in a battery container 4. The plate-like cell 2 is formed by laminating a plurality of individually generated power generation units 20 so that their outer peripheral edges are aligned in the vertical direction. FIG. 2 shows a schematic cross-sectional view of the power generation unit 20.
[0016]
As shown in FIG. 2, the power generation unit 20 has a bi-cell structure in which separators 3 and 3 are sandwiched between positive electrodes 7 and 7 and a negative electrode 10. The positive electrode 7 has a structure in which a positive electrode active material layer 6 is laminated on a positive electrode current collector 5. On the other hand, the negative electrode 10 has a structure in which negative electrode active material layers 9 and 9 are laminated on a negative electrode current collector 8. In the present embodiment, the negative electrode 10 is shared by the two separators 3 and 3 so that the sides of the separators 3 and 3 not facing the negative electrode 10 are individually covered with the positive electrodes 7 and 7. Yes. The area of the negative electrode 10 can be equal to that of the positive electrode 7, but is preferably larger than that of the positive electrode 7. Further, the separators 3 and 3 have a larger area than the electrodes 7 and 10. The arrangement of the positive electrode 7 and the negative electrode 10 may be interchanged. Various shapes such as a square and a polygon other than a square can be adopted as the shape of the cell 2.
[0017]
The positive electrode current collector 5 can be composed of a foil or a metal mesh made of Al or an Al alloy. The negative electrode current collector 8 can be composed of a foil or a metal mesh made of Cu or a Cu alloy. As the metal mesh, any of expanded metal, etching metal and punching metal can be used.
[0018]
The positive electrode active material layer 6 includes a positive electrode active material, a conductive additive, and a polymer substrate (polymer). Similarly, the negative electrode active material layer 9 includes a negative electrode active material, a conductive additive, and a polymer substrate. The separator 3, the positive electrode active material layer 6 and the negative electrode active material layer 9 have a porous form, and are impregnated with a nonaqueous electrolytic solution in which a lithium salt such as LiPF 6 is dissolved in an organic solvent such as ethylene carbonate or propylene carbonate. Has been.
[0019]
Examples of the polymer substrate constituting the positive electrode active material layer 6 and the negative electrode active material layer 9 include fluororesins such as polyvinylidene fluoride (PVDF), hexafluoropropylene (HFP), polytetrafluoroethylene (PTEF), and the like. A copolymer of fluororesin can be used.
[0020]
As the positive electrode active material constituting the positive electrode active material layer 6, a lithium composite oxide containing a transition metal or a typical metal such as LiMnO 2 , LiCoO 2 , or LiNiO 2 can be used. As the negative electrode active material constituting the negative electrode active material layer 9, a graphite-based carbon material such as a mesofuse carbon material is suitable. In addition, conductive carbon such as acetylene black can be used as the conductive auxiliary agent (conductive substance).
[0021]
The separator 3 is made of the same material as the polymer substrate contained in the positive electrode active material layer 6 and the negative electrode active material layer 9, for example, PVDF, HFP, or a copolymer thereof (mixed with a filler such as SiO 2 or the like). May be) Alternatively, a microporous film such as polyethylene or polypropylene, a microporous film having a multi-layer structure in which polyethylene is sandwiched between polypropylene, a resin layer such as polyethylene or polypropylene, and a resin layer made of PVDF, HFP, or a copolymer thereof You may use the microporous film etc. which have.
[0022]
As shown in FIG. 1, one end of strip-shaped lead terminals 12 and 13 is connected to the cell 2. The other ends of the lead terminals 12 and 13 extend outward through the fusion allowance 11 (sealing portion) of the battery container 4. Specifically, one end of the positive lead terminal 12 is connected to the power outlet 50 of the positive current collector 5, and one end of the negative lead terminal 13 is connected to the power outlet 80 of the negative current collector 8. It is connected. The power extraction unit 50 of the positive electrode current collector 5 is provided in each of the power generation units 20, and the plurality of power extraction units 50 are bundled into one. The positive lead terminal 12 may be made of, for example, aluminum or an aluminum alloy. The lead terminal 13 for the negative electrode is preferably composed of copper, copper alloy, nickel, nickel alloy, nickel-plated copper, or nickel-plated copper alloy.
[0023]
As shown in FIG. 7, the battery container 4 that accommodates the cell 2 is composed of a flexible sheet-like exterior material 34 in which resin layers 31 and 33 are provided on both surfaces of a metal foil 32 such as an aluminum foil. Yes. As the resin layer 31 exposed to the outside of the battery container 4, for example, polyethylene terephthalate or biaxially stretched nylon is used. Materials with resistance and low water vapor permeability are used.
[0024]
As shown in FIG. 1, the upper and lower exterior members 34 are bonded together by the melting and solidification of the resin layer 33 that comes inside the container, and the fusion allowance 11 is formed. Specifically, as shown in FIG. 8, the battery container 4 can be composed of a container body 4 b having a recess 4 p for accommodating the cells 2 and a lid 4 a. After the cell 2 is accommodated in the recess 4p of the container body 4b, the lid 4a is covered. The lid portion 4a is disposed so as to completely close the opening of the concave portion 4p of the container body 4b, and the outer peripheral edge portions of the container body 4b and the lid portion 4a are sandwiched between seal bars 90 and 91 (heat fusion jig). The inner resin layers 33 and 33 are heated and melted by the seal bars 90 and 91. If the seal bars 90 and 91 are separated, the fused resin layers 33 and 33 of the container body 4b and the lid portion 4a are solidified while being united, whereby the fusion allowance 11 for maintaining airtightness in the battery container 4 is obtained. It is formed. In addition, there are a case where the cover part 4a and the container body 4b are integrally manufactured by molding one exterior material 34, and a case where the lid part 4a and the container body 4b are separately manufactured.
[0025]
The fusion allowance 11 is formed so as to surround the cell 2 as well as the lead-out positions of the lead terminals 12 and 13. FIG. 3 is a top view of the battery 1, and the formation position of the fusion allowance 11 in the battery 1 is represented by a geometric pattern. Reference numeral 14 denotes a resin film for enhancing insulation and airtightness at the lead terminal 12 and 13 extraction positions.
[0026]
As shown in FIG. 2, the battery 1 of the present invention is a laminated lithium ion secondary battery obtained by individually producing a plurality of power generation units 20 and laminating and pressing them. As shown in FIG. 3, there is no limitation on the shape of the cell 2, and a polygonal battery other than a square can be easily manufactured. The battery container 4 is formed according to the shape of the cell 2. That is, the fusion allowance 11 is provided along the shape of the cell 2. The battery 1 shown in FIG. 3 shows immediately after the fusion allowance 11 is formed. The fusion allowance 11 does not contribute to power generation, but greatly increases the area that the battery 1 substantially occupies. Therefore, as will be described below, the fusion allowance 11 can be bent in the thickness direction of the battery 1 to make the battery 1 compact.
[0027]
However, when the thin plate-like cell 2 is accommodated in the soft battery container 4 made of the laminate exterior material 34, the cell 2 is subjected to a sudden mechanical impact from the lateral direction (battery plate surface direction). May be deformed. Therefore, in the present invention, a part (inner peripheral part) inward of the fusion allowance 11 formed on the outer periphery of the battery case 4 is left without being bent, and this is made to function as an impact absorption allowance. As a result, both compactness and enhanced impact resistance can be achieved.
[0028]
FIG. 6 is a schematic cross-sectional view showing a bent form of the fusion allowance 11. Here, two preferred specific examples in which the outer peripheral portion 11b of the fusion allowance 11 is bent by 90 degrees or more with respect to the battery plate surface direction WL, and the substantial size (occupied area) of the battery 1 is reduced. Show. In the embodiment shown in FIG. 6A, the outer peripheral portion 11 b of the fusion allowance 11 formed so as to extend in the battery plate surface direction WL is in contact with the side surface 4 f of the container body 4 b constituting the battery container 4. It is bent. The bent fusion allowance 11 is fixed by fixing means (not shown) such as an adhesive tape, a heat shrink film, and an adhesive so that the outer peripheral portion 11b is held in contact with the side surface 4f of the container body 4b. . On the other hand, the inner peripheral portion 11a of the fusion allowance 11 is adjusted so as to project in the battery plate surface direction WL. As a result, a slight gap HS is formed between the side surface 4f of the container body 4b and the bent fusion allowance 11. The gap HS compensates for the flexibility of the fusion allowance 11 protruding in the battery plate surface direction WL, and contributes to further improvement in impact resistance.
[0029]
In the embodiment shown in FIG. 6B, the outer peripheral portion 11b is folded back approximately 180 degrees toward the container main body 4b constituting the battery container 4 so that the outer peripheral portion 11b is in contact with and overlapped with the inner peripheral portion 11a. The folded outer peripheral portion 11b is tightly fixed to the inner peripheral portion 11a with an adhesive or an adhesive tape. According to this embodiment, the thickness of the fusion allowance 11 is about twice that of the original, and the impact resistance of the fusion allowance 11 is improved. The widths of the outer peripheral portion 11b and the inner peripheral portion 11a do not need to coincide with each other. For example, the fusion allowance 11 may be bent so that the outer peripheral portion 11b extends along the side surface 4f of the container body 4b.
[0030]
By the way, as shown in FIG. 3, the fusion allowance 11 has a polygonal shape because of the relationship with the shape of the cell 2, and in the case where the fusion allowance 11 constituting two adjacent sides is used for bending, A crease is made. Moreover, adjustment of the formation position of a folding line (border of the outer peripheral part 11b and the inner peripheral part 11a) is also troublesome. Therefore, prior to the step of bending the fusion allowance 11, the notches 40 to 45 are formed at positions corresponding to the corners of the polygonal cell 2 as shown in FIG. As a result, the easiness of folding can be improved, and creases are less likely to occur.
[0031]
The fusion allowance 11 formed so as to correspond to each side of the cell 2 can be bent individually by providing the notches 40 to 45 at both ends. Further, for example, a folding line KL that divides the fusion allowance 11 into an outer peripheral portion 11b and an inner peripheral portion 11a is set across a pair of adjacent cutout portions such as the cutout portions 40 and 41. Remaining width d 2 of the fusion Chakudai 11 in the formation position of the notch 40 and 41 determines the width of the inner circumferential edge to the fold line KL of Toruchakudai 11. That is, adjusting the depth of cut for forming the notches 40 to 45 is also used for determining the bending position.
[0032]
Specifically, each part can be adjusted as shown in the enlarged schematic diagram of FIG. First, forming a width d 1 of Toruchakudai 11, for example, it is desirable to adjust the 2.0mm or 6.0mm or less. If too small adjusting the formation width d 1 of Toruchakudai 11, there is a possibility that sufficient water content permeability can not be obtained. Conversely, if too large adjusting the formation width d 1 of Toruchakudai 11, so causing an increase in dead space is not preferable. In the forming position of the notch 42 (representative of all notch), it is desirable to secure a remaining width d 2 of Toruchakudai 11 or more 0.5 mm. Too small a residual width d 2, moisture permeation into the container becomes active, after which there is a possibility to accelerate the deterioration of characteristics of the battery 1, the inner peripheral portion 11a of the fusion Chakudai 11 shown in FIG. 6 (a) the width D 1 can not be sufficiently secure.
[0033]
Further, as shown in FIG. 5B, it is desirable that an appropriate concave arc shape is provided on the inner side of the battery container 4 at the bottom of the notch portion 42, that is, at the tip of the notch. The notch portion 42 can be formed by using a cutting blade. However, if the notch tip is sharp, the breakage may proceed from the notch tip during the bending work of the fusion allowance 11 or the like. As a result, air may leak into the battery case 4. On the other hand, as shown in FIGS. 5 (a) and 5 (b), when an arc shape is given to the notched cross section, breakage hardly occurs. The radius R 1 of the arc can be set to, for example, about 0.1 mm. Further, it is also possible to impart a substantially equal radius of the circular arc shape remaining width d 2 of Toruchakudai 11.
[0034]
In addition, as shown in FIG. 5B, the notch portion 42 is provided so that when a pair of notch lines extending from both ends of the arc shape are virtually extended, the notch lines intersect at an acute angle θ. It is preferable that That is, if the tip is notched at an acute angle while giving an arc shape to form the notched portion 42, the moisture permeation retaining effect and the fracture preventing effect can be maintained in a well-balanced manner. For the same reason, as shown in FIG. 5 (c), it is also preferable to provide a circular arc shape at the tip of the notch while providing a notch with a constant width.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a lithium ion secondary battery according to the present invention.
2 is a schematic cross-sectional view of a power generation unit constituting the battery of FIG.
3 is a top view of the battery of FIG. 1 before folding the fusion allowance.
4 is a top view of the battery of FIG. 1 after forming a notch.
FIG. 5 is a schematic diagram illustrating a form of forming a notch.
FIG. 6 is a schematic cross-sectional view showing a bending form of a fusion allowance.
FIG. 7 is a schematic cross-sectional view showing a configuration of an exterior material that is a material of a battery container.
FIG. 8 is a schematic cross-sectional view showing a procedure for sealing a battery container.
[Explanation of symbols]
1 Lithium ion secondary battery 2 cell (power generation element)
3 Separator 4 Battery container 4a Lid 4b Container body 4p Recess 4f Side surface 7 of container body Positive electrode 10 Negative electrode 11 Fusion allowance 11a Inner peripheral portion 11b of fusion allowance Outer peripheral portion 20 of fusion allowance Power generation unit 32 Metal foils 31, 33 Resin layer 34 exterior materials 40-45, 42 'notch KL fold line HS gap

Claims (6)

電極およびセパレータを備えた発電単位を複数積層することにより板状の発電要素が構成され、金属箔に熱融着性樹脂がラミネートされてなる外装材で構成された電池容器に、前記発電要素を気密封止した積層型リチウムイオン二次電池において、
内側に位置する前記熱融着性樹脂の溶融および固化により上下の前記外装材が貼り合わさって前記電池容器内の気密を保持する融着代が前記発電要素の形状に沿って形成され、
電池板面方向に対して前記融着代の外周部分が90度以上折り曲げられ、折り曲げられた前記外周部分に隣接する内周部分が前記電池板面方向に張り出すように調整されていることを特徴とする積層型リチウムイオン二次電池。
A plate-shaped power generation element is configured by laminating a plurality of power generation units each including an electrode and a separator, and the power generation element is placed in a battery container composed of an exterior material in which a heat-fusible resin is laminated on a metal foil. In a hermetically sealed multilayer lithium ion secondary battery,
A fusion allowance is formed along the shape of the power generating element so that the upper and lower exterior materials are bonded together by melting and solidifying the heat-fusible resin located on the inner side to maintain airtightness in the battery container,
The outer peripheral portion of the fusion allowance is bent 90 degrees or more with respect to the battery plate surface direction, and the inner peripheral portion adjacent to the bent outer peripheral portion is adjusted so as to protrude in the battery plate surface direction. A feature of a laminated lithium ion secondary battery.
前記融着代には、多角形状を有する前記発電要素のコーナに個別に対応して当該融着代を内側方向に切欠いた形の切欠き部が設けられ、
それら切欠き部が形成された位置における前記融着代の残存幅に応じて、該融着代を前記外周部分と前記内周部分とに区分けする折り線が形成されている請求項1記載の積層型リチウムイオン二次電池。
The fusion allowance is provided with a cutout portion having a shape in which the fusion allowance is notched inwardly corresponding to each corner of the power generation element having a polygonal shape,
The folding line for dividing the fusion allowance into the outer peripheral portion and the inner peripheral portion is formed according to the remaining width of the fusion allowance at the position where the notches are formed. Stacked lithium ion secondary battery.
切欠きの先には円弧形状が付与されている請求項2記載の積層型リチウムイオン二次電池。The laminated lithium ion secondary battery according to claim 2, wherein an arc shape is provided at the tip of the notch. 前記円弧形状の両端から延びる1組の切欠き線を仮想的に延長したとき、それらが交わって鋭角を呈するか、もしくはそれら切欠き線が平行に延びるように、前記切欠き部が形成されている請求項3記載の積層型リチウムイオン二次電池。When the set of notch lines extending from both ends of the arc shape is virtually extended, the notch portions are formed such that they intersect to form an acute angle or the notch lines extend in parallel. The laminated lithium ion secondary battery according to claim 3. 前記電池容器は、前記発電要素を収容するための凹部が形成された容器本体と、該容器本体に被さる蓋部とから構成されており、
前記容器本体における前記凹部の開口周縁部と前記蓋部との重なり合いにより前記融着代が形成され、前記融着代の外周部分が前記電池板面方向から前記容器本体側に90度以上折り曲げられて該容器本体の側面に接触して固定されることにより空隙が形成され、前記電池板面方向からの外力が吸収されるようになっている請求項1ないし4のいずれか1項に記載の積層型リチウムイオン二次電池。
The battery container is composed of a container main body in which a recess for accommodating the power generation element is formed, and a lid portion covering the container main body,
The fusion margin is formed by the overlap between the opening peripheral edge of the recess and the lid in the container body, and the outer peripheral portion of the fusion margin is bent 90 degrees or more from the battery plate surface direction toward the container body. 5. The gap according to claim 1, wherein a space is formed by contacting and fixing the side surface of the container body, and external force from the battery plate surface direction is absorbed. Stacked lithium ion secondary battery.
前記電池容器は、前記発電要素を収容するための凹部が形成された容器本体と、該容器本体に被さる蓋部とから構成されており、
前記容器本体における前記凹部の開口周縁部と前記蓋部との重なり合いにより前記融着代が形成され、前記融着代の外周部分が前記容器本体側に折り畳まれて前記内周部分に固定されている請求項1ないし4のいずれか1項に記載の積層型リチウムイオン二次電池。
The battery container is composed of a container main body in which a recess for accommodating the power generation element is formed, and a lid portion covering the container main body,
The fusion margin is formed by the overlap of the opening peripheral edge of the recess and the lid in the container body, and the outer peripheral portion of the fusion margin is folded to the container main body side and fixed to the inner peripheral portion. The laminated lithium ion secondary battery according to any one of claims 1 to 4.
JP2003177716A 2003-06-23 2003-06-23 Stacked lithium ion secondary battery Pending JP2005018990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003177716A JP2005018990A (en) 2003-06-23 2003-06-23 Stacked lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003177716A JP2005018990A (en) 2003-06-23 2003-06-23 Stacked lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2005018990A true JP2005018990A (en) 2005-01-20

Family

ID=34179555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003177716A Pending JP2005018990A (en) 2003-06-23 2003-06-23 Stacked lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2005018990A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200589A (en) * 2006-01-24 2007-08-09 Nec Tokin Corp Laminate battery
JP2010205420A (en) * 2009-02-27 2010-09-16 Sanyo Electric Co Ltd Laminated battery
KR20150075732A (en) * 2013-12-26 2015-07-06 주식회사 엘지화학 Battery Cell Having Structure for Coating with Electrical Insulating Material On End of Sealing Part Bended In A Horizontal Direction
KR20150077637A (en) * 2013-12-30 2015-07-08 주식회사 엘지화학 Process for Preparation of Battery Cell Having Structure for Coating Electrical Insulating Material on End of Sealing Part Bended
JP2015153694A (en) * 2014-02-18 2015-08-24 セイコーインスツル株式会社 electrochemical cell
KR20150096325A (en) * 2014-02-14 2015-08-24 주식회사 엘지화학 Pouch-type Secondary Battery Having Sealing Part with concave parts
JP2015185416A (en) * 2014-03-25 2015-10-22 凸版印刷株式会社 lithium ion secondary battery
JP2015537338A (en) * 2013-02-05 2015-12-24 エルジー・ケム・リミテッド Battery cell including step structure
KR20160019230A (en) * 2014-08-11 2016-02-19 삼성에스디아이 주식회사 Secondary battery
WO2019009178A1 (en) * 2017-07-05 2019-01-10 株式会社村田製作所 Battery, battery module, battery pack, vehicle, electricity storage system, electric tool and electronic device
WO2019044613A1 (en) * 2017-08-31 2019-03-07 株式会社村田製作所 Power storage device
CN113243059A (en) * 2018-12-28 2021-08-10 松下知识产权经营株式会社 Battery with a battery cell
CN115425364A (en) * 2022-08-30 2022-12-02 重庆长安新能源汽车科技有限公司 Diaphragm piece, battery cell and method for manufacturing battery cell
JP7382780B2 (en) 2019-10-07 2023-11-17 セイコーインスツル株式会社 electrochemical cell
JP7475770B2 (en) 2020-10-27 2024-04-30 エルジー エナジー ソリューション リミテッド Secondary battery manufacturing method and secondary battery

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200589A (en) * 2006-01-24 2007-08-09 Nec Tokin Corp Laminate battery
JP2010205420A (en) * 2009-02-27 2010-09-16 Sanyo Electric Co Ltd Laminated battery
US10014556B2 (en) 2013-02-05 2018-07-03 Lg Chem, Ltd. Battery cell including stepped structure
JP2015537338A (en) * 2013-02-05 2015-12-24 エルジー・ケム・リミテッド Battery cell including step structure
KR20150075732A (en) * 2013-12-26 2015-07-06 주식회사 엘지화학 Battery Cell Having Structure for Coating with Electrical Insulating Material On End of Sealing Part Bended In A Horizontal Direction
KR101675929B1 (en) * 2013-12-26 2016-11-14 주식회사 엘지화학 Battery Cell Having Structure for Coating with Electrical Insulating Material On End of Sealing Part Bended In A Horizontal Direction
KR20150077637A (en) * 2013-12-30 2015-07-08 주식회사 엘지화학 Process for Preparation of Battery Cell Having Structure for Coating Electrical Insulating Material on End of Sealing Part Bended
KR101709544B1 (en) * 2013-12-30 2017-03-08 주식회사 엘지화학 Process for Preparation of Battery Cell Having Structure for Coating Electrical Insulating Material on End of Sealing Part Bended
KR20150096325A (en) * 2014-02-14 2015-08-24 주식회사 엘지화학 Pouch-type Secondary Battery Having Sealing Part with concave parts
US10014497B2 (en) 2014-02-14 2018-07-03 Lg Chem, Ltd. Pouch-type secondary battery including sealed part having recess
CN105981196A (en) * 2014-02-14 2016-09-28 株式会社Lg化学 Pouch-type secondary battery including sealing part having recess
KR101666381B1 (en) * 2014-02-14 2016-10-14 주식회사 엘지화학 Pouch-type Secondary Battery Having Sealing Part with concave parts
JP2015153694A (en) * 2014-02-18 2015-08-24 セイコーインスツル株式会社 electrochemical cell
JP2015185416A (en) * 2014-03-25 2015-10-22 凸版印刷株式会社 lithium ion secondary battery
KR20160019230A (en) * 2014-08-11 2016-02-19 삼성에스디아이 주식회사 Secondary battery
KR102221808B1 (en) * 2014-08-11 2021-03-02 삼성에스디아이 주식회사 Secondary battery
WO2019009178A1 (en) * 2017-07-05 2019-01-10 株式会社村田製作所 Battery, battery module, battery pack, vehicle, electricity storage system, electric tool and electronic device
CN110832675A (en) * 2017-07-05 2020-02-21 株式会社村田制作所 Battery, battery module, battery pack, vehicle, power storage system, electric power tool, and electronic device
JPWO2019009178A1 (en) * 2017-07-05 2020-04-16 株式会社村田製作所 Batteries, battery modules, battery packs, vehicles, power storage systems, power tools and electronic devices
WO2019044613A1 (en) * 2017-08-31 2019-03-07 株式会社村田製作所 Power storage device
CN113243059A (en) * 2018-12-28 2021-08-10 松下知识产权经营株式会社 Battery with a battery cell
CN113243059B (en) * 2018-12-28 2023-10-20 松下知识产权经营株式会社 Battery cell
JP7382780B2 (en) 2019-10-07 2023-11-17 セイコーインスツル株式会社 electrochemical cell
JP7475770B2 (en) 2020-10-27 2024-04-30 エルジー エナジー ソリューション リミテッド Secondary battery manufacturing method and secondary battery
CN115425364A (en) * 2022-08-30 2022-12-02 重庆长安新能源汽车科技有限公司 Diaphragm piece, battery cell and method for manufacturing battery cell
CN115425364B (en) * 2022-08-30 2023-06-16 深蓝汽车科技有限公司 Separator, battery cell and method for manufacturing battery cell

Similar Documents

Publication Publication Date Title
KR101351654B1 (en) Electrode unit and method of manufacturing the same, secondary battery having the same
JP2005038613A (en) Plate-shaped battery
JP3758629B2 (en) Laminate sheet and laminate battery using the same
JP3972205B2 (en) Stacked battery
KR20110105737A (en) Pouch case and battery pack using the same
KR101306187B1 (en) Device for Eliminating Gas from Battery Cell and Method for Manufacturing Battery Cell
US6673488B2 (en) Packaging for polymer electrolytic cell and method of forming same
JP2005018990A (en) Stacked lithium ion secondary battery
US20210119285A1 (en) Battery cell
WO2017158986A1 (en) Battery cell
JP2019067667A (en) Electrochemical cell
JP2005038612A (en) Lithium ion secondary battery and manufacturing method of the same
KR102540149B1 (en) Secondary Battery
JP2004158344A (en) Laminate secondary battery, battery pack modules composed of two or more laminate secondary batteries, battery pack composed of two or more battery pack modules as well as electric automobile equipped with either of these batteries
JP4397175B2 (en) Electricity storage element
JP3597027B2 (en) Thin battery
EP1414083A1 (en) Power storage device
US20230231282A1 (en) Secondary battery
JP4237557B2 (en) Battery pack
JP6970912B2 (en) A power storage element and a power storage device including a power storage element
JP2004319098A (en) Electrochemical cell and its manufacturing method
JP2005071907A (en) Film armor type battery
JP2006120419A (en) Film-armored power storage device and case for the same
KR20170114404A (en) Secondary battery
JP2011070977A (en) Laminated battery