JP2005017842A - Method of manufacturing optical element - Google Patents

Method of manufacturing optical element Download PDF

Info

Publication number
JP2005017842A
JP2005017842A JP2003184588A JP2003184588A JP2005017842A JP 2005017842 A JP2005017842 A JP 2005017842A JP 2003184588 A JP2003184588 A JP 2003184588A JP 2003184588 A JP2003184588 A JP 2003184588A JP 2005017842 A JP2005017842 A JP 2005017842A
Authority
JP
Japan
Prior art keywords
optical element
manufacturing
etching
reduction
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003184588A
Other languages
Japanese (ja)
Inventor
Yasuyuki Suzuki
康之 鈴木
Koji Teranishi
康治 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003184588A priority Critical patent/JP2005017842A/en
Publication of JP2005017842A publication Critical patent/JP2005017842A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element of high quality which has less loss even in a vacuum ultraviolet region and is superior in vacuum ultraviolet laser durability performance, by making surfaces of the optical element and a base material clean. <P>SOLUTION: A high-performance optical element is manufactured by coating after two steps of a wet etching step of wet-etching the surface of a fluoride substrate smoothed by polishing, by a pH-adjusted etching solution and removing a layer degenerated by treatment on the surface and residues of polishing and a reduction step of removing OH radicals, CaO bonds, etc. produced on the substrate surface in the wet etching step, by reduction. The surface after etching with the solution is so polished that the surface roughness is 1 nm in RMS. In the reduction step, atomic H is utilized to remove OH radicals, CaO bonds, etc. without damaging the fluoride substrate. Thermal dissociation or H2 plasma is adopted as an atomic H production method. Light of 100 to 400 nm or ions are radiated to the substrate under a reduction atmosphere. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は光学素子及び基板の洗浄方法及び製造方法に関するものである。
【0002】
【従来の技術】
近年、半導体素子のリソグラフィー工程に用いる縮小投影露光装置(ステッパー)の露光波長は、半導体素子の集積度向上を目的とした高解像力化の要求が高まり、短波長化が求められている。そこで最近では、エキシマレーザーを光源としたステッパーの実用化が始まっている。しかしながら、有機物をはじめとする汚れの吸収・散乱や干渉現象などは、光が短波長であるほど顕著になるため、光源が短波長になるに連れ、例えばレンズ及びミラーなどの光学素子に付着残留している有機物などの汚れが、光源からの光を吸収・散乱したり、光学素子の分光特性を変化させたりして、透過率等の光学特性を低下させている。吸収や散乱による透過率の劣化はステッパーの生産性を低下させるばかりでなく、吸収による発熱や散乱・反射率の増加によるフレアーの発生など、ステッパーの性能にも多大な影響を及ぼし、高解像力化を行う上でも問題となっている。
【0003】
また、通常レンズなどの光学素子表面には反射防止膜などのコーティングを施すが、この際にレンズ表面が汚れていては、コーティングを施した光学素子の透過率劣化や、吸収増大の原因となり、結果として光学素子の性能が劣化していた。
【0004】
このような事情から、光学素子やコーティング前の基板表面に付着残留している有機物などの汚れを効率的に取り除く光学素子の洗浄が要求されている。
【0005】
上記のような光学素子の洗浄において、従来は洗浄槽に洗浄液を入れた中にレンズを浸漬させて超音波洗浄によって洗浄するのが一般的であった。このような洗浄槽を複数槽設けておき、界面活性剤や純水等によって洗浄した後、最終的にアルコール等の蒸気で乾燥させていた。
【0006】
しかし、近年真空紫外域で使用されることの多い蛍石基板などの結晶材料は、上記のような洗浄だけでは真空紫外域の透過率が十分に高くならない、すなわち清浄な表面が得られないという問題を抱えていた。
【0007】
これらの問題を解決する手段として、ドライ洗浄法の1つである、光化学反応を利用する紫外線/オゾン洗浄法がある。
【0008】
従来の紫外線/オゾン洗浄法では紫外線光源として水銀ランプやエキシマランプなどのランプを用い、洗浄雰囲気を通常の大気や、汚染の影響を除去するため酸素ガスを導入し、真空紫外光によってオゾン及び酸素ラジカルを生成し、洗浄を行っていた。
【0009】
一方、下記特許文献1に開示されているように、エキシマレーザー等を光学素子に照射し、光学素子表面のレーザ光を吸収する汚染を除去する方法も提案されている。
【0010】
また、特許文献2では紫外光で汚染を除去した後、N2パージ環境に保管して再汚染を防止する方法について、開示されている。
【0011】
【特許文献1】
特開平11−116281号公報
【特許文献2】
特開平11−221536号公報
【0012】
【発明が解決しようとする課題】
しかしながら、従来の水銀ランプやエキシマランプなどのランプを用いた紫外線/オゾン洗浄法や、レーザ洗浄法では、蛍石基板最表面層にOH基やCaO結合層を生成してしまう。また、基板表面研磨時に形成される研磨残さや、加工変質層を十分に除去できない。エキシマレーザリソグラフィで使用される真空紫外領域ではこれらのOH基やCaO結合層や結合状態の乱れた研磨残さ、加工変質層は光学性能劣化の原因となる。特に、これらの加工変質層や、OH、CaO等の不純物は照明系などのフルエンスの大きいレーザが照射されるレンズにおいて、透過率を劣化させる原因の一つと考えられている。
【0013】
さらに、反射防止膜等のコーティングを施すレンズ表面において、これら残さや酸化物等の不純物汚染がある場合、コーティング後に性能を回復させることは不可能であり、コーティング前にレンズ表面を清浄化することが必須となる。
【0014】
本発明は、従来のこのような問題点に鑑みてなされたものであり、光学素子に付着残留している有機物などの汚ればかりでなく、基板表面研磨時に形成される研磨残さや、加工変質層を取り除き、かつ蛍石基板最表面層に形成されるOH基やCaO結合層を除去した後にコーティングを施して高性能光学素子を製造する、光学素子の製造方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記課題を解決するために、本発明においては、平滑研磨されたフッ化物基板表面をPH調整したエッチング水溶液でウェットエッチングし、表面の加工変質層、研磨残さを取り除く工程と、前記ウェットエッチング工程で基板表面に生成したOH基,O原子等を還元除去する工程の2工程によって行い、真空紫外域において性能劣化を伴う表面の改質を行った後コーティングを施すことで、高性能光学素子を製造する方法を提供する。
【0016】
また本発明では、フッ化物基板にダメージを与えずにOH基,CaO結合等を還元除去するために原子状Hを利用する。原子状H生成方法としては熱解離、H2プラズマを活用する。
【0017】
また、低基板温度での還元効率を向上するため、原子状H雰囲気下において基板に100nm〜400nmの光照射もしくはイオン照射を行う。
【0018】
上記構成を、改めて以下(1)〜(7)に整理して示す。
【0019】
(1)平滑研磨されたフッ化物光学基板の洗浄方法でである処の光学素子の製造方法であって、
PH調整したエッチング水溶液で素子表面をウェットエッチングし、表面の加工変質層、研磨残さを取り除く工程と、前記ウェットエッチング工程で基板表面に生成したOH基,O原子等を還元除去する工程の2工程によって表面洗浄を行った後、成膜を行うことを特徴とする光学素子の製造方法。
【0020】
(2)前記還元工程において、原子状Hを用いることを特徴とする上記(1)記載の光学素子の製造方法。
【0021】
(3)前記原子状Hの供給はH2ガスの熱解離もしくは放電プラズマ解離によるかまたは、HI,H2S等の不安定分子の解離によって行うことを特徴とする上記(1)記載の光学素子の製造方法。
【0022】
(4)前記還元除去工程において、還元ガスを導入するとともに、エキシマレーザー等の真空紫外光を照射することを特徴とする上記(1)記載の光学素子の製造方法。
【0023】
(5)前記還元除去工程において、還元ガスを導入するとともに、イオンビームを照射することを特徴とする上記(1)記載の光学素子の製造方法。
【0024】
(6)水溶液によるエッチング処理後の表面粗さをRMSで1nm以下に抑えることを特徴とする上記(1)記載の光学素子の製造方法。
【0025】
(7)前記平滑研磨表面処理に、イオンクラスター照射処理を施すことを特徴とする上記(6)記載の光学素子の製造方法。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態について、図を用いて詳細に説明する。
【0027】
(第一の実施形態)
図1は、本発明の第一の実施形態にかかるF2レーザリソ用光学素子製造方法の概略断面図である。同図において、1は蛍光レンズ、2はウェットエッチング浴槽、3は還元処理室、4は成膜室、5は原子状水素発生器をそれぞれ示す。
【0028】
本発明の実施形態にかかる光学素子製造方法は、あらかじめ保護膜やゴミ、埃等を除去し、有機溶剤やアルコール等で洗浄された被処理基板である蛍石レンズ1を、PH調整されたウェットエッチング浴槽2で研磨残さや加工変質層をエッチング除去する。エッチング水溶液のPHによって、エッチング速度、表面粗さが異なるため、研磨残さや加工変質層を除去できかつ粗さが大きくならない最適なPH、エッチング時間でエッチング処理を行う。本実施例では、純水を使用し、エッチング時間は10minとした。
【0029】
要求される表面粗さは蛍石レンズを使用する波長で異なり、F2レーザ(157nm)で使用する素子ではRMSで1nm以下になるように研磨する。
【0030】
上記の純水によるエッチングによって研磨残さや加工変質層を除去する場合、研磨状態によっては表面粗さが増大する。粗さの増大を抑えるためには、研磨時の砥粒径の微細化、研磨圧力の最適化等研磨法の最適化も重要な要素となる。
【0031】
本実施例では上記の純水エッチング前に、Arクラスターイオン照射を行い、表面の平坦化処理を行った。クラスターイオン照射によって、大きな研磨痕を除去でき、非常に平滑な表面を得ることができる。この処理を行った蛍石基板は、純水によるエッチングを行っても、表面粗さはRMSで1nm以下であり、顕著な表面粗さの増大は認められなかった。
【0032】
もちろん、クラスターイオン照射を行わなくても良いが、この場合、前記砥粒径の微細化・均一化、研磨圧力の最適化等研磨法の最適化を実施し、表面粗さに注意して研磨を行わねばならない。エッチング後この粗さを越えてしまった場合は、砥粒をさらに細かいものにして、研磨圧力も小さくして再研磨を行って、再度エッチングを行う。この工程を繰り返すことで、RMSは1nm以下に抑えることは可能である。
【0033】
図示しないが、ウェットエッチング後は水溶液をムラなく乾燥させるため、温度管理を行いながら、アルコールベーパー乾燥などの乾燥手段を用いる。特に蛍石基板の場合、温度変化で割れが生じる可能性が高く、注意を要する。
【0034】
以上のエッチング工程を経た蛍石レンズ1は、研磨残さや加工変質層が除去されている。しかし、最表面はOH基やCaO等の酸化物が形成されている。また、ウェットエッチング終了後、成膜工程に入る前に、大気環境下に置かれるため、有機物汚染等が生じている。
【0035】
F2レーザリソに用いる光学素子においては、上記の酸化物や有機物汚染は吸収損失の原因となる。従来は有機物汚染に関してはオゾン洗浄等を行い、除去した後にコーティングを行っていた。しかしながら、この状態の蛍石レンズに反射防止膜等のフッ化物コーティングを施しても、十分な透過率が得られなかった。また、F2レーザ(157nm)の照射で透過率が劣化するなど、レーザ耐久性に問題があった。
【0036】
これは、最表面に形成されているOH基やCaO等の酸化物の酸素の影響で、基板と膜の界面に吸収層が形成されていること及びコーティングされたフッ化物薄膜に酸素が混入し、光学性能の劣化を招いているものと予想された。
【0037】
そこで、上記のエッチング処理した蛍石レンズ1にコーティングを施す成膜装置のロードロック室において原子状Hによる還元処理を行った後に、反射防止膜等のコーティングを行った。両面に反射防止膜を形成した蛍石レンズ1の透過率を図2に示す。上記の還元処理したレンズを用いることによって透過率が向上していることがわかる。
【0038】
また、このサンプルにレーザ照射を1mJ/cm2で100MPulse照射したところ、透過率の劣化は観測されなかった。もちろん、外観上、反射率等においても変化は認められなかった。
【0039】
本実施例に示す方法は、レンズ等の立体形状の基板でも、均一に処理することができる。
【0040】
本実施例では、原子状HはH2ガスを熱解離して生成し、供給している。原子状Hはレンズ表面に付着した有機汚染物も低温で除去でき、かつ、蛍石レンズ表面を還元して酸素を除去する効果も示す。この結果、真空紫外領域の吸収を低減でき、レーザの耐久性も向上したものと考えられる。
【0041】
還元性ガスとしては、原子状Hの効果が高く望ましいが、生成方法として熱解離に限るものではなく、プラズマを用いて解離生成してももちろんよい。ただし、この場合、プラズマのダメージが蛍石基板に及ばないように注意が必要である。
【0042】
この他一般的な還元性ガスとして知られる、CO、SO2等のガスを用いてもよい。
【0043】
また、本実施例ではエッチング水溶液に純水を用いたが、蓚酸、酒石酸、クエン酸等の酸水溶液でも良い。また、界面活性剤を含む洗浄液であってももちろん良い。アルカリ性水溶液を用いた場合は表面粗さも増大し易くなるが、エッチング時間を調整するなどして、使用は可能である。ここで注意すべきことは、洗浄後のレンズ表面に、その後の還元処理で除去できない残留物を生じない水溶液を用いるということである。
【0044】
(第二の実施形態)
図3は、本発明の第二の実施形態にかかる洗浄・成膜装置の概略断面図である。成膜室34にレンズ31を導入する前に、洗浄室33内にレンズ31を設置し、洗浄室33内に原子状Hを導入しつつ、紫外光32を照射できる構成としている。紫外光32を照射することで、レンズ31の温度が低くても、表面還元を高速で行うことが可能となる。すなわち成膜室34に導入する直前に、レンズ31表面の還元処理を行った後成膜を行う。
【0045】
洗浄室33には原子状H以外にもN2、O2等のガスを供給も可能な構成としている。汚染の状況によってはHの代わりにまず酸素を導入して、オゾンを生成し、洗浄を行った後に、原子状Hを導入した洗浄を行うこともできる。また、N2を導入することで、Hガスの分圧を制御し、安定して洗浄できる分圧に調整もできる構成とする。
【0046】
なお、洗浄室33に導入する前に、レンズ31は水溶液によるエッチングで表面の加工変質層等は除去している。
【0047】
本実施例では、紫外線照射のために、エキシマランプを使用したが、低圧水銀ランプ、Ar2、Kr2,KrCl等のキセノンランプやエキシマレーザー光を照射してもよい。
【0048】
また、洗浄室33にイオンガンを取り付け、原子状Hを導入しながらイオン照射を行うことでも還元処理時間を短縮することができる。ただし、この場合イオンによるダメージが問題とならないように、低エネルギーイオンの照射が必要である。
【0049】
【発明の効果】
以上説明した通り、本発明にかかる洗浄方法をもちいて洗浄を行うと、曲率を有する立体形状の蛍石レンズなどの光学素子及び基板の表面の加工変質層や表面汚染を除去し、かつレンズ表面に形成されたOH基やCaOなどの酸素原子を取り除いた後に、光学薄膜コーティングを行うことができ、真空紫外領域でも良好な透過率が得られる。また、レーザ照射による耐久性能も向上できる。
【図面の簡単な説明】
【図1】本発明の第1の実施例による洗浄方法(光学素子製造方法)を示す概略断面図
【図2】反射防止膜形成後の蛍石基板の分光透過率を示す図
【図3】本発明の第2の実施例による洗浄装置を示す概略断面図
【符号の説明】
1 蛍石レンズ
2 ウェットエッチング浴槽
3 還元処理室
4 成膜室
5 原子状水素発生器
31 レンズ
32 紫外光
33 洗浄室
34 成膜質
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical element and a substrate cleaning method and a manufacturing method.
[0002]
[Prior art]
In recent years, the exposure wavelength of a reduction projection exposure apparatus (stepper) used in a lithography process of a semiconductor element has been increased, and a demand for higher resolution for the purpose of improving the integration degree of the semiconductor element has increased, and a shorter wavelength has been demanded. Therefore, recently, a stepper using an excimer laser as a light source has been put into practical use. However, the phenomenon of absorption / scattering and interference of dirt including organic matter becomes more conspicuous as the light has a shorter wavelength. Therefore, as the light source becomes shorter in wavelength, it remains attached to optical elements such as lenses and mirrors. Dirt such as organic matter that has been absorbed absorbs and scatters light from the light source, changes the spectral characteristics of the optical element, and reduces optical characteristics such as transmittance. Deterioration of transmittance due to absorption and scattering not only lowers the productivity of the stepper, but also greatly affects the performance of the stepper, such as heat generation due to absorption and the occurrence of flare due to an increase in scattering and reflectance, resulting in higher resolution. Is also a problem in doing.
[0003]
In addition, a coating such as an antireflection film is usually applied to the surface of an optical element such as a lens.If the lens surface is dirty at this time, the transmittance of the coated optical element is deteriorated and the absorption is increased. As a result, the performance of the optical element was deteriorated.
[0004]
Under such circumstances, cleaning of the optical element and the optical element that efficiently removes dirt such as organic matter remaining on the substrate surface before coating is required.
[0005]
In the cleaning of the optical element as described above, conventionally, a lens is immersed in a cleaning solution in a cleaning tank and cleaning is performed by ultrasonic cleaning. A plurality of such washing tanks are provided, washed with a surfactant, pure water, or the like, and finally dried with steam such as alcohol.
[0006]
However, crystal materials such as fluorite substrates, which are often used in the vacuum ultraviolet region in recent years, do not have a sufficiently high transmittance in the vacuum ultraviolet region, that is, a clean surface cannot be obtained only by cleaning as described above. I had a problem.
[0007]
As a means for solving these problems, there is an ultraviolet / ozone cleaning method using a photochemical reaction, which is one of dry cleaning methods.
[0008]
In the conventional ultraviolet / ozone cleaning method, a lamp such as a mercury lamp or an excimer lamp is used as an ultraviolet light source, the cleaning atmosphere is normal air, oxygen gas is introduced to remove the influence of contamination, and ozone and oxygen are removed by vacuum ultraviolet light. Radicals were generated and cleaning was performed.
[0009]
On the other hand, as disclosed in Patent Document 1 below, a method for removing contamination that irradiates an optical element with an excimer laser or the like and absorbs laser light on the surface of the optical element has also been proposed.
[0010]
Patent Document 2 discloses a method for preventing recontamination by removing contamination with ultraviolet light and then storing it in an N2 purge environment.
[0011]
[Patent Document 1]
JP-A-11-116281 [Patent Document 2]
Japanese Patent Laid-Open No. 11-221536
[Problems to be solved by the invention]
However, an ultraviolet / ozone cleaning method using a conventional lamp such as a mercury lamp or an excimer lamp or a laser cleaning method generates an OH group or a CaO bonding layer on the outermost surface layer of the fluorite substrate. Further, the polishing residue formed during the polishing of the substrate surface and the work-affected layer cannot be sufficiently removed. In the vacuum ultraviolet region used in excimer laser lithography, these OH groups, CaO bonding layers, polishing residues having a disordered bonding state, and work-affected layers cause optical performance deterioration. In particular, these work-affected layers and impurities such as OH and CaO are considered to be one of the causes for the deterioration of transmittance in a lens irradiated with a high fluence laser such as an illumination system.
[0013]
Furthermore, if there are impurities such as residues or oxides on the lens surface to be coated with anti-reflective coating, it is impossible to recover the performance after coating. Clean the lens surface before coating. Is essential.
[0014]
The present invention has been made in view of the above-described problems, and not only dirt such as organic matter remaining on the optical element but also polishing residue formed during polishing of the substrate surface and a work-affected layer. It is an object of the present invention to provide a method for manufacturing an optical element in which a high-performance optical element is manufactured by applying a coating after removing OH groups and CaO bonding layers formed on the outermost surface layer of the fluorite substrate.
[0015]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, the surface of a smooth polished fluoride substrate is wet-etched with an aqueous etching solution adjusted in pH to remove the work-affected layer on the surface and the polishing residue, and the wet etching step. Produces high-performance optical elements by performing two-step reduction and removal of OH groups, O atoms, etc. generated on the substrate surface, and after coating the surface with performance deterioration in the vacuum ultraviolet region. Provide a way to do it.
[0016]
In the present invention, atomic H is used to reduce and remove OH groups, CaO bonds and the like without damaging the fluoride substrate. Thermal dissociation and H2 plasma are utilized as the atomic H generation method.
[0017]
In order to improve the reduction efficiency at a low substrate temperature, the substrate is irradiated with light or ions of 100 nm to 400 nm in an atomic H atmosphere.
[0018]
The above-described configuration is again shown in the following (1) to (7).
[0019]
(1) A method for manufacturing an optical element, which is a method for cleaning a smooth polished fluoride optical substrate,
Two processes: wet etching the surface of the element with an etching aqueous solution whose pH is adjusted to remove the work-affected layer and polishing residue on the surface, and a process of reducing and removing OH groups and O atoms generated on the substrate surface in the wet etching process A method of manufacturing an optical element, wherein the film is formed after surface cleaning by
[0020]
(2) The method for manufacturing an optical element according to (1), wherein atomic H is used in the reduction step.
[0021]
(3) The production of the optical element according to (1), wherein the atomic H is supplied by thermal dissociation of H2 gas or discharge plasma dissociation or by dissociation of unstable molecules such as HI and H2S. Method.
[0022]
(4) The method for manufacturing an optical element according to (1), wherein in the reduction and removal step, a reducing gas is introduced and vacuum ultraviolet light such as an excimer laser is irradiated.
[0023]
(5) The method for manufacturing an optical element according to (1), wherein in the reduction and removal step, a reducing gas is introduced and an ion beam is irradiated.
[0024]
(6) The method for producing an optical element according to (1), wherein the surface roughness after etching with an aqueous solution is suppressed to 1 nm or less by RMS.
[0025]
(7) The method for producing an optical element according to (6), wherein the smooth polishing surface treatment is subjected to an ion cluster irradiation treatment.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0027]
(First embodiment)
FIG. 1 is a schematic sectional view of an optical element manufacturing method for an F2 laser lithography according to the first embodiment of the present invention. In the figure, 1 is a fluorescent lens, 2 is a wet etching bath, 3 is a reduction treatment chamber, 4 is a film formation chamber, and 5 is an atomic hydrogen generator.
[0028]
In the optical element manufacturing method according to the embodiment of the present invention, a protective film, dust, dust, and the like are removed in advance, and a fluorite lens 1 that is a substrate to be processed, which has been cleaned with an organic solvent, alcohol, or the like, is wet adjusted in pH. In the etching bath 2, the polishing residue and the work-affected layer are removed by etching. Since the etching rate and surface roughness differ depending on the pH of the etching aqueous solution, the etching treatment is performed with an optimum PH and etching time that can remove the polishing residue and the work-affected layer and does not increase the roughness. In this example, pure water was used and the etching time was 10 min.
[0029]
The required surface roughness varies depending on the wavelength at which the fluorite lens is used, and the element used in the F2 laser (157 nm) is polished to have an RMS of 1 nm or less.
[0030]
When removing a polishing residue or a work-affected layer by etching with pure water, the surface roughness increases depending on the polishing state. In order to suppress the increase in roughness, optimization of the polishing method such as refinement of the abrasive grain size during polishing and optimization of the polishing pressure are also important factors.
[0031]
In this example, Ar cluster ion irradiation was performed before the pure water etching, and the surface was flattened. By cluster ion irradiation, large polishing marks can be removed, and a very smooth surface can be obtained. Even if the fluorite substrate subjected to this treatment was etched with pure water, the surface roughness was 1 nm or less in RMS, and no significant increase in surface roughness was observed.
[0032]
Of course, it is not necessary to perform cluster ion irradiation, but in this case, the polishing method is optimized by making the abrasive grain size fine and uniform, optimizing the polishing pressure, etc. and paying attention to the surface roughness. Must be done. If this roughness is exceeded after etching, the abrasive grains are made finer, the polishing pressure is reduced, and re-polishing is performed, and then etching is performed again. By repeating this process, RMS can be suppressed to 1 nm or less.
[0033]
Although not shown, a drying means such as alcohol vapor drying is used while controlling the temperature in order to dry the aqueous solution evenly after wet etching. In particular, in the case of a fluorite substrate, there is a high possibility that cracking will occur due to temperature changes, and caution is required.
[0034]
The fluorite lens 1 that has undergone the above etching process has the polishing residue and the work-affected layer removed. However, an oxide such as OH group or CaO is formed on the outermost surface. In addition, after the wet etching is completed and before entering the film forming process, it is placed in an atmospheric environment, and thus organic matter contamination occurs.
[0035]
In the optical element used for the F2 laser lithography, the above-mentioned oxide or organic contamination causes an absorption loss. Conventionally, with respect to organic contamination, ozone cleaning or the like is performed, and coating is performed after the removal. However, even if a fluoride coating such as an antireflection film is applied to the fluorite lens in this state, sufficient transmittance cannot be obtained. In addition, there was a problem in laser durability, such as a decrease in transmittance due to irradiation with F2 laser (157 nm).
[0036]
This is because of the influence of oxygen in the outermost surface, such as OH groups and oxides such as CaO, that an absorption layer is formed at the interface between the substrate and the film, and oxygen is mixed into the coated fluoride thin film. The optical performance was expected to deteriorate.
[0037]
Therefore, after performing a reduction treatment with atomic H in the load lock chamber of the film forming apparatus for coating the etched fluorite lens 1, coating with an antireflection film or the like was performed. FIG. 2 shows the transmittance of the fluorite lens 1 having antireflection films formed on both sides. It can be seen that the transmittance is improved by using the above-described reduced lens.
[0038]
Further, when this sample was irradiated with laser at 100 mpulse at 1 mJ / cm 2, no deterioration in transmittance was observed. Of course, no change was observed in reflectance and the like in appearance.
[0039]
The method shown in this embodiment can uniformly process even a three-dimensional substrate such as a lens.
[0040]
In this embodiment, atomic H is generated by thermally dissociating H2 gas and is supplied. Atomic H can remove organic contaminants adhering to the lens surface at a low temperature, and also exhibits the effect of reducing the fluorite lens surface to remove oxygen. As a result, it is considered that absorption in the vacuum ultraviolet region can be reduced and the durability of the laser is improved.
[0041]
As the reducing gas, the effect of atomic H is high and desirable, but the generation method is not limited to thermal dissociation, and it may of course be generated by dissociation using plasma. However, in this case, care must be taken so that plasma damage does not reach the fluorite substrate.
[0042]
In addition, a gas such as CO or SO2 known as a general reducing gas may be used.
[0043]
In this embodiment, pure water is used as the etching aqueous solution, but an aqueous acid solution such as oxalic acid, tartaric acid, citric acid, or the like may be used. Of course, a cleaning solution containing a surfactant may also be used. When an alkaline aqueous solution is used, the surface roughness tends to increase, but it can be used by adjusting the etching time. It should be noted that an aqueous solution that does not produce a residue that cannot be removed by a subsequent reduction treatment is used on the lens surface after washing.
[0044]
(Second embodiment)
FIG. 3 is a schematic cross-sectional view of a cleaning / film forming apparatus according to a second embodiment of the present invention. Before introducing the lens 31 into the film forming chamber 34, the lens 31 is installed in the cleaning chamber 33, and the ultraviolet light 32 can be irradiated while introducing atomic H into the cleaning chamber 33. By irradiating the ultraviolet light 32, even when the temperature of the lens 31 is low, the surface reduction can be performed at high speed. That is, immediately after the introduction into the film formation chamber 34, the film is formed after the reduction treatment of the surface of the lens 31 is performed.
[0045]
In addition to the atomic H, the cleaning chamber 33 can be supplied with a gas such as N 2 or O 2. Depending on the state of contamination, oxygen may be first introduced instead of H to generate ozone, and after cleaning, cleaning with atomic H may be performed. In addition, by introducing N 2, the partial pressure of H gas can be controlled and adjusted to a partial pressure that can be stably washed.
[0046]
Note that, before being introduced into the cleaning chamber 33, the lens 31 is etched by an aqueous solution to remove a surface-affected layer on the surface.
[0047]
In this embodiment, an excimer lamp is used for ultraviolet irradiation. However, a low-pressure mercury lamp, a xenon lamp such as Ar2, Kr2, or KrCl, or excimer laser light may be irradiated.
[0048]
The reduction treatment time can also be shortened by attaching an ion gun to the cleaning chamber 33 and performing ion irradiation while introducing atomic H. However, in this case, irradiation with low energy ions is necessary so that damage caused by ions does not become a problem.
[0049]
【The invention's effect】
As described above, when cleaning is performed using the cleaning method according to the present invention, optical elements such as a three-dimensional fluorite lens having a curvature and a work-affected layer on the surface of the substrate and surface contamination are removed, and the lens surface After removing oxygen atoms such as OH groups and CaO formed on the optical film, optical thin film coating can be performed, and good transmittance can be obtained even in the vacuum ultraviolet region. Moreover, the durability performance by laser irradiation can also be improved.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a cleaning method (optical element manufacturing method) according to a first embodiment of the present invention. FIG. 2 is a diagram showing spectral transmittance of a fluorite substrate after formation of an antireflection film. Schematic sectional view showing a cleaning apparatus according to a second embodiment of the present invention
DESCRIPTION OF SYMBOLS 1 Fluorite lens 2 Wet etching bathtub 3 Reduction processing chamber 4 Film formation chamber 5 Atomic hydrogen generator 31 Lens 32 Ultraviolet light 33 Cleaning chamber 34 Film quality

Claims (7)

平滑研磨されたフッ化物光学基板の洗浄方法でである処の光学素子の製造方法であって、
PH調整したエッチング水溶液で素子表面をウェットエッチングし、表面の加工変質層、研磨残さを取り除く工程と、前記ウェットエッチング工程で基板表面に生成したOH基,O原子等を還元除去する工程の2工程によって表面洗浄を行った後、成膜を行うことを特徴とする光学素子の製造方法。
A method of manufacturing an optical element, which is a method of cleaning a smooth polished fluoride optical substrate,
Two processes: wet etching the surface of the element with an etching aqueous solution adjusted in pH, removing the work-affected layer and polishing residue on the surface, and reducing and removing OH groups and O atoms generated on the substrate surface in the wet etching process A method of manufacturing an optical element, wherein the film is formed after surface cleaning by
前記還元工程において、原子状Hを用いることを特徴とする請求項1記載の光学素子の製造方法。The method of manufacturing an optical element according to claim 1, wherein atomic H is used in the reduction step. 前記原子状Hの供給はH2ガスの熱解離もしくは放電プラズマ解離によるかまたは、HI,H2S等の不安定分子の解離によって行うことを特徴とする請求項1記載の光学素子の製造方法。2. The method of manufacturing an optical element according to claim 1, wherein the atomic H is supplied by thermal dissociation of H2 gas or discharge plasma dissociation or by dissociation of unstable molecules such as HI and H2S. 前記還元除去工程において、還元ガスを導入するとともに、エキシマレーザー等の真空紫外光を照射することを特徴とする請求項1記載の光学素子の製造方法。2. The method of manufacturing an optical element according to claim 1, wherein in the reduction and removal step, a reducing gas is introduced and vacuum ultraviolet light such as an excimer laser is irradiated. 前記還元除去工程において、還元ガスを導入するとともに、イオンビームを照射することを特徴とする請求項1記載の光学素子の製造方法。2. The method of manufacturing an optical element according to claim 1, wherein in the reduction and removal step, a reducing gas is introduced and an ion beam is irradiated. 水溶液によるエッチング処理後の表面粗さをRMSで1nm以下に抑えることを特徴とする請求項1記載の光学素子の製造方法。2. The method of manufacturing an optical element according to claim 1, wherein the surface roughness after etching with an aqueous solution is suppressed to 1 nm or less by RMS. 前記平滑研磨表面処理に、イオンクラスター照射処理を施すことを特徴とする請求項6記載の光学素子の製造方法。The method for manufacturing an optical element according to claim 6, wherein the smooth polishing surface treatment is subjected to an ion cluster irradiation treatment.
JP2003184588A 2003-06-27 2003-06-27 Method of manufacturing optical element Withdrawn JP2005017842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003184588A JP2005017842A (en) 2003-06-27 2003-06-27 Method of manufacturing optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003184588A JP2005017842A (en) 2003-06-27 2003-06-27 Method of manufacturing optical element

Publications (1)

Publication Number Publication Date
JP2005017842A true JP2005017842A (en) 2005-01-20

Family

ID=34184307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003184588A Withdrawn JP2005017842A (en) 2003-06-27 2003-06-27 Method of manufacturing optical element

Country Status (1)

Country Link
JP (1) JP2005017842A (en)

Similar Documents

Publication Publication Date Title
KR101003375B1 (en) Method for manufacturing a lithographic mask and lithographic mask
US6277205B1 (en) Method and apparatus for cleaning photomask
TWI361799B (en) Process for polishing glass substrate
EP2185298B1 (en) Cleaning method for duv optical elements to extend their lifetime
US7763399B2 (en) Removal of ionic residues or oxides and prevention of photo-induced defects, ionic crystal or oxide growth on photolithographic surfaces
US10310373B2 (en) Method for manufacturing mask blank substrate, method for manufacturing mask blank and method for manufacturing transfer mask
US8962224B2 (en) Methods for controlling defects for extreme ultraviolet lithography (EUVL) photomask substrate
KR20090082172A (en) Method for removing foreign matters from substrate surface
JP5045382B2 (en) Mask substrate cleaning method
JP5635839B2 (en) Mask blank substrate manufacturing method and mask blank manufacturing method
JP4318209B2 (en) Photomask blank manufacturing method and photomask manufacturing method
JP2005017842A (en) Method of manufacturing optical element
JP4006341B2 (en) Optical element cleaning apparatus and method
JP5842645B2 (en) Glass substrate cleaning method
KR20110036990A (en) Method of growing uniform oxide layer and method of cleaning substrate
JP2007078712A (en) Method for cleaning substrate, method for manufacturing phase mask, and method for manufacturing semiconductor device
JP4318561B2 (en) Photomask blank manufacturing method and photomask manufacturing method
KR20110057064A (en) Substrate for blankmask, blankmask manufactured using the same and manufacturing method thereof
JP2017181733A (en) Method for regenerating substrate with multilayer film, method for manufacturing substrate with multilayer reflection film and method for manufacturing reflection type mask blank
JP7407871B2 (en) A method for cleaning a blank mask substrate, a blank mask substrate, and a blank mask including the same
JP2010089251A (en) Colloidal silica finishing for metal fluoride optical component
KR101253825B1 (en) Method of fabricating photomasks and device for implementing it
KR101438789B1 (en) Method of fabricating Pellicle frame with diamond like carbon coating layer
JP2010066619A (en) Pellicle and method for manufacturing the same
KR102067290B1 (en) Manufacturing method of mask blank, manufacturing method of transfer mask, and manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905