JP2005017461A - Forming method of anti-reflection film, and optical element - Google Patents

Forming method of anti-reflection film, and optical element Download PDF

Info

Publication number
JP2005017461A
JP2005017461A JP2003179375A JP2003179375A JP2005017461A JP 2005017461 A JP2005017461 A JP 2005017461A JP 2003179375 A JP2003179375 A JP 2003179375A JP 2003179375 A JP2003179375 A JP 2003179375A JP 2005017461 A JP2005017461 A JP 2005017461A
Authority
JP
Japan
Prior art keywords
film
pressure
torr
tio
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003179375A
Other languages
Japanese (ja)
Inventor
Tomokazu Taguchi
智一 田口
Kazuyuki Nishi
和幸 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2003179375A priority Critical patent/JP2005017461A/en
Publication of JP2005017461A publication Critical patent/JP2005017461A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form an anti-reflection film which has superior anti-reflection performance and has less optical absorption in a blue color wavelength region of 420 to 500nm. <P>SOLUTION: In a vacuum deposition device, an S<SB>i</SB>O<SB>2</SB>film is formed under the pressure of 1.0×10<SP>-4</SP>to 1.3×10<SP>-4</SP>Torr, an Al<SB>2</SB>O<SB>3</SB>film is formed under the pressure of 1.4×10<SP>-4</SP>to 1.7×10<SP>-4</SP>Torr, and a T<SB>i</SB>O<SB>2</SB>film is formed under the pressure of 1.7×10<SP>-4</SP>to 2.9×10<SP>-4</SP>Torr. The first film is formed by temporarily controlling the pressure in the device to ≤2×10<SP>-5</SP>Torr, and then oxygen is injected and then controlling the pressure to the above prescribed pressure by charging oxygen. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、反射防止膜の形成方法およびこの方法によって反射防止膜が形成された光学素子に関するものである。
【0002】
【従来の技術】
デジタルシネマ用プロジェクタなどの投影光学系はレンズやプリズムなどの複数個の光学素子で構成されている。このような光学素子の多い投影光学系では、反射光によるフレアやゴーストの発生を抑え、且つ透過光量損失による投影像の明るさ欠損を防ぐため、一連の光学素子には反射防止膜が施されている。
【0003】
また、デジタルシネマ用プロジェクタなどの投影光学系では、現在10,000ルーメン程度の明るさが要求されるため、通常の光学部品よりも高い透過率が要求される。そこで、反射率を極限まで小さくすべく種々の反射防止膜がこれまでから提案されている(特許文献1〜6)。
【0004】
【特許文献1】
特開2002−14203号公報(特許請求の範囲、図1〜図11)
【特許文献2】
特開2002−14204号公報(特許請求の範囲、図4〜図6)
【特許文献3】
特開2001−74903号公報(特許請求の範囲)
【特許文献4】
特開平10−20102号公報(特許請求の範囲、図1〜図6)
【特許文献5】
特開平1−131501号公報(特許請求の範囲)
【特許文献6】
特開平2−126201号公報(特許請求の範囲、第1図、第2図)
【0005】
【発明が解決しようとする課題】
ところが、従来の反射防止膜は分光反射率特性を専ら重視しているため、反射率を極限まで低下させたものであっても成膜条件如何によってはあまり透過光量が高くない。特に青色波長域は光学素子と反射防止膜の両方で吸収量が多く、透過光量の不足が大きな問題となっていた。
【0006】
本発明はこのような従来の問題に鑑みてなされたものであり、その目的とするところは、優れた反射防止効果を有すると共に、青色波長域(本発明では420〜500nmの波長域をいう)の光吸収の少ない反射防止膜の形成方法およびこの方法で反射防止膜が形成された光学素子を提供することにある。
【0007】
【課題を解決するための手段】
本発明によれば、SiOを主成分とする膜(以下、単に「SiO膜」と記すことがある)と、Alを主成分とする膜(以下、単に「Al膜」と記すことがある)と、TiOを主成分とする膜(以下、単に「TiO膜」と記すことがある)とを含む反射防止膜を、真空蒸着装置を用いて基材表面に形成する方法であって、SiO膜は、1.0×10−4〜1.3×10−4Torrの圧力下で形成し、Al膜は、1.4×10−4〜1.7×10−4Torrの圧力下で形成し、TiO膜は、1.7×10−4〜2.0×10−4Torrの圧力下で形成し、第1膜目は、装置内の圧力を一旦2×10−5Torr以下とした後、酸素を注入して前記所定圧力として形成することを特徴とする反射防止膜の形成方法が提供される。
【0008】
ここで、前記圧力下で形成される蒸着膜の屈折率の低下を抑える観点から、SiO膜、Al膜、TiO膜の少なくとも1つの膜を、SiO膜の場合には10Å/s以上、Al膜の場合には5Å/s以上、TiO膜の場合には4.5Å/s以上の形成速度で形成するのが好ましい。
【0009】
生産効率などの観点から、膜形成時の設定圧力の低いものから順に膜形成を行うのが望ましい。
【0010】
また本発明によれば、SiO膜と、Al膜と、TiO膜とを含む反射防止膜が、真空蒸着装置を用いて光学素子本体に形成された光学素子であって、SiO膜は、1.0×10−4〜1.3×10−4Torrの圧力下で形成され、Al膜は、1.4×10−4〜1.7×10−4Torrの圧力下で形成され、TiO膜は、1.7×10−4〜2.0×10−4Torrの圧力下で形成され、第1膜目は、装置内の圧力を一旦2×10−5Torr以下とした後、酸素を注入して前記所定圧力として形成されたものであることを特徴とする光学素子が提供される。
【0011】
ここで、前記圧力下で形成される蒸着膜を所定の屈折率とする観点から、SiO膜、Al膜、TiO膜の少なくとも1つの膜は、SiO膜の場合は10Å/s以上、Al膜の場合は5Å/s以上、TiO膜の場合は4.5Å/s以上の形成速度で形成されたものが好ましい。
【0012】
生産効率などの観点から、光学素子本体側から順にSiO膜、Al膜、TiO膜が形成されているのが望ましい。
【0013】
【発明の実施の形態】
本発明者等は、前記目的を達成すべく鋭意検討を重ねた結果、SiO膜とAl膜、TiO膜とを含む反射防止膜を、真空蒸着装置を用いて基材表面に形成する場合、酸素ガスを導入して、蒸着時の圧力を通常よりも高くすることによって、反射防止膜における少なくとも青色波長域の光吸収を小さくできるという知見を得て本発明をなすに至った。
【0014】
このような効果が得られる機構については今のところ定かには解明されていないが、光を吸収しやすいSi元素やAl元素、Ti元素が、従来よりも多く存在する酸素と結合することによって、これらの元素による光吸収が抑えられるからであろうと推測している。
【0015】
本発明の反射防止膜の形成方法について以下に詳述する。まず、本発明の形成方法の概略工程を図1に示す。図1は本発明に係る形成方法のフローチャートである。まず、光学素子本体などの基材を真空蒸着装置の真空室の所定位置に取り付ける。また同時に、SiOやAl、TiOなどの蒸着材料も真空室の所定位置に配置する。そして、真空室を密閉した後、真空ポンプによって真空室内を2×10−5Torr以下の高真空とする(ステップS1)。次に、酸素ガスを真空室に注入して真空室を所定圧力とする(ステップS2)。
【0016】
この所定圧力は蒸着材料の種類によって異なる。SiO膜の場合は1.0×10−4〜1.3×10−4Torrであり、Al膜の場合は1.4×10−4〜1.7×10−4Torrであり、TiO膜の場合は1.7×10−4〜2.0×10−4Torrである。真空室の圧力がこれらの圧力範囲の上限値より高い場合は、酸素ガスが膜中に取り込まれ膜の屈折率が低くなり所望の分光特性が得られなくなる。一方、真空室の圧力がこれらの圧力範囲の下限値より低い場合は、膜による青色波長域の光吸収を十分には抑えることができなくなる。より好ましい圧力は、SiO膜の場合は1.1×10−4〜1.2×10−4Torrであり、Al膜の場合は1.5×10−4〜1.6×10−4Torrであり、TiO膜の場合は1.8×10−4〜1.9×10−4Torrである。
【0017】
このような圧力範囲で各膜を形成した場合であっても、通常よりも高い圧力下で蒸着を行っているため、蒸着膜内に気孔が不可避的に存在してしまい蒸着膜の屈折率が低くなることがある。そこで、屈折率の低下を抑えたい蒸着膜についてはその形成速度を従来よりも速くすることが推奨される。これにより、当該蒸着膜の密度が高くなる結果、蒸着膜内の気孔が圧縮され蒸着膜の屈折率の低下が抑えられるのである。形成速度としてはSiO膜の場合は10Å/s以上、Al膜の場合は5Å/s以上、TiO膜の場合は4.5Å/s以上とするのが好ましい。このような膜形成速度とするには、例えば電子ビームによって蒸着材料を加熱する場合には、電子ビームに流す電流を制御すればよい。この電流値としては、例えばドーム直径が約720mm、蒸着材料から基板までの距離が580〜820mmの蒸着装置を用いた場合、上記形成速度にするには、SiO膜の場合は50〜60mA、Al膜の場合は160〜220mA、TiO膜の場合は180〜260mAの範囲に調整するのが好ましい。
【0018】
図1を参照して、前記蒸着条件で蒸着膜を蒸着形成し(ステップS5)、膜厚モニターにより所定膜厚となったかどうかを判定し(ステップS6)、所定膜厚となったところで蒸着材料を入れた坩堝の上部を開閉自在に移動するシャターを閉じて第1膜目の蒸着を終了する(ステップS7)。そして、所定の積層膜構造になったかどうかを判定し(ステップS8)、所定の積層数に達していなければ、酸素ガスを注入または真空ポンプを駆動させて所定圧力とし(ステップS2)、蒸着材料および蒸着条件を変えて次の蒸着膜を前記と同様にして形成する(ステップS3〜S7)。この一連の処理を繰り返して所定の積層膜構造(ここではm層構造)の蒸着膜を形成する(ステップS8)。
【0019】
生産効率の観点からは、蒸着処理時の設定圧力の低いものから順に蒸着膜を形成するのが好ましい。一旦高真空とした後は、順次酸素ガスを注入して真空室の圧力を高めて行けばよく、真空室内の雰囲気を真空ポンプで再度引く必要がないからである。これを前記3つの膜の場合に適用すれば、光学素子本体側から順にSiO膜、Al膜、TiO膜とするのがよいことになる。
【0020】
もちろん広帯域の光反射を防止するために、低屈折率膜および高屈折率膜を基体との間にさらに順次積層させた構造としても構わない。またSiO膜やAl膜、TiO膜の各膜には、本発明の効果を害さない範囲において従来公知の添加物を添加しても構わない。
【0021】
また光学素子本体と反射防止膜との密着性を一層向上させるために、エネルギー線照射処理や薬品処理などで光学素子本体の表面を表面改質処理してもよい。エネルギー線照射処理としては、コロナ放電処理、プラズマ処理、電子線照射処理、紫外線照射処理などが挙げられる。
【0022】
反射防止膜を表面に形成する基材の材質としては、ガラス及びプラスチックのいずれであってもよい。プラスチックとしては、ポリメチルメタクリレート(PMMA)、ポリカーボネート、ポリスチレン、非晶質ポリオレフィンなどが挙げられる。またプラスチック基体の成形方法としては特に限定はなく、従来公知の成形方法、例えば注型法、射出成形法、プレス成形法などを用いることができる。
【0023】
反射防止膜を表面に形成した本発明に係る光学素子の用途としては、例えばレンズやプリズムなどが挙げられる。特に、複数個の光学素子から構成される投影光学系に好適に用いられる。
【0024】
【実施例】
以下、実施例に基づいて本発明をさらに詳細に述べる。なお、下記実施例は本発明を何ら制限するものではなく、前後記の趣旨を逸脱しない範囲で変更実施することは本発明の技術的範囲に包含される。
【0025】
(実施例1)
真空蒸着装置を用いて、基材としてのホーヤ社製「FCD1」の表面に、基材側から順にSiO膜、Al膜、TiOを主成分とする膜、MgF膜の4層構造からなる反射防止膜を形成した。反射防止膜の形成方法は次の通りである。
【0026】
まず、基材を真空室に取り付け、真空室を密閉する。そして、真空ポンプを駆動させて真空室の圧力を2×10−5Torrまで一旦下げた後、真空室に酸素ガスを注入して圧力を1.2×10−4Torrとし、蒸着材料であるSiOを電子ビーム加熱法によって加熱蒸発させて基材に蒸着させた。このときの電子ビームの電流値は55mAで、SiO膜の形成速度は13.3Å/sであった。基材表面に形成されたSiO膜の膜厚が108.2nmとなったところで第1膜目の蒸着処理を終了した。次に、酸素ガスを真空室に注入して真空室の圧力を1.5×10−4Torrとした後、蒸着材料をAlとして前記と同様に蒸着処理を行った。このときの電子ビームの電流値は210mAで、Al膜の形成速度は7.2Å/sであった。基材表面に形成されたAl膜の膜厚が76.1nmとなったところで第2膜目の蒸着処理を終了した。次いで、酸素ガスを真空室に注入して真空室の圧力を1.8×10−4Torrに上げた後、蒸着材料をTiOを主成分とする材料として前記と同様に蒸着処理を行った。電子ビームの電流値は200mAで、TiOを主成分とする膜の形成速度は5.3Å/sであった。基材表面に形成されたTiO膜の膜厚が120.2nmとなったところで第3膜目の蒸着処理を終了した。そして最後に、真空ポンプを再び駆動させて真空室の圧力を2×10−5Torrに下げた後、酸素ガスを注入することなく、MgFを蒸着材料として前記と同様に蒸着処理を行った。MgF膜の形成速度は9.6Å/sであった。基材表面に形成されたMgF膜の膜厚が89.1nmとなったところで第4膜目の蒸着処理を終了した。作製した反射防止膜の概略構成図を図2に示すと共に、上記蒸着条件を表1にまとめて示す。
【0027】
【表1】

Figure 2005017461
【0028】
このようにして作製した光学素子の分光反射率特性および分光透過率特性を測定した。測定結果を図3及び図4に示す。図3によれば、形成された反射防止膜の反射率は可視光域において0.4%以下と優れたものであり、420〜500nmの青色波長域では0.2%以下と非常に低い値であった。また図4によれば、420〜500nmの青色波長域の平均透過率は99.61%と、従来に比べ格段に高い値であった。
【0029】
(比較例1)
真空蒸着装置を用いて、基材としてのホーヤ社製「FCD1」の表面に、基材側から順にSiO膜、Al膜、TiOを主成分とする膜、MgF膜の4層構造からなる反射防止膜を実施例1と同様にして形成した。蒸着条件を表2に示す。
【0030】
【表2】
Figure 2005017461
【0031】
このようにして作製した光学素子の分光反射率特性および分光透過率特性を測定した。測定結果を図5及び図6に示す。図5によれば、形成された反射防止膜の反射率は可視光域において0.4%以下と優れたものであった。しかし、図6によれば、420〜500nmの青色波長域の平均透過率は98.93%と低い値であった。
【0032】
(実施例2)
真空蒸着装置を用いて、基材としての「SK10」の表面に、実施例1と同様にして、基材側から順にAlとLaの混合物からなる膜、TiO膜、SiO膜の3層構造からなる反射防止膜を形成した。ここで、第1膜のAlとLaの混合物からなる膜の屈折率が低下すると反射防止帯域が狭まるため、この第1膜の形成速度を5.8Å/sと通常よりも速くした。その他の蒸着条件を表3に示す。
【0033】
【表3】
Figure 2005017461
【0034】
このようにして作製した光学素子の分光反射率特性および分光透過率特性を測定した。測定結果を図7及び図8に示す。図7によれば、400〜410nmの青色レーザ波長域において、形成された反射防止膜の反射率は平均0.1%以下と優れたものであり、また図8によれば、400〜410nmの青色レーザ波長域の平均透過率は99.89%と、従来に比べ格段に高い値であった。
【0035】
(比較例2)
実施例2と同様にして真空蒸着装置を用いて、基材としての「SK10」の表面に、基材側から順にAlとLaの混合物からなる膜、TiO膜、SiO膜の3層構造からなる反射防止膜を形成した。蒸着条件を表4に示す。
【0036】
【表4】
Figure 2005017461
【0037】
このようにして作製した光学素子の分光反射率特性および分光透過率特性を測定した。測定結果を図9及び図10に示す。図9によれば、400〜410nmの青色レーザ波長域において、形成された反射防止膜の反射率は平均0.1%以下と実施例2の光学素子と同様に優れたものであった。しかし図10によれば、400〜410nmの青色レーザ波長域の平均透過率は99.10%と低い値であった。
【0038】
【発明の効果】
本発明に係る反射防止膜の形成方法では、真空蒸着装置を用いて基材表面に、1.0×10−4〜1.3×10−4Torrの圧力下でSiO膜を形成し、1.4×10−4〜1.7×10−4Torrの圧力下でAl膜を形成し、1.7×10−4〜2.0×10−4Torrの圧力下でTiO膜を形成すると共に、第1膜目は、装置内の圧力を一旦2×10−5Torr以下とした後、酸素を注入して前記所定圧力として形成するので、優れた反射防止効果を奏すると共に、420〜500nmの青色波長域の光吸収の少ない反射防止膜を形成できる。
【0039】
SiO膜、Al膜、TiO膜の少なくとも1つの膜を、SiO膜の場合には10Å/s以上、Al膜の場合には5Å/s以上、TiO膜の場合には4.5Å/s以上の形成速度で形成すると、各膜の屈折率の低下を抑えられる。
【0040】
また、膜形成時の設定圧力の低いものから順に膜形成を行うと、蒸着処理の途中で真空室内の圧力を下げる操作が不要となり生産効率が向上する。
【0041】
また本発明に係る光学素子では、前記形成方法で光学素子本体に反射防止膜が形成されているので、優れた反射防止効果を有すると共に、420〜500nmの青色波長域においても従来に比べ格段に高い透過率が得られる。
【図面の簡単な説明】
【図1】本発明に係る反射防止膜の形成方法の一例を示すフローチャート図である。
【図2】実施例1の反射防止膜の概略構成図である。
【図3】実施例1の光学素子の分光反射特性図である。
【図4】実施例1の光学素子の分光透過率特性図である。
【図5】比較例1の光学素子の分光反射特性図である。
【図6】比較例1の光学素子の分光透過率特性図である。
【図7】実施例2の光学素子の分光反射特性図である。
【図8】実施例2の光学素子の分光透過率特性図である。
【図9】比較例2の光学素子の分光反射特性図である。
【図10】比較例2の光学素子の分光透過率特性図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming an antireflection film and an optical element having an antireflection film formed by this method.
[0002]
[Prior art]
Projection optical systems such as projectors for digital cinema are composed of a plurality of optical elements such as lenses and prisms. In such a projection optical system having many optical elements, a series of optical elements are provided with an antireflection film in order to suppress the occurrence of flare and ghost due to reflected light and to prevent the loss of brightness of the projected image due to loss of transmitted light amount. ing.
[0003]
In addition, since a projection optical system such as a projector for digital cinema currently requires a brightness of about 10,000 lumens, it requires a higher transmittance than a normal optical component. Therefore, various antireflection films have been proposed so far to reduce the reflectance to the limit (Patent Documents 1 to 6).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-14203 (Claims, FIGS. 1 to 11)
[Patent Document 2]
JP 2002-14204 (Claims, FIGS. 4 to 6)
[Patent Document 3]
JP 2001-74903 A (Claims)
[Patent Document 4]
Japanese Patent Laid-Open No. 10-20102 (Claims, FIGS. 1 to 6)
[Patent Document 5]
JP-A-1-131501 (Claims)
[Patent Document 6]
JP-A-2-126201 (Claims, FIGS. 1 and 2)
[0005]
[Problems to be solved by the invention]
However, since the conventional anti-reflection film focuses exclusively on the spectral reflectance characteristics, the amount of transmitted light is not so high depending on the film forming conditions even if the reflectance is lowered to the limit. In particular, the blue wavelength region has a large amount of absorption in both the optical element and the antireflection film, and a lack of transmitted light amount has been a serious problem.
[0006]
The present invention has been made in view of such a conventional problem, and the object thereof is to have an excellent antireflection effect and a blue wavelength region (in the present invention, a wavelength region of 420 to 500 nm). An object of the present invention is to provide a method for forming an antireflection film with little light absorption and an optical element having an antireflection film formed by this method.
[0007]
[Means for Solving the Problems]
According to the present invention, a film containing SiO 2 as a main component (hereinafter sometimes simply referred to as “SiO 2 film”) and a film containing Al 2 O 3 as a main component (hereinafter simply referred to as “Al 2 O 3”). An antireflection film including a film mainly composed of TiO 2 (hereinafter sometimes simply referred to as “TiO 2 film”) using a vacuum deposition apparatus. The SiO 2 film is formed under a pressure of 1.0 × 10 −4 to 1.3 × 10 −4 Torr, and the Al 2 O 3 film is 1.4 × 10 −4. The film is formed under a pressure of ˜1.7 × 10 −4 Torr, the TiO 2 film is formed under a pressure of 1.7 × 10 −4 to 2.0 × 10 −4 Torr, and the first film is The pressure in the apparatus is temporarily set to 2 × 10 −5 Torr or less, and then oxygen is injected to form the predetermined pressure. A method of forming an anti-reflection film is provided.
[0008]
Here, from the viewpoint of suppressing a decrease in the refractive index of the vapor deposition film formed under the pressure, at least one of the SiO 2 film, the Al 2 O 3 film, and the TiO 2 film is 10 に は in the case of the SiO 2 film. In the case of an Al 2 O 3 film, it is preferably formed at a rate of 5 Å / s or more, and in the case of a TiO 2 film, it is preferably formed at a rate of 4.5 Å / s or more.
[0009]
From the viewpoint of production efficiency and the like, it is desirable to perform film formation in order from the lowest set pressure during film formation.
[0010]
According to the present invention, an antireflection film including a SiO 2 film, an Al 2 O 3 film, and a TiO 2 film is an optical element formed on an optical element body using a vacuum vapor deposition apparatus. The two films are formed under a pressure of 1.0 × 10 −4 to 1.3 × 10 −4 Torr, and the Al 2 O 3 film is formed of 1.4 × 10 −4 to 1.7 × 10 −4 Torr. The TiO 2 film is formed under a pressure of 1.7 × 10 −4 to 2.0 × 10 −4 Torr, and the first film has a pressure of 2 × 10 once in the apparatus. An optical element is provided which is formed at the predetermined pressure by injecting oxygen after the pressure is set to −5 Torr or less.
[0011]
Here, from the viewpoint of setting the vapor deposition film formed under the pressure to a predetermined refractive index, at least one of the SiO 2 film, the Al 2 O 3 film, and the TiO 2 film is 10 Å / in the case of the SiO 2 film. In the case of an Al 2 O 3 film, it is preferably 5 Å / s or more, and in the case of a TiO 2 film, it is preferably formed at a formation rate of 4.5 Å / s or more.
[0012]
From the viewpoint of production efficiency and the like, it is desirable that a SiO 2 film, an Al 2 O 3 film, and a TiO 2 film are formed in order from the optical element body side.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
As a result of intensive studies to achieve the above object, the present inventors have applied an antireflection film including an SiO 2 film, an Al 2 O 3 film, and a TiO 2 film on the surface of a substrate using a vacuum deposition apparatus. In the case of forming, the present invention has been made by obtaining the knowledge that light absorption in at least the blue wavelength region in the antireflection film can be reduced by introducing oxygen gas and increasing the pressure during vapor deposition higher than usual. .
[0014]
Although the mechanism for obtaining such an effect has not been elucidated for now, Si elements, Al elements, and Ti elements that easily absorb light are combined with oxygen that is present more than before, It is speculated that light absorption by these elements can be suppressed.
[0015]
The method for forming the antireflection film of the present invention will be described in detail below. First, schematic steps of the forming method of the present invention are shown in FIG. FIG. 1 is a flowchart of a forming method according to the present invention. First, a base material such as an optical element main body is attached to a predetermined position in a vacuum chamber of a vacuum deposition apparatus. At the same time, vapor deposition materials such as SiO 2 , Al 2 O 3 , and TiO 2 are also arranged at predetermined positions in the vacuum chamber. Then, after the vacuum chamber is sealed, a high vacuum of 2 × 10 −5 Torr or less is set in the vacuum chamber by a vacuum pump (step S1). Next, oxygen gas is injected into the vacuum chamber to bring the vacuum chamber to a predetermined pressure (step S2).
[0016]
This predetermined pressure varies depending on the type of vapor deposition material. In the case of the SiO 2 film, 1.0 × 10 −4 to 1.3 × 10 −4 Torr, and in the case of the Al 2 O 3 film, 1.4 × 10 −4 to 1.7 × 10 −4 Torr. In the case of a TiO 2 film, it is 1.7 × 10 −4 to 2.0 × 10 −4 Torr. When the pressure in the vacuum chamber is higher than the upper limit values of these pressure ranges, oxygen gas is taken into the film and the refractive index of the film is lowered, so that desired spectral characteristics cannot be obtained. On the other hand, when the pressure in the vacuum chamber is lower than the lower limit value of these pressure ranges, light absorption in the blue wavelength region by the film cannot be sufficiently suppressed. A more preferable pressure is 1.1 × 10 −4 to 1.2 × 10 −4 Torr for the SiO 2 film, and 1.5 × 10 −4 to 1.6 × for the Al 2 O 3 film. 10 −4 Torr, and in the case of a TiO 2 film, it is 1.8 × 10 −4 to 1.9 × 10 −4 Torr.
[0017]
Even when each film is formed in such a pressure range, since vapor deposition is performed under a pressure higher than usual, pores inevitably exist in the vapor deposition film, and the refractive index of the vapor deposition film is low. May be lower. Therefore, it is recommended that the deposition rate of the deposited film for which the decrease in the refractive index is suppressed be higher than that of the conventional film. As a result, the density of the vapor deposition film increases, and as a result, the pores in the vapor deposition film are compressed, and the decrease in the refractive index of the vapor deposition film is suppressed. The formation rate is preferably 10 Å / s or more for the SiO 2 film, 5 Å / s or more for the Al 2 O 3 film, and 4.5 Å / s or more for the TiO 2 film. In order to achieve such a film formation speed, for example, when the vapor deposition material is heated by an electron beam, the current passed through the electron beam may be controlled. As this current value, for example, when a vapor deposition apparatus having a dome diameter of about 720 mm and a distance from the vapor deposition material to the substrate of 580 to 820 mm is used, in order to achieve the above formation speed, in the case of a SiO 2 film, 50 to 60 mA, In the case of an Al 2 O 3 film, it is preferable to adjust to a range of 160 to 220 mA, and in the case of a TiO 2 film, it is preferably adjusted to a range of 180 to 260 mA.
[0018]
Referring to FIG. 1, a deposited film is formed by vapor deposition under the above-described deposition conditions (step S5), and it is determined whether or not a predetermined film thickness is obtained by a film thickness monitor (step S6). The shutter that moves in an openable and closable manner is closed on the upper part of the crucible containing the metal, and the deposition of the first film is completed (step S7). Then, it is determined whether or not a predetermined laminated film structure is obtained (step S8). If the predetermined number of laminated layers has not been reached, oxygen gas is injected or a vacuum pump is driven to obtain a predetermined pressure (step S2), and the vapor deposition material Then, the next deposited film is formed in the same manner as described above by changing the deposition conditions (steps S3 to S7). This series of processes is repeated to form a deposited film having a predetermined laminated film structure (here, m-layer structure) (step S8).
[0019]
From the viewpoint of production efficiency, it is preferable to form the deposited film in order from the lowest set pressure during the deposition process. This is because once the high vacuum is achieved, oxygen gas is sequentially injected to increase the pressure in the vacuum chamber, and it is not necessary to draw the atmosphere in the vacuum chamber again with a vacuum pump. If this is applied to the case of the three films, it is preferable to sequentially form a SiO 2 film, an Al 2 O 3 film, and a TiO 2 film from the optical element body side.
[0020]
Of course, in order to prevent broadband light reflection, a structure in which a low refractive index film and a high refractive index film are further laminated in sequence with the substrate may be used. In addition, conventionally known additives may be added to the SiO 2 film, Al 2 O 3 film, and TiO 2 film as long as the effects of the present invention are not impaired.
[0021]
In order to further improve the adhesion between the optical element body and the antireflection film, the surface of the optical element body may be subjected to surface modification treatment by energy ray irradiation treatment, chemical treatment, or the like. Examples of the energy ray irradiation treatment include corona discharge treatment, plasma treatment, electron beam irradiation treatment, and ultraviolet ray irradiation treatment.
[0022]
The material of the base material on which the antireflection film is formed may be either glass or plastic. Examples of the plastic include polymethyl methacrylate (PMMA), polycarbonate, polystyrene, and amorphous polyolefin. The method for molding the plastic substrate is not particularly limited, and a conventionally known molding method such as a casting method, an injection molding method, a press molding method, or the like can be used.
[0023]
Examples of the use of the optical element according to the present invention in which an antireflection film is formed on the surface include a lens and a prism. In particular, it is suitably used for a projection optical system composed of a plurality of optical elements.
[0024]
【Example】
Hereinafter, the present invention will be described in more detail based on examples. It should be noted that the following examples do not limit the present invention in any way, and modifications and implementations without departing from the gist of the preceding and following descriptions are included in the technical scope of the present invention.
[0025]
(Example 1)
Using a vacuum deposition apparatus, on the surface of “FCD1” manufactured by Hoya as a base material, a SiO 2 film, an Al 2 O 3 film, a film containing TiO 2 as a main component, and an MgF 2 film in order from the base material side. An antireflection film having a layer structure was formed. The method for forming the antireflection film is as follows.
[0026]
First, the substrate is attached to the vacuum chamber, and the vacuum chamber is sealed. Then, after the vacuum pump is driven to lower the pressure in the vacuum chamber to 2 × 10 −5 Torr, oxygen gas is injected into the vacuum chamber to a pressure of 1.2 × 10 −4 Torr. SiO 2 was evaporated by heating by an electron beam heating method and deposited on the substrate. At this time, the current value of the electron beam was 55 mA, and the formation rate of the SiO 2 film was 13.3 Å / s. When the film thickness of the SiO 2 film formed on the substrate surface reached 108.2 nm, the first film deposition process was terminated. Next, oxygen gas was injected into the vacuum chamber to set the pressure in the vacuum chamber to 1.5 × 10 −4 Torr, and then the evaporation material was Al 2 O 3 and vapor deposition was performed in the same manner as described above. The current value of the electron beam at this time was 210 mA, and the formation rate of the Al 2 O 3 film was 7.2 Å / s. When the film thickness of the Al 2 O 3 film formed on the substrate surface reached 76.1 nm, the second film deposition process was terminated. Next, after oxygen gas was injected into the vacuum chamber and the pressure in the vacuum chamber was increased to 1.8 × 10 −4 Torr, the vapor deposition material was subjected to vapor deposition treatment in the same manner as described above using TiO 2 as a main component. . The current value of the electron beam was 200 mA, and the film formation rate of TiO 2 as a main component was 5.3 Å / s. When the film thickness of the TiO 2 film formed on the substrate surface reached 120.2 nm, the third film deposition process was terminated. Finally, the vacuum pump was driven again to lower the vacuum chamber pressure to 2 × 10 −5 Torr, and then the vapor deposition process was performed in the same manner as described above using MgF 2 as the vapor deposition material without injecting oxygen gas. . The formation rate of the MgF 2 film was 9.6 Å / s. When the film thickness of the MgF 2 film formed on the substrate surface reached 89.1 nm, the fourth film deposition process was terminated. A schematic configuration diagram of the produced antireflection film is shown in FIG. 2, and the deposition conditions are summarized in Table 1.
[0027]
[Table 1]
Figure 2005017461
[0028]
Spectral reflectance characteristics and spectral transmittance characteristics of the optical element thus fabricated were measured. The measurement results are shown in FIGS. According to FIG. 3, the reflectance of the formed antireflection film is excellent at 0.4% or less in the visible light region, and is a very low value of 0.2% or less in the blue wavelength region of 420 to 500 nm. Met. According to FIG. 4, the average transmittance in the blue wavelength region of 420 to 500 nm was 99.61%, which was a significantly higher value than before.
[0029]
(Comparative Example 1)
Using a vacuum deposition apparatus, on the surface of “FCD1” manufactured by Hoya as a base material, a SiO 2 film, an Al 2 O 3 film, a film containing TiO 2 as a main component, and an MgF 2 film in order from the base material side. An antireflection film having a layer structure was formed in the same manner as in Example 1. The deposition conditions are shown in Table 2.
[0030]
[Table 2]
Figure 2005017461
[0031]
Spectral reflectance characteristics and spectral transmittance characteristics of the optical element thus fabricated were measured. The measurement results are shown in FIGS. According to FIG. 5, the reflectance of the formed antireflection film was excellent at 0.4% or less in the visible light region. However, according to FIG. 6, the average transmittance in the blue wavelength range of 420 to 500 nm was a low value of 98.93%.
[0032]
(Example 2)
Using a vacuum deposition apparatus, a film made of a mixture of Al 2 O 3 and La 2 O 3 in order from the substrate side, a TiO 2 film, on the surface of “SK10” as the substrate in the same manner as in Example 1. An antireflection film having a three-layer structure of SiO 2 film was formed. Here, when the refractive index of the film made of a mixture of Al 2 O 3 and La 2 O 3 of the first film is lowered, the antireflection band is narrowed. Was also faster. Other vapor deposition conditions are shown in Table 3.
[0033]
[Table 3]
Figure 2005017461
[0034]
Spectral reflectance characteristics and spectral transmittance characteristics of the optical element thus fabricated were measured. The measurement results are shown in FIGS. According to FIG. 7, the reflectance of the formed antireflection film is excellent at an average of 0.1% or less in the blue laser wavelength region of 400 to 410 nm, and according to FIG. The average transmittance in the blue laser wavelength region was 99.89%, which was a significantly higher value than before.
[0035]
(Comparative Example 2)
Using a vacuum vapor deposition apparatus in the same manner as in Example 2, a film made of a mixture of Al 2 O 3 and La 2 O 3 in order from the substrate side, a TiO 2 film, and SiO 2 on the surface of “SK10” as the substrate. An antireflection film having a two- layer three-layer structure was formed. The deposition conditions are shown in Table 4.
[0036]
[Table 4]
Figure 2005017461
[0037]
Spectral reflectance characteristics and spectral transmittance characteristics of the optical element thus fabricated were measured. The measurement results are shown in FIGS. According to FIG. 9, in the blue laser wavelength region of 400 to 410 nm, the reflectance of the formed antireflection film was 0.1% or less on average, which was excellent as in the optical element of Example 2. However, according to FIG. 10, the average transmittance in the blue laser wavelength region of 400 to 410 nm was a low value of 99.10%.
[0038]
【The invention's effect】
In the method for forming an antireflection film according to the present invention, a SiO 2 film is formed on a substrate surface using a vacuum deposition apparatus under a pressure of 1.0 × 10 −4 to 1.3 × 10 −4 Torr, the Al 2 O 3 film was formed under a pressure of 1.4 × 10 -4 ~1.7 × 10 -4 Torr, TiO under a pressure of 1.7 × 10 -4 ~2.0 × 10 -4 Torr In addition to forming the two films, the first film is formed at the predetermined pressure by injecting oxygen after the pressure in the apparatus is temporarily set to 2 × 10 −5 Torr or less, so that an excellent antireflection effect is achieved. At the same time, an antireflection film with little light absorption in the blue wavelength region of 420 to 500 nm can be formed.
[0039]
SiO 2 film, Al 2 O 3 film, at least one layer of the TiO 2 film, when the SiO 2 film is 10 Å / s or more, Al 2 O 3 in the case of the film 5 Å / s or more, of the TiO 2 film In some cases, when the film is formed at a formation rate of 4.5 Å / s or more, a decrease in the refractive index of each film can be suppressed.
[0040]
In addition, when the films are formed in order from the lowest set pressure at the time of film formation, an operation for lowering the pressure in the vacuum chamber during the vapor deposition process is unnecessary, and the production efficiency is improved.
[0041]
Further, in the optical element according to the present invention, since the antireflection film is formed on the optical element body by the above-described forming method, it has an excellent antireflection effect and is also markedly superior in the blue wavelength region of 420 to 500 nm as compared with the conventional one. High transmittance can be obtained.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an example of a method for forming an antireflection film according to the present invention.
2 is a schematic configuration diagram of an antireflection film of Example 1. FIG.
3 is a spectral reflection characteristic diagram of the optical element of Example 1. FIG.
4 is a spectral transmittance characteristic diagram of the optical element of Example 1. FIG.
5 is a spectral reflection characteristic diagram of the optical element of Comparative Example 1. FIG.
6 is a spectral transmittance characteristic diagram of the optical element of Comparative Example 1. FIG.
7 is a spectral reflection characteristic diagram of the optical element according to Example 2. FIG.
8 is a spectral transmittance characteristic diagram of the optical element according to Example 2. FIG.
9 is a spectral reflection characteristic diagram of the optical element in Comparative Example 2. FIG.
10 is a spectral transmittance characteristic diagram of the optical element of Comparative Example 2. FIG.

Claims (6)

SiOを主成分とする膜と、Alを主成分とする膜と、TiOを主成分とする膜とを含む反射防止膜を、真空蒸着装置を用いて透光性の基材表面に形成する方法であって、
SiOを主成分とする膜は、1.0×10−4〜1.3×10−4Torrの圧力下で形成し、
Alを主成分とする膜は、1.4×10−4〜1.7×10−4Torrの圧力下で形成し、
TiOを主成分とする膜は、1.7×10−4〜2.0×10−4Torrの圧力下で形成し、
第1膜目は、装置内の圧力を一旦2×10−5Torr以下とした後、酸素を注入して前記所定圧力として形成することを特徴とする反射防止膜の形成方法。
A film composed mainly of SiO 2, a film composed mainly of Al 2 O 3, an antireflection film and a film mainly composed of TiO 2, transparent substrate using a vacuum vapor deposition apparatus A method of forming on a surface,
The film mainly composed of SiO 2 is formed under a pressure of 1.0 × 10 −4 to 1.3 × 10 −4 Torr,
The film mainly composed of Al 2 O 3 is formed under a pressure of 1.4 × 10 −4 to 1.7 × 10 −4 Torr,
The film mainly composed of TiO 2 is formed under a pressure of 1.7 × 10 −4 to 2.0 × 10 −4 Torr,
The first film is formed with the predetermined pressure by injecting oxygen after the pressure in the apparatus is once set to 2 × 10 −5 Torr or less.
SiOを主成分とする膜、Alを主成分とする膜、TiOを主成分とする膜の少なくとも1つの膜を下記形成速度で形成する請求項1記載の反射防止膜の形成方法。
SiOを主成分とする膜 :10Å/s以上
Alを主成分とする膜:5Å/s以上
TiOを主成分とする膜 :4.5Å/s以上
Formation of SiO 2 film containing as a main component, a film composed mainly of Al 2 O 3, the anti-reflection film of claim 1 wherein at least one layer of a film mainly composed of TiO 2 formed by the following formation speed Method.
Film having SiO 2 as main component: 10 Å / s or more Film having Al 2 O 3 as main component: 5 Å / s or more Film having TiO 2 as main component: 4.5 Å / s or more
膜形成時の設定圧力の低いものから順に膜形成を行う請求項1又は2記載の反射防止膜の形成方法。The method of forming an antireflection film according to claim 1 or 2, wherein the film is formed in order from the lowest set pressure at the time of film formation. SiOを主成分とする膜と、Alを主成分とする膜と、TiOを主成分とする膜とを含む反射防止膜が、真空蒸着装置を用いて透光性の光学素子本体に形成された光学素子であって、
SiOを主成分とする膜は、1.0×10−4〜1.3×10−4Torrの圧力下で形成され、
Alを主成分とする膜は、1.4×10−4〜1.7×10−4Torrの圧力下で形成され、
TiOを主成分とする膜は、1.7×10−4〜2.0×10−4Torrの圧力下で形成され、
第1膜目は、装置内の圧力を一旦2×10−5Torr以下とした後、酸素を注入して前記所定圧力として形成されたものであることを特徴とする光学素子。
A film composed mainly of SiO 2, a film composed mainly of Al 2 O 3, an antireflection film including a film composed mainly of TiO 2 is transparent optical element using a vacuum deposition apparatus An optical element formed on the body,
The film mainly composed of SiO 2 is formed under a pressure of 1.0 × 10 −4 to 1.3 × 10 −4 Torr,
The film mainly composed of Al 2 O 3 is formed under a pressure of 1.4 × 10 −4 to 1.7 × 10 −4 Torr,
The film mainly composed of TiO 2 is formed under a pressure of 1.7 × 10 −4 to 2.0 × 10 −4 Torr,
The first film is formed by setting the pressure in the apparatus to 2 × 10 −5 Torr or less and then injecting oxygen to achieve the predetermined pressure.
SiOを主成分とする膜、Alを主成分とする膜、TiOを主成分とする膜の少なくとも1つの膜が下記形成速度で形成されたものである請求項4記載の光学素子。
SiOを主成分とする膜 :10Å/s以上
Alを主成分とする膜:5Å/s以上
TiOを主成分とする膜 :4.5Å/s以上
5. The optical system according to claim 4, wherein at least one of a film containing SiO 2 as a main component, a film containing Al 2 O 3 as a main component, and a film containing TiO 2 as a main component is formed at the following formation rate. element.
Film having SiO 2 as main component: 10 Å / s or more Film having Al 2 O 3 as main component: 5 Å / s or more Film having TiO 2 as main component: 4.5 Å / s or more
光学素子本体側から順にSiOを主成分とする膜、Alを主成分とする膜、TiOを主成分とする膜が形成されている請求項4又は5記載の光学素子。The optical element according to claim 4, wherein a film mainly composed of SiO 2 , a film mainly composed of Al 2 O 3 , and a film mainly composed of TiO 2 are formed in order from the optical element body side.
JP2003179375A 2003-06-24 2003-06-24 Forming method of anti-reflection film, and optical element Pending JP2005017461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003179375A JP2005017461A (en) 2003-06-24 2003-06-24 Forming method of anti-reflection film, and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003179375A JP2005017461A (en) 2003-06-24 2003-06-24 Forming method of anti-reflection film, and optical element

Publications (1)

Publication Number Publication Date
JP2005017461A true JP2005017461A (en) 2005-01-20

Family

ID=34180717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003179375A Pending JP2005017461A (en) 2003-06-24 2003-06-24 Forming method of anti-reflection film, and optical element

Country Status (1)

Country Link
JP (1) JP2005017461A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243164A (en) * 2009-04-01 2010-10-28 Seiko Epson Corp Translucent member, timepiece, and manufacturing method of the translucent member
JP2015083527A (en) * 2013-02-19 2015-04-30 日本電気硝子株式会社 Glass laminate, optical imaging member, method for manufacturing glass laminate, and method for manufacturing optical imaging member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243164A (en) * 2009-04-01 2010-10-28 Seiko Epson Corp Translucent member, timepiece, and manufacturing method of the translucent member
JP2015083527A (en) * 2013-02-19 2015-04-30 日本電気硝子株式会社 Glass laminate, optical imaging member, method for manufacturing glass laminate, and method for manufacturing optical imaging member

Similar Documents

Publication Publication Date Title
US11073639B2 (en) Infrared cut-off filter and preparation method thereof
JP4822786B2 (en) Antireflection film and optical component having the same
JP4854552B2 (en) Antireflection film and optical component having the same
US20060177638A1 (en) Optical component and method for manufacturing the same
JP2006267561A (en) Optical element and manufacturing method thereof
WO2007069644A1 (en) Transparent spinel substrate, transparent substrate for optical engine, rear projection television receiver using them and image projector using liquid crystal
JP2004354735A (en) Light ray cut filter
JPH09329702A (en) Antireflection film
JP5072395B2 (en) Antireflection film and optical component having the same
JPS5860701A (en) Reflection preventing film
JP2002107506A (en) Antireflection coating and optical component using the same
JP2005017461A (en) Forming method of anti-reflection film, and optical element
JP2005031297A (en) Transparent substrate with antireflection film for liquid crystal display device
JP3979814B2 (en) Optical thin film manufacturing method
JPH052101A (en) Optical component
JPH10253802A (en) Reflection preventive film
JPH10268107A (en) Synthetic resin lens with antireflection film
JP2007102111A (en) Optical multilayer film and method for manufacturing optical multilayer film
JP2004317738A (en) Ultra-violet light shielding element, its manufacture method and optical device
JP6653810B1 (en) Anti-reflection film, method of manufacturing the anti-reflection film, optical element and optical device including the anti-reflection film
JP2003131010A (en) Optical parts, optical unit and graphic display device using it
JP2003149404A (en) Optical thin film, its manufacturing method, optical element using optical thin film, optical system, and image pickup device, recording device and exposure device provided with optical system
JP2815949B2 (en) Anti-reflective coating
JPH11248903A (en) Reflection preventive film
JP2815951B2 (en) Anti-reflective coating

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050622