JPH11248903A - Reflection preventive film - Google Patents

Reflection preventive film

Info

Publication number
JPH11248903A
JPH11248903A JP10050554A JP5055498A JPH11248903A JP H11248903 A JPH11248903 A JP H11248903A JP 10050554 A JP10050554 A JP 10050554A JP 5055498 A JP5055498 A JP 5055498A JP H11248903 A JPH11248903 A JP H11248903A
Authority
JP
Japan
Prior art keywords
fluoride
index layer
refractive index
thickness
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10050554A
Other languages
Japanese (ja)
Inventor
Junji Amihoshi
順治 網干
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10050554A priority Critical patent/JPH11248903A/en
Publication of JPH11248903A publication Critical patent/JPH11248903A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the reflection preventive film which shows reflection preventive effect (excellent angle of incidence characteristic) over a wide light-beam incidence angle and has small variation in polarized light reflection factor with the angle of incidence of a light beam (small separation of polarized light components) for specific wavelength within a wavelength range of 160 to 300 nm. SOLUTION: On a substrate 1 wherein light of arbitrary design reference wavelength λ0 within a wavelength range of at least 160 to 300 nm is transmitted, a low-refractive-index layer 2 of 0.525 to 0.575 λ in optical film thickness, a high-refractive-index layer 3 of 0.2625 to 0.2875 λ in optical film thickness, and a low-refractive-index layer 4 of 0.2625 to 0.2875 λ in optical film thickness are stacked in order.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、紫外域のある特定
波長において、広い光線入射角度において反射防止効果
を奏し、(入射角度特性が良好)、かつ光線の入射角度
変化に対する偏光反射率の変動の小さな(偏光成分の分
離が小さい)反射防止膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides an antireflection effect at a specific wavelength in the ultraviolet region at a wide incident angle of light (has good incident angle characteristics), and a change in polarization reflectance with respect to a change in the incident angle of light. (The polarization component separation is small).

【0002】[0002]

【従来技術】近年、半導体素子の集積度を増すために、
半導体製造用縮小投影露光装置(ステッパー)の高解像
力化の要求が高まっている。このステッパーによるフォ
トリソグラフィーの解像度を上げる一つの方法として、
光源波長の短波長化が挙げられる。最近では、水銀ラン
プより短波長域の光を発振でき、かつ高出力なエキシマ
レーザーを光源としたステッパーの実用化が始まってい
る。このステッパーの光学系において、レンズ等の光学
素子の表面反射による光量損失やフレア・ゴースト等を
低減するために反射防止膜を形成する必要がある。ま
た、光源であるエキシマレーザーにはKrFエキシマレ
ーザー(λ=248.4nm)やArFエキシマレーザ
ー(λ=193.4nm)等があるが、これらの光に対
して吸収の大きい膜物質や耐レーザー性の低い膜物質に
よって光学薄膜を構成した場合、吸収による光量損失,
吸収発熱による基板面変化や膜破壊等を起こしやすくな
る。このため使用する膜物質としては低吸収・高耐レー
ザー性を有しているものが望ましい。前記エキシマレー
ザー波長にて使用できる膜物質は主にフッ化マグネシウ
ム(MgF2)のようなフッ素化合物や一部の酸化物である
が、種類が限られている。また、同様に使用される基板
も蛍石などのフッ素化合物結晶や石英ガラス等に限られ
ている。
2. Description of the Related Art In recent years, in order to increase the degree of integration of semiconductor devices,
There is an increasing demand for a high-resolution reduction projection exposure apparatus (stepper) for semiconductor manufacturing. As one method to increase the resolution of photolithography by this stepper,
Shortening of the light source wavelength can be mentioned. Recently, a stepper using a high-output excimer laser as a light source that can oscillate light in a shorter wavelength range than a mercury lamp has started to be put into practical use. In the optical system of this stepper, it is necessary to form an antireflection film in order to reduce a light amount loss, a flare, a ghost, and the like due to surface reflection of an optical element such as a lens. Excimer lasers as light sources include a KrF excimer laser (λ = 248.4 nm) and an ArF excimer laser (λ = 193.4 nm). When an optical thin film is composed of a low-temperature film material, light loss due to absorption,
Changes in the substrate surface and film destruction due to absorption heat are likely to occur. For this reason, it is desirable that the film material used has low absorption and high laser resistance. Film materials that can be used at the wavelength of the excimer laser are mainly fluorine compounds such as magnesium fluoride (MgF 2 ) and some oxides, but the types are limited. Similarly, substrates used are also limited to fluorine compound crystals such as fluorite or quartz glass.

【0003】従来の反射防止膜の例として、基板上に光
学的膜厚λ/4のフッ化ランタンからなる高屈折率層、
光学的膜厚λ/4のフッ化マグネシウムからなる低屈折
率層を順次積層させた2層構造が知られている。図5
は、この従来の反射防止膜のλ0=248nmにおける
入射角度特性図である。
As an example of a conventional antireflection film, a high refractive index layer made of lanthanum fluoride having an optical film thickness of λ / 4 on a substrate,
There is known a two-layer structure in which low refractive index layers made of magnesium fluoride having an optical thickness of λ / 4 are sequentially laminated. FIG.
FIG. 3 is an incident angle characteristic diagram of the conventional antireflection film at λ 0 = 248 nm.

【0004】0〜約30°の入射角度の範囲において
0.5%以下の平均反射率を示し、0〜約41°の入射
角度の範囲において、1%以下の平均反射率を示す。ま
た、入射角度の変化に対し、反射率の偏光成分の分離の
大きい特性を示すことがわかる。また、第2の従来の反
射防止膜として、基板上に光学的膜厚λ/2のMgF2
からなる低屈折率層、光学的膜厚λ/4のNdF3から
なる高屈折率層、光学的膜厚λ/4のMgF2からなる
低屈折率層を順次積層させた3層構造が知られている。
In the range of an incident angle of 0 to about 30 °, the average reflectance is 0.5% or less, and in the range of an incident angle of 0 to about 41 °, the average reflectance is 1% or less. In addition, it can be seen that, with respect to a change in the incident angle, a characteristic that the polarization component of the reflectance is largely separated is exhibited. Further, as a second conventional anti-reflection film, MgF 2 having an optical film thickness of λ / 2 is formed on the substrate.
A three-layer structure is known in which a low refractive index layer made of NdF 3 having an optical thickness of λ / 4 and a low refractive index layer made of MgF 2 having an optical thickness of λ / 4 are sequentially laminated. Have been.

【0005】図6は、この従来の反射防止膜のλ0=2
48nmにおける入射角度特性図である。0〜約38°
の入射角度の範囲において0.5%以下の平均反射率を
示し、0〜約44°の入射角度の範囲において、1%以
下の反射率を示す。また、入射角度の変化に対し、反射
率の偏光成分の分離の大きい特性を示すことがわかる。
FIG. 6 shows the conventional antireflection film having λ 0 = 2.
It is an incident-angle characteristic figure in 48 nm. 0 to about 38 °
Shows an average reflectance of 0.5% or less in the range of the incident angle, and shows a reflectance of 1% or less in the range of the incident angle of 0 to about 44 °. In addition, it can be seen that, with respect to a change in the incident angle, a characteristic that the polarization component of the reflectance is largely separated is exhibited.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、ステッ
パー内の投影光学系においては、照明光学系によってマ
スクに照射され透過した光がレンズ全面のあらゆる場所
で(中心であろうと、周辺部であろうと)0〜約50゜
の範囲内のあらゆる角度の光が入射され、ウエハ上に結
像されている。
However, in the projection optical system in the stepper, the light illuminated on the mask by the illumination optical system and transmitted therethrough everywhere on the entire surface of the lens (whether at the center or at the periphery). Light at any angle in the range of 0 ° to about 50 ° is incident and imaged on the wafer.

【0007】従って、従来の反射防止膜は、約40゜よ
り入射角度が大きくなると急激に反射防止効果が低下
し、偏光成分の分離が大きくなるので、従来の反射防止
膜を形成したレンズに40〜50゜範囲の光が入射する
ことによって、全体として結像ムラが大きくなるという
問題が生じていた。また、一般的に、平面基板について
は略均一に膜を成膜することができるが、凸面レンズ及
び凹面レンズのどちらも、その中心部から周辺部にかけ
て次第に膜厚は薄くなり、この傾向は曲率半径の小さな
レンズほど顕著であるので、この影響を少なくするため
に、凹面及び凸面レンズ用の反射防止膜としては、反射
防止帯域が広いことが要求されるが、近年では、種々の
工夫(真空蒸着法においては、蒸着源と基板との間に所
定の補正板を設ける等)により略均一の膜を形成するこ
とができる。
Therefore, in the conventional antireflection film, when the incident angle is larger than about 40 °, the antireflection effect is sharply reduced and the separation of the polarized light component is increased. The incidence of light in the range of ゜ 50 ° has caused a problem that the imaging unevenness becomes large as a whole. In general, a film can be formed almost uniformly on a flat substrate, but the thickness of both the convex lens and the concave lens gradually decreases from the center to the periphery thereof. Since a lens having a smaller radius is more remarkable, an antireflection film for concave and convex lenses is required to have a wide antireflection band in order to reduce this effect. In the evaporation method, a substantially uniform film can be formed by, for example, providing a predetermined correction plate between the evaporation source and the substrate.

【0008】そこで、本発明は、波長160nm〜30
0nmの波長範囲内の特定波長において、広い光線入射
角度において反射防止効果を奏し、(入射角度特性が良
好)、かつ光線の入射角度変化に対する偏光反射率の変
動の小さな(偏光成分の分離が小さい)反射防止膜を提
供することを目的とする。
[0008] Accordingly, the present invention provides a method for controlling the wavelength from 160 nm to 30 nm.
At a specific wavelength within the wavelength range of 0 nm, it exhibits an antireflection effect at a wide light incident angle (good incident angle characteristics), and has a small change in polarization reflectance with respect to a change in the light incident angle (a small separation of polarization components). The object is to provide an antireflection film.

【0009】[0009]

【課題を解決するための手段】本発明者は、鋭意研究の
結果、本発明をするに至った。本発明は第一に「少なく
とも、波長160〜300nmの波長範囲内の任意の設
計基準波長λ0に対し前記波長の光を透過する基板上
に、基板側から光学的膜厚が約0.525λ〜0.57
5λの低屈折率層、光学的膜厚が0.2625λ〜0.
2875λの高屈折率層、光学的膜厚が0.2625λ
〜0.2875λの低屈折率層を順次積層してなる反射
防止膜(請求項1)」を提供する。
Means for Solving the Problems The inventors of the present invention have made intensive studies and have made the present invention. The present invention firstly provides "at least an optical film thickness of about 0.525 λ from the substrate side on a substrate that transmits light of the wavelength with respect to any design reference wavelength λ 0 within a wavelength range of 160 to 300 nm. ~ 0.57
5λ low refractive index layer, optical film thickness 0.2625λ-0.
High refractive index layer of 2875λ, optical film thickness of 0.2625λ
The present invention provides an antireflection film (Claim 1) in which low-refractive-index layers having a thickness of 0.2875λ are sequentially laminated.

【0010】また、本発明は第二に「高屈折率層の材料
としては、フッ化ネオジウム(NdF3)、フッ化ラン
タン(LaF3)、フッ化ガドリニウム(GdF3)、フ
ッ化ディスプロシウム(DyF3)、酸化アルミニウム
(Al23)、フッ化鉛(PbF2)、酸化ハフニウム
(HfO2)及びこれらの混合物又は化合物の群より選
ばれた1つ以上の成分であり、低屈折率層の材料として
は、フッ化マグネシウム(MgF2)、フッ化アルミニ
ウム(AlF3)、フッ化ナトリウム(NaF)、フッ
化リチウム(LiF)、フッ化カルシウム(Ca
2)、フッ化バリウム(BaF2)、フッ化ストロンチ
ウム(SrF2)、酸化シリコン(SiO2)、クライオ
ライト(Na3AlF6)、チオライト(Na5Al
314)これらの混合物又は化合物の群より選ばれた1
つ以上の成分であることを特徴とする請求項1記載の反
射防止膜(請求項2)」を提供する。
Further, the present invention is as a material of the second "high refractive index layer, neodymium fluoride (NdF 3), lanthanum fluoride (LaF 3), gadolinium fluoride (GdF 3), dysprosium fluoride (DyF 3 ), one or more components selected from the group consisting of aluminum oxide (Al 2 O 3 ), lead fluoride (PbF 2 ), hafnium oxide (HfO 2 ), and mixtures or compounds thereof, and has a low refractive index Examples of the material of the rate layer include magnesium fluoride (MgF 2 ), aluminum fluoride (AlF 3 ), sodium fluoride (NaF), lithium fluoride (LiF), and calcium fluoride (CaF).
F 2 ), barium fluoride (BaF 2 ), strontium fluoride (SrF 2 ), silicon oxide (SiO 2 ), cryolite (Na 3 AlF 6 ), thiolite (Na 5 Al)
3 F 14 ) 1 selected from the group of these mixtures or compounds
The antireflection film according to claim 1, which is one or more components (claim 2).

【0011】[0011]

【発明の実施形態】以下、本発明にかかる実施形態の反
射防止膜を図面を参照しながら説明する。図1は第1の
実施形態の反射防止膜の概略断面図である。第1の実施
形態の反射防止膜は、精密に研磨された合成石英ガラス
基板(n=1.51)1上に光学的膜厚が0.55λの
フッ化マグネシウム(n=1.41)からなる低屈折率
層2、光学的膜厚が0.275λの酸化アルミ(n=
1.72)からなる高屈折率層3、光学的膜厚がO.2
75λのフッ化マグネシウム(n=1.41)からなる
低屈折率層4を順次積層した構成である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an antireflection film according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view of the antireflection film of the first embodiment. The anti-reflection film of the first embodiment is formed from magnesium fluoride (n = 1.41) having an optical thickness of 0.55λ on a precision-polished synthetic quartz glass substrate (n = 1.51) 1. Low refractive index layer 2, an aluminum oxide having an optical film thickness of 0.275λ (n =
1.72), the high refractive index layer 3 having an optical thickness of O.D. 2
This is a configuration in which low refractive index layers 4 made of 75? Magnesium fluoride (n = 1.41) are sequentially laminated.

【0012】図2は第1の実施形態の反射防止膜のλ=
248.4nmにおける入射角度特性図である。第2の
実施形態の反射防止膜は、図1を用いて説明すると、精
密に研磨された蛍石基板(n=1.47)1上に光学的
膜厚が0.55λのフッ化マグネシウム(n=1.4
1)からなる低屈折率層2、光学的膜厚が0.275λ
のフッ化ネオジウム(n=1.68)からなる高屈折率
層3、光学的膜厚が0.275λのフッ化マグネシウム
(n=1.41)からなる低屈折率層4を順次積層した
構成である。
FIG. 2 shows the λ = value of the antireflection film of the first embodiment.
It is an incident-angle characteristic figure in 248.4 nm. The antireflection film according to the second embodiment will be described with reference to FIG. 1. Magnesium fluoride (0.55λ) having an optical thickness of 0.55λ is formed on a precision-polished fluorite substrate (n = 1.47). n = 1.4
1) low refractive index layer 2 having an optical thickness of 0.275λ
A high refractive index layer 3 made of neodymium fluoride (n = 1.68) and a low refractive index layer 4 made of magnesium fluoride (n = 1.41) having an optical thickness of 0.275λ. It is.

【0013】図3は第2の実施形態の反射防止膜のλ=
248.4nmにおける入射角度特性図である。第3の
実施形態の反射防止膜は、図1を用いて説明すると、精
密に研磨された蛍石基板(n=1.47)1上に光学的
膜厚が0.56λのフッ化マグネシウム(n=1.4
1)からなる低屈折率層2、光学的膜厚が0.28λの
フッ化ランタン(n=1.65)からなる高屈折率層
3、光学的膜厚が0.275λのフッ化マグネシウム
(n=1.41)からなる低屈折率層4を順次積層した
構成である。
FIG. 3 shows the λ = value of the antireflection film of the second embodiment.
It is an incident-angle characteristic figure in 248.4 nm. The antireflection film according to the third embodiment is described with reference to FIG. 1. Magnesium fluoride (0.56λ) having an optical thickness of 0.56λ is formed on a polished fluorite substrate (n = 1.47) 1. n = 1.4
1), a high refractive index layer 3 made of lanthanum fluoride (n = 1.65) having an optical thickness of 0.28λ, and magnesium fluoride (0.275λ) having an optical thickness of 0.275λ. n = 1.41).

【0014】図4は第3の実施形態の反射防止膜のλ=
248.4nmにおける入射角度特性図である。図2〜
4から入射角度θ=0〜45°の入射角度において、平
均反射率0.5%以下であり、さらにθ=0〜約50°
の広い入射角度において平均反射率1%以下という反射
防止効果を奏し、入射角の変化に対して、反射率の偏光
成分の分離の小さい特性を示すことがわかる。
FIG. 4 shows the λ = value of the antireflection film of the third embodiment.
It is an incident-angle characteristic figure in 248.4 nm. Figure 2
4, at an incident angle θ = 0 to 45 °, the average reflectance is 0.5% or less, and θ = 0 to about 50 °
It can be seen that an antireflection effect of an average reflectance of 1% or less is obtained at a wide incident angle, and that the polarization component of the reflectance has a small characteristic with respect to a change in the incident angle.

【0015】基板としては、紫外領域において透明で、
屈折率が約1.4〜1.6からなる材料が使用でき、例
えば石英ガラス、蛍石、フッ化マグネシウム基板が挙げ
られる。本発明にかかる反射防止膜の高屈折率層の材料
としては、基板より屈折率が高く、約1.6以上を示す
フッ化ネオジウム(NdF3)、フッ化ランタン(La
3)、フッ化ガドリニウム(GdF3)、フッ化ディス
プロシウム(DyF3)、酸化アルミニウム(Al
23)、フッ化鉛(PbF2)、酸化ハフニウム(Hf
2)及びこれらの混合物又は化合物の群より選ばれた
1つ以上の成分が使用され、低屈折率層の材料として
は、基板より屈折率が低く、屈折率が約1.6未満のフ
ッ化マグネシウム(MgF2)、フッ化アルミニウム
(AlF3)、フッ化ナトリウム(NaF)、フッ化リ
チウム(LiF)、フッ化カルシウム(CaF 2)、フ
ッ化バリウム(BaF2)、フッ化ストロンチウム(S
rF2)、酸化シリコン(SiO2)、クライオライト
(Na3AlF6)、チオライト(Na5Al 314)これ
らの混合物又は化合物の群より選ばれた1つ以上の成分
が使用される。
The substrate is transparent in the ultraviolet region,
A material having a refractive index of about 1.4 to 1.6 can be used.
For example, quartz glass, fluorite, magnesium fluoride substrate
Can be Material of high refractive index layer of antireflection film according to the present invention
Has a refractive index higher than that of the substrate and indicates about 1.6 or more.
Neodymium fluoride (NdFThree), Lanthanum fluoride (La
FThree), Gadolinium fluoride (GdFThree), Fluoride fluoride
Prosium (DyFThree), Aluminum oxide (Al
TwoOThree), Lead fluoride (PbFTwo), Hafnium oxide (Hf
OTwo) And mixtures or compounds thereof.
One or more components are used as low refractive index layer material
Has a lower refractive index than the substrate and has a refractive index of less than about 1.6.
Magnesium iodide (MgFTwo), Aluminum fluoride
(AlFThree), Sodium fluoride (NaF),
Titanium (LiF), calcium fluoride (CaF Two),
Barium nitride (BaFTwo), Strontium fluoride (S
rFTwo), Silicon oxide (SiOTwo), Cryolite
(NaThreeAlF6), Thiolite (NaFiveAl ThreeF14)this
One or more components selected from the group of mixtures or compounds thereof
Is used.

【0016】なお、各層の膜は、抵抗加熱蒸着法、イオ
ンビーム蒸着法、スパッタリング法などの真空蒸着法な
どにより基板上に形成される。
The film of each layer is formed on the substrate by vacuum evaporation such as resistance heating evaporation, ion beam evaporation, and sputtering.

【0017】[0017]

【発明の効果】以上説明した通り、本発明にかかる反射
防止膜は、紫外域において発振するレーザ光に対して、
広い入射角度において反射防止効果を奏し、(入射角度
特性が良好であり)、かつ光線の入射角度変化に対する
偏光反射率の変動が小さい(偏光成分の分離が小さい)
という特性を有している。
As described above, the antireflection film according to the present invention is effective against laser light oscillating in the ultraviolet region.
Has an anti-reflection effect at a wide incident angle (good incident angle characteristics), and has a small variation in polarization reflectance with respect to a change in the incident angle of a light beam (small separation of polarization components)
It has the characteristic.

【0018】従って、本発明にかかる反射防止膜を形成
したレンズをステッパーの光学系に搭載した場合、結像
ムラが生じるという問題が生じず、露光効率を低下させ
るという問題も生じない。
Therefore, when the lens on which the antireflection film according to the present invention is formed is mounted on the optical system of the stepper, there is no problem of causing uneven image formation and no problem of lowering the exposure efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1〜3の実施形態の反射防止膜の概略断面図
である。
FIG. 1 is a schematic sectional view of an antireflection film according to first to third embodiments.

【図2】第1の実施形態の反射防止膜のλ=248.4
nmにおける入射角度特性図である。
FIG. 2 shows λ = 248.4 of the antireflection film of the first embodiment.
FIG. 9 is an incident angle characteristic diagram in nm.

【図3】第2の実施形態の反射防止膜のλ=248.4
nmにおける入射角度特性図である。
FIG. 3 shows λ = 248.4 of the antireflection film of the second embodiment.
FIG. 9 is an incident angle characteristic diagram in nm.

【図4】第3の実施形態の反射防止膜のλ=248.4
nmにおける入射角度特性図である。
FIG. 4 shows λ = 248.4 of the antireflection film of the third embodiment.
FIG. 9 is an incident angle characteristic diagram in nm.

【図5】第1の従来の反射防止膜のλ=248.4nm
における入射角度特性図である。
FIG. 5: λ = 248.4 nm of the first conventional antireflection film
FIG. 4 is an incident angle characteristic diagram at the time of the measurement.

【図6】第2の従来の反射防止膜のλ=248.4nm
における入射角度特性図である。
FIG. 6: λ = 248.4 nm of the second conventional antireflection film
FIG. 4 is an incident angle characteristic diagram at the time of the measurement.

【符号の簡単な説明】[Brief description of reference numerals]

1・・・基板 2・・・低屈折率層 3・・・高屈折率層 4・・・低屈折率層 DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Low refractive index layer 3 ... High refractive index layer 4 ... Low refractive index layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】少なくとも、波長160〜300nmの波
長範囲内の任意の設計基準波長λ0に対し前記波長の光
を透過する基板上に、基板側から光学的膜厚が約0.5
25λ〜0.575λの低屈折率層、光学的膜厚が0.
2625λ〜0.2875λの高屈折率層、光学的膜厚
が0.2625λ〜0.2875λの低屈折率層を順次
積層してなる反射防止膜。
1. An optical film having an optical thickness of about 0.5 from a substrate side on a substrate that transmits light of at least an arbitrary design reference wavelength λ 0 within a wavelength range of 160 to 300 nm.
A low refractive index layer having a wavelength of 25λ to 0.575λ and an optical film thickness of 0.2.
An antireflection film formed by sequentially stacking a high refractive index layer having a thickness of 2625λ to 0.2875λ and a low refractive index layer having an optical thickness of 0.2625λ to 0.2875λ.
【請求項2】高屈折率層の材料としては、フッ化ネオジ
ウム(NdF3)、フッ化ランタン(LaF3)、フッ化
ガドリニウム(GdF3)、フッ化ディスプロシウム
(DyF3)、酸化アルミニウム(Al23)、フッ化
鉛(PbF2)、酸化ハフニウム(HfO2)及びこれら
の混合物又は化合物の群より選ばれた1つ以上の成分で
あり、低屈折率層の材料としては、フッ化マグネシウム
(MgF2)、フッ化アルミニウム(AlF3)、フッ化
ナトリウム(NaF)、フッ化リチウム(LiF)、フ
ッ化カルシウム(CaF2)、フッ化バリウム(Ba
2)、フッ化ストロンチウム(SrF2)、酸化シリコ
ン(SiO2)、クライオライト(Na3AlF6)、チ
オライト(Na5Al314)これらの混合物又は化合物
の群より選ばれた1つ以上の成分であることを特徴とす
る請求項1記載の反射防止膜。
2. The material of the high refractive index layer includes neodymium fluoride (NdF 3 ), lanthanum fluoride (LaF 3 ), gadolinium fluoride (GdF 3 ), dysprosium fluoride (DyF 3 ), and aluminum oxide. (Al 2 O 3 ), lead fluoride (PbF 2 ), hafnium oxide (HfO 2 ), and one or more components selected from the group consisting of a mixture or a compound thereof. magnesium fluoride (MgF 2), aluminum fluoride (AlF 3), sodium fluoride (NaF), lithium fluoride (LiF), calcium fluoride (CaF 2), barium fluoride (Ba
F 2 ), strontium fluoride (SrF 2 ), silicon oxide (SiO 2 ), cryolite (Na 3 AlF 6 ), thiolite (Na 5 Al 3 F 14 ), or a mixture or compound selected from the group consisting of these compounds 2. The anti-reflection coating according to claim 1, wherein said anti-reflection coating is a component.
JP10050554A 1998-03-03 1998-03-03 Reflection preventive film Pending JPH11248903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10050554A JPH11248903A (en) 1998-03-03 1998-03-03 Reflection preventive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10050554A JPH11248903A (en) 1998-03-03 1998-03-03 Reflection preventive film

Publications (1)

Publication Number Publication Date
JPH11248903A true JPH11248903A (en) 1999-09-17

Family

ID=12862246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10050554A Pending JPH11248903A (en) 1998-03-03 1998-03-03 Reflection preventive film

Country Status (1)

Country Link
JP (1) JPH11248903A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023914A1 (en) * 1999-09-30 2001-04-05 Nikon Corporation Optical device with multilayer thin film and aligner with the device
JP2002014202A (en) * 2000-06-30 2002-01-18 Nikon Corp Optical thin film, optical element and exposure system
EP1227344A1 (en) * 1999-11-05 2002-07-31 Asahi Glass Company Ltd. Antireflection base for ultraviolet and vacuum ultraviolet regions
JP2007214501A (en) * 2006-02-13 2007-08-23 Nikon Corp Optical element and projection exposure apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023914A1 (en) * 1999-09-30 2001-04-05 Nikon Corporation Optical device with multilayer thin film and aligner with the device
US6574039B1 (en) 1999-09-30 2003-06-03 Nikon Corporation Optical element with multilayer thin film and exposure apparatus with the element
EP1227344A1 (en) * 1999-11-05 2002-07-31 Asahi Glass Company Ltd. Antireflection base for ultraviolet and vacuum ultraviolet regions
EP1227344A4 (en) * 1999-11-05 2005-08-31 Asahi Glass Co Ltd Antireflection base for ultraviolet and vacuum ultraviolet regions
JP2002014202A (en) * 2000-06-30 2002-01-18 Nikon Corp Optical thin film, optical element and exposure system
JP2007214501A (en) * 2006-02-13 2007-08-23 Nikon Corp Optical element and projection exposure apparatus

Similar Documents

Publication Publication Date Title
US6310905B1 (en) Mirror for an ultraviolet laser and method
US5850309A (en) Mirror for high-intensity ultraviolet light beam
JP3924806B2 (en) Anti-reflection coating
US7583443B2 (en) Reflective optical element for ultraviolet radiation, projection optical system and projection exposure system therewith, and method for forming the same
US6590702B1 (en) Multilayer antireflection film, optical member, and reduction projection exposure apparatus
US9684252B2 (en) Optical element with an antireflection coating, projection objective, and exposure apparatus comprising such an element
US6967771B2 (en) Antireflection coating for ultraviolet light at large angles of incidence
JP2004302113A (en) Antireflection film, optical member, optical system and projection exposure apparatus, and manufacturing method for antireflection film
JP3799696B2 (en) Mirror for excimer laser
JPH11248903A (en) Reflection preventive film
JPH10253802A (en) Reflection preventive film
JP2000357654A (en) Antireflection film, optical element, aligner and electronic component
JP2002189101A (en) Antireflection film, optical element and exposure device
JP2001004803A (en) Reflection preventing film and optical element
JP3232727B2 (en) 2-wavelength anti-reflection coating
JPH11149812A (en) Optical member for high output laser or high output lamp radiating light of 190-250 nm wavelength region
EP0994368A2 (en) Anti-reflective films, optical elements and reduction-projection exposure apparatus utilizing same
JPH11167003A (en) Two-wavelength reflection preventive film
JPH07244217A (en) Antireflection film
JP2005345489A (en) Antireflection film and optical element
JP2002014202A (en) Optical thin film, optical element and exposure system
JP2001013304A (en) Optical parts
JP2003014921A (en) Mirror for uv ray and exposure device using the same
JP2004260080A (en) Reflector for ultraviolet region and projection aligner employing it
JP2004271544A (en) Optical element, lens system, and projection aligner