JP2005017255A - Regenerated pipe inspection device and regenerated pipe inspection method using this device - Google Patents

Regenerated pipe inspection device and regenerated pipe inspection method using this device Download PDF

Info

Publication number
JP2005017255A
JP2005017255A JP2003199108A JP2003199108A JP2005017255A JP 2005017255 A JP2005017255 A JP 2005017255A JP 2003199108 A JP2003199108 A JP 2003199108A JP 2003199108 A JP2003199108 A JP 2003199108A JP 2005017255 A JP2005017255 A JP 2005017255A
Authority
JP
Japan
Prior art keywords
probe
rehabilitation
unit
tube
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003199108A
Other languages
Japanese (ja)
Other versions
JP3925470B2 (en
Inventor
Kazuhiko Sanada
和彦 眞田
Isamu Sekino
勇 関野
Takashi Ogawara
隆 大河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEAMLESS LINER KK
SGC Gesuido Center KK
Original Assignee
SEAMLESS LINER KK
SGC Gesuido Center KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEAMLESS LINER KK, SGC Gesuido Center KK filed Critical SEAMLESS LINER KK
Priority to JP2003199108A priority Critical patent/JP3925470B2/en
Publication of JP2005017255A publication Critical patent/JP2005017255A/en
Application granted granted Critical
Publication of JP3925470B2 publication Critical patent/JP3925470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a regenerated pipe inspection device capable of automatically and easily inspecting the thickness of a coated part of a regenerated pipe having a diameter difficult to be checked manually, and its inspection method. <P>SOLUTION: The device body 10 is provided with a probing section 12 having a probing face 16 which sends and receives ultrasonic pulses, a probing section movement mechanism 18 for moving the probing section 12 to the internal surface of the regenerated pipe 11, a swirling mechanism 30 for swirling the probing section 12 in the direction of the inner circumference of the regenerated pipe 11, an angle detection section 46 for detecting the angle of revolution of this probing section 12, and an adhering agent supply section 24 for supplying an adhering agent to the probing face before it touches the internal surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、更生管検査装置、特に更生工法により更生した更生管の厚さ等の検査を非破壊により行う装置及び方法に関する。
【0002】
【従来の技術】
配管(下水道、水道、ガス、電力、通信、その他の流体輸送管等)の多くは地中に埋設された状況で設置される。例えば、この配管が地中に埋設された下水管の場合、腐食ガスや地盤沈下等により下水管が長期間の内に劣化する。この劣化した配管を修復する方法として、いわゆる更生工法という工法がある。この工法は例えば劣化した配管内周部に樹脂等の修復材料例えばFRP(以下FRP「Fiber Reinforced Plastic」で修復材料を代表する)を挿入し熱や光等でこの樹脂を硬化させ、配管内面を所定の厚さを有するFRPで被覆し配管を更生するものである。更生後の配管である更生管の断面図を図11に例示した。この図では配管本体150内面にFRP152を所定の厚さで被覆し、配管本体150を修復している。このFRP152の被覆厚さは埋設深度や管径により、その固有の物性値を基に耐荷力を計算した上で決定している。
【0003】
そして、更生作業後の更生管のFRP等の被覆部の厚さ等の確認を行う従来技術については、例えば、径800mm未満のような小さい径の更生管については、TVカメラ等による目視確認が行われている。また、大口径の管については、持ち歩き可能な超音波探傷器(例えば特許文献1、参照)を管内に持ち込みマニュアルでチェックすることも行われる。
【0004】
【特許文献1】
特開平11−337535号公報
【0005】
【発明が解決しようとする課題】
しかし、前述した小径の更生管におけるTVカメラを用いた更生管被覆部の目視による検査方法では、更生管内部の表面状況は確認できるものの、被覆部の厚さの確認は困難である。また、配管ライン内部に超音波探傷器を持ち込んでマニュアルで被覆部をチェックする方法は、管径に条件があり小さい配管では非常に困難である。すなわち、例えば800mm未満の小さな径を有する更生管では内壁部を迅速容易に検査できる方法は確立されていない。
【0006】
本発明は上記課題を解決するためになされたものであり、その目的は、マニュアルチェックの困難な径の更生管の被覆部の厚さを、自動的かつ容易に検査することのできる更生管検査装置と検査方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の更生管検査装置は、装置本体に超音波パルスの発信と受信とを行う探触面を有する探触部と、探触部を更生管の内壁面に移動させる探触部移動機構と、探触部を更生管の内周方向で旋回させる旋回機構と、この探触部の旋回角度を検知する角度検知部と、内壁面への接触前に探触面に密着剤を供給する密着剤供給部と、を備えたことを特徴とする。
【0008】
これにより、径の小さい更生管の厚さを自動的に検査することができる。また、検査は更生管内の内周方向の任意の位置で行うことができるので、所定箇所での円周方向全域の検査が可能である。すなわち、所定箇所の輪切りの情報を得ることができる。更に、密着剤を適宜供給しつつ検査することができるので連続して多くの検査が可能である。
【0009】
請求項2に記載の更生管検査装置は、請求項1に記載の更生管検査装置であって、前記装置本体を更生管内で移動させる走行機構と、装置本体の更生管内における位置を検知する位置検知手段と、を備えたことを特徴とする。
【0010】
これにより、装置本体を更生管内で自由に移動させることができる。また、位置検知手段を備えたことにより、更生管内での装置本体検査位置を知ることができ、これにより検査位置を確認することができる。なお、走行装置は、自走式のものあるいは牽引式のものの何れを用いても良い。
【0011】
請求項3に記載の更生管検査装置は、請求項1又は2の何れかに記載の更生管検査装置であって、密着剤供給部は、所定量の密着剤を探触面上に滴下付着させる密着剤送り機構を有することを特徴とする。
【0012】
探触部による検査前に密着剤を探触面上に直接供給することとしたことにより、探触面上の密着剤の付着を良好かつ確実に行うことができ、正確な計測が可能になる。
【0013】
請求項4に記載の更生管検査装置は、請求項1〜3の何れかに記載の更生管検査装置であって、密着剤供給部は、密着剤を探触面上に付着させる前に探触面にエアーを噴射するエアー供給手段を有することを特徴とする。
【0014】
これにより、エアーで探触面上の付着物を除去した後、密着剤を探触面上に供給できるので、探触部による検査の容易迅速化が図られる。
【0015】
請求項5に記載の更生管検査装置は、請求項1〜4の何れかに記載の更生管検査装置であって、装置本体を、更生管内にて固定状態とする、装置固定機構を備えたことを特徴とする。
【0016】
これにより、更生管検査装置本体を更生管内に固定することができる。従って、探触面を安定して更生管内壁に接触させることができ、これにより安定した検知が可能となる。
【0017】
請求項6に記載の更生管検査装置は、請求項1〜5の何れかに記載の更生管検査装置であって、探触部は、角変位自在な状態にて保持する探触部保持部に保持されて探触部移動機構に取り付けられ、探触面の周囲には、探触部が所定角以上の傾斜角で更生管内壁面に移動しているときに探触面よりも先に更生管内壁面に衝突する先端部高さを有し、衝突によって探触部の接触角を修正する角度修正突出部が設けられたことを特徴とする。
【0018】
これにより、もし探触部が所定角以上、すなわち、適切な超音波による検査を行うことのできる範囲を超えて傾斜している場合、角度修正突出部の存在により、更生管の内壁面に衝突するのは、探触面の周囲に存在する角度修正突出部ということになる。
【0019】
そして、探触部は保持部により角変位自在に保持されているので、角度修正突出部の衝突により探触部は更生管内壁面により適切な角度で対向するように角度修正される。すなわち、探触部の軸が更生管内壁面に直交する状態に近づけられる。したがって、探触部移動機構により探触部が傾斜した状態で内壁面方向に移動しているときでも探触面が接触するまでにはより的確な角度に自動的に修正がなされることとなる。
【0020】
請求項7に記載の更生管検査装置は、請求項1〜6の何れかに記載の更生管検査装置であって、探触部保持部は、探触部との間で球状面にて互いに接触する軸受け手段として形成されたことを特徴とする。
【0021】
上記軸受けは例えば、ボール軸受けとして構成され、探触部側に凸の球面を構成し、保持部側に凹の球面を構成し、探触部を角変位自在とすることができる。探触部の角度を変更する際の摩擦力は、通常状態で探触部が適切な角度状態を維持できる強さであり、上記角度修正突出部の更生管内壁面への衝突により角度が修正される程度の強さに設定される。
【0022】
請求項8に記載の更生管検査システムは、請求項1〜7の何れかに記載の更生管検査装置と、該更生管検査装置の各部の動作を更生管外部から操作制御する制御部と、探触部の超音波パルス信号の送受信データを解析処理する超音波検査装置と、を備えたことを特徴とする。
【0023】
これにより、この更生管検査装置を操作する一方で超音波パルス信号を検査しつつデータを処理し、総合的な安定した検査測定が可能になる。
【0024】
請求項9に記載の更生管検査装置を用いた更生管検査方法は、装置本体に、超音波パルスの発信と受信とを行う探触面を有する探触部を備えた更生管検査装置を用いた更生管検査方法であって、装置本体を走行機構により測定個所まで移動させ、測定個所を位置検知手段により検知し、密着剤供給部から探触部の探触面に密着剤を自動供給させ、探触部を探触部移動機構により探触面が更生管の内壁面に接触するように移動させ、更生材被覆部の厚さを測定し、探触部移動機構により探触部を後退させた後、旋回機構により更生管の内周方向に所定の角度旋回させ、探触面への密着剤の供給、更生管の内壁面への探触面の接触、被覆部厚さの測定、探触部の後退を行い、角度検知部により探触部の旋回角度を検知し、測定個所での複数の旋回角度に亘って上記工程を繰り返して一連の厚さ測定を行うことを特徴とする。
【0025】
これにより、更生管検査装置を用い、人間が管内に入ることなく上記一連の測定動作を円滑に行うことが可能となる。これにより、支障なく更生管の種々の場所での被覆部の厚さを迅速に検査することができる。
【0026】
【発明の実施の形態】
以下、図面に基づいて本発明に係る実施の形態を詳細に説明する。図1は本発明に係る検査装置の主要部である装置本体の概略構成を示している。本実施の形態では、被覆部として既設管15に更生管FRP部14を形成し、更生管11とした例が示されている。この装置本体10は一般的な超音波探傷の原理により更生管11内部の検査を行うものであり、測定部位での超音波パルスの発信と発信された超音波パルスの反射を検知し、その時間差等から、内壁部の厚さ検査するものである(例えば、金属便覧 改訂5版 日本金属学会編 丸善 446〜450頁参照)。また、反射した超音波パルスの大きさや波形から内壁部に発生する割れ等を検査することができるものである。
【0027】
本実施の形態に係る更生管検査装置では、装置本体10の前方側(図上左側)に超音波パルスの発信と受信を行う探触部12が設けられている。探触部12はその先端面の探触面16を、被覆部である更生管FRP部14に接触させた状態で検査を行う。このため、探触部12をFRP部の表面に移動させる探触部移動機構18が設けられている。
【0028】
図2は、探触部移動機構18の拡大図を示している。探触部移動機構18はエアシリンダー20と22にて構成され、それぞれエア圧力により伸長する伸長部20−a、22−aを備え、この部位がエアシリンダー20、22の長さ方向に伸長する。そして、探触部12は継ぎ手19を介してエアシリンダー20の伸長部20−aに保持され、エアシリンダー20は継ぎ手21を介してエアシリンダー22の伸長部22−aに保持されている。このエアシリンダー20、22の二段階構造により、図中二点鎖線で示したように探触部12が更生管FRP部14面に向けて移動するので比較的管径の大きい配管でも探触面16が更生管FRP部14に接触できる。なお、探触部12の継ぎ手19による保持はバネ23を介して行われており、このバネ23により探触部12は更生管FRP部14へのフレキシブルな接触を可能にしている。即ち、接触面16が更生管FRP部14の内壁面に対し傾斜しているような場合でもバネ23の変形によりこれを許容し、探触面16を更生管FRP部14の検査面に垂直に接触させることができる。
【0029】
図3は、探触部移動機構18の概要を示した斜視図である。図示したように伸長部20−a、22−aはそれぞれ3本の伸長部20−a−1〜3、22−a−1〜3を有している。伸長部20−a−1〜3、22−a−1〜3の内、伸長部20−a−2、22−a−2がエア圧力を受けて伸長し、他の伸長部20−a−1,3、22−a−1,3は、伸長部20−a、22−aを安定に伸長させるためのガイドである。すなわち、このガイドにより、探触部12を伸長方向に曲がることなく直線的に伸長させるものである。
【0030】
また、図1に示したように更生管11の内周方向の任意の位置を探査するため、探触部12を更生管11の内周方向に旋回させる旋回機構30が設けられている。旋回機構30は、エアシリンダー22を保持する台36を保持し、配管内周方向に旋回させる旋回機構本体37と、この旋回機構本体37を旋回させる旋回モータ42とで主に構成されている。
【0031】
旋回機構本体37の右図側端部外周にはギア38が備えられ、また、旋回モータ42にはギア38と噛合するギア40が備えられている。そして、旋回機構本体37はベアリング41を介して外枠27に旋回可能に取り付けられている。このように旋回機構30は、探触部移動機構18及び探触部12全体を旋回させるものである。また、旋回機構30による旋回はギア38と噛合するギア44を備えた角度検知部(エンコーダ)46で検知する(図1参照)。なお、上記探触部移動機構18及び旋回機構30は、図10に基づいて後述する外部の制御部によりその動作が制御される。
【0032】
図4に、探触部12が二点鎖線で示した状態から所定の角度(旋回角度)Aだけ旋回した状況の図1上左側から見た状態を概略的に示した。このようにして更生管内周方向の任意の角度位置で内壁部の検査が行われる。上記旋回は探触部移動機構18により探触面16と更生管FRP部14とを非接触の状態に保持して行われる。すなわち、いわゆる更生管の輪切り状態の厚さ情報等の収集も可能である。
【0033】
また、良好な超音波パルスデータを得るために、本実施の形態では探触面16へ密着剤を直接供給するための密着剤供給部24が設けられている(図1参照)。この密着剤供給部24は、装置本体10に取りつけられ、内部に密着剤を貯留した密着剤供給装置28及びこの密着剤供給装置28に一端が接続された密着剤供給用チューブ26を有している。更に、密着剤供給部24は後述するエアー供給手段を有していおり、このエアー供給手段は、外部から圧縮エアーを供給するポンプからのエアーの噴射を制御するエア電磁弁34及びこのエア電磁弁34に一端が接続されたエアー供給用チューブ32を有している。
【0034】
密着剤供給用チューブ26とエアー供給用チューブ32の先端は探触部12の所定の操作状態で探触面16直上に位置するように配置されている。この所定の操作状態とは、本実施の形態では旋回機構30の操作により探触部12を垂直上方に向け、探触部移動機構18の操作により、エアシリンダー20とエアシリンダー22とを最も縮めた状態である(図1に示された状態参照)。
【0035】
また、密着剤供給用チューブ26とエアー供給用チューブ32は可撓性部材、例えばゴム等で形成されている。従って、探触部12が、伸長方向、例えば図中二点鎖線で示した方向に伸長移動する際に、探触部12は密着剤供給用チューブ26とエアー供給用チューブ32に衝突しても、この2つのチューブはしなることにより移動の障害にはならない。
【0036】
この構成により密着剤を探触面16に付着させる手順は、先ず前述した操作により、探触面16をエアー供給用チューブ32一端の直下部に位置させる(図1参照)。そして、エアー供給用チューブ32から探触面16へのエアブローを行い探触面16の付着物を除去する。次に、密着剤供給用チューブ26から密着剤を探触面16に滴下させる。これにより、探触面16は密着剤で覆われる。なお、密着剤は、探触面16を配管内壁に接触させた時に探触面16と更生管FRP部14との間に発生する隙間をなくし、隙間の存在に起因する超音波パルスのノイズ等を消去するための一般的密着剤である。
【0037】
次に、装置本体10を移動させるための走行機構62は主に破線で示した車輪54から構成されている(図1参照)。この車輪54は、図示しない駆動モータによる駆動あるいは、別の移動装置に連結し牽引するようにしても良い。以上の構成により更生管FRP部14の任意の位置の検査を行うものである。
【0038】
装置本体10の更生管内所在地の検知は、本実施の形態では、この装置本体10の移動距離を測定することにより行われ、更生管内位置検知手段として設けられた図1に示した距離測定部58で距離を測定することにより行っている。距離測定部58は回転部60を備え、回転部60を更生管FRP部14内壁に接地し、装置本体10の更生管11内での移動距離をその回転により測定している。
【0039】
一方、探触部移動機構18で探触部12を更生管FRP部14に接触させる場合、その接触の強さは、バネ23とエアシリンダー20及びエアシリンダー22の力をバランスさせて調整される。また、探触部12による押圧力により装置本体10が不安定になり正確な計測ができなくなることを防止するため、装置本体10を安定な状態に維持すべく装置固定機構48が設けられている。装置固定機構48は、アウトリガー52及びアウトリガージャッキ50を有し(図1参照)、アウトリガージャッキ50の伸長部56が略垂直上方に伸長し所定の接触力で更生管FRP部14に当接される。
【0040】
図5に、この装置固定機構48によりこの装置本体10を規制する状況を図1の右側から見た状態にて示した。アウトリガージャッキ50の伸長部56が垂直上方に伸長し図中点線で示すように更生管FRP部14に当接して所定の当接力が発生する。
【0041】
この当接力はアウトリガージャッキ50を支える継ぎ手51を介してアウトリガー52に伝わり、更に、この装置本体10を支える車輪54に伝わる。即ち、アウトリガージャッキ伸長部56と車輪54から更生管FRP部14に対し矢印300で示した方向に力が働くので、この装置本体10を安定した状態に維持できる。また、車輪54の更生管FRP部14内壁に接触する部位には車輪54の更生管FRP部14内壁への接触を確実にするためテーパが取られている。
【0042】
図6は、装置本体10の外観構成例を示している。このように構成された装置本体10を更生管11内に挿入し、更生管FRP部14を検査するものである。
【0043】
図7は、本発明に係る更生管検査装置の探触面16を更生管FRP部に接触させる構成についての他の実施の形態を示した斜視図である。本実施の形態では探触部12は保持部68に保持されている。
【0044】
図8は、図7に示した構成の側面図である。図示のように、探触部12は継ぎ手19に固定され上下移動する保持部68にて角変位可能に保持されている。保持部68は凹の球面を有するいわゆるボール軸受け70を備え、探触部側には凸の球面を有する回動体72が探触部12に固定されて設けられており、両球面が面接触するように取り付けられている。なお、図8において説明の容易化のため、ボール軸受け70内部に存在する回動体72と探触部12の部分は実線で示した。
【0045】
また、探触部12には、上部位置に角度修正突出部76が設けられている。角度修正突出部76は本実施の形態では円筒形の突起として構成されている。重要なことは、この角度修正突出部76の先端の高さ位置であり、探触部12の探触面16の高さ位置よりもやや低い位置に設定されている。
【0046】
すなわち、この高さ位置は探触部12が所定角度以上傾斜し適切な検査を行うことのできる範囲を超えている場合、角度修正突出部76が有効に作用するための位置である。更に具体的には、探触部12が所定角度以上傾斜している場合、先ず角度修正突出部76が更生管FRP部14に衝突し、これにより探触部12が更生管FRP部14に対し、より適切な角度で対向するように角度修正できる高さ位置である。
【0047】
上記のような構成の実施の形態の動作を図9(A),(B)に基づいて以下に説明する。図9は、保持部68に保持された探触部12が図示しない探触部移動機構18により更生管FRP部14に移動し接触する態様を示した図である。例えば、同図(A)に示されているように、探触部12の移動方向が更生管FRP部14の接触面と直交する方向から所定量以上の角度θだけずれた場合、先ず角度修正突出部76と更生管FRP部14が衝突する。この衝突により、回動体72がボール軸受け70に対し角度θが小さくなるように所定の角度旋回し、角度修正される。これにより、最終的に探触面16により的確に検査を行うことのできる状態となる。
【0048】
また、上記傾斜角度θが一定の量より小さい場合、すなわち、修正不要の場合、角度修正突出部76と更生管FRP部14とは衝突することなく、探触面16が最初に更生管FRP部14に接触する。この場合にも探触面16の接触圧により、若干の角度修正はなされる場合もある。このように本実施の形態では、探触部12を容易かつ確実に更生管FRP部14に的確に接触させることが可能である。なお、説明の容易化のため、ボール軸受け70内部に存在する回動体72と探触部12の部分及び、角度修正突出部76の内側に存在する探触部12の部分は実線で示した。
【0049】
次に、図1に示した装置本体10を用いて、更生管FRP部14の厚さを測定する方法を述べる。先ず、装置本体10を走行機構62により更生管11内を走行させ、測定個所まで移動させる。そして、密着剤供給部24から、探触面16に密着剤を自動供給させた後、旋回機構30により探触部12を更生管11の内周方向に旋回させる一方で角度検知部46により探触部12の旋回角度を検知する。そして、探触部移動機構18により、探触面16を更生管FRP部14に接触させて更生材被覆の厚さを測定する。測定後、探触部移動機構18により探触部12を後退させ、旋回機構30により更生管11の内周方向に旋回させ、上記工程を繰り返す。この更生管FRP部14の厚さを測定する方法は装置本体10に図7に示した保持部68を備えているときでも同様であり、その場合、探触面16の更生管FRP部14への良好な接触状態はより迅速に達成される。
【0050】
次に、上記検査装置を用いた更生管検査システムについて説明する。図10は本発明に係る更生管検査システムの概要を示したものである。図示したように、前述した更生管検査装置の各部の動作を更生管11外部から操作制御する制御部92と、探触部の超音波パルス信号の送受信データを解析処理する超音波検査装置94と、を備えている。また、超音波パルスの目視確認装置であるオシロスコープ98と超音波パルスデータを解析処理するコンピュータ96を備えている。
【0051】
このシステムにより更生管11内を検査する手順は、先ず装置本体10を更生管11内に挿入し図示していない牽引装置により図上右方向に走行させる。この時、例えば図示のようにTVカメラ88を装置本体10の前方に連結し装置本体10の状況を目視確認しつつ走行させるようにすることもできる。装置本体10の操作制御は更生管外部からコード90を介し制御部92で行っている。前述した超音波パルスの発信は制御部92からの入力により行われ、発信された超音波パルスに対する受信超音波パルスは探触部12(図1参照)で電気的信号に変換され超音波検査装置94に送られる。
【0052】
そして、発信パルスと受信パルスの時間差等の超音波に関するデーターはこの超音波検査装置94を介しコンピュータ96に送られる。装置本体10の更生管11内の長さ方向の移動距離、及び探触部12の更生管内周方向の検査角度は、それぞれ装置本体10に備えられた距離測定部58及び角度検知部46によって検知されコンピュータ96に送られる(図1参照)。これらコンピュータ96に送られたデータはコンピュータ96内で解析処理され、また、発信超音波パルスと受信超音波パルスはオシロスコープ98で波形の確認が行われる。このようなシステムにより、更生管の超音波による検査を同時進行で総合的に確認しながら行うことができる。なお、これらの装置を作動させる電力は主として電源ボックス100から供給される。
【0053】
なお、本発明の構成は、上記各実施の形態の構成に限定されるものではなく、発明の要旨の範囲内で種々の変形が可能である。例えば、本実施の形態では装置本体10の移動距離の測定を距離測定部58によるものとしたが、更生管11外部からのレーザー距離測定とすることもできる。また、検査対象はFRPに限られず超音波による検査可能な種々の更生管被覆材に対する検査に適用できることはもちろんである。
【0054】
【発明の効果】
以上説明したように本発明に係る更生管検査装置及び検査方法によれば、人為的手段によるチェックの困難な更生管であっても、自動的に容易にかつ迅速にその内壁部の厚さ等を検査することができる。このように容易に更生管データを得ることにより、更生管の施工の品質向上に貢献することが可能となる。
【図面の簡単な説明】
【図1】本発明に係る更生管検査装置本体の概略構成を示す説明図である。
【図2】図1の更生管検査装置本体の探触部移動機構の拡大図である。
【図3】探触部移動機構の概要を示した斜視図である。
【図4】図1の左側から見た探触部と探触部移動機構が旋回する概要を示した平面図である。
【図5】図1の右側から見た装置固定機構の作動概要を示した平面図である。
【図6】本発明に係る装置本体を更生管内に挿入し、更生管FRP部を検査する概略を示した斜視図である。
【図7】本発明に係る更生管検査装置の探触面を更生管FRP部に接触させる構成についての他の実施の形態を示した斜視図である。
【図8】図7に示した構成の側面図である。
【図9】探触部保持リングに保持された探触部が図示しない探触部移動機構により更生管FRP部に移動し接触する態様を示した図である。
【図10】本発明に係る更生管内壁の検査システムの概要を示したものである。
【図11】更生管の断面を例示した断面図である。
【符号の説明】
10 装置本体
12 探触部
14 更生管FRP部
16 探触面
18 探触部移動機構
24 密着剤供給部
30 旋回機構
46 角度検知部(エンコーダ)
48 装置固定機構
58 距離測定部
60 回転部
62 走行機構
68 保持部
76 角度修正突出部
92 制御部
94 超音波検査装置
98 オシロスコープ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rehabilitation pipe inspection apparatus, and more particularly to an apparatus and method for performing non-destructive inspection of the thickness and the like of a rehabilitation pipe rehabilitated by a rehabilitation method.
[0002]
[Prior art]
Many of the pipes (sewers, water, gas, electric power, communications, other fluid transport pipes, etc.) are installed in a state where they are buried underground. For example, in the case of a sewage pipe embedded in the ground, the sewage pipe deteriorates over a long period of time due to corrosive gas or ground subsidence. As a method of repairing this deteriorated pipe, there is a so-called rehabilitation method. In this method, for example, a resin or other restoration material such as FRP (hereinafter referred to as FRP “Fiber Reinforced Plastic”) is inserted into the inner periphery of a deteriorated pipe, and the resin is cured by heat, light, etc. The pipe is rehabilitated by coating with FRP having a predetermined thickness. FIG. 11 illustrates a cross-sectional view of a rehabilitated pipe that is a pipe after rehabilitation. In this figure, the FRP 152 is coated on the inner surface of the pipe main body 150 with a predetermined thickness, and the pipe main body 150 is repaired. The coating thickness of the FRP 152 is determined by calculating the load bearing capacity based on the intrinsic physical property value according to the embedment depth and the pipe diameter.
[0003]
And about the prior art which confirms the thickness etc. of covering parts, such as FRP of a rehabilitation pipe after rehabilitation work, for example, about a rehabilitation pipe with a small diameter of less than 800 mm, visual confirmation with a TV camera etc. Has been done. For large-diameter tubes, a portable ultrasonic flaw detector (see, for example, Patent Document 1) is brought into the tube and checked manually.
[0004]
[Patent Document 1]
JP 11-337535 A
[0005]
[Problems to be solved by the invention]
However, in the above-described inspection method by visual inspection of the rehabilitating tube covering portion using the TV camera in the small diameter rehabilitating tube, although the surface condition inside the rehabilitating tube can be confirmed, it is difficult to confirm the thickness of the covering portion. In addition, the method of manually checking the coating portion by bringing an ultrasonic flaw detector into the piping line is very difficult for small piping because of the condition of the tube diameter. That is, for example, in a rehabilitation pipe having a small diameter of less than 800 mm, a method for quickly and easily inspecting the inner wall portion has not been established.
[0006]
The present invention has been made to solve the above-mentioned problems, and its purpose is to provide a rehabilitation pipe inspection capable of automatically and easily inspecting the thickness of a rehabilitation pipe having a diameter which is difficult to manually check. It is to provide an apparatus and an inspection method.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a rehabilitation tube inspection apparatus according to claim 1 is provided with a probe unit having a probe surface for transmitting and receiving ultrasonic pulses in the apparatus body, and the probe unit within the rehabilitation tube. A probe moving mechanism that moves to the wall surface, a turning mechanism that turns the probe in the inner circumferential direction of the rehabilitation tube, an angle detector that detects the turning angle of the probe, and before contact with the inner wall surface And an adhesive agent supplying section for supplying the adhesive agent to the probe surface.
[0008]
Thereby, the thickness of the rehabilitation pipe | tube with a small diameter can be test | inspected automatically. In addition, since the inspection can be performed at an arbitrary position in the inner circumferential direction in the rehabilitation pipe, the entire circumferential direction inspection at a predetermined location is possible. That is, it is possible to obtain information on a circular cut at a predetermined location. Furthermore, since it can test | inspect while supplying adhesive agent suitably, many inspections are possible continuously.
[0009]
The rehabilitation pipe inspection apparatus according to claim 2 is the rehabilitation pipe inspection apparatus according to claim 1, wherein a travel mechanism that moves the apparatus main body within the rehabilitation pipe, and a position that detects a position of the apparatus main body within the rehabilitation pipe. And a detecting means.
[0010]
Thereby, an apparatus main body can be freely moved within a rehabilitation pipe | tube. Further, by providing the position detection means, it is possible to know the apparatus main body inspection position in the rehabilitation pipe, and thereby the inspection position can be confirmed. The traveling device may be either a self-propelled type or a towed type.
[0011]
The rehabilitation tube inspection device according to claim 3 is the rehabilitation tube inspection device according to claim 1 or 2, wherein the adhesion agent supply unit drops and adheres a predetermined amount of adhesion agent onto the probe surface. It is characterized by having an adhesion agent feeding mechanism.
[0012]
Adhesive agent is supplied directly onto the probe surface before inspection by the probe unit, so that adhesion of the adhesive agent on the probe surface can be performed well and reliably, and accurate measurement becomes possible. .
[0013]
The rehabilitation tube inspection device according to claim 4 is the rehabilitation tube inspection device according to any one of claims 1 to 3, wherein the adhesion agent supply unit detects the adhesion agent before attaching the adhesion agent on the probe surface. It has the air supply means which injects air on a touch surface, It is characterized by the above-mentioned.
[0014]
Thereby, after removing the deposits on the probe surface with air, the adhesive can be supplied onto the probe surface, so that the inspection by the probe part can be facilitated and speeded up.
[0015]
The rehabilitation tube inspection device according to claim 5 is the rehabilitation tube inspection device according to any one of claims 1 to 4, wherein the rehabilitation tube inspection device includes a device fixing mechanism for fixing the device main body in the rehabilitation tube. It is characterized by that.
[0016]
Thereby, the rehabilitation pipe inspection apparatus main body can be fixed in the rehabilitation pipe. Therefore, the probe surface can be stably brought into contact with the inner wall of the rehabilitation tube, thereby enabling stable detection.
[0017]
The rehabilitation tube inspection device according to claim 6 is the rehabilitation tube inspection device according to any one of claims 1 to 5, wherein the probe portion is held in a state where the probe portion is freely angularly displaceable. Is attached to the probe moving mechanism, and the probe is rehabilitated around the probe surface before the probe surface when the probe is moving to the inner wall of the rehabilitation tube at an inclination angle greater than a predetermined angle. It has a tip height that collides with the inner wall surface of the tube, and is provided with an angle correction protrusion that corrects the contact angle of the probe by the collision.
[0018]
As a result, if the probe section is tilted beyond a predetermined angle, that is, beyond the range in which an appropriate ultrasonic inspection can be performed, the collision with the inner wall surface of the rehabilitation pipe due to the presence of the angle correction protrusion. What is to be done is an angle correcting protrusion existing around the probe surface.
[0019]
Since the probe portion is held by the holding portion so as to be angularly displaceable, the angle of the probe portion is corrected so that the probe portion faces the inner wall surface of the rehabilitation tube at an appropriate angle by the collision of the angle correction protrusion. That is, the probe part axis is brought close to a state perpendicular to the inner wall surface of the rehabilitation pipe. Therefore, even when the probe is moving in the direction of the inner wall surface with the probe being tilted by the probe moving mechanism, correction is automatically made at a more accurate angle until the probe touches. .
[0020]
The rehabilitation tube inspection device according to claim 7 is the rehabilitation tube inspection device according to any one of claims 1 to 6, wherein the probe holding unit is mutually in a spherical surface with the probe unit. It is characterized by being formed as a bearing means for contact.
[0021]
For example, the bearing is configured as a ball bearing, and a convex spherical surface is formed on the probe portion side, and a concave spherical surface is formed on the holding portion side, so that the probe portion can be angularly displaced. The frictional force when changing the angle of the probe is strong enough to keep the probe in an appropriate angle in the normal state, and the angle is corrected by the collision of the angle correction protrusion with the inner wall of the rehabilitation pipe. It is set to a certain level of strength.
[0022]
A rehabilitation tube inspection system according to claim 8 is a rehabilitation tube inspection device according to any one of claims 1 to 7, and a control unit that controls the operation of each part of the rehabilitation tube inspection device from outside the rehabilitation tube, And an ultrasonic inspection apparatus for analyzing and processing transmission / reception data of the ultrasonic pulse signal of the probe unit.
[0023]
Thereby, while operating this rehabilitation tube inspection device, data is processed while inspecting an ultrasonic pulse signal, and comprehensive and stable inspection measurement is possible.
[0024]
The rehabilitation tube inspection method using the rehabilitation tube inspection device according to claim 9 uses a rehabilitation tube inspection device provided with a probe portion having a probe surface for transmitting and receiving ultrasonic pulses in the device body. The rehabilitation pipe inspection method is to move the device body to the measurement location by the travel mechanism, detect the measurement location by the position detection means, and automatically supply the adhesion agent from the adhesion agent supply section to the probe surface of the probe section. The probe is moved by the probe moving mechanism so that the probe surface contacts the inner wall of the rehabilitation tube, the thickness of the rehabilitation material coating is measured, and the probe is moved backward by the probe moving mechanism. After that, the swivel mechanism is swung by a predetermined angle in the inner circumferential direction of the rehabilitation pipe, supplying the adhesive to the probe surface, contacting the probe surface to the inner wall surface of the rehabilitation pipe, measuring the thickness of the coating part, The probe is retracted, the angle detector detects the turning angle of the probe, and multiple turns at the measurement location Over time and performs the series thickness measurement by repeating the above steps.
[0025]
As a result, the rehabilitation tube inspection device can be used to smoothly perform the above series of measurement operations without a human being entering the tube. Thereby, the thickness of the coating | coated part in the various places of a rehabilitation pipe | tube can be test | inspected rapidly without trouble.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments according to the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a schematic configuration of an apparatus main body which is a main part of an inspection apparatus according to the present invention. In the present embodiment, an example in which the rehabilitated pipe FRP portion 14 is formed in the existing pipe 15 as the covering part to form the rehabilitated pipe 11 is shown. This apparatus main body 10 inspects the inside of the rehabilitation tube 11 according to the general principle of ultrasonic flaw detection, detects the transmission of the ultrasonic pulse at the measurement site and the reflection of the transmitted ultrasonic pulse, and the time difference therebetween. From the above, the thickness of the inner wall portion is inspected (for example, see Metal Handbook Rev. 5 edition, Maruzen, pages 446 to 450, edited by the Japan Institute of Metals). Further, it is possible to inspect cracks and the like generated in the inner wall portion from the magnitude and waveform of the reflected ultrasonic pulse.
[0027]
In the rehabilitation tube inspection apparatus according to the present embodiment, a probe unit 12 that transmits and receives ultrasonic pulses is provided on the front side (left side in the figure) of the apparatus body 10. The probe unit 12 performs an inspection in a state where the probe surface 16 at the distal end surface is in contact with the rehabilitated tube FRP unit 14 that is a covering unit. For this reason, a probe moving mechanism 18 for moving the probe 12 to the surface of the FRP unit is provided.
[0028]
FIG. 2 shows an enlarged view of the probe moving mechanism 18. The probe unit moving mechanism 18 is composed of air cylinders 20 and 22, each having an extending part 20-a and 22-a that are extended by air pressure, and this part extends in the length direction of the air cylinders 20 and 22. . The probe 12 is held by the extension 20-a of the air cylinder 20 through the joint 19, and the air cylinder 20 is held by the extension 22-a of the air cylinder 22 through the joint 21. Due to the two-stage structure of the air cylinders 20 and 22, the probe 12 moves toward the surface of the rehabilitation pipe FRP 14 as shown by the two-dot chain line in the figure. 16 can contact the rehabilitation pipe FRP part 14. Note that the probe portion 12 is held by the joint 19 via a spring 23, and the spring portion 23 enables the probe portion 12 to flexibly contact the rehabilitated tube FRP portion 14. That is, even when the contact surface 16 is inclined with respect to the inner wall surface of the rehabilitation pipe FRP portion 14, this is allowed by the deformation of the spring 23, and the probe surface 16 is perpendicular to the inspection surface of the rehabilitation pipe FRP portion 14. Can be contacted.
[0029]
FIG. 3 is a perspective view showing an outline of the probe unit moving mechanism 18. As illustrated, the extending portions 20-a and 22-a have three extending portions 20-a-1 to 23, 22-a-1 to 3 respectively. Of the extension parts 20-a-1 to 23-22-a-1, the extension parts 20-a-2 and 22-a-2 are extended by receiving air pressure, and the other extension parts 20-a- Reference numerals 1, 3, 22-a-1, 3 are guides for stably extending the extending portions 20-a, 22-a. That is, by this guide, the probe unit 12 is linearly extended without bending in the extending direction.
[0030]
Further, as shown in FIG. 1, a swiveling mechanism 30 that turns the probe unit 12 in the inner peripheral direction of the rehabilitating tube 11 is provided to search for an arbitrary position in the inner peripheral direction of the rehabilitating tube 11. The turning mechanism 30 mainly includes a turning mechanism main body 37 that holds a base 36 that holds the air cylinder 22 and turns the pipe in the inner circumferential direction of the pipe, and a turning motor 42 that turns the turning mechanism main body 37.
[0031]
A gear 38 is provided on the outer periphery of the right side of the turning mechanism main body 37, and a gear 40 that meshes with the gear 38 is provided in the turning motor 42. The turning mechanism main body 37 is attached to the outer frame 27 via a bearing 41 so as to be turnable. As described above, the turning mechanism 30 turns the entire probe moving unit 18 and the probe 12. Further, the turning by the turning mechanism 30 is detected by an angle detection unit (encoder) 46 having a gear 44 that meshes with the gear 38 (see FIG. 1). The operation of the probe unit moving mechanism 18 and the turning mechanism 30 is controlled by an external control unit which will be described later with reference to FIG.
[0032]
FIG. 4 schematically shows a state in which the probe unit 12 is turned from the state indicated by the two-dot chain line by a predetermined angle (turning angle) A as viewed from the upper left in FIG. In this way, the inner wall portion is inspected at an arbitrary angular position in the inner circumferential direction of the rehabilitation pipe. The above-mentioned turning is performed by holding the probe surface 16 and the rehabilitation pipe FRP unit 14 in a non-contact state by the probe unit moving mechanism 18. That is, it is also possible to collect information on the thickness of the rehabilitation pipes in the cut-off state.
[0033]
In addition, in order to obtain good ultrasonic pulse data, an adhesive agent supply unit 24 for supplying an adhesive agent directly to the probe surface 16 is provided in the present embodiment (see FIG. 1). The adhesive agent supply unit 24 includes an adhesive agent supply device 28 that is attached to the apparatus main body 10 and stores the adhesive agent therein, and an adhesive agent supply tube 26 that has one end connected to the adhesive agent supply device 28. Yes. Further, the contact agent supply unit 24 has an air supply means to be described later. The air supply means includes an air solenoid valve 34 that controls the injection of air from a pump that supplies compressed air from the outside, and the air solenoid valve. An air supply tube 32 having one end connected to 34 is provided.
[0034]
The tips of the adhesive agent supply tube 26 and the air supply tube 32 are arranged so as to be positioned immediately above the probe surface 16 in a predetermined operation state of the probe unit 12. In this embodiment, the predetermined operation state means that the probe unit 12 is directed vertically upward by the operation of the turning mechanism 30 and the air cylinder 20 and the air cylinder 22 are most contracted by the operation of the probe unit moving mechanism 18. (See the state shown in FIG. 1).
[0035]
Further, the adhesive supply tube 26 and the air supply tube 32 are formed of a flexible member such as rubber. Therefore, when the probe unit 12 extends and moves in the extending direction, for example, the direction indicated by the two-dot chain line in the figure, the probe unit 12 may collide with the adhesive supply tube 26 and the air supply tube 32. The two tubes do not become obstacles to movement by bending.
[0036]
The procedure for attaching the adhesive to the probe surface 16 with this configuration is as follows. First, the probe surface 16 is positioned directly below one end of the air supply tube 32 by the above-described operation (see FIG. 1). Then, air is blown from the air supply tube 32 to the probe surface 16 to remove deposits on the probe surface 16. Next, the adhesive agent is dropped onto the probe surface 16 from the adhesive agent supply tube 26. Thereby, the probe surface 16 is covered with the adhesive. The contact agent eliminates a gap generated between the probe surface 16 and the rehabilitating pipe FRP portion 14 when the probe surface 16 is brought into contact with the inner wall of the pipe, and noise of ultrasonic pulses caused by the existence of the gap. It is a general adhesion agent for erasing.
[0037]
Next, the traveling mechanism 62 for moving the apparatus main body 10 is mainly composed of wheels 54 indicated by broken lines (see FIG. 1). The wheel 54 may be driven by a drive motor (not shown) or connected to another moving device and pulled. With the above configuration, the rehabilitation pipe FRP unit 14 is inspected at an arbitrary position.
[0038]
In the present embodiment, the location of the apparatus main body 10 in the rehabilitation pipe is detected by measuring the moving distance of the apparatus main body 10, and the distance measuring unit 58 shown in FIG. This is done by measuring the distance. The distance measuring unit 58 includes a rotating unit 60. The rotating unit 60 is grounded to the inner wall of the rehabilitating pipe FRP unit 14, and the moving distance of the apparatus main body 10 in the rehabilitating pipe 11 is measured by the rotation.
[0039]
On the other hand, when the probe unit 12 is brought into contact with the rehabilitation tube FRP unit 14 by the probe unit moving mechanism 18, the strength of the contact is adjusted by balancing the forces of the spring 23, the air cylinder 20, and the air cylinder 22. . Further, in order to prevent the apparatus main body 10 from becoming unstable due to the pressing force of the probe unit 12 and being unable to perform accurate measurement, an apparatus fixing mechanism 48 is provided to maintain the apparatus main body 10 in a stable state. . The device fixing mechanism 48 includes an outrigger 52 and an outrigger jack 50 (see FIG. 1), and an extension portion 56 of the outrigger jack 50 extends substantially vertically upward and comes into contact with the rehabilitation pipe FRP portion 14 with a predetermined contact force. .
[0040]
FIG. 5 shows a state where the apparatus main body 10 is regulated by the apparatus fixing mechanism 48 as viewed from the right side of FIG. The extension part 56 of the outrigger jack 50 extends vertically upward and comes into contact with the rehabilitation pipe FRP part 14 as shown by the dotted line in the figure, thereby generating a predetermined contact force.
[0041]
This contact force is transmitted to the outrigger 52 via the joint 51 that supports the outrigger jack 50, and further transmitted to the wheels 54 that support the apparatus main body 10. That is, since a force acts in the direction indicated by the arrow 300 from the outrigger jack extending portion 56 and the wheel 54 to the rehabilitated pipe FRP portion 14, the apparatus main body 10 can be maintained in a stable state. Further, the portion of the wheel 54 that contacts the inner wall of the rehabilitated pipe FRP part 14 is tapered to ensure contact of the wheel 54 with the inner wall of the rehabilitated pipe FRP part 14.
[0042]
FIG. 6 shows an external configuration example of the apparatus main body 10. The apparatus main body 10 configured in this way is inserted into the rehabilitation pipe 11 and the rehabilitation pipe FRP unit 14 is inspected.
[0043]
FIG. 7 is a perspective view showing another embodiment of a configuration in which the probe surface 16 of the rehabilitation tube inspection apparatus according to the present invention is brought into contact with the rehabilitation tube FRP part. In the present embodiment, the probe unit 12 is held by the holding unit 68.
[0044]
FIG. 8 is a side view of the configuration shown in FIG. As shown in the figure, the probe unit 12 is fixed to the joint 19 and held by a holding unit 68 that moves up and down so as to be angularly displaceable. The holding portion 68 includes a so-called ball bearing 70 having a concave spherical surface, and a rotating body 72 having a convex spherical surface is fixed to the probe portion 12 on the probe portion side, and both spherical surfaces are in surface contact. It is attached as follows. For ease of explanation in FIG. 8, the rotating body 72 and the probe portion 12 existing inside the ball bearing 70 are shown by solid lines.
[0045]
Further, the probe unit 12 is provided with an angle correcting protrusion 76 at the upper position. In the present embodiment, the angle correcting protrusion 76 is configured as a cylindrical protrusion. What is important is the height position of the tip of the angle correcting protrusion 76, which is set to be slightly lower than the height position of the probe surface 16 of the probe unit 12.
[0046]
In other words, this height position is a position where the angle correction protrusion 76 effectively acts when the probe 12 is beyond a range where the probe 12 is inclined by a predetermined angle or more and an appropriate inspection can be performed. More specifically, when the probe unit 12 is inclined at a predetermined angle or more, first, the angle correction protrusion 76 collides with the rehabilitation tube FRP unit 14, thereby causing the probe unit 12 to be in contact with the rehabilitation tube FRP unit 14. This is a height position where the angle can be corrected so as to face each other at a more appropriate angle.
[0047]
The operation of the embodiment configured as described above will be described below with reference to FIGS. 9 (A) and 9 (B). FIG. 9 is a view showing a state in which the probe unit 12 held by the holding unit 68 is moved to contact with the rehabilitated tube FRP unit 14 by a probe unit moving mechanism 18 (not shown). For example, as shown in FIG. 6A, when the moving direction of the probe unit 12 is deviated by a predetermined amount or more from the direction orthogonal to the contact surface of the rehabilitating tube FRP unit 14, the angle is corrected first. The protrusion 76 and the rehabilitation pipe FRP part 14 collide. Due to this collision, the rotating body 72 turns a predetermined angle with respect to the ball bearing 70 so as to reduce the angle θ, and the angle is corrected. As a result, the probe 16 can finally be accurately inspected.
[0048]
Further, when the inclination angle θ is smaller than a certain amount, that is, when correction is not necessary, the probe surface 16 does not collide with the angle correction projection 76 and the rehabilitation pipe FRP part 14 first, and the renewal pipe FRP part. 14 is contacted. Even in this case, the angle may be slightly corrected by the contact pressure of the probe surface 16. Thus, in the present embodiment, the probe unit 12 can be accurately and reliably brought into contact with the rehabilitation tube FRP unit 14. For ease of explanation, the rotating body 72 and the probe 12 that exist inside the ball bearing 70 and the probe 12 that exists inside the angle correction projection 76 are shown by solid lines.
[0049]
Next, a method for measuring the thickness of the rehabilitation pipe FRP unit 14 using the apparatus main body 10 shown in FIG. 1 will be described. First, the apparatus main body 10 is caused to travel in the rehabilitation pipe 11 by the traveling mechanism 62 and moved to the measurement location. After the adhesive agent is automatically supplied to the probe surface 16 from the adhesive agent supply unit 24, the probe unit 12 is rotated in the inner circumferential direction of the rehabilitation pipe 11 by the turning mechanism 30 while the probe is detected by the angle detection unit 46. The turning angle of the touch part 12 is detected. Then, the probe surface moving mechanism 18 brings the probe surface 16 into contact with the rehabilitation pipe FRP unit 14 and measures the thickness of the rehabilitation material coating. After the measurement, the probe 12 is moved backward by the probe moving mechanism 18 and turned in the inner circumferential direction of the rehabilitation pipe 11 by the turning mechanism 30, and the above steps are repeated. The method of measuring the thickness of the rehabilitating tube FRP unit 14 is the same even when the apparatus main body 10 includes the holding unit 68 shown in FIG. 7. In this case, the rehabilitating tube FRP unit 14 of the probe surface 16 is moved to. Better contact conditions are achieved more quickly.
[0050]
Next, a rehabilitation pipe inspection system using the above inspection apparatus will be described. FIG. 10 shows an outline of the rehabilitation pipe inspection system according to the present invention. As shown in the figure, a control unit 92 that controls the operation of each part of the above-described rehabilitation tube inspection device from the outside of the rehabilitation tube 11, an ultrasonic inspection device 94 that analyzes transmission / reception data of ultrasonic pulse signals of the probe unit, It is equipped with. Further, an oscilloscope 98 that is a visual confirmation device for ultrasonic pulses and a computer 96 for analyzing and processing the ultrasonic pulse data are provided.
[0051]
The procedure for inspecting the inside of the rehabilitation pipe 11 by this system is as follows. First, the apparatus main body 10 is inserted into the rehabilitation pipe 11 and traveled rightward in the figure by a traction device (not shown). At this time, for example, as shown in the figure, a TV camera 88 can be connected to the front of the apparatus main body 10 and run while visually checking the status of the apparatus main body 10. Operation control of the apparatus main body 10 is performed by the control unit 92 via the cord 90 from the outside of the rehabilitation pipe. The transmission of the ultrasonic pulse described above is performed by input from the control unit 92, and the received ultrasonic pulse with respect to the transmitted ultrasonic pulse is converted into an electrical signal by the probe unit 12 (see FIG. 1). 94.
[0052]
Then, ultrasonic data such as a time difference between the transmission pulse and the reception pulse is sent to the computer 96 via the ultrasonic inspection device 94. The distance of movement of the apparatus body 10 in the rehabilitation pipe 11 in the length direction and the inspection angle of the probe section 12 in the inner direction of the rehabilitation pipe are detected by a distance measurement unit 58 and an angle detection unit 46 provided in the apparatus body 10, respectively. And sent to the computer 96 (see FIG. 1). The data sent to the computer 96 is analyzed in the computer 96, and the waveform of the transmitted ultrasonic pulse and the received ultrasonic pulse is checked by an oscilloscope 98. By such a system, it is possible to perform an ultrasonic inspection of the rehabilitation tube while comprehensively confirming it simultaneously. The electric power for operating these devices is mainly supplied from the power supply box 100.
[0053]
The configuration of the present invention is not limited to the configuration of each of the above embodiments, and various modifications can be made within the scope of the gist of the invention. For example, in the present embodiment, the measurement of the moving distance of the apparatus main body 10 is performed by the distance measuring unit 58, but it is also possible to measure the laser distance from the outside of the rehabilitation tube 11. In addition, the inspection object is not limited to FRP, and it is needless to say that the inspection object can be applied to various rehabilitation pipe coating materials that can be inspected by ultrasonic waves.
[0054]
【The invention's effect】
As described above, according to the rehabilitation pipe inspection apparatus and inspection method according to the present invention, even if the rehabilitation pipe is difficult to check by human means, the thickness of the inner wall portion thereof can be automatically and quickly. Can be inspected. By easily obtaining rehabilitation pipe data in this way, it is possible to contribute to improving the quality of rehabilitation pipe construction.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a schematic configuration of a rehabilitation tube inspection apparatus main body according to the present invention.
2 is an enlarged view of a probe moving mechanism of the rehabilitation tube inspection apparatus main body of FIG. 1; FIG.
FIG. 3 is a perspective view showing an outline of a probe unit moving mechanism.
4 is a plan view showing an outline of a turning of a probe unit and a probe unit moving mechanism as viewed from the left side of FIG. 1;
5 is a plan view showing an outline of operation of the device fixing mechanism as viewed from the right side of FIG. 1; FIG.
FIG. 6 is a perspective view showing an outline of inspecting the rehabilitation pipe FRP portion by inserting the apparatus main body according to the present invention into the rehabilitation pipe.
FIG. 7 is a perspective view showing another embodiment of the configuration in which the probe surface of the rehabilitation tube inspection apparatus according to the present invention is brought into contact with the rehabilitation tube FRP part.
8 is a side view of the configuration shown in FIG.
FIG. 9 is a view showing an aspect in which a probe held by a probe holding ring is moved and brought into contact with a rehabilitation tube FRP by a probe moving mechanism (not shown).
FIG. 10 shows an outline of a rehabilitation pipe inner wall inspection system according to the present invention.
FIG. 11 is a cross-sectional view illustrating a cross section of a rehabilitation pipe.
[Explanation of symbols]
10 Device body
12 Probe section
14 Rehabilitation pipe FRP part
16 Probe surface
18 Probe moving mechanism
24 Adhesive supply section
30 Turning mechanism
46 Angle detector (encoder)
48 Device fixing mechanism
58 Distance measurement unit
60 Rotating part
62 Traveling mechanism
68 Holding part
76 Angle correction protrusion
92 Control unit
94 Ultrasonic inspection equipment
98 oscilloscope

Claims (9)

装置本体に、超音波パルスの発信と受信とを行う探触面を有する探触部と、
前記探触部を移動させて前記探触面を更生管の内壁面に接触させる探触部移動機構と、
前記探触部を前記更生管の内周方向で旋回させる旋回機構と、
前記旋回機構による前記探触部の旋回角度を検知する角度検知部と、
前記内壁面への接触前に前記探触部の前記探触面に密着剤を供給する密着剤供給部と、
を備えたことを特徴とする更生管検査装置。
A probe unit having a probe surface for transmitting and receiving ultrasonic pulses in the apparatus body;
A probe moving mechanism for moving the probe to bring the probe surface into contact with the inner wall surface of the rehabilitation tube;
A turning mechanism for turning the probe in the inner circumferential direction of the rehabilitation pipe;
An angle detector for detecting a turning angle of the probe by the turning mechanism;
An adhesive agent supply unit for supplying an adhesive agent to the probe surface of the probe unit before contacting the inner wall surface;
A rehabilitation pipe inspection device characterized by comprising:
前記装置本体を前記更生管内で移動させる走行機構と、
前記装置本体の前記更生管内における位置を検知する位置検知手段と、
を備えたことを特徴とする請求項1に記載の更生管検査装置。
A traveling mechanism for moving the apparatus body within the rehabilitation pipe;
Position detecting means for detecting the position of the apparatus body in the rehabilitation pipe;
The rehabilitation tube inspection device according to claim 1, comprising:
前記密着剤供給部は、
所定量の密着剤を前記探触面上に滴下付着させる密着剤送り機構を有することを特徴とする請求項1又は2の何れかに記載の更生管検査装置。
The adhesion agent supply unit
The rehabilitation tube inspection apparatus according to claim 1, further comprising an adhesion agent feeding mechanism that drops and adheres a predetermined amount of adhesion agent onto the probe surface.
前記密着剤供給部は、前記密着剤を探触面上に付着させる前に前記探触面にエアーを噴射するエアー供給手段を有することを特徴とする請求項1〜3の何れかに記載の更生管検査装置。The said adhesive agent supply part has an air supply means which injects air to the said probe surface, before making the said adhesive agent adhere on a probe surface, The Claim 1 characterized by the above-mentioned. Rehabilitation tube inspection device. 前記装置本体を、前記更生管内にて固定状態とする、装置固定機構を備えたことを特徴とする請求項1〜4の何れかに記載の更生管検査装置。The rehabilitation pipe inspection apparatus according to claim 1, further comprising an apparatus fixing mechanism that sets the apparatus main body in a fixed state in the rehabilitation pipe. 前記探触部は、
角変位自在な状態にて保持する探触部保持部に保持されて前記探触部移動機構に取り付けられ、
探触面の周囲には、前記探触部が所定角以上の傾斜角で前記更生管内壁面に移動しているときに前記探触面よりも先に前記更生管内壁面に衝突する先端部高さを有し、前記衝突によって前記探触部の接触角を修正する角度修正突出部が設けられたことを特徴とする請求項1〜5の何れかに記載の更生管検査装置。
The probe section is
It is held by the probe holding unit that is held in a freely angular displacement state and is attached to the probe moving mechanism,
Around the probe surface is a height of a tip portion that collides with the inner wall surface of the rehabilitation tube before the probe surface when the probe unit is moved to the inner wall surface of the rehabilitation tube at an inclination angle of a predetermined angle or more. The rehabilitation tube inspection apparatus according to claim 1, further comprising an angle correction protrusion that corrects a contact angle of the probe by the collision.
前記探触部保持部は、前記探触部との間で球状面にて互いに接触する軸受け手段として形成されたことを特徴とする請求項6に記載の更生管検査装置。The rehabilitation tube inspection apparatus according to claim 6, wherein the probe holding unit is formed as a bearing unit that contacts each other on a spherical surface with the probe. 請求項1〜7の何れかに記載の更生管検査装置と、
該更生管検査装置の各部の動作を前記更生管外部から操作制御する制御部と、
前記探触部の超音波パルス信号の送受信データを解析処理する超音波検査装置と、を備えたことを特徴とする更生管検査システム。
The rehabilitation pipe inspection device according to any one of claims 1 to 7,
A controller that controls the operation of each part of the rehabilitation pipe inspection device from the outside of the rehabilitation pipe;
A rehabilitation tube inspection system, comprising: an ultrasonic inspection apparatus that analyzes and transmits transmission / reception data of an ultrasonic pulse signal of the probe section.
装置本体に、超音波パルスの発信と受信とを行う探触面を有する探触部を備えた更生管検査装置を用いた更生管検査方法であって、
前記装置本体を走行機構により前記更生管内を走行させて測定個所まで移動させ、
この測定個所を位置検知手段により検知し、
前記測定個所において密着剤供給部から前記探触部の前記探触面に密着剤を自動供給させ、
前記探触部を探触部移動機構により前記探触面が前記更生管の内壁面に接触するように移動させ、
前記超音波パルスの発信と受信により更生材被覆部の厚さを測定し、
前記探触部移動機構により前記探触部を後退させた後、旋回機構により前記更生管の内周方向に所定の角度旋回させ、
その角度位置で、前記探触面への密着剤の供給、前記更生管の内壁面への前記探触面の接触、前記被覆部厚さの測定、前記探触部の後退を行い、
角度検知部により前記探触部の旋回角度を検知し、
前記測定個所での複数の旋回角度に亘って上記工程を繰り返して上記測定個所での一連の厚さ測定を行うことを特徴とする更生管検査装置を用いた更生管検査方法。
A rehabilitation tube inspection method using a rehabilitation tube inspection device provided with a probe portion having a probe surface that performs transmission and reception of ultrasonic pulses on the device body,
The device body is moved to the measurement location by traveling in the rehabilitation pipe by a traveling mechanism,
This measurement location is detected by the position detection means,
In the measurement location, the adhesive agent is automatically supplied from the adhesive agent supply unit to the probe surface of the probe unit,
The probe is moved by a probe moving mechanism so that the probe surface contacts the inner wall surface of the rehabilitation tube,
Measure the thickness of the rehabilitation material coating by transmitting and receiving the ultrasonic pulse,
After the probe is moved backward by the probe moving mechanism, the turning mechanism is turned by a predetermined angle in the inner circumferential direction of the rehabilitation pipe,
At the angular position, supply of the adhesive to the probe surface, contact of the probe surface to the inner wall surface of the rehabilitation tube, measurement of the covering portion thickness, retreat of the probe portion,
The angle detection unit detects the turning angle of the probe unit,
A rehabilitation pipe inspection method using a rehabilitation pipe inspection apparatus, wherein a series of thickness measurements are performed at the measurement location by repeating the above steps over a plurality of turning angles at the measurement location.
JP2003199108A 2003-04-30 2003-07-18 Rehabilitation tube inspection device and rehabilitation tube inspection system using the device Expired - Fee Related JP3925470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003199108A JP3925470B2 (en) 2003-04-30 2003-07-18 Rehabilitation tube inspection device and rehabilitation tube inspection system using the device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003125141 2003-04-30
JP2003199108A JP3925470B2 (en) 2003-04-30 2003-07-18 Rehabilitation tube inspection device and rehabilitation tube inspection system using the device

Publications (2)

Publication Number Publication Date
JP2005017255A true JP2005017255A (en) 2005-01-20
JP3925470B2 JP3925470B2 (en) 2007-06-06

Family

ID=34196540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199108A Expired - Fee Related JP3925470B2 (en) 2003-04-30 2003-07-18 Rehabilitation tube inspection device and rehabilitation tube inspection system using the device

Country Status (1)

Country Link
JP (1) JP3925470B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122406A (en) * 2003-10-06 2008-05-29 Qi:Kk Thickness measurement instrument for lining layer of pipe or pipe inner face
JP2011137712A (en) * 2009-12-28 2011-07-14 Kawasaki Heavy Ind Ltd Device for measurement of pipe wall thickness
JP2013011447A (en) * 2011-06-28 2013-01-17 Kawasaki Heavy Ind Ltd Pipe wall-thickness measuring apparatus
JP2015143671A (en) * 2013-12-24 2015-08-06 株式会社ベンチャー・アカデミア Inspection method of construction pipe
WO2019004341A1 (en) * 2017-06-29 2019-01-03 国立大学法人東京大学 Ultrasonic thickness measuring device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122406A (en) * 2003-10-06 2008-05-29 Qi:Kk Thickness measurement instrument for lining layer of pipe or pipe inner face
JP4683435B2 (en) * 2003-10-06 2011-05-18 株式会社キュー・アイ Apparatus for measuring the thickness of a pipe or the inner lining layer of a pipe
JP2011137712A (en) * 2009-12-28 2011-07-14 Kawasaki Heavy Ind Ltd Device for measurement of pipe wall thickness
JP2013011447A (en) * 2011-06-28 2013-01-17 Kawasaki Heavy Ind Ltd Pipe wall-thickness measuring apparatus
JP2015143671A (en) * 2013-12-24 2015-08-06 株式会社ベンチャー・アカデミア Inspection method of construction pipe
WO2019004341A1 (en) * 2017-06-29 2019-01-03 国立大学法人東京大学 Ultrasonic thickness measuring device
JP2019011979A (en) * 2017-06-29 2019-01-24 国立大学法人 東京大学 Ultrasonic Thickness Measuring Device
JP7144669B2 (en) 2017-06-29 2022-09-30 国立大学法人 東京大学 Ultrasonic thickness gauge

Also Published As

Publication number Publication date
JP3925470B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
CN102341700B (en) Low profile ultrasound inspection scanner
US20190091811A1 (en) Method and apparatus for measuring a pipe weld joint
JP5649599B2 (en) Ultrasonic inspection apparatus and inspection method thereof
WO2003076916A1 (en) Device and method for inspecting inside of underground pipe line and method of inspecting concrete on inside of underground pipe line for deterioration
ATE488761T1 (en) METHOD AND DEVICE FOR CHECKING A PIPE WELD JOINT USING AN ULTRASONIC PROBE
EP2669672B1 (en) Apparatus and method for inspecting a tube
CN107064307B (en) Ultrasonic phased array imaging detection device and detection method for blowout prevention/blowout prevention pipeline
JP2007187593A (en) Inspection device for piping and inspection method for piping
US20100313664A1 (en) Inspection apparatus for tubular members
JP2007285813A (en) Ultrasonic flaw inspection device and ultrasonic flaw inspection method
JP2004003996A (en) Ultrasonic flaw detection inspecting method and system for tube
JP3925470B2 (en) Rehabilitation tube inspection device and rehabilitation tube inspection system using the device
JP2000073389A (en) Method and device for examining soundness of existing pile
JP2015190893A (en) Conduit inner-diameter inspection device
JP4707594B2 (en) In-pipe inspection device
KR20210058519A (en) A testing device for pipe using ultra-sonic wave c-scan device
JP2002243704A (en) Method and device for inspecting corrosion
EP0981047A3 (en) Method and apparatus for ultrasonic inspection of steel pipes
JP2018009867A (en) Leakage flux flaw detection device
JP2006200906A (en) Scanning flaw inspection device and method
JP3710417B2 (en) Nondestructive inspection method for pipe joints
JP2000249783A (en) Position detection method of in-core pipe welding part and device thereof
JP4174898B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
CN110095526B (en) Transient electromagnetic method probe device
JP3066748U (en) Ultrasonic sensor and flaw detection equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

R150 Certificate of patent or registration of utility model

Ref document number: 3925470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees