JP2005017246A - Method of measuring physical quantity with coordinate and measuring apparatus therefor - Google Patents

Method of measuring physical quantity with coordinate and measuring apparatus therefor Download PDF

Info

Publication number
JP2005017246A
JP2005017246A JP2003186247A JP2003186247A JP2005017246A JP 2005017246 A JP2005017246 A JP 2005017246A JP 2003186247 A JP2003186247 A JP 2003186247A JP 2003186247 A JP2003186247 A JP 2003186247A JP 2005017246 A JP2005017246 A JP 2005017246A
Authority
JP
Japan
Prior art keywords
measurement
measured
coordinates
physical quantity
measurement electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003186247A
Other languages
Japanese (ja)
Inventor
Kazuo Iwane
和郎 岩根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IWANE KENKYUSHO KK
Original Assignee
IWANE KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IWANE KENKYUSHO KK filed Critical IWANE KENKYUSHO KK
Priority to JP2003186247A priority Critical patent/JP2005017246A/en
Publication of JP2005017246A publication Critical patent/JP2005017246A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus capable of measuring physical characteristics concerning a tabular or laminar structure material, causing them to correspond to detailed two-dimensional coordinates and three-dimensional coordinates. <P>SOLUTION: Measuring electrode sections 2A, 2B made of fine wires arranged in parallel are set interposing a material to be measured P between them so that the direction of each fine wire of one electrode section 2A and the direction of each fine wire of the other electrode section 2B may cross at right angles each other, and the coordinates of a crossing which one fine wire of the one electrode section 2A and one fine wire of the other electrode section 2B form, or its closest point are specified and the point is made to be a measuring point. A physical characteristic relating to between both surfaces of the material P corresponding to the coordinates of the position of that measuring point, is measured by currents flowing in the fine wires of the electrode sections 2A, 2B, or the potential between the electrodes. Along with it, measurements are performed at all the crossings of the electrode sections 2A, 2B, and their measurement results are displayed on a surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、計測を目的とする被計測材料の両面の位置座標に対応させて被計測材料自体の物理的特性を検出可能にした座標付き物理量計測方法およびその物理量計測装置に関する。
【0002】
【従来の技術】
西暦2002年、スペースシャトル「コロンビア」号が断熱材の破損が原因とされる空中分解事故を起こしたことは記憶に新しい。この事故に関し、もし翼の断熱材と金属材料の破損や疲労および発熱を翼の面の各座標との対応で計測することができたのであれば、このような事故を未然に防止できたであろうと思われる。こうした点につき、従来では、翼の断熱材や金属材料等の物理的特性を検出する場合、検出器のトランスデューサを計測点に設置して物理的特性の局所的な変化を検出する技術があり、また、翼にかかる応力を測定するにはストレインゲージを使用するものとしている。これは、薄い絶縁体に銅・ニッケル合金等の金属の抵抗体が取り付けられた構造となっており、測定に際し、翼にストレインゲージを貼り付けて行うのであり、翼が歪むと同時にストレインゲージが僅かに圧縮または伸長し、このとき変化したストレインゲージの電気抵抗を電圧信号に変換してアナライザーで分析するものである。
【0003】
【発明が解決しようとする課題】
しかしながら、座標に対応させて翼等の構造体の物理的特性を検出しようとすれば、当該翼の表面に対し検出器のトランスデューサを計測点の数だけ並べて設置しなければならないのである。もしそれを翼等の構造体の材料に付けることを想定すれば、その重量だけで膨大な装置となり、また高額となり、故障のリスクも増加してしまうため実質的には不可能である。例えば、応力を測定するに際し、ストレイゲージを翼に取り付ける場合、計測点の数だけ貼り付けなければならないから、それを貼り付ける作業は膨大で、さらにそのリード線は計測点の略倍の本数となり、しかもその設置間隔は原理的に一つのトランスジューサの大きさで決定されるため高密度の装着は不可能である。さらに、それらのリード線を束ねて計測器まで導くだけでもかなりの重量となり、しかもコストも高額となるから、実験室ではそのリード線が張り巡らされていても使用は可能であるが、現実の環境での使用はほとんど不可能である。
【0004】
そこで本発明は叙上のような従来存した諸事情に鑑み創出されたもので、例えば航空機の翼のように、その破損が人命に関わるような部位の板状もしくは層状等の構造体の材料に関しての物理的特性を詳細な二次元座標および三次元座標と対応させて計測できるようにした座標付き物理量計測方法およびその物理量計測装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上述した課題を解決するため、本発明に係る座標付き物理量計測方法にあっては、複数の平行線で、面状に配列した導電性の細線(リード細線材)で形成して成る計測電極部2A,2Bが被計測材料Pを挟んで、しかも一方の計測電極部2Aの細線の方向と他方の計測電極部2Bの細線の方向とが互いに直交するように設置し、一方の計測電極部2Aの細線の一つと他方の計測電極部2Bの細線の一つとが作る交差点、あるいは最も接近した点の座標を特定して計測点とし、その点(計測点)の位置座標に対応する被計測材料Pの両面間に係わる物理的特性を、計測電極部2A,2Bの細線に流れる電流、または電極間の電位により計測すると共に、計測電極部2A,2Bの全交差点を計測し、その計測結果を面上に表現して表示するものとできる。
計測に際し、両面細線構造に形成した被計測材料Pを使用することができ、また、計測は、各計測点のインピーダンスを単数または複数の周波数で計測するものとしたり、各計測点の異種金属接触部における熱起電力、磁界の中での電磁誘導起電力、電池の原理となる化学起電力、光照射で発生する光起電力等の起電力を計測するものとしたりすることができる。
また、本発明に係る座標付き物理量計測装置にあっては、平行に配列した導電性の細線(リード細線材)で形成され、被計測材料Pを挟んで、しかも細線の方向が被計測材料Pを介して互いに直交するように設置して成る一対の計測電極部2A,2Bと、一方の計測電極部2Aの細線の一つ、他方の計測電極部2Bの細線の一つのそれぞれが作る交差点、あるいは最も接近した点の座標を特定して計測点とする座標位置決定装置3と、その点(計測点)の位置座標に対応する被計測材料Pの両面間に係わる物理的特性を、計測電極部2A,2Bの細線に送る電気信号と被計測材料Pとの間に生じる電気相互作用で発生する電気信号により計測する計測装置4と、計測電極部2A,2Bの計測点を順次移動拡張して全交差点を計測する座標走査装置5と、その計測結果を面上に表現して表示する表示装置6とを備えて成るものである。
計測電極部2A,2Bを被計測材料Pの表面と共に被計測材料Pの中に層状に埋め込み、且つ各計測電極部2A,2Bの細線の方向が互いに直交するように設置したものとできる。
被計測材料Pは、自体を両面細線構造として形成して成るものとし、また計測装置4は、計測時に各計測点のインピーダンスを単数または複数の周波数で計測するものとしたり、あるいは計測時に各計測点の起電力を計測するものとしたり、さらには計測時に前記座標位置決定装置3によって各計測点の断線箇所を決定するものとしたり、加えて計測時に各計測点と共に、それと隣り合うラインとの間、例えば細線間同士でも計測可能としたりするものとして構成することができる。
【0006】
以上のように構成された本発明に係る座標付き物理量計測方法およびその物理量計測装置にあって、一対の計測電極部2A,2Bは、それぞれの細線の方向が被計測材料Pを介して互いに直交するように設置され、計測電極部2A,2Bの細線に流れる電流、または電極間の電位により、これら交差点の位置座標に対応する被計測材料Pの両面間に係わる物理的特性を計測させる。例えば計測電極部2A,2Bは、被計測材料Pを介しての電磁誘導的結合状態が可能となり、両計測電極部2A,2Bによって形成される交差点間の直流電気抵抗、インピーダンス等を計測可能にさせ、被計測材料Pの破損状況などを詳細な位置座標と共に取得させる。
計測装置4は、計測電極部2A,2Bの細線に電気信号を送り、被計測材料Pから電磁誘導的な電気信号として受信させることにより、座標位置決定装置3によって特定された位置座標に対応する被計測材料Pの両面間に係わる金属疲労・材料の変質・傷・変形・破損・温度・圧力・応力等の物理的特性を計測させる。座標走査装置5は、座標位置決定装置3、計測装置4それぞれを同時に制御して、計測電極部2A,2Bの計測点を順次移動拡張させ、全交差点を順次計測させる。
表示装置6は、前記した計測結果を面上に表現して二次元表示あるいは三次元表示させる。
被計測材料Pの中に層状に埋め込み、且つ細線の方向が互いに直交するように設置した計測電極部2A,2Bは、隣り合うそれぞれの計測電極部2A,2Bの計測により、被計測材料Pの物理量の三次元計測を可能にさせる。
両面を細線構造に形成した被計測材料P自体は、当該被計測材料Pに対する計測電極部2A,2Bの設置の手間を大幅に削減させる。
計測装置4は、計測時に、各計測点のインピーダンスを単数または複数の周波数で計測することで目的の物理量の変化等を計測させ、また計測時に、各計測点の起電力を計測することで目的の物理量の熱的、電気・磁気的、化学的、光学的等の物性変化を計測させ、さらに計測時に、各計測点の断線箇所を決定することで、材料の破損箇所を計測させる。しかも計測時に、各計測点のみならず、それと隣り合うラインとの間でも計測させることで、物理量の変化の位置的相関を解析可能にさせる。
【0007】
【発明の実施の形態】
以下図面を参照して本発明の一実施の形態を説明すると、図において示される符号1は、被計測材料Pの両面間に係わる例えば金属疲労・材料の変質・傷・変形・破損・温度・圧力・応力等の物理的特性を当該被計測材料Pの両面の位置座標に対応させて検出するための座標付き物理量計測装置である。尚、被計測材料Pとしては、例えばコンクリート材・金属材・誘電体材・半導体材・木材・ガラス材・プラスチックス材等の個体材料、液体、気体等であってもよく、これら両面が平行細線で挟まれて存在している殆どの被計測材料Pの上記したような種々の物理量を座標付きで容易に計測できるものとしてある。
【0008】
物理量計測装置1は、図1に示すように、例えば航空機の翼等の不図示の構造体における板状構造もしくは層状構造の被計測材料Pの表裏等の両面にそれぞれ付設される一対の計測電極部2A,2Bと、被計測材料Pの表裏両面における座標を特定して計測点とする座標位置決定装置3と、計測電極部2A,2Bの細線に流れる電流、または計測電極部2A,2B間の電位等により、計測点の位置座標に対応する被計測材料Pの表裏両面間に係わる物理的特性を計測する計測装置4と、計測電極部2A,2Bの計測点の全てにわたって計測する座標走査装置5と、その計測結果を面上に表現して二次元的あるいは三次元的に表示する表示装置6とを備えて成る。
【0009】
計測電極部2A,2Bは、例えば格子状に平行に配列した導電性の細線(リード細線材)で形成され、しかも細線相互間の間隔は例えばミリ間隔の単位で均一の距離を保つように形成されている。そして被計測材料Pを両測電極部2A,2Bで挟み込むと共に、細線の方向が被計測材料Pを介して互いに直交するように設置して成る。具体的には、例えば航空機の翼等の構造体の最終加工工程で、当該構造体の所定の箇所における被計測材料Pの両面に、初めから平行配列の細線をそれぞれが当該被計測材料Pを挟んで間接的に交差するように一体化して埋め込むものとし、その交差点を計測点として、被計測材料Pの物理量を計測することができるようにしてある。また被計測材料Pが金属である場合には、面上に加工した平行配列の細線を製造し、それを目的の被計測材料Pの両面に直接貼り付けることで、その交差点を計測点として、被計測材料Pの物理量を計測することができるようにしてある。また、この交差点は二次元座標を意味し、外部から二次元座標を走査することで、任意の地点の情報を指定し、全面についても計測し、それを二次元に表示することができるものとしてある。
【0010】
尚、計測電極部2A,2Bとなる金属製の細線を被覆して使用する場合とそのまま露出した状態で使用する場合が考えられるが、金属製の被計測材料Pの中に埋め込んだり、貼り付けたりする場合は被覆が必要であり、その場合は例えば高融点ガラスまたは高融点エポキシ樹脂等による被覆が適している。
【0011】
また、板状でない厚みのある例えばコンクリートブロック等の被計測材料Pの場合は、計測電極部2A,2Bを被計測材料Pの表面と共に被計測材料Pの中にも層状に埋め込み、且つ各計測電極部2A,2Bの細線の方向が互いに直交するように設置することで、被計測材料Pの三次元的な計測ができるようにしても良い。
【0012】
計測装置4は、計測点の位置座標に対応する被計測材料Pの両面間に係わる物理的特性を、計測電極部2A,2Bの細線に送る電気信号と被計測材料Pとの間に生じる電気相互作用で発生する電気信号により計測するものとしてある。例えば計測時に、各計測点、すなわち計測電極部2A,2Bの細線同士が被計測材料Pを介して間接的に交差した2点間のインピーダンスを単数または複数の周波数で計測することで目的の物理量の変化等を計測させるために、高周波電圧または直流電圧の発生器、インピーダンスまたは直流抵抗の計測器を備えたものとしてある。そしてこの計測装置4は、低インピーダンスのリード線8を介して計測電極部2A,2Bの細線毎に電気的に接続されており、選択された位置座標に対応する被計測材料Pの両面間に係わる物理的特性を、計測電極部2A,2Bの各細線に電気信号を送り、このとき被計測材料Pから電磁誘導的に発生する電気信号を各細線で受信させることにより計測するものとしてある。しかも計測時に各交差する2点間と共に、それと隣り合うラインとの間、例えば細線間同士でも計測可能としてある。このように被計測材料Pによって電磁誘導的に発生する電気信号の中に被計測材料Pの物理的特性の様々な情報が含まれているのである。
【0013】
また、計測装置4は、異種の金属の接触で形成する熱電対が、任意の温度環境下に置かれた際に発生する熱起電力、時間的に変化する磁界の中に伝導体を置くことで発生する電磁誘導による起電力、電池等の原理となるイオン化傾向による化学起電力、光照射で、互いにエネルギーギャップによって隔てられた価電子帯から伝導電子帯に電子が励起されたり、伝導電子帯内の電子が光の振動電場で加速されたりする等による光起電力等の各種の起電力を計測可能としてある。例えば、計測電極部2A,2Bの細線となる金属の材質を適切に選択することで熱起電力を計測することができ、計測電極部2A,2B自体を熱電対として作用させることで被計測材料P全体の二次元、三次元的な温度分布の計測も可能となるようにしてある。
【0014】
尚、前記したリード線8自体は、計測電極部2A,2Bの一端に設けられたインターフェースに接続することで全細線を計測装置4の端子に電気的に導通させるようにしても良い。こうすることで計測が必要となるときのみリード線8をインターフェースに接続して計測装置4と計測電極部2A,2Bとを電気的に接続した状態にすれば良い。
【0015】
座標位置決定装置3は、被計測材料Pの表面側に付設されている計測電極部2Aの細線の一つと、裏面側に付設されている計測電極部2Bの細線の一つとが作る交差点、あるいは最も接近した点の座標を特定して計測点とするように計測装置4を制御するものである。すなわち、一方の計測電極部2AをX面、他方の計測電極部2BをY面とすれば、X面の各細線は各X座標に相当し、Y面の各細線は各Y座標に相当するものとなって、通電中のXとYとの交点座標が計測点となるように計測装置4を制御する。
【0016】
座標走査装置5は、計測電極部2A,2Bの計測点をすべての交差点にわたって順次移動拡張してすべての交差点を計測するものである。すなわち、図2に示すような、例えばスイッチのタイミングを決める信号発生器とスイッチの役割を果たすトランジスタとの配列から構成された電子スイッチ装置7による座標走査装置5の電子的切替動作によって座標位置決定装置3を制御する。具体的には、電子スイッチ装置7に配列されたトランジスタ列に順番にON/OFF信号を送ることにより、計測電極部2Aの一つである例えばX面側の各細線うち一つの細線を計測装置4に導通させた状態としておき、一方、計測電極部2Bの他の一つであるY面側の各細線の計測装置4への導通状態を端から順にスウイープさせることで、XYステージの1ライン(X1,Yn)が決定して計測され、この動作をX面の各細線(Xn)毎に順次行うことで、(Xn,Yn)座標全体、すなわち全交点に係る被計測材料Pの物理量が二次元データとして計測されるものとしてある。
【0017】
尚、本実施の形態においては、座標走査装置5を使用することで、全交差点を走査しながら順次計測しているが、座標走査装置5による走査を行わずに、計測電極部2A,2Bの各計測点における電位を直接もしくは間接に同時に計測し、これらの計測値毎に表示装置6に表示させることも可能としてある。
【0018】
また、二次元配列である両面交差点を被計測材料P内に重ねて層として設置使用することで、三次元座標での計測も可能であり、この場合には表示装置6に三次元表示させるようにする。
【0019】
次に、本実施の形態に係る構成の使用方法、動作原理の一例について説明する。先ず、計測装置4と計測電極部2A,2Bとを電気的に接続した状態にしておく。被計測材料Pの計測に際し、被計測材料Pの両面に設置される細線のそれぞれが計測電極部2A,2Bのステージ面となって、高周波電圧または直流電圧の発生器、インピーダンスまたは直流抵抗の計測器を備えた計測装置4による送受信号の解析データに基づき被計測材料Pの物理的特性およびその変化等を検知する。
【0020】
このとき両面の細線は互いに直交しているが、直接交差接触しておらず被計測材料Pを介して間接的に交差することで電磁誘導的には結合した状態となり、この交差点に対応する座標位置での被計測材料Pのインピーダンス、容量成分、リアクタンス成分、抵抗成分等を計測してデータ解析する。また解析データは、被計測材料Pの正常値である基礎データを計測装置4に予め記憶しておき、この基礎データとの比較によって物理的特性およびその変化等を解析する。また、計測電極部2A,2B自体を熱電対として作用させることで被計測材料P全体の二次元的、三次元的な温度分布の計測も可能となる。
【0021】
被計測材料Pの物理量を二次元的に計測するに際し、座標走査装置5の電子的切替動作によって座標位置決定装置3を制御する。すなわち、計測電極部2Aの一つである例えばX面側の各細線うち一つの細線を計測装置4に導通した状態としておき、一方、計測電極部2Bの他の一つであるY面側の各細線の計測装置4への導通状態を端から順にスウイープさせることで一つの交差点ずつのインピーダンスを順々に計測する。こうすることでXYステージの1ライン(X1,Yn)が決定して計測される。但し、nは細線の本数である。そしてこの動作をX面の各細線(Xn)毎に順次行うことで、(Xn,Yn)座標全体、すなわち全交点に係る被計測材料Pの物理量を二次元的に計測する。
【0022】
もし、被計測材料Pの中に材料破損により計測電極部2A,2Bの細線の一部分に断線があれば、明らかにその点のインピーダンスが計測できなくなるため、断線箇所が特定される。
【0023】
【発明の効果】
以上説明したように本発明の構成によれば、例えば航空機の翼のように、その破損が人命に関わるような部位の板状もしくは層状等の構造体の材料すなわち被計測材料Pに関しての物理的特性を詳細な二次元座標および三次元座標と対応させて計測することができる。
【0024】
すなわちこれは本発明に係る座標付き物理量計測方法が、計測電極部2A,2Bが被計測材料Pを挟んで、しかも両計測電極部2A,2Bの細線の方向が互いに直交するように設置し、一方の計測電極部2Aの細線の一つと他方の計測電極部2Bの細線の一つとが作る交差点、あるいは最も接近した点の座標を特定して計測点としたからであり、これにより、例えば航空機の翼等の、その破損が直接人命に関わるような重要箇所に利用することができ、効果を発揮する。また、計測電極部2A,2B自体を橋梁などの鉄骨構造体やコンクリート構造体の内部に埋め込むことで、クラックの発生状況をその三次元的位置付きで、その経年変化を計測することができる。
【0025】
また、従来では、面上で座標と対応させて物理量を計測するためにトランスジューサを測定点の間隔に並べる方法しかなく、実質大変な作業で且つ故障のリスクが高く、しかも座標精度は極めておおざっぱであったのに対し、本発明に係る座標付き物理量計測装置によれば、被計測材料Pを挟んで、しかも細線の方向が被計測材料Pを介して互いに直交するように設置して成る一対の計測電極部2A,2Bと、交差点あるいは最も接近した点の座標を特定して計測点とする座標位置決定装置3と、その点の位置座標に対応する被計測材料Pの両面間に係わる物理的特性を電気信号により計測する計測装置4と、計測電極部2A,2Bのすべての交差点を走査して計測する座標走査装置5と、表示装置6とを備えて成るので、計測電極部2A,2Bの細線の交差点の数だけの計測点が例えばミリ単位の座標値と共に得られるのである。さらに、この両面交差点は二次元配列であるから、検出場所を示す座標も二次元座標となるが、これを重ねて層として使用することで、三次元座標での計測も可能となる。
【0026】
計測電極部2A,2Bを被計測材料Pの表面と共に被計測材料Pの中に層状に埋め込み、且つ各計測電極部2A,2Bの細線の方向が互いに直交するように設置したので、材料内部や表面の亀裂、疲労等については、各交差点をデジタルで走査し、各交差点のインピーダンスを高速で測定することで、座標と共にその三次元的な特性を一気に容易に取得することができる。具体的には、コンクリートブロック中に各計測電極部2A,2Bを埋め込むことで、例えばクラックの発生状況等の計測精度が向上する。
【0027】
被計測材料Pは、自体を両面細線構造として形成して成るので、当該被計測材料Pに対する計測電極部2A,2Bの設置の手間を大幅に削減することができる。また計測の対象となる被計測材料Pとしては、例えばコンクリート材・金属材・誘電体材・半導体材・木材・ガラス材・プラスチックス材等の個体材料、液体、気体等であってもよく、これら両面が平行細線で挟まれて存在している殆どの材料の例えば金属疲労・材料の変質・傷・変形・破損・温度・圧力・応力等の物理量を座標付きで容易に計測することができる。例えば具体的には、宇宙での用途や特に安全が求められる場合のように、コストに関係なく性能の良いものを求める場合等は、はじめから被計測材料Pと一体化して製造することで、計測部位の座標と共にその計測部位における三次元的な物理的特性を一気に容易に取得することができる。
【0028】
計測装置4は、計測時に各計測点のインピーダンスを単数または複数の周波数で計測するものとしたので、各交差点である計測点のインピーダンスを高速で測定することで、座標と共にその物理量の二次元的な特性を一気に容易に且つ正確に取得することができる。
【0029】
計測装置4による計測は、各計測点の異種金属接触部における熱起電力、磁界の中での電磁誘導起電力、電池の原理となる化学起電力、光照射で発生する光起電力等の起電力を計測するものとしたので、目的の物理量の熱的、電気・磁気的、化学的、光学的等の物性変化を容易に計測可能とする。例えば熱起電力の場合では、計測電極部2A,2B自体を熱電対として作用させることで被計測材料Pの三次元的な内部温度もしくは二次元的な表面温度の分布が容易且つ的確に得られる。
【0030】
計測装置4は、計測時に前記座標位置決定装置3によって各計測点の断線箇所を決定するものとしたので、被計測材料P中の変形、傷等の局所的な破損を容易に検知することができる。
【0031】
計測装置4は、計測時に各計測点と共に、それと隣り合うラインとの間でも計測可能としたので、設定時の各公差点のインピーダンスとそれと隣り合うラインのインピーダンスとを比較することで、変化地点の地図がその変化量と共に詳細に表示することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示す構成図である。
【図2】同じく電子スイッチ装置を示す構成図である。
【符号の説明】
P…被計測材料
1…物理量計測装置 2A,2B…計測電極部
3…座標位置決定装置 4…計測装置
5…座標走査装置 6…表示装置
7…電子スイッチ装置 8…リード線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a physical quantity measuring method with coordinates, and a physical quantity measuring apparatus for the physical quantity measuring apparatus capable of detecting the physical characteristics of the measured material itself in correspondence with the position coordinates on both sides of the measured material intended for measurement.
[0002]
[Prior art]
In 2002 AD, the space shuttle “Colombia” caused an aerial decomposition accident caused by damage to insulation. Regarding this accident, if it was possible to measure the damage, fatigue and heat generation of the wing insulation and metal materials in correspondence with the coordinates of the wing surface, such an accident could be prevented in advance. It seems to be. With regard to these points, conventionally, when detecting physical characteristics such as blade insulation and metal materials, there is a technology to detect local changes in physical characteristics by installing a transducer of the detector at the measurement point, A strain gauge is used to measure the stress applied to the blade. This is a structure in which a metal resistor such as copper or nickel alloy is attached to a thin insulator, and a strain gauge is attached to the wing for measurement. The electrical resistance of the strain gauge that has been slightly compressed or expanded is converted into a voltage signal and analyzed by an analyzer.
[0003]
[Problems to be solved by the invention]
However, if the physical characteristics of a structure such as a wing are to be detected in correspondence with the coordinates, the transducers of the detector must be arranged side by side by the number of measurement points on the surface of the wing. If it is assumed that it is attached to the material of a structure such as a wing, it is practically impossible because it becomes an enormous device only by its weight, becomes expensive, and increases the risk of failure. For example, when measuring the stress, when attaching a stray gauge to the wing, it is necessary to affix as many measurement points as possible, so the work of attaching them is enormous, and the number of lead wires is approximately twice the number of measurement points. Moreover, since the installation interval is determined by the size of one transducer in principle, high-density mounting is impossible. Furthermore, even if those lead wires are bundled and led to the measuring instrument, it becomes a considerable weight and the cost is also high, so it can be used even if the lead wires are stretched in the laboratory, but in reality Use in the environment is almost impossible.
[0004]
Therefore, the present invention was created in view of various circumstances that existed in the past, such as a plate-like or layered structure material such as an aircraft wing whose damage is related to human life. It is an object of the present invention to provide a physical quantity measuring method with coordinates and a physical quantity measuring apparatus capable of measuring physical characteristics relating to the coordinates in correspondence with detailed two-dimensional coordinates and three-dimensional coordinates.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, in the physical quantity measuring method with coordinates according to the present invention, a measurement electrode unit formed by a plurality of parallel lines and conductive thin wires (lead fine wires) arranged in a planar shape. 2A and 2B sandwich the material P to be measured, and the direction of the fine line of one measurement electrode part 2A and the direction of the fine line of the other measurement electrode part 2B are orthogonal to each other, and one measurement electrode part 2A The material to be measured corresponding to the position coordinates of the point (measurement point) by specifying the coordinates of the intersection or the closest point formed by one of the fine lines and one of the thin lines of the other measurement electrode unit 2B The physical characteristics related to both sides of P are measured by the current flowing through the thin wires of the measurement electrode portions 2A and 2B or the potential between the electrodes, and all intersections of the measurement electrode portions 2A and 2B are measured, and the measurement results are obtained. To express and display on the surface Kill.
In the measurement, the material P to be measured formed in the double-sided thin wire structure can be used. In addition, the measurement can be performed by measuring the impedance of each measurement point at a single frequency or a plurality of frequencies. It is possible to measure an electromotive force such as a thermoelectromotive force in a portion, an electromagnetic induction electromotive force in a magnetic field, a chemical electromotive force that is a principle of a battery, or a photoelectromotive force generated by light irradiation.
Further, in the physical quantity measuring apparatus with coordinates according to the present invention, it is formed of conductive fine wires (lead fine wire materials) arranged in parallel, the material to be measured P is sandwiched, and the direction of the thin line is the material to be measured P A pair of measurement electrode portions 2A, 2B installed so as to be orthogonal to each other, an intersection formed by one of the thin wires of one measurement electrode portion 2A and one of the thin wires of the other measurement electrode portion 2B, Alternatively, the physical characteristics related to both surfaces of the coordinate position determining device 3 that specifies the coordinates of the closest point and sets the measurement point as the measurement point and the material P to be measured corresponding to the position coordinate of the point (measurement point) are measured electrodes. The measuring device 4 for measuring by the electric signal generated by the electric signal generated between the electric signal sent to the thin lines of the parts 2A and 2B and the material P to be measured and the measuring points of the measuring electrode parts 2A and 2B are moved and expanded sequentially. Coordinate scan to measure all intersections A location 5, those comprising a display device 6 for displaying represent the measurement results on the surface.
The measurement electrode portions 2A and 2B may be embedded in the measurement target material P together with the surface of the measurement target material P in a layered manner, and installed so that the directions of the thin lines of the measurement electrode portions 2A and 2B are orthogonal to each other.
The material P to be measured is formed as a double-sided thin wire structure itself, and the measuring device 4 measures the impedance at each measurement point at one or a plurality of frequencies at the time of measurement, or measures each at the time of measurement. It is assumed that the electromotive force of the point is measured, and further, the broken position of each measurement point is determined by the coordinate position determining device 3 at the time of measurement. In addition, each measurement point and the adjacent line are measured at the time of measurement. For example, the measurement can be performed even between thin lines.
[0006]
In the physical quantity measuring method with coordinates and the physical quantity measuring apparatus according to the present invention configured as described above, the pair of measurement electrode portions 2A and 2B are perpendicular to each other through the material P to be measured. The physical characteristics related to both surfaces of the material P to be measured corresponding to the position coordinates of these intersections are measured by the current flowing through the thin wires of the measurement electrode portions 2A and 2B or the potential between the electrodes. For example, the measurement electrode portions 2A and 2B can be in an electromagnetic inductive coupling state via the material P to be measured, and can measure DC electric resistance, impedance, etc. between the intersections formed by the two measurement electrode portions 2A and 2B. The damage status of the material P to be measured is acquired together with the detailed position coordinates.
The measuring device 4 corresponds to the position coordinates specified by the coordinate position determining device 3 by sending an electric signal to the thin wires of the measuring electrode portions 2A and 2B and receiving the electric signal from the measured material P as an electromagnetic inductive electric signal. Physical properties such as metal fatigue, material alteration, scratches, deformation, breakage, temperature, pressure, stress, etc. between both surfaces of the material P to be measured are measured. The coordinate scanning device 5 simultaneously controls the coordinate position determination device 3 and the measurement device 4 to sequentially move and expand the measurement points of the measurement electrode units 2A and 2B, and sequentially measure all the intersections.
The display device 6 expresses the above-described measurement results on a surface and displays them two-dimensionally or three-dimensionally.
The measurement electrode portions 2A and 2B that are embedded in the measurement target material P in layers and are arranged so that the directions of the thin lines are orthogonal to each other are measured by the measurement electrode portions 2A and 2B adjacent to each other. Enables three-dimensional measurement of physical quantities.
The material to be measured P itself having a thin line structure on both sides greatly reduces the labor of installing the measurement electrode portions 2A and 2B on the material to be measured P.
The measurement device 4 measures the change in the target physical quantity by measuring the impedance of each measurement point at one or more frequencies at the time of measurement, and measures the electromotive force at each measurement point at the time of measurement. Measurement of physical property changes such as thermal, electrical / magnetic, chemical, optical, etc., and determining the breakage location of each measurement point at the time of measurement. Moreover, at the time of measurement, measurement is performed not only at each measurement point, but also between adjacent lines, thereby making it possible to analyze the positional correlation of changes in physical quantities.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings. Reference numeral 1 shown in the figure indicates, for example, metal fatigue, material alteration, scratches, deformation, breakage, temperature, and the like related to both surfaces of the material P to be measured. This is a physical quantity measuring device with coordinates for detecting physical characteristics such as pressure and stress in correspondence with the position coordinates on both surfaces of the material P to be measured. The material to be measured P may be solid material such as concrete material, metal material, dielectric material, semiconductor material, wood, glass material, plastics material, liquid, gas, etc., and both surfaces are parallel. Various physical quantities as described above of most of the material P to be measured that are sandwiched between thin lines can be easily measured with coordinates.
[0008]
As shown in FIG. 1, the physical quantity measuring device 1 includes a pair of measurement electrodes attached to both the front and back surfaces of a measured material P having a plate-like structure or a layered structure in a structure (not shown) such as an aircraft wing, for example. 2A, 2B, the coordinate position determining device 3 that specifies the coordinates on both the front and back surfaces of the material P to be measured and sets the measurement points, and the current flowing through the thin lines of the measurement electrode units 2A, 2B, or between the measurement electrode units 2A, 2B A coordinate measuring device 4 for measuring the physical characteristics related to the front and back surfaces of the material P to be measured corresponding to the position coordinates of the measurement point and the measurement points of the measurement electrode units 2A and 2B. The apparatus 5 includes a display device 6 that displays the measurement result on a surface and displays it two-dimensionally or three-dimensionally.
[0009]
The measurement electrode portions 2A and 2B are formed of, for example, conductive thin wires (lead thin wire members) arranged in parallel in a lattice shape, and the distance between the thin wires is formed so as to maintain a uniform distance in units of, for example, millimeters. Has been. The material to be measured P is sandwiched between the two measuring electrode portions 2A and 2B, and the thin lines are installed so that the directions of the thin lines are orthogonal to each other via the material to be measured P. Specifically, in a final processing step of a structure such as an aircraft wing, for example, fine lines in parallel array are respectively provided on both surfaces of the material P to be measured at predetermined positions of the structure from the beginning. It is assumed that they are integrated and embedded so as to indirectly intersect with each other, and the physical quantity of the material P to be measured can be measured using the intersection as a measurement point. Further, when the material P to be measured is a metal, a thin wire having a parallel arrangement processed on the surface is manufactured, and directly pasted on both surfaces of the target material P to be measured, and the intersection is used as a measurement point. The physical quantity of the material P to be measured can be measured. In addition, this intersection means two-dimensional coordinates. By scanning the two-dimensional coordinates from the outside, information on arbitrary points can be specified, the entire surface can be measured, and it can be displayed in two dimensions. is there.
[0010]
In addition, it is conceivable to use a metal thin wire that covers the measurement electrode portions 2A and 2B, or to use it as it is exposed, but it is embedded in the metal measurement material P or pasted. In such a case, coating is necessary. In that case, coating with high melting point glass or high melting point epoxy resin is suitable.
[0011]
Further, in the case of a material to be measured P such as a concrete block having a thickness that is not plate-like, the measurement electrode portions 2A and 2B are embedded in the material to be measured P together with the surface of the material to be measured P, and each measurement is performed. By installing the electrode portions 2A and 2B so that the directions of the thin lines are orthogonal to each other, the measurement target material P may be measured three-dimensionally.
[0012]
The measuring device 4 generates an electrical signal generated between an electrical signal to be sent to the thin line of the measurement electrode portions 2A and 2B and a physical property related to both surfaces of the measured material P corresponding to the position coordinates of the measurement point. The measurement is based on electrical signals generated by the interaction. For example, at the time of measurement, the target physical quantity is obtained by measuring the impedance between two points at which each measurement point, that is, the thin wires of the measurement electrode portions 2A and 2B intersects indirectly via the material P to be measured at a single frequency or a plurality of frequencies. In order to measure a change in the frequency, a high frequency voltage or DC voltage generator, an impedance or DC resistance measuring instrument is provided. The measuring device 4 is electrically connected to each of the thin wires of the measurement electrode portions 2A and 2B via low-impedance lead wires 8, and between both surfaces of the material P to be measured corresponding to the selected position coordinates. The physical characteristics are measured by sending an electric signal to each thin wire of the measurement electrode portions 2A and 2B and receiving an electric signal generated electromagnetically from the material to be measured P at this time by each thin wire. Moreover, it is possible to measure not only between two intersecting points at the time of measurement but also between adjacent lines, for example, between thin lines. Thus, various information on the physical characteristics of the material to be measured P is included in the electrical signal generated electromagnetically by the material to be measured P.
[0013]
In addition, the measuring device 4 places a conductor in a thermoelectromotive force generated when a thermocouple formed by contact of dissimilar metals is placed in an arbitrary temperature environment and a magnetic field that changes with time. Electrons induced by electromagnetic induction, chemical electromotive force due to ionization tendency that is the principle of batteries, etc., light irradiation, and electrons are excited from the valence band separated from each other by the energy gap to the conduction electron band. It is possible to measure various electromotive forces such as a photovoltaic force caused by the acceleration of electrons in the electric field by the oscillating electric field of light. For example, the thermoelectromotive force can be measured by appropriately selecting the material of the metal that becomes the thin wire of the measurement electrode portions 2A and 2B, and the material to be measured can be obtained by causing the measurement electrode portions 2A and 2B themselves to act as thermocouples. Measurement of the two-dimensional and three-dimensional temperature distribution of the entire P is also possible.
[0014]
The above-described lead wire 8 itself may be electrically connected to the terminal of the measuring device 4 by connecting to the interface provided at one end of the measuring electrode portions 2A and 2B. In this way, only when measurement is required, the lead wire 8 is connected to the interface so that the measurement device 4 and the measurement electrode portions 2A and 2B are electrically connected.
[0015]
The coordinate position determining device 3 is an intersection formed by one of the thin lines of the measurement electrode unit 2A attached to the surface side of the material P to be measured and one of the thin lines of the measurement electrode unit 2B attached to the back side, or The measuring device 4 is controlled so that the coordinates of the closest point are specified and used as a measuring point. That is, if one measurement electrode portion 2A is the X plane and the other measurement electrode portion 2B is the Y plane, each thin line on the X plane corresponds to each X coordinate, and each thin line on the Y plane corresponds to each Y coordinate. Thus, the measuring device 4 is controlled so that the intersection coordinates of X and Y being energized become the measurement points.
[0016]
The coordinate scanning device 5 sequentially moves and expands the measurement points of the measurement electrode units 2A and 2B over all the intersections and measures all the intersections. That is, as shown in FIG. 2, for example, the coordinate position is determined by the electronic switching operation of the coordinate scanning device 5 by the electronic switch device 7 composed of an array of a signal generator for determining the switch timing and a transistor serving as a switch. The apparatus 3 is controlled. Specifically, by sending an ON / OFF signal to the transistor rows arranged in the electronic switch device 7 in order, one of the thin wires on the X plane side, for example, one of the measurement electrode portions 2A is measured. 4 on one side of the XY stage by sweeping the conduction state from the end to the measuring device 4 of each thin wire on the Y plane side, which is another one of the measurement electrode unit 2B. (X1, Yn) is determined and measured, and this operation is sequentially performed for each thin line (Xn) on the X plane, so that the physical quantity of the material P to be measured relating to the entire (Xn, Yn) coordinates, that is, all intersections is obtained. It is supposed to be measured as two-dimensional data.
[0017]
In this embodiment, the coordinate scanning device 5 is used to sequentially measure all intersections while scanning, but the scanning of the measurement electrode units 2A and 2B is not performed without scanning by the coordinate scanning device 5. It is also possible to measure the potential at each measurement point directly or indirectly simultaneously and display the measured value on the display device 6.
[0018]
In addition, it is possible to measure in three-dimensional coordinates by superimposing double-sided intersections, which are two-dimensional arrays, on the material P to be measured and using them as a layer, and in this case, the display device 6 can display them three-dimensionally. To.
[0019]
Next, a method for using the configuration according to this embodiment and an example of an operation principle will be described. First, the measurement device 4 and the measurement electrode units 2A and 2B are in an electrically connected state. When measuring the material to be measured P, the thin wires installed on both sides of the material to be measured P become the stage surfaces of the measurement electrode portions 2A and 2B, respectively, and a high-frequency voltage or DC voltage generator, impedance or DC resistance is measured. The physical characteristics of the material P to be measured and the change thereof are detected based on the analysis data of the transmission / reception signal obtained by the measuring device 4 equipped with the instrument.
[0020]
At this time, although the thin lines on both sides are orthogonal to each other, they are not in direct cross contact with each other, but are indirectly coupled via the material P to be measured, so that they are coupled electromagnetically, and the coordinates corresponding to this intersection The impedance, capacitance component, reactance component, resistance component, etc. of the material P to be measured at the position are measured and analyzed. As analysis data, basic data, which is a normal value of the material P to be measured, is stored in the measuring device 4 in advance, and physical characteristics and changes thereof are analyzed by comparison with the basic data. In addition, the measurement electrode portions 2A and 2B themselves act as thermocouples, thereby making it possible to measure the two-dimensional and three-dimensional temperature distributions of the entire measured material P.
[0021]
When the physical quantity of the material P to be measured is two-dimensionally measured, the coordinate position determining device 3 is controlled by the electronic switching operation of the coordinate scanning device 5. That is, for example, one of the thin wires on the X plane side, which is one of the measurement electrode portions 2A, is set in a conductive state with the measuring device 4, while the other one of the measurement electrode portions 2B is on the Y plane side. By sweeping the conductive state of each thin line to the measuring device 4 in order from the end, the impedance at each intersection is measured in order. In this way, one line (X1, Yn) of the XY stage is determined and measured. Here, n is the number of thin lines. By sequentially performing this operation for each thin line (Xn) on the X plane, the physical quantities of the material P to be measured relating to the entire (Xn, Yn) coordinates, that is, all intersections, are two-dimensionally measured.
[0022]
If there is a disconnection in a part of the thin line of the measurement electrode portions 2A and 2B due to material breakage in the material to be measured P, the impedance at that point cannot be clearly measured, and the disconnection point is specified.
[0023]
【The invention's effect】
As described above, according to the configuration of the present invention, the physical structure of the material to be measured, that is, the material P to be measured, that is, a plate-like or layer-like structure whose damage is related to human life, such as an aircraft wing. Characteristics can be measured in correspondence with detailed two-dimensional coordinates and three-dimensional coordinates.
[0024]
That is, the physical quantity measuring method with coordinates according to the present invention is installed such that the measurement electrode portions 2A and 2B sandwich the material to be measured P, and the directions of the thin lines of the two measurement electrode portions 2A and 2B are orthogonal to each other, This is because an intersection formed by one of the thin lines of one measurement electrode unit 2A and one of the thin lines of the other measurement electrode unit 2B or the coordinates of the closest point is specified as a measurement point. It can be used for important parts such as wings where the damage is directly related to human life, and it is effective. Further, by embedding the measurement electrode portions 2A and 2B themselves in a steel structure such as a bridge or a concrete structure, it is possible to measure the secular change with the three-dimensional position of the occurrence of cracks.
[0025]
Conventionally, there is only a method of arranging transducers at intervals of measurement points in order to measure physical quantities in correspondence with coordinates on the surface, which is a substantial work and a high risk of failure, and the coordinate accuracy is very rough. On the other hand, according to the physical quantity measuring apparatus with coordinates according to the present invention, a pair of the measuring material P is disposed so that the directions of the thin lines are orthogonal to each other via the measuring material P. Measurement electrode units 2A and 2B, a coordinate position determination device 3 that specifies the coordinates of an intersection or the closest point, and sets the measurement point, and the physical relationship between both surfaces of the material P to be measured corresponding to the position coordinate of that point Since the measuring device 4 that measures the characteristic by an electric signal, the coordinate scanning device 5 that scans and measures all the intersections of the measuring electrode portions 2A and 2B, and the display device 6, the measuring electrode portion 2A, As many measuring points of intersection of the thin line of B is the is obtained with the coordinate values of the example millimeters. Furthermore, since this double-sided intersection is a two-dimensional array, the coordinates indicating the detection location are also two-dimensional coordinates, but by using these as a layer, it is possible to measure in three-dimensional coordinates.
[0026]
The measurement electrode portions 2A and 2B are embedded in the measurement material P in a layered manner together with the surface of the measurement material P, and the measurement electrodes 2A and 2B are installed so that the directions of the thin lines are orthogonal to each other. For surface cracks, fatigue, and the like, the three-dimensional characteristics along with the coordinates can be easily and easily acquired by scanning each intersection digitally and measuring the impedance of each intersection at high speed. Specifically, by embedding the measurement electrode portions 2A and 2B in the concrete block, for example, measurement accuracy such as the occurrence of cracks is improved.
[0027]
Since the material to be measured P is formed as a double-sided thin line structure itself, the labor for installing the measurement electrode portions 2A and 2B on the material to be measured P can be greatly reduced. The material P to be measured may be a solid material such as a concrete material, a metal material, a dielectric material, a semiconductor material, a wood material, a glass material, or a plastic material, a liquid, a gas, or the like, Physical quantities such as metal fatigue, material alteration, scratches, deformation, breakage, temperature, pressure, stress, etc. can be easily measured with coordinates for most materials that are sandwiched between parallel thin wires. . For example, specifically, when a product with good performance is required regardless of cost, such as a space application or particularly when safety is required, it is manufactured by integrating with the material P to be measured from the beginning, Together with the coordinates of the measurement site, the three-dimensional physical characteristics of the measurement site can be easily acquired at once.
[0028]
Since the measurement device 4 measures the impedance of each measurement point at a single frequency or a plurality of frequencies at the time of measurement, by measuring the impedance of the measurement point that is each intersection at high speed, two-dimensionally the physical quantity along with the coordinates. It is possible to easily and accurately acquire various characteristics at once.
[0029]
The measurement by the measuring device 4 is performed by generating a thermoelectromotive force at a dissimilar metal contact portion at each measurement point, an electromagnetic induction electromotive force in a magnetic field, a chemical electromotive force that is a principle of a battery, a photoelectromotive force generated by light irradiation, and the like. Since power is measured, changes in physical properties of the target physical quantity such as thermal, electrical / magnetic, chemical, and optical can be easily measured. For example, in the case of thermoelectromotive force, the distribution of the three-dimensional internal temperature or the two-dimensional surface temperature of the material P to be measured can be obtained easily and accurately by causing the measurement electrode portions 2A and 2B themselves to act as thermocouples. .
[0030]
Since the measurement device 4 determines the disconnection location of each measurement point by the coordinate position determination device 3 at the time of measurement, it can easily detect local breakage such as deformation and scratches in the material P to be measured. it can.
[0031]
Since the measuring device 4 can measure between each measurement point and the adjacent line at the time of measurement, the impedance of each tolerance point at the time of setting and the impedance of the adjacent line can be compared by changing the change point. Can be displayed in detail along with the amount of change.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of the present invention.
FIG. 2 is a block diagram showing an electronic switch device.
[Explanation of symbols]
P ... material to be measured 1 ... physical quantity measuring device 2A, 2B ... measuring electrode unit 3 ... coordinate position determining device 4 ... measuring device 5 ... coordinate scanning device 6 ... display device 7 ... electronic switch device 8 ... lead wire

Claims (11)

複数の平行線で、面状に配列した細線で形成して成る計測電極部が被計測材料を挟んで、しかも一方の計測電極部の細線の方向と他方の計測電極部の細線の方向とが互いに直交するように設置し、一方の計測電極部の細線の一つと他方の計測電極部の細線の一つとが作る交差点、あるいは最も接近した点の座標を特定して計測点とし、その点の位置座標に対応する被計測材料の両面間に係わる物理的特性を、計測電極部の細線に流れる電流、または電極間の電位により計測すると共に、計測電極部の全交差点を計測し、その計測結果を面上に表現して表示することを特徴とした座標付き物理量計測方法。The measurement electrode part formed by thin lines arranged in a plane with a plurality of parallel lines sandwiches the material to be measured, and the direction of the fine line of one measurement electrode part and the direction of the fine line of the other measurement electrode part are Installed so as to be orthogonal to each other, specify the coordinates of the intersection or the closest point formed by one of the thin wires of one measurement electrode and one of the thin wires of the other measurement electrode. The physical characteristics related to both sides of the material to be measured corresponding to the position coordinates are measured by the current flowing in the thin wire of the measurement electrode part or the potential between the electrodes, and all the intersections of the measurement electrode part are measured, and the measurement result A physical quantity measuring method with coordinates, characterized by displaying and displaying on a surface. 両面細線構造に形成した被計測材料自体を使用する請求項1記載の座標付き物理量計測方法。2. The physical quantity measuring method with coordinates according to claim 1, wherein the material to be measured itself having a double-sided thin wire structure is used. 計測は、各計測点のインピーダンスを単数または複数の周波数で計測する請求項1または2記載の座標付き物理量計測方法。The physical quantity measurement method with coordinates according to claim 1 or 2, wherein the measurement is performed by measuring the impedance of each measurement point at one or a plurality of frequencies. 計測は、各計測点の異種金属接触部における熱起電力、磁界の中での電磁誘導起電力、電池の原理となる化学起電力、光照射で発生する光起電力等の起電力を計測する請求項1または2記載の座標付き物理量計測方法。The measurement measures the electromotive force such as the thermoelectromotive force at the dissimilar metal contact portion at each measurement point, the electromagnetic induction electromotive force in the magnetic field, the chemical electromotive force that is the principle of the battery, and the photoelectromotive force generated by light irradiation. The physical quantity measuring method with coordinates according to claim 1 or 2. 複数の平行線で面状に配列した導電性の細線で形成され、被計測材料を挟んで、しかも細線の方向が被計測材料を介して互いに直交するように設置して成る一対の計測電極部と、一方の計測電極部の細線の一つ、他方の計測電極部の細線の一つそれぞれが作る交差点、あるいは最も接近した点の座標を特定して計測点とする座標位置決定装置と、その点の位置座標に対応する被計測材料の両面間に係わる物理的特性を、計測電極部の細線に送る電気信号と被計測材料との間に生じる電気相互作用で発生する電気信号により計測する計測装置と、計測電極部の計測点を順次移動拡張して全交差点を計測する座標走査装置と、その計測結果を面上に表現して表示する表示装置とを備えて成ることを特徴とする座標付き物理量計測装置。A pair of measurement electrode parts formed of conductive thin wires arranged in a plane with a plurality of parallel lines, and arranged so that the material to be measured is sandwiched and the directions of the thin lines are orthogonal to each other via the material to be measured And a coordinate position determination device that specifies the coordinates of an intersection formed by one of the thin lines of one measurement electrode unit, each of the thin lines of the other measurement electrode unit, or the closest point, Measurement that measures the physical characteristics related to both sides of the material to be measured corresponding to the position coordinates of the point by the electrical signal generated by the electrical interaction between the electrical signal sent to the thin wire of the measurement electrode and the material to be measured Coordinates comprising: a device; a coordinate scanning device that sequentially moves and expands measurement points of a measurement electrode unit to measure all intersections; and a display device that displays and displays the measurement results on a surface Physical quantity measuring device with. 計測電極部を被計測材料の表面と共に被計測材料の中に層状に埋め込み、且つ各計測電極部の細線の方向が互いに直交するように設置した請求項5記載の座標付き物理量計測装置。The physical quantity measuring apparatus with coordinates according to claim 5, wherein the measurement electrode unit is embedded in the measurement material together with the surface of the measurement target material in a layered manner, and the thin line directions of the measurement electrode units are orthogonal to each other. 被計測材料は、自体を両面細線構造として形成して成る請求項5または6記載の座標付き物理量計測装置。The physical quantity measuring apparatus with coordinates according to claim 5 or 6, wherein the material to be measured is formed as a double-sided thin line structure. 計測装置は、計測時に、各計測点のインピーダンスを単数または複数の周波数で計測する請求項5乃至7のいずれ記載の座標付き物理量計測装置。8. The physical quantity measuring device with coordinates according to claim 5, wherein the measuring device measures the impedance of each measurement point at a single frequency or a plurality of frequencies during measurement. 計測装置は、計測時に、各計測点の起電力を計測する請求項5乃至7のいずれか記載の座標付き物理量計測装置。8. The physical quantity measuring device with coordinates according to claim 5, wherein the measuring device measures an electromotive force at each measurement point at the time of measurement. 計測装置は、計測時に、前記座標位置決定装置によって各計測点の断線箇所を決定する請求項5乃至9のいずれか記載の座標付き物理量計測装置。10. The physical quantity measuring device with coordinates according to claim 5, wherein the measuring device determines a disconnection location of each measuring point by the coordinate position determining device during measurement. 計測装置は、計測時に、各計測点と共に、それと隣り合うラインとの間でも計測可能とする請求項5乃至10のいずれか記載の座標付き物理量計測装置。11. The physical quantity measuring device with coordinates according to any one of claims 5 to 10, wherein the measuring device is capable of measuring not only each measuring point but also an adjacent line at the time of measurement.
JP2003186247A 2003-06-30 2003-06-30 Method of measuring physical quantity with coordinate and measuring apparatus therefor Pending JP2005017246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186247A JP2005017246A (en) 2003-06-30 2003-06-30 Method of measuring physical quantity with coordinate and measuring apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186247A JP2005017246A (en) 2003-06-30 2003-06-30 Method of measuring physical quantity with coordinate and measuring apparatus therefor

Publications (1)

Publication Number Publication Date
JP2005017246A true JP2005017246A (en) 2005-01-20

Family

ID=34185431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186247A Pending JP2005017246A (en) 2003-06-30 2003-06-30 Method of measuring physical quantity with coordinate and measuring apparatus therefor

Country Status (1)

Country Link
JP (1) JP2005017246A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539397A (en) * 2005-04-28 2008-11-13 フォルシュングスツェントルム・ドレスデン−ロッセンドルフ・アインゲトラーゲナー・フェライン Grid sensor
JP2017150996A (en) * 2016-02-25 2017-08-31 一般財団法人電力中央研究所 Sensor for detecting state change of solid and method for detecting state change of solid
JP2020038190A (en) * 2018-09-03 2020-03-12 株式会社Subaru Resin impregnation measurement system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539397A (en) * 2005-04-28 2008-11-13 フォルシュングスツェントルム・ドレスデン−ロッセンドルフ・アインゲトラーゲナー・フェライン Grid sensor
JP4654293B2 (en) * 2005-04-28 2011-03-16 フォルシュングスツェントルム・ドレスデン−ロッセンドルフ・アインゲトラーゲナー・フェライン Grid sensor
JP2017150996A (en) * 2016-02-25 2017-08-31 一般財団法人電力中央研究所 Sensor for detecting state change of solid and method for detecting state change of solid
JP2020038190A (en) * 2018-09-03 2020-03-12 株式会社Subaru Resin impregnation measurement system
JP7202258B2 (en) 2018-09-03 2023-01-11 株式会社Subaru Resin impregnation measurement system

Similar Documents

Publication Publication Date Title
US6914427B2 (en) Eddy current probe having sensing elements defined by first and second elongated coils and an associated inspection method
Angelidis et al. Detection of impact damage in CFRP laminates by means of electrical potential techniques
US20180332666A1 (en) Multifunctional cnt-engineered structures
US6370964B1 (en) Diagnostic layer and methods for detecting structural integrity of composite and metallic materials
Qiu et al. Design of piezoelectric transducer layer with electromagnetic shielding and high connection reliability
US9030216B2 (en) Coaxial four-point probe for low resistance measurements
CN108496087B (en) Device and detecting system with crack detection circuit
US10495678B2 (en) Testing method for sheet resistance and contact resistance of connecting point of sheet material
US11199517B2 (en) Self-sensing of printed polymer structures
EP3441774B1 (en) Large surface magnetic field sensor array and method of analysing an electrical current over a surface
Palmieri et al. Single-process 3D-printed structures with vibration durability self-awareness
JP2005017246A (en) Method of measuring physical quantity with coordinate and measuring apparatus therefor
JP2007078364A (en) Strain sensitive sensor
CN111398370B (en) Dielectric test system and method for micro-nano-sized patterned film array
JP5192095B2 (en) Strain sensor
CN113720508B (en) Post porcelain insulator stress monitoring device and method based on double laser scanning
JP2001272319A (en) Fatigue damage prognosis device and method therefor
JP6158961B1 (en) Steel material potential measuring method and steel material potential measuring device
US11630081B2 (en) Method for non-destructively examining an anode of an aluminium electrolysis cell
CN106091907B (en) A kind of solder joint displacement real non-destructive monitoring method
CN109341514A (en) A kind of Novel resistor foil gauge and strain measurement method
CN219368643U (en) Flexible array sensing coil based on electromagnetic micro-displacement measurement technology
CN113834952B (en) Device and method for realizing object acceleration measurement based on amorphous wire GSI effect
JP2004198184A (en) Damage detection method of conductive structure, and electric signal line for damage detection
Oda et al. Noncontact surface charge density profiles measurement on top and bottom of a charged film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A131 Notification of reasons for refusal

Effective date: 20090512

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090915