JP6158961B1 - Steel material potential measuring method and steel material potential measuring device - Google Patents

Steel material potential measuring method and steel material potential measuring device Download PDF

Info

Publication number
JP6158961B1
JP6158961B1 JP2016006488A JP2016006488A JP6158961B1 JP 6158961 B1 JP6158961 B1 JP 6158961B1 JP 2016006488 A JP2016006488 A JP 2016006488A JP 2016006488 A JP2016006488 A JP 2016006488A JP 6158961 B1 JP6158961 B1 JP 6158961B1
Authority
JP
Japan
Prior art keywords
steel material
verification
potential
electrodes
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016006488A
Other languages
Japanese (ja)
Other versions
JP2017125822A (en
Inventor
健 城所
健 城所
田村 博
博 田村
佐藤 大輔
大輔 佐藤
圓井 健敏
健敏 圓井
昌之 関川
昌之 関川
建 瓦林
建 瓦林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marui Co Ltd
Original Assignee
Marui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marui Co Ltd filed Critical Marui Co Ltd
Priority to JP2016006488A priority Critical patent/JP6158961B1/en
Application granted granted Critical
Publication of JP6158961B1 publication Critical patent/JP6158961B1/en
Publication of JP2017125822A publication Critical patent/JP2017125822A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

【課題】鋼材が埋設されたコンクリート構造物における鋼材の電位を効率よく測定するための方法および装置を提供することを目的とする。【解決手段】本発明の鋼材電位測定方法は、鋼材電位測定装置1を用いて、コンクリート構造物11に埋設された鋼材11bの電位を測定する鋼材電位測定方法であって、鋼材電位測定装置1が、基準接触部2と、複数の照合電極31および複数の照合電極31を保持する照合電極保持部32を有する照合電極ユニット3と、基準接触部2と複数の照合電極31のそれぞれとの間の電位差を計測する電位差計測装置4とを備え、複数の照合電極31のそれぞれが、互いに間隔を置いて2次元に配列され、照合電極ユニット3を、コンクリート構造物11の表面に沿って移動させて複数の照合表面11dに順次配置して、基準接触部2と複数の照合電極31のそれぞれとの間の電位差を計測することを特徴とする。【選択図】図1An object of the present invention is to provide a method and apparatus for efficiently measuring the potential of a steel material in a concrete structure in which the steel material is embedded. A steel material potential measuring method according to the present invention is a steel material potential measuring method for measuring a potential of a steel material 11b embedded in a concrete structure 11 by using a steel material potential measuring device 1, and the steel material potential measuring device 1 Is between the reference contact portion 2, the reference electrode unit 3 having the reference electrodes 32 and the reference electrode holding portion 32 for holding the reference electrodes 31, and the reference contact portion 2 and each of the reference electrodes 31. A plurality of reference electrodes 31 are arranged in two dimensions at intervals from each other, and the reference electrode unit 3 is moved along the surface of the concrete structure 11. In this case, the potential difference between the reference contact portion 2 and each of the plurality of verification electrodes 31 is measured by sequentially arranging them on the plurality of verification surfaces 11d. [Selection] Figure 1

Description

本発明は、鋼材が埋設されたコンクリート構造物における鋼材の電位を測定するための鋼材電位測定方法および鋼材電位測定装置に関する。   The present invention relates to a steel material potential measuring method and a steel material potential measuring device for measuring the potential of a steel material in a concrete structure in which the steel material is embedded.

鉄筋コンクリートなど、鋼材が埋設されたコンクリート構造物においては、経年劣化による鋼材の腐食が問題となっている。コンクリート構造物に埋設された鋼材の腐食状態を調査する方法としては、たとえば特許文献1に、コンクリート中の2箇所の鋼材の自然電位の差を測定することにより鋼材の腐食箇所を検出する方法が開示されている。特許文献1に開示された腐食検出方法では、図6(a)に示されるように、電極を備えた2つの本検出端101a、101bを一定の間隔でコンクリート103表面に接触させ、電位測定装置100により、コンクリート103中の鋼材102の2箇所の自然電位の差が測定される。そして、図6(a)および図6(b)に示されるように、一方の本検出端101bを移動させて順次コンクリート103表面に接触させて自然電位の差を測定することで、他方の本検出端101aにおける自然電位に対して相対的に低い自然電位が検出される箇所が探し出され、鋼材の腐食箇所が特定される。   In concrete structures in which steel materials are embedded, such as reinforced concrete, corrosion of steel materials due to deterioration over time has become a problem. As a method for investigating the corrosion state of a steel material embedded in a concrete structure, for example, Patent Document 1 discloses a method of detecting a corrosion site of a steel material by measuring a difference in natural potential between two steel materials in the concrete. It is disclosed. In the corrosion detection method disclosed in Patent Document 1, as shown in FIG. 6 (a), two main detection ends 101a and 101b having electrodes are brought into contact with the surface of the concrete 103 at a constant interval to thereby measure the potential. 100, the difference between the natural potentials at two locations of the steel material 102 in the concrete 103 is measured. Then, as shown in FIGS. 6A and 6B, one book detection end 101b is moved and sequentially brought into contact with the surface of the concrete 103, and the difference in natural potential is measured. A location where a natural potential relatively low with respect to the natural potential at the detection end 101a is detected is found, and a corrosion location of the steel material is specified.

特開平10−221292号公報JP-A-10-212292

しかし、特許文献1に開示された腐食検出方法では、本検出端101bを、鋼材の真上に位置する表面に接触させる必要があるので、鉄筋探査機などにより事前に鋼材の埋設された位置を確認して、コンクリート構造物の表面に、罫書きを入れるなど、マーカーを付する必要がある。その上で、図6(a)および図6(b)に示されるように、埋設されているすべての鋼材102の1本1本に対して、鋼材102の全領域にわたって本検出端101bを移動させて電位差を測定する必要がある。したがって、たとえば橋梁などの巨大構造物に用いられるコンクリート構造物の鋼材の腐食状態を調査するような場合には、調査対象となる非常に広い領域にわたって、埋設された鋼材の位置を調べ、コンクリート構造物の表面にマーカーを付し、その後、非常に多くの測定点を測定しなければならないので、莫大な労力と時間が費やされるという問題がある。さらに、そのような労力と時間を節約するために調査範囲を小さく限定することにより、調査対象の全体像を把握することが困難になるという問題がある。さらに、この種の腐食検出方法では、本検出端101a、101bとコンクリート103表面との良好な電気的接触を得るために、コンクリート103表面に30分間程度の散水を行なうのが一般的であるが、全領域の測定に時間がかかってしまい、全領域の測定が完了するまでに表面の湿潤状態が変化してしまうので、領域によって測定条件が変化し、正確な測定結果が得られないという問題がある。   However, in the corrosion detection method disclosed in Patent Document 1, since this detection end 101b needs to be brought into contact with the surface located directly above the steel material, the position where the steel material is embedded beforehand by a reinforcing bar probe or the like is used. It is necessary to check and put a marker on the surface of the concrete structure, such as making a ruled line. Then, as shown in FIG. 6A and FIG. 6B, the detection end 101b is moved over the entire region of the steel material 102 for each of the embedded steel materials 102 one by one. It is necessary to measure the potential difference. Therefore, for example, when investigating the corrosion state of steel in a concrete structure used in a huge structure such as a bridge, the position of the buried steel is examined over a very wide area to be investigated, and the concrete structure Since a marker is attached to the surface of an object and then a large number of measurement points have to be measured, there is a problem that enormous labor and time are consumed. Furthermore, there is a problem that it becomes difficult to grasp the whole image of the investigation object by limiting the investigation range to be small in order to save such labor and time. Further, in this type of corrosion detection method, in order to obtain good electrical contact between the detection ends 101a and 101b and the surface of the concrete 103, it is common to spray the surface of the concrete 103 for about 30 minutes. The measurement of the entire area takes time, and the wet condition of the surface changes until the measurement of the entire area is completed. Therefore, the measurement conditions vary depending on the area, and accurate measurement results cannot be obtained. There is.

本発明は、かかる問題に鑑みなされたもので、鋼材が埋設されたコンクリート構造物における鋼材の電位を効率よく測定するための方法および装置を提供することを目的とする。   This invention is made | formed in view of this problem, and it aims at providing the method and apparatus for measuring the electric potential of the steel materials efficiently in the concrete structure in which the steel materials were embed | buried.

本発明の鋼材電位測定方法は、鋼材電位測定装置を用いて、コンクリート構造物に埋設された鋼材の電位を測定する鋼材電位測定方法であって、前記鋼材電位測定装置が、基準位置に接触する基準接触部と、前記コンクリート構造物の表面に接触する複数の照合電極と、前記複数の照合電極を保持する照合電極保持部とを有する照合電極ユニットと、前記基準接触部と前記複数の照合電極のそれぞれとが接続され、前記基準接触部と前記複数の照合電極のそれぞれとの間の電位差を計測する電位差計測装置とを備え、前記複数の照合電極のそれぞれが、前記照合電極保持部に、互いに直交する第1の方向および第2の方向を含む面内で互いに間隔を置いて2次元に配列され、前記鋼材電位測定方法が、前記基準接触部を前記基準位置に接触させる工程と、前記照合電極ユニットを前記コンクリート構造物の照合表面に配置することによって、前記複数の照合電極を前記照合表面内の表面に接触させる工程と、前記電位差計測装置により、前記基準接触部と前記複数の照合電極のそれぞれとの間の電位差を計測する工程とを含み、前記照合電極ユニットを、前記コンクリート構造物の表面に沿って移動させて、複数の照合表面に順次配置して、前記複数の照合表面毎に、前記基準接触部と前記複数の照合電極のそれぞれとの間の電位差を計測することを特徴とする。   The steel material potential measuring method of the present invention is a steel material potential measuring method for measuring the potential of a steel material embedded in a concrete structure using a steel material potential measuring device, wherein the steel material potential measuring device contacts a reference position. A reference electrode unit having a reference contact part, a plurality of reference electrodes that contact the surface of the concrete structure, a reference electrode holding part that holds the plurality of reference electrodes, the reference contact part, and the plurality of reference electrodes Each of the plurality of reference electrodes is connected to the reference contact part and each of the plurality of reference electrodes, and each of the plurality of reference electrodes is connected to the reference electrode holding part. Two-dimensionally arranged in a plane including a first direction and a second direction orthogonal to each other, spaced apart from each other, the steel material potential measurement method contacts the reference contact portion with the reference position. Placing the reference electrode unit on the verification surface of the concrete structure to bring the plurality of verification electrodes into contact with the surface in the verification surface; and And measuring a potential difference between each of the plurality of verification electrodes, the verification electrode unit is moved along the surface of the concrete structure, and sequentially disposed on the plurality of verification surfaces, A potential difference between the reference contact portion and each of the plurality of verification electrodes is measured for each of the plurality of verification surfaces.

また、前記複数の照合電極のそれぞれについて、照合電極固有の電極電位のずれを補正するために、計測された電位差を校正する工程を含むことが好ましい。   Further, it is preferable to include a step of calibrating the measured potential difference for each of the plurality of verification electrodes in order to correct a shift in electrode potential unique to the verification electrode.

また、前記複数の照合表面毎に、前記複数の照合電極のそれぞれについての前記電位差の統計値を求める工程を含むことが好ましい。   Preferably, the method further includes a step of obtaining a statistical value of the potential difference for each of the plurality of verification electrodes for each of the plurality of verification surfaces.

また、前記複数の照合電極の配列間隔が、前記コンクリート構造物に離間して埋設された2つの鋼材間の距離よりも小さく、最も離間して配列される照合電極間の間隔が、前記コンクリート構造物に離間して埋設された2つの鋼材間の距離よりも大きいことが好ましい。   In addition, the arrangement interval of the plurality of verification electrodes is smaller than the distance between two steel materials embedded separately from the concrete structure, and the interval between the verification electrodes arranged most apart is the concrete structure. It is preferable that the distance is larger than the distance between two steel materials embedded in the object.

また、前記照合電極保持部が、前記第1の方向に沿って延びる一対の第1の辺および前記第2の方向に沿って延びる一対の第2の辺を有する略矩形状に形成され、前記複数の照合電極が、前記照合電極保持部に、前記第1の方向および前記第2の方向に沿って略等間隔の行列状に配列され、前記第1の辺と前記第1の辺に最も近い照合電極との間の間隔、および前記第2の辺と前記第2の辺に最も近い照合電極との間の間隔がともに、前記第1の方向および前記第2の方向における照合電極の配列間隔の略半分であることが好ましい。   The reference electrode holding portion is formed in a substantially rectangular shape having a pair of first sides extending along the first direction and a pair of second sides extending along the second direction, A plurality of collation electrodes are arranged in a substantially equidistant matrix along the first direction and the second direction on the collation electrode holding portion, and are arranged on the first side and the first side. Both the spacing between the near reference electrodes and the spacing between the second side and the nearest matching electrode to the second side are arrangements of the matching electrodes in the first direction and the second direction. Preferably, it is approximately half of the interval.

本発明の鋼材電位測定装置は、コンクリート構造物に埋設された鋼材の電位を測定するために用いられる鋼材電位測定装置であって、基準位置に接触する基準接触部と、前記コンクリート構造物の表面に接触する複数の照合電極と、前記複数の照合電極を保持する照合電極保持部とを有する照合電極ユニットと、前記基準接触部と前記複数の照合電極のそれぞれとが接続され、前記基準接触部と前記複数の照合電極のそれぞれとの間の電位差を計測する電位差計測装置とを備え、前記複数の照合電極のそれぞれが、前記照合電極保持部に、互いに直交する第1の方向および第2の方向を含む面内で互いに間隔を置いて2次元に配列されていることを特徴とする。   The steel material potential measuring device of the present invention is a steel material potential measuring device used for measuring the potential of a steel material embedded in a concrete structure, wherein a reference contact portion that contacts a reference position and the surface of the concrete structure A reference electrode unit having a plurality of reference electrodes in contact with each other, a reference electrode holding part for holding the plurality of reference electrodes, and the reference contact part and each of the plurality of reference electrodes, and the reference contact part And a potential difference measuring device that measures a potential difference between each of the plurality of verification electrodes, and each of the plurality of verification electrodes has a first direction and a second direction orthogonal to the verification electrode holding unit. It is characterized in that they are arranged two-dimensionally at intervals in a plane including the direction.

また、前記複数の照合電極の配列間隔が、前記コンクリート構造物に離間して埋設された2つの鋼材間の距離よりも小さく、最も離間して配列される照合電極間の間隔が、前記コンクリート構造物に離間して埋設された2つの鋼材間の距離よりも大きいことが好ましい。   In addition, the arrangement interval of the plurality of verification electrodes is smaller than the distance between two steel materials embedded separately from the concrete structure, and the interval between the verification electrodes arranged most apart is the concrete structure. It is preferable that the distance is larger than the distance between two steel materials embedded in the object.

また、前記照合電極保持部が、前記第1の方向に沿って延びる一対の第1の辺および前記第2の方向に沿って延びる一対の第2の辺を有する略矩形状に形成され、前記複数の照合電極が、前記照合電極保持部に、前記第1の方向および前記第2の方向に沿って略等間隔の行列状に配列され、前記第1の辺と前記第1の辺に最も近い照合電極との間の間隔、および前記第2の辺と前記第2の辺に最も近い照合電極との間の間隔がともに、前記第1の方向および前記第2の方向における照合電極の配列間隔の略半分であることが好ましい。   The reference electrode holding portion is formed in a substantially rectangular shape having a pair of first sides extending along the first direction and a pair of second sides extending along the second direction, A plurality of collation electrodes are arranged in a substantially equidistant matrix along the first direction and the second direction on the collation electrode holding portion, and are arranged on the first side and the first side. Both the spacing between the near reference electrodes and the spacing between the second side and the nearest matching electrode to the second side are arrangements of the matching electrodes in the first direction and the second direction. Preferably, it is approximately half of the interval.

また、前記鋼材電位測定装置が、情報処理装置を備え、前記情報処理装置が、前記複数の照合電極のそれぞれについて、照合電極固有の電極電位のずれを補正するために、計測された電位差を校正するように構成されることが好ましい。   Further, the steel material potential measuring device includes an information processing device, and the information processing device calibrates the measured potential difference for each of the plurality of reference electrodes in order to correct a deviation of the electrode potential specific to the reference electrode. It is preferable to be configured to do so.

また、前記鋼材電位測定装置が、情報処理装置を備え、前記情報処理装置が、前記複数の照合表面毎に、前記複数の照合電極のそれぞれについての前記電位差の統計値を求めるように構成されることが好ましい。   The steel material potential measuring device includes an information processing device, and the information processing device is configured to obtain a statistical value of the potential difference for each of the plurality of verification electrodes for each of the plurality of verification surfaces. It is preferable.

本発明の鋼材電位測定方法および鋼材電位測定装置によれば、鋼材が埋設されたコンクリート構造物における鋼材の電位を効率よく測定することができる。   According to the steel material potential measuring method and the steel material potential measuring device of the present invention, the potential of the steel material in the concrete structure in which the steel material is embedded can be efficiently measured.

本発明の鋼材電位測定方法で用いられる鋼材電位測定装置の一実施形態を示す図である。It is a figure which shows one Embodiment of the steel material potential measuring apparatus used with the steel material potential measuring method of this invention. 図1の鋼材電位測定装置の照合電極ユニットを照合電極側から見た図であり、(a)は斜視図であり、(b)は平面図ある。It is the figure which looked at the collation electrode unit of the steel material potential measuring device of Drawing 1 from the collation electrode side, (a) is a perspective view and (b) is a top view. 本発明の鋼材電位測定方法の一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the steel material potential measuring method of this invention. 本発明の鋼材電位測定方法の一実施形態を示す模式図であり、(a)は、基準電極が基準表面に接触され、照合電極ユニットが照合表面に配置された状態を示しており、(b)は、照合電極ユニットの配置される位置が順次変更されている状態を示しており、(c)は、測定対象とするコンクリート構造物の表面の全域にわたって照合電極ユニットが順次配置された状態を示している。It is a schematic diagram which shows one Embodiment of the steel-material electric potential measuring method of this invention, (a) has shown the state by which the reference electrode was contacted to the reference surface, and the collation electrode unit was arrange | positioned on the collation surface, (b ) Shows a state where the position where the verification electrode unit is arranged is sequentially changed, and (c) shows a state where the verification electrode unit is sequentially arranged over the entire surface of the concrete structure to be measured. Show. 本発明の一実施形態に係る鋼材電位測定方法により得られた、計測された電位差と計測された領域とを関連付けた電位差分布を模式的に示す図であり、(a)は、照合電極に対応する領域毎の分布を示し、(b)は、照合表面毎の分布を示している。It is a figure which shows typically the electric potential difference distribution which linked | related the measured electric potential difference and the measured area | region obtained by the steel material electric potential measuring method which concerns on one Embodiment of this invention, (a) respond | corresponds to a collation electrode. (B) shows the distribution for each collation surface. (a)は、従来の腐食検出方法に用いられる鋼材腐食測定装置を模式的に示す側面図であり、(b)は、従来の腐食検出方法に用いられる鋼材腐食測定装置を模式的に示す平面図である。(A) is a side view which shows typically the steel-material corrosion measuring apparatus used for the conventional corrosion detection method, (b) is a plane which shows typically the steel-material corrosion measuring apparatus used for the conventional corrosion detection method FIG.

以下、添付図面を参照して、本発明の一実施形態に係る鋼材電位測定方法および鋼材電位測定装置を説明する。   Hereinafter, a steel material potential measuring method and a steel material potential measuring device according to an embodiment of the present invention will be described with reference to the accompanying drawings.

本発明の一実施形態に係る鋼材電位測定方法は、鋼材電位測定装置を用いて、コンクリート構造物に埋設された鋼材の電位を測定する方法である。本実施形態の鋼材電位測定方法の適用の対象となるコンクリート構造物11は、図1に示されるように、コンクリート11a中に鋼材11bが埋設された構造物である。コンクリート構造物11としては、コンクリート中に鋼材が埋設された構造物であれば特に限定されることはないが、たとえば、河川や海上に架け渡される橋の橋梁や、高速道路等の橋脚、ダムなどの巨大な土木構造物、ビルなどの建築物があげられる。また、コンクリート11a中に埋設される鋼材11bとしては、図1に示される本実施形態では、格子状に配列された鉄筋が例示されているが、鋼材の種類や大きさ、鋼材の配列方法は特に限定されることはない。本実施形態の鋼材電位測定方法により測定される鋼材の電位から、たとえば鋼材の腐食状態や鋼材の周囲の状態などを判定することができるが、これに限定されることはなく、測定される鋼材の電位に有意差が表れる鋼材の状態であれば、いかなる鋼材の状態も判定することができる。以下、本実施形態の鋼材電位測定方法を、セメントにより結合されたコンクリート11a中に鋼材(鉄筋)11bが埋設されたコンクリート構造物(壁部)11における鋼材(鉄筋)11bの電位を測定して、鋼材11bの腐食状態を判定するために用いた例をもとに説明する。   A steel material potential measuring method according to an embodiment of the present invention is a method of measuring the potential of a steel material embedded in a concrete structure using a steel material potential measuring device. As shown in FIG. 1, the concrete structure 11 to which the steel material potential measuring method of the present embodiment is applied is a structure in which a steel material 11b is embedded in concrete 11a. The concrete structure 11 is not particularly limited as long as it is a structure in which steel is embedded in concrete. For example, a bridge of a bridge over a river or the sea, a pier of a highway, a dam, etc. Giant civil engineering structures such as, buildings such as buildings. Moreover, as steel material 11b embed | buried in concrete 11a, in this embodiment shown by FIG. 1, the rebar arranged in the grid | lattice form is illustrated, However, The kind and magnitude | size of steel materials, and the arrangement method of steel materials are There is no particular limitation. From the potential of the steel material measured by the steel material potential measurement method of the present embodiment, for example, the corrosion state of the steel material and the surrounding state of the steel material can be determined, but the present invention is not limited to this, and the steel material to be measured Any state of the steel material can be determined as long as the potential of the steel material is significantly different. Hereinafter, the steel material potential measuring method of this embodiment is to measure the potential of the steel material (rebar) 11b in the concrete structure (wall portion) 11 in which the steel material (rebar) 11b is embedded in the concrete 11a bonded by cement. A description will be given based on an example used to determine the corrosion state of the steel material 11b.

<鋼材電位測定装置>
本実施形態の鋼材電位測定方法で用いられる鋼材電位測定装置1は、コンクリート構造物11に埋設された鋼材11bの電位を測定するために用いられる。より具体的には、鋼材電位測定装置1は、コンクリート構造物11の表面から、コンクリート構造物11に埋設された鋼材11bの電位(自然電位または相対電位)を測定する。そして、測定された鋼材11bの電位から、鋼材11bの腐食状態を判定することができる。本実施形態の鋼材電位測定装置1は、図1に示されるように、基準位置に接触する基準接触部2と、コンクリート構造物11の表面に接触する複数の照合電極31と複数の照合電極31を保持する照合電極保持部32とを有する照合電極ユニット3と、基準接触部2と複数の照合電極31のそれぞれとが接続され、基準接触部2と複数の照合電極31のそれぞれとの間の電位差を計測する電位差計測装置4とを備えている。この鋼材電位測定装置1によれば、基準位置における電位と、照合電極31が接触するコンクリート構造物11表面の近傍(略真下)に位置する鋼材11bの自然電位との間の電位差が電位差計測装置4により計測される。後述するように、基準位置をコンクリート構造物11に埋設された鋼材11bとした場合には、電位差計測装置4により計測される電位差は、コンクリート構造物11中の鋼材11bの自然電位を示し、基準位置をコンクリート構造物11の表面(基準表面11c)とした場合には、電位差計測装置4により計測される電位差は、基準表面11cの近傍の鋼材11bの自然電位と、照合電極31が接触するコンクリート構造物11表面の近傍の鋼材11bの自然電位との差(相対電位)を示す。たとえば、前者の場合には、所定の電位値(閾値)よりも鋼材11bの自然電位が低いときに、その位置の鋼材11bが腐食している可能性があると判定される。後者の場合には、基準表面11cにおける鋼材11bの自然電位よりも、照合電極31が接触する表面における鋼材11bの自然電位が、所定の電位差(閾値)以上に低ければ、その位置の鋼材11bが腐食している可能性があると判定される。なお、鋼材11bの自然電位とは、外部から電位が印加されていない状態の鋼材11bが有する電位のことであり、公知の自然電位測定方法により測定される自然電位のことである。
<Steel material potential measuring device>
The steel material potential measuring device 1 used in the steel material potential measuring method of the present embodiment is used to measure the potential of the steel material 11b embedded in the concrete structure 11. More specifically, the steel material potential measuring device 1 measures the potential (natural potential or relative potential) of the steel material 11 b embedded in the concrete structure 11 from the surface of the concrete structure 11. And the corrosion state of the steel material 11b can be determined from the measured potential of the steel material 11b. As shown in FIG. 1, the steel material potential measuring device 1 of the present embodiment includes a reference contact portion 2 that contacts a reference position, a plurality of reference electrodes 31 that contact a surface of a concrete structure 11, and a plurality of reference electrodes 31. The reference electrode unit 3 having the reference electrode holding part 32 for holding the reference contact part 2 and each of the plurality of reference electrodes 31 are connected, and between the reference contact part 2 and each of the plurality of reference electrodes 31 And a potential difference measuring device 4 for measuring a potential difference. According to this steel material potential measuring device 1, the potential difference between the potential at the reference position and the natural potential of the steel material 11b located near (substantially below) the surface of the concrete structure 11 with which the verification electrode 31 contacts is a potential difference measuring device. 4 is measured. As will be described later, when the reference position is the steel material 11 b embedded in the concrete structure 11, the potential difference measured by the potential difference measuring device 4 indicates the natural potential of the steel material 11 b in the concrete structure 11. When the position is the surface of the concrete structure 11 (reference surface 11c), the potential difference measured by the potential difference measuring device 4 is the concrete where the reference electrode 31 contacts the natural potential of the steel material 11b in the vicinity of the reference surface 11c. The difference (relative potential) from the natural potential of the steel material 11b in the vicinity of the surface of the structure 11 is shown. For example, in the former case, when the natural potential of the steel material 11b is lower than a predetermined potential value (threshold), it is determined that the steel material 11b at that position may be corroded. In the latter case, if the natural potential of the steel material 11b on the surface in contact with the reference electrode 31 is lower than a predetermined potential difference (threshold) than the natural potential of the steel material 11b on the reference surface 11c, the steel material 11b at that position is It is determined that there is a possibility of corrosion. The natural potential of the steel material 11b is a potential of the steel material 11b in a state where no external potential is applied, and is a natural potential measured by a known natural potential measurement method.

<基準接触部>
基準接触部2は、照合電極31が接触する表面で測定される鋼材11bの自然電位に対して基準となる電位を有する基準位置に接触される部材である。具体的には、基準接触部2としては、図1に示されるように、鋼材11bの自然電位を測定する場合には、基準位置となる鋼材11bに接触される基準端子21を用いることができる。また、鋼材11bの相対電位を測定する場合には、基準となる自然電位(基準電位)を有する鋼材11bの領域のかぶり厚さ方向の近傍に位置する(領域の略真上の)、コンクリート構造物11の表面(基準表面11c)に接触される基準電極22を基準接触部2として用いることができる。ただし、基準接触部2および基準位置は、照合電極31が接触する表面で測定される鋼材11bの自然電位に対して基準となる電位を得ることができれば、他の組み合わせであってもよい。
<Reference contact area>
The reference contact portion 2 is a member that is in contact with a reference position having a reference potential with respect to the natural potential of the steel material 11b measured on the surface with which the verification electrode 31 contacts. Specifically, as shown in FIG. 1, when measuring the natural potential of the steel material 11b, the reference terminal 21 that is in contact with the steel material 11b serving as a reference position can be used as the reference contact portion 2. . When measuring the relative potential of the steel material 11b, the concrete structure is located in the vicinity of the cover thickness direction of the region of the steel material 11b having a reference natural potential (reference potential) (substantially above the region). The reference electrode 22 that is in contact with the surface of the object 11 (reference surface 11c) can be used as the reference contact portion 2. However, the reference contact portion 2 and the reference position may be other combinations as long as a reference potential can be obtained with respect to the natural potential of the steel material 11b measured on the surface with which the reference electrode 31 contacts.

基準端子21は、図1に示されるように、コンクリート構造物11に埋設された鋼材11bに接触されるとともに、リード線などの導線6を介して電位差計測装置4の一方または他方の端子に電気的に接続される。基準端子21としては、公知のワニ口クリップなどを用いることができるが、鋼材11bと電位差計測装置4とを導通可能に接続することができれば、その材質や形状は特に限定されることはない。また、基準端子21が接触される鋼材11bの位置は、腐食などが生じていない健全な個所を任意に選択することができる。   As shown in FIG. 1, the reference terminal 21 is in contact with a steel material 11 b embedded in the concrete structure 11 and is electrically connected to one or the other terminal of the potential difference measuring device 4 through a lead wire 6 such as a lead wire. Connected. As the reference terminal 21, a known alligator clip or the like can be used. However, the material and shape of the reference terminal 21 are not particularly limited as long as the steel material 11b and the potential difference measuring device 4 can be connected to each other. In addition, the position of the steel material 11b with which the reference terminal 21 is in contact can be arbitrarily selected from a healthy location where no corrosion or the like occurs.

基準電極22は、図1に示されるように、コンクリート構造物11の基準表面11cに接触されるとともに、リード線などの導線6を介して電位差計測装置4の一方または他方の端子に電気的に接続される。基準電極22は、図示されていないが、電極本体と、基準表面11cに接触する側に湿潤パッドとを備えている。基準電極22の電極本体は、銅/硫酸銅電極、銀/塩化銀電極、カロメル電極など公知の電極を採用することができる。また、基準電極22の湿潤パッドは、注水・保水機能を有し、基準電極22がコンクリート構造物11の表面に安定して接触保持可能となるように構成されている。湿潤パッドは、スポンジなどの保水材を有しており、水道水や水酸化カルシウム溶液などの電解質溶液で湿潤状態にされる。基準電極22が湿潤パッドを備えていることにより、基準電極22が基準表面11cに接触した際に、コンクリート構造物11の表面が確実に湿潤状態に保たれるとともに、基準電極22と基準表面11cとの電気的な接触が良好になる。また、基準電極22は、本実施形態では、薄板状の電極本体に湿潤パッドが積層された略直方体形状を有している。しかしながら、基準電極22は、電位差計測装置4で電位差を測定する際の基準とするために、コンクリート構造物11の基準表面11cに接触可能であれば、いかなる形状や大きさであってもよく、上述した実施形態に限定されることはない。なお、本実施形態では、基準電極22は、離間して埋設された複数の鋼材11bにまたがる大きさに形成されている。これにより、従来法とは異なり、コンクリート構造物11に埋設された鋼材11bの位置を探し出して、基準電極22を鋼材11bの直上に設ける手間が省け、確実かつ容易に基準電位を得ることができる。また、基準表面11cとしては、コンクリート構造物11の表面の中から、たとえば鋼材11bの腐食していない領域のかぶり厚さ方向の近傍に位置する(領域の略真上の)表面が任意に選択される。ただし、基準表面11cは、基準となる自然電位を有する鋼材11bの領域のかぶり厚さ方向の近傍に位置する、コンクリート構造物11の表面であればよく、鋼材11bの多少腐食した領域のかぶり厚さ方向の近傍に位置する、コンクリート構造物11の表面であってもよい。基準表面11cの大きさは、基準電極22の大きさにより画定される。   As shown in FIG. 1, the reference electrode 22 is in contact with the reference surface 11 c of the concrete structure 11, and is electrically connected to one or the other terminal of the potential difference measuring device 4 through a conducting wire 6 such as a lead wire. Connected. Although not shown, the reference electrode 22 includes an electrode body and a wet pad on the side in contact with the reference surface 11c. As the electrode body of the reference electrode 22, a known electrode such as a copper / copper sulfate electrode, a silver / silver chloride electrode, or a calomel electrode can be adopted. Further, the wet pad of the reference electrode 22 has a water injection / water retention function, and is configured such that the reference electrode 22 can be stably contacted and held on the surface of the concrete structure 11. The wet pad has a water retaining material such as a sponge, and is wetted with an electrolyte solution such as tap water or a calcium hydroxide solution. Since the reference electrode 22 includes the wet pad, the surface of the concrete structure 11 is reliably kept wet when the reference electrode 22 contacts the reference surface 11c, and the reference electrode 22 and the reference surface 11c are maintained. Good electrical contact with. In the present embodiment, the reference electrode 22 has a substantially rectangular parallelepiped shape in which a wet pad is laminated on a thin plate-like electrode body. However, the reference electrode 22 may have any shape or size as long as it can contact the reference surface 11c of the concrete structure 11 in order to use as a reference when measuring the potential difference with the potential difference measuring device 4. The present invention is not limited to the above-described embodiment. In the present embodiment, the reference electrode 22 is formed in a size that spans a plurality of steel materials 11b that are embedded separately. Thus, unlike the conventional method, the position of the steel material 11b embedded in the concrete structure 11 is searched for, and the labor for providing the reference electrode 22 immediately above the steel material 11b can be saved, and the reference potential can be obtained reliably and easily. . In addition, as the reference surface 11c, for example, a surface located in the vicinity of the cover thickness direction of the non-corroded region of the steel material 11b (substantially above the region) is arbitrarily selected from the surfaces of the concrete structure 11. Is done. However, the reference surface 11c may be the surface of the concrete structure 11 located in the vicinity of the cover thickness direction of the region of the steel material 11b having the reference natural potential, and the cover thickness of the slightly corroded region of the steel material 11b. The surface of the concrete structure 11 located in the vicinity of the vertical direction may be used. The size of the reference surface 11 c is defined by the size of the reference electrode 22.

<照合電極ユニット>
照合電極ユニット3は、複数の照合電極31と、複数の照合電極31を保持する照合電極保持部32とを備え、基準となる電位に対して測定の対象となる自然電位を有する鋼材11bの領域の近傍のかぶり厚さ方向の近傍に位置する(領域近傍の略真上の)、コンクリート構造物11の表面(照合表面11d)に配置されることで、複数の照合電極31を照合表面11d内の複数の表面に接触させる部材である。照合電極ユニット3では、図2(a)および図2(b)に示されるように、複数の照合電極31のそれぞれが、照合電極保持部32に、互いに直交する第1の方向Xおよび第2の方向Yを含む面内で互いに間隔を置いて2次元に配列されている。したがって、照合電極ユニット3が照合表面11dに配置されたときに、2次元に配列された複数の照合電極31が照合表面11d内の複数の表面に同時に接触されるので、鋼材11bの複数の領域の自然電位または相対電位を同時に測定することができる。これにより、鋼材11bの複数の領域の電位を効率的に測定することができる。その結果、鋼材11bの複数の領域の腐食状態を同時に判定することができ、鋼材11bが埋設されたコンクリート構造物11における鋼材11bの腐食状態を効率よく判定することができる。なお、照合表面11dとしては、コンクリート構造物11の表面の中から、測定の対象とする鋼材11bの領域のかぶり厚さ方向の近傍に位置する(領域の略真上の)、コンクリート構造物11の表面が任意に選択される。照合表面11dの大きさは、照合電極ユニット3の大きさにより画定される。
<Reference electrode unit>
The collation electrode unit 3 includes a plurality of collation electrodes 31 and a collation electrode holding unit 32 that holds the plurality of collation electrodes 31, and a region of the steel material 11b having a natural potential to be measured with respect to a reference potential. Are arranged on the surface of the concrete structure 11 (matching surface 11d), which is located in the vicinity of the cover thickness direction in the vicinity of (in the vicinity of the region), the plurality of matching electrodes 31 are placed in the matching surface 11d. It is a member made to contact the some surface. In the verification electrode unit 3, as shown in FIGS. 2A and 2B, each of the plurality of verification electrodes 31 has a first direction X and a second direction orthogonal to the verification electrode holding portion 32. Are arranged two-dimensionally at intervals in a plane including the direction Y. Therefore, when the collation electrode unit 3 is arranged on the collation surface 11d, the plurality of collation electrodes 31 arranged in two dimensions are simultaneously brought into contact with the plurality of surfaces in the collation surface 11d. The natural potential or relative potential can be measured simultaneously. Thereby, the electric potential of the some area | region of the steel material 11b can be measured efficiently. As a result, it is possible to simultaneously determine the corrosion state of a plurality of regions of the steel material 11b, and to efficiently determine the corrosion state of the steel material 11b in the concrete structure 11 in which the steel material 11b is embedded. In addition, as the collation surface 11d, the concrete structure 11 is located in the vicinity of the cover thickness direction of the region of the steel material 11b to be measured from the surface of the concrete structure 11 (substantially directly above the region). The surface is arbitrarily selected. The size of the verification surface 11 d is defined by the size of the verification electrode unit 3.

照合電極ユニット3において、複数の照合電極31は、互いに間隔を置いて2次元に配列されていれば、その配列間隔は特に限定されることはないが、図1に示されるように、複数の照合電極31の配列間隔が、コンクリート構造物11に離間して埋設された2つの鋼材11b間の距離よりも小さく、最も離間して配列される照合電極31間の間隔が、コンクリート構造物11に離間して埋設された2つの鋼材11b間の距離よりも大きいことが好ましい。より具体的には、2次元に配列された複数の照合電極31の中で、最も短い距離をおいて離間して配置された2つの照合電極31の中心間の距離が、最も短い距離をおいて離間して配置された2つの鋼材11bの中心間の距離よりも小さく、最も長い距離をおいて離間して配置された2つの照合電極31の中心間の距離が、最も短い距離をおいて離間して配置された2つの鋼材11bの中心間の距離よりも大きいことが好ましい。複数の照合電極31がこのように配列されることにより、鉄筋探査機などにより事前に鋼材の埋設された位置を確認しなくても、照合電極ユニット3が照合表面11dに配置されたときに、複数の鋼材11bが埋設された領域の表面に、複数の鋼材11b間の距離よりも短い間隔で複数の照合電極31が照合表面11d内の表面に接触して、複数の鋼材11bの自然電位または相対電位を実質的に漏れなく同時に測定できる。その結果、鋼材11bの腐食状態分布を効率的に判定することができる。本実施形態では、複数の照合電極31は、図2(a)および図2(b)に示されるように、照合電極保持部32に、第1の方向Xおよび第2の方向Yに沿って略等間隔の行列状(または格子状)に配列されており、第1および第2の方向X、Yにおいて最も短い距離をおいて離間して配置された照合電極31間の間隔(電極中心間距離)d1が、2つの鋼材11b間の距離d3(図1参照)よりも小さく、第1および第2の方向X、Yにおいて最も長い距離をおいて離間した照合電極31間の間隔(電極中心間距離)D1が、2つの鋼材11b間の距離d3(図1参照)よりも大きくなるように配列されている。したがって、本実施形態の照合電極31の配列では、第1および第2の方向X、Yの両方において、鋼材11bの電位分布を実質的に漏れなく効率的に測定することができる。なお、本実施形態の照合電極ユニット3には、3×3=9個の照合電極が設けられているが、その数は、対象とするコンクリート構造物11の表面に応じて任意に設定することが可能であり、たとえば4×4=16個、5×5=25個、3×4=12個、3×5=15個などとすることができる。また、間隔d1および間隔D1はそれぞれ、上述したように距離d3に応じて定められるが、たとえば、d1=50〜200mm(本実施形態では100mm)、D1=150〜500mm以上(本実施形態では200mm)とすることができる。   In the verification electrode unit 3, as long as the plurality of verification electrodes 31 are two-dimensionally arranged at intervals, the arrangement interval is not particularly limited, but as shown in FIG. The arrangement interval of the verification electrodes 31 is smaller than the distance between the two steel materials 11 b embedded in the concrete structure 11 so as to be separated from each other, and the interval between the verification electrodes 31 arranged in the most separated position is in the concrete structure 11. It is preferable that the distance is larger than the distance between the two steel materials 11b embedded in a separated manner. More specifically, among the plurality of verification electrodes 31 arranged in two dimensions, the distance between the centers of two verification electrodes 31 that are spaced apart with the shortest distance is the shortest distance. The distance between the centers of the two reference electrodes 31 that are smaller than the distance between the centers of the two steel materials 11b that are spaced apart and are the longest distance apart is the shortest distance between them. It is preferable that the distance is larger than the distance between the centers of the two steel materials 11b that are spaced apart. By arranging the plurality of verification electrodes 31 in this manner, when the verification electrode unit 3 is arranged on the verification surface 11d without checking the position where the steel material is embedded in advance by a reinforcing bar probe or the like, On the surface of the region where the plurality of steel materials 11b are embedded, the plurality of verification electrodes 31 come into contact with the surface in the verification surface 11d at intervals shorter than the distance between the plurality of steel materials 11b, or the natural potential of the plurality of steel materials 11b or Relative potential can be measured simultaneously without substantial leakage. As a result, the corrosion state distribution of the steel material 11b can be determined efficiently. In the present embodiment, the plurality of verification electrodes 31 are arranged along the first direction X and the second direction Y on the verification electrode holding portion 32 as shown in FIG. 2A and FIG. Spacing between reference electrodes 31 arranged in a substantially equidistant matrix (or grid) and spaced apart with the shortest distance in the first and second directions X and Y (between the electrode centers) Distance (d1) is smaller than the distance d3 (see FIG. 1) between the two steel materials 11b, and the distance between the reference electrodes 31 (the electrode center) that is the longest distance apart in the first and second directions X and Y The distance (distance) D1 is arranged to be larger than the distance d3 (see FIG. 1) between the two steel materials 11b. Therefore, in the arrangement of the collation electrodes 31 of the present embodiment, the potential distribution of the steel material 11b can be efficiently measured with substantially no leakage in both the first and second directions X and Y. The verification electrode unit 3 of the present embodiment is provided with 3 × 3 = 9 verification electrodes, but the number is arbitrarily set according to the surface of the target concrete structure 11. For example, 4 × 4 = 16, 5 × 5 = 25, 3 × 4 = 12, 3 × 5 = 15, and the like. Further, as described above, the distance d1 and the distance D1 are determined according to the distance d3. For example, d1 = 50 to 200 mm (100 mm in the present embodiment), D1 = 150 to 500 mm or more (200 mm in the present embodiment). ).

照合電極保持部32は、2次元に配列された複数の照合電極31を互いに絶縁された状態で保持する部材である。照合電極保持部32は、本実施形態では、図2(a)および図2(b)に示されるように、第1の方向Xに沿って延びる一対の第1の辺33、33および第2の方向Yに沿って延びる一対の第2の辺34、34を有する略矩形状に形成されている。そして、照合電極保持部32は、第1の辺33と第1の辺33に最も近い照合電極31との間の間隔d2、および第2の辺34と第2の辺34に最も近い照合電極31との間の間隔d2がともに、第1の方向Xおよび第2の方向Yにおける照合電極31の配列間隔d1の略半分であるように形成されている。したがって、図4(b)に示されるように、照合電極ユニット3を、コンクリート構造物11の表面に沿って移動させて、隣接する照合表面11dに順次配置するだけで、複数の照合電極31のそれぞれをコンクリート構造物11の表面に略等間隔で接触させることができる。これにより、鋼材11bの自然電位または相対電位の分布を略等間隔で測定することが容易となり、コンクリート構造物11中の鋼材11bの腐食状態の分布を短時間で正確に判定することができる。   The collation electrode holding part 32 is a member that holds a plurality of two-dimensionally arranged collation electrodes 31 in an insulated state. In the present embodiment, the verification electrode holding unit 32 has a pair of first sides 33, 33 and second extending along the first direction X, as shown in FIGS. 2 (a) and 2 (b). Are formed in a substantially rectangular shape having a pair of second sides 34 extending along the direction Y. The collation electrode holding unit 32 is configured such that the distance d2 between the first side 33 and the collation electrode 31 closest to the first side 33 and the collation electrode closest to the second side 34 and the second side 34 The distance d2 between the first and second electrodes 31 is approximately half the array distance d1 of the matching electrodes 31 in the first direction X and the second direction Y. Therefore, as shown in FIG. 4B, the reference electrode unit 3 is moved along the surface of the concrete structure 11 and is sequentially arranged on the adjacent reference surface 11d. Each can be brought into contact with the surface of the concrete structure 11 at substantially equal intervals. Thereby, it becomes easy to measure the distribution of the natural potential or the relative potential of the steel material 11b at substantially equal intervals, and the distribution of the corrosion state of the steel material 11b in the concrete structure 11 can be accurately determined in a short time.

なお、照合電極保持部32は、本実施形態では、図1に示されるように、コンクリート構造物11に離間して埋設された複数の鋼材11bにまたがる大きさに形成されているが、2次元に配列された複数の照合電極31を互いに絶縁された状態で保持することができる大きさに形成されていれば、その大きさは特に限定されることはなく、複数の照合電極31の配列に応じてその大きさを任意に設定することができる。また、照合電極保持部32は、本実施形態では、絶縁性を有する樹脂材料により形成されているが、複数の照合電極31を互いに絶縁された状態で保持できれば、特に限定されることはなく、他の材料により形成されていてもよい。   In this embodiment, as shown in FIG. 1, the reference electrode holding portion 32 is formed to have a size that spans a plurality of steel materials 11 b that are embedded in the concrete structure 11 while being separated from each other. The size is not particularly limited as long as the plurality of verification electrodes 31 arranged in the size can be held in a state of being insulated from each other, and the size is not particularly limited. The size can be arbitrarily set accordingly. Further, in this embodiment, the collation electrode holding unit 32 is formed of an insulating resin material, but is not particularly limited as long as the plural collation electrodes 31 can be held in an insulated state. It may be formed of other materials.

<照合電極>
照合電極31は、図1に示されるように、上述した照合表面11d内の表面に接触される電極である。照合電極31は、照合表面11d内の表面に接触されるとともに、リード線などの導線6を介して電位差計測装置4の他方または一方の端子に接続される。照合電極31は、図示されていないが、電極本体と、コンクリート構造物11表面に接触する側に配置された湿潤パッドとを備えている。照合電極31の電極本体は、銅/硫酸銅電極、銀/塩化銀電極、カロメル電極など公知の電極を採用することができる。また、照合電極31の湿潤パッドは、注水・保水機能を有し、照合電極31がコンクリート構造物11の表面に安定して電気的に接触可能となるように構成されている。湿潤パッドは、スポンジなどの保水材を有しており、水道水や水酸化カルシウム溶液などの電解質溶液で湿潤状態にされている。照合電極31が湿潤パッドを備えていることにより、照合電極31がコンクリート構造物11の表面に接触する際に、コンクリート構造物11の表面が確実に湿潤状態に保たれるとともに、照合電極31とコンクリート構造物11の照合表面11dとの電気的な接触が良好になる。ただし、照合電極31は、コンクリート構造物11の照合表面11d内の表面に接触可能であればよく、上述した実施形態に限定されることはない。
<Reference electrode>
As shown in FIG. 1, the verification electrode 31 is an electrode that is in contact with the surface in the verification surface 11d described above. The verification electrode 31 is in contact with the surface in the verification surface 11d and is connected to the other or one terminal of the potential difference measuring device 4 through a conductive wire 6 such as a lead wire. Although not shown, the verification electrode 31 includes an electrode body and a wet pad disposed on the side in contact with the surface of the concrete structure 11. A known electrode such as a copper / copper sulfate electrode, a silver / silver chloride electrode, or a calomel electrode can be used for the electrode body of the verification electrode 31. Further, the wetting pad of the verification electrode 31 has a water injection / water retention function, and is configured such that the verification electrode 31 can come into stable electrical contact with the surface of the concrete structure 11. The wet pad has a water retaining material such as a sponge, and is wetted with an electrolyte solution such as tap water or a calcium hydroxide solution. Since the collation electrode 31 includes the wet pad, when the collation electrode 31 contacts the surface of the concrete structure 11, the surface of the concrete structure 11 is surely kept in a wet state. The electrical contact with the verification surface 11d of the concrete structure 11 becomes good. However, the collation electrode 31 should just be able to contact the surface in the collation surface 11d of the concrete structure 11, and is not limited to embodiment mentioned above.

照合電極31は、本実施形態では、図2(a)に示されるように、略円柱状に形成されているが、照合表面11d内の表面に接触するように形成されていれば、その形状は特に限定されることはなく、略角柱状など他の形状に形成されていてもよい。また、照合電極31は、本実施形態では、図1に示されるように、その接触領域(の直径)がコンクリート構造物11に埋設された鋼材11bの幅にほぼ対応する大きさまたは鋼材11bの幅よりもわずかに大きい大きさになるように形成されている。照合電極31は、照合表面11d内の表面に接触可能であれば、その接触領域の大きさは特に限定されることはないが、鋼材11b毎の電位を測定するために、コンクリート構造物11に埋設された複数の鋼材11bにまたがらない大きさであることが好ましい。   In this embodiment, the verification electrode 31 is formed in a substantially cylindrical shape as shown in FIG. 2A. However, if the verification electrode 31 is formed so as to be in contact with the surface in the verification surface 11d, its shape Is not particularly limited, and may be formed in other shapes such as a substantially prismatic shape. Further, in the present embodiment, as shown in FIG. 1, the reference electrode 31 has a contact area (diameter thereof) whose size substantially corresponds to the width of the steel material 11 b embedded in the concrete structure 11 or of the steel material 11 b. It is formed to have a size slightly larger than the width. If the collation electrode 31 can contact the surface in the collation surface 11d, the size of the contact area is not particularly limited. However, in order to measure the potential of each steel material 11b, the concrete structure 11 It is preferable that the size does not extend over a plurality of embedded steel materials 11b.

<電位差計測装置>
電位差計測装置4は、基準接触部2と複数の照合電極31のそれぞれとの間の電位差を計測する。電位差計測装置4は、図1に示されるように、プラス側およびマイナス側の2つの端子を有している。電位差計測装置4の一方または他方の端子は、リード線などの導線6を介して基準接触部2に電気的に接続されている。電位差計測装置4の他方または一方の端子は、リード線などの導線6を介して複数の照合電極31のそれぞれに電気的に接続されている。電位差計測装置4としては、公知の自然電位測定法で用いられる電位差計を用いることができるが、特にそのような電位差計に限定されることはなく、2点間の電位差を計測できる装置であればいかなるものであっても用いることができる。
<Potential difference measuring device>
The potential difference measuring device 4 measures a potential difference between the reference contact portion 2 and each of the plurality of verification electrodes 31. As shown in FIG. 1, the potential difference measuring device 4 has two terminals on the plus side and the minus side. One or the other terminal of the potential difference measuring device 4 is electrically connected to the reference contact portion 2 via a conducting wire 6 such as a lead wire. The other or one terminal of the potential difference measuring device 4 is electrically connected to each of the plurality of verification electrodes 31 via a conducting wire 6 such as a lead wire. As the potentiometer 4, a potentiometer used in a known natural potential measuring method can be used. However, the potentiometer is not particularly limited to such a potentiometer, and any device that can measure a potential difference between two points. Anything can be used.

<情報処理装置>
本実施形態の鋼材電位測定装置1はさらに、図1に示されるように、情報処理装置5を備えている。情報処理装置5は、電位差計測装置4と情報通信可能に接続され、電位差計測装置4から電位差などの情報を受信し、受信した情報を処理し、受信した情報および/または処理した情報を表示装置に表示するように構成されている。情報処理装置5は、本実施形態では、情報を処理するための処理装置本体51および情報を表示するための表示装置52を備えている。情報処理装置5は、図5(a)および図5(b)に模式的に示されるように、得られた電位差とその電位差が得られた位置とを関連付けた電位差分布を表示装置52に2次元または3次元表示させることもできるし、得られた電位差と閾値とを比較して腐食状態を判定した後の、鋼材11bの腐食状態の分布を2次元または3次元表示させることもできる。なお、図5(a)および図5(b)中、細格子線に囲まれた領域aが、複数の照合電極31のそれぞれが接触したコンクリート構造物11の表面の領域に対応し、太格子線に囲まれた領域Aが、照合表面11dの領域に対応する。そして、図中斜線で示された領域が、閾値よりも低い(絶対値が大きい)電位差が得られた領域を示している。情報処理装置5としては、特に限定されることはなく、たとえば、CPUなどの演算処理装置、ハードディスクなどの記憶装置、ネットワークインターフェースなどの通信装置、キーボード・マウスなどの入力装置、液晶ディスプレイなどの表示装置などを内部または外部に備えたパーソナルコンピュータなどの公知の計算装置を用いることができる。
<Information processing device>
The steel material potential measuring device 1 of the present embodiment further includes an information processing device 5 as shown in FIG. The information processing device 5 is connected to the potential difference measuring device 4 so as to be capable of information communication, receives information such as a potential difference from the potential difference measuring device 4, processes the received information, and displays the received information and / or the processed information. It is configured to display. In the present embodiment, the information processing device 5 includes a processing device main body 51 for processing information and a display device 52 for displaying information. As schematically shown in FIGS. 5A and 5B, the information processing device 5 displays a potential difference distribution that associates the obtained potential difference with the position where the potential difference is obtained on the display device 52. The three-dimensional or three-dimensional display can be performed, and the distribution of the corrosion state of the steel material 11b after determining the corrosion state by comparing the obtained potential difference with the threshold value can be displayed two-dimensionally or three-dimensionally. In FIG. 5A and FIG. 5B, the region a surrounded by the fine grid lines corresponds to the region of the surface of the concrete structure 11 with which each of the plurality of reference electrodes 31 is in contact with the thick grid. A region A surrounded by a line corresponds to the region of the verification surface 11d. And the area | region shown with the oblique line in the figure has shown the area | region where the electric potential difference lower than a threshold value (large absolute value) was obtained. The information processing device 5 is not particularly limited, and for example, an arithmetic processing device such as a CPU, a storage device such as a hard disk, a communication device such as a network interface, an input device such as a keyboard / mouse, a display such as a liquid crystal display A known computing device such as a personal computer provided with the device inside or outside can be used.

情報処理装置5は、複数の照合電極31のそれぞれについて、照合電極31固有の電極電位のずれを補正するために、計測された電位差を校正するように構成されている。より具体的には、情報処理装置5は、複数の照合電極31のそれぞれについて予め求められた校正式を用いて、複数の照合電極31のそれぞれについて電位差計測装置4により計測された電位差を校正するように構成されている。校正式は、たとえば、既知の異なる電位を有する2つの標準表面のそれぞれに対して、複数の照合電極31を接触させて、照合電極31のそれぞれについて電位差計測装置4により標準表面毎の2つの電位を計測し、計測された2つの電位と既知の2つの電位とから線形式として求めることができる。情報処理装置5により、複数の照合電極31のそれぞれについて計測された電位差が校正されることで、複数の照合電極31それぞれについて高い精度で電位差を求めることができる。したがって、鋼材の腐食の程度を精度よく判定することができ、より高い精度で腐食状態の分布を判定することができる。なお、校正式は、照合電極31固有の電極電位のずれを補正することができればよく、たとえば1つまたは3つ以上の標準表面を用いるなど、上述した方法以外によって求めてもよい。   The information processing device 5 is configured to calibrate the measured potential difference for each of the plurality of verification electrodes 31 in order to correct a shift in electrode potential unique to the verification electrode 31. More specifically, the information processing device 5 calibrates the potential difference measured by the potential difference measuring device 4 for each of the plurality of verification electrodes 31 using a calibration formula obtained in advance for each of the plurality of verification electrodes 31. It is configured as follows. The calibration formula is such that, for example, a plurality of verification electrodes 31 are brought into contact with each of two standard surfaces having different known potentials, and two potentials for each standard surface are detected by the potential difference measuring device 4 for each of the verification electrodes 31. Can be obtained as a linear form from the two measured potentials and the two known potentials. The potential difference measured for each of the plurality of verification electrodes 31 is calibrated by the information processing device 5, whereby the potential difference can be obtained with high accuracy for each of the plurality of verification electrodes 31. Therefore, the degree of corrosion of the steel material can be accurately determined, and the distribution of the corrosion state can be determined with higher accuracy. The calibration formula only needs to be able to correct the deviation of the electrode potential unique to the verification electrode 31, and may be obtained by a method other than the above-described method, for example, using one or three or more standard surfaces.

また、情報処理装置5は、複数の照合表面11d毎に、複数の照合電極31のそれぞれについての電位差の統計値を求めるように構成されている。ここで、照合表面11d毎の電位差の統計値とは、同じ照合表面11d内で得られた複数の電位差(計測された電位差および/または校正された電位差)の平均値、照合電極31毎の偏差値、標準偏差値、中心値、最大値、最小値、その他の統計値算出手法により算出される値のことをいう。たとえば、複数の照合表面11d毎に電位差の平均値を求めることにより、照合電極31それぞれに対応する小さい領域単位の電位分布ではなく、大きい領域の照合表面11d単位で電位分布を測定することができる。したがって、コンクリート構造物11中の鋼材11bの腐食状態を大きい領域の照合表面11d単位で判定することができ、その結果、腐食状態分布を2次元または3次元表示したときの分布の視認性が向上し、鋼材11bの腐食状態分布を大雑把に把握することができる。さらに、照合電極31に対応する領域毎の電位差分布を模式的に示した図4(a)と、照合表面11d毎の平均の電位差分布を模式的に示した図4(b)とを参照すると分かるように、たとえば、図4(a)に示されるように、図4(a)のほぼ中央に特異値と判断される可能性がある領域が1つだけあったとしても、図4(b)に示されるように、照合表面11d毎に平均を求めることにより、特異値をキャンセルすることができるので、鋼材の腐食状態をより正確に判定することができる。また、たとえば、複数の照合表面11d毎に、照合電極31毎の偏差値または電位差の標準偏差値を求めることにより、照合表面11d内における鋼材11bの腐食状態のバラツキを評価することができ、照合表面11d毎の腐食状態のバラツキの程度の違いの分布を判定することができる。   Further, the information processing device 5 is configured to obtain a statistical value of a potential difference for each of the plurality of verification electrodes 31 for each of the plurality of verification surfaces 11d. Here, the statistical value of the potential difference for each verification surface 11d is an average value of a plurality of potential differences (measured potential difference and / or calibrated potential difference) obtained within the same verification surface 11d, and the deviation for each verification electrode 31. Value, standard deviation value, center value, maximum value, minimum value, and other values calculated by other statistical value calculation methods. For example, by obtaining the average value of the potential differences for each of the plurality of collation surfaces 11d, the potential distribution can be measured in the collation surface 11d unit of the large region, not the potential distribution of the small region unit corresponding to each collation electrode 31. . Accordingly, the corrosion state of the steel material 11b in the concrete structure 11 can be determined in units of the collation surface 11d in a large region, and as a result, the visibility of the distribution when the corrosion state distribution is displayed two-dimensionally or three-dimensionally is improved. The corrosion state distribution of the steel material 11b can be roughly grasped. Furthermore, referring to FIG. 4 (a) schematically showing the potential difference distribution for each region corresponding to the verification electrode 31, and FIG. 4 (b) schematically showing the average potential difference distribution for each verification surface 11d. As can be seen, for example, as shown in FIG. 4 (a), even if there is only one region that may be determined to be a singular value in the approximate center of FIG. 4 (a), FIG. ), The singular value can be canceled by calculating the average for each reference surface 11d, so that the corrosion state of the steel material can be determined more accurately. Further, for example, by obtaining the deviation value for each of the verification electrodes 31 or the standard deviation value of the potential difference for each of the plurality of verification surfaces 11d, the corrosion state variation of the steel material 11b in the verification surface 11d can be evaluated. The distribution of the difference in the degree of variation in the corrosion state for each surface 11d can be determined.

また、情報処理装置5は、複数の照合電極31のそれぞれについて、略同一の接触箇所において2回または3回以上計測された電位差の平均値を求めるように構成されていてもよい。情報処理装置5がこのように構成されることにより、複数の照合電極31のうちいずれかに電子回路のノイズなどに起因した異常値が偶然発生したとしても、その異常値をキャンセルすることができるので、測定精度を維持し、測定対象の電位分布を正しく把握することができる。ここで、従来のスポット式の単一の電極を用いた電位測定では、仮想的には、本実施形態の鋼材電位測定装置1と同様に同一箇所を複数回測定することにより測定精度を維持させることができるが、現実的には、測定にさらに多くの時間を費やしてしまうので、複数回の測定により測定精度を維持することが困難である。また、従来の回転式電極を用いた電位測定では、比較的迅速な測定が可能なので同一箇所の複数回の測定が許容されるが、現実的には、電極の回転位置を測定回毎に同一測定箇所に対応させなければ同一箇所から得られた複数の電位差を平均処理することができないので、複数回測定して測定精度を維持することが困難である。しかし、本実施形態の鋼材電位測定装置1によれば、鋼材11bの複数の領域の電位を効率的に測定することができるので、複数回の測定を行なったとしても従来法と比べて測定の十分な迅速化が図れるとともに、測定精度を維持することができ、測定の迅速化と精度の維持の両立を図ることができる。   Further, the information processing device 5 may be configured to obtain an average value of potential differences measured twice or three times or more at substantially the same contact location for each of the plurality of verification electrodes 31. By configuring the information processing apparatus 5 in this way, even if an abnormal value due to electronic circuit noise or the like is accidentally generated in any of the plurality of verification electrodes 31, the abnormal value can be canceled. Therefore, it is possible to maintain the measurement accuracy and correctly grasp the potential distribution of the measurement target. Here, in the potential measurement using the conventional spot type single electrode, the measurement accuracy is maintained virtually by measuring the same portion a plurality of times in the same manner as the steel material potential measuring device 1 of the present embodiment. However, in reality, more time is spent on measurement, and it is difficult to maintain measurement accuracy by performing multiple measurements. In addition, in the conventional potential measurement using a rotary electrode, a relatively quick measurement is possible, so that multiple measurements at the same location are allowed, but in reality, the rotational position of the electrode is the same every measurement time. Since it is impossible to average a plurality of potential differences obtained from the same location unless it corresponds to the measurement location, it is difficult to measure multiple times and maintain measurement accuracy. However, according to the steel material potential measuring apparatus 1 of the present embodiment, the potentials of a plurality of regions of the steel material 11b can be efficiently measured. Therefore, even if a plurality of measurements are performed, the measurement is performed in comparison with the conventional method. Sufficient speeding-up can be achieved and measurement accuracy can be maintained, and both speeding-up of measurement and maintenance of accuracy can be achieved.

さらに、情報処理装置5は、同一の照合表面11dにおいて、2回または3回以上の測定回毎に複数の照合電極31のそれぞれについての電位差の偏差を求め、それぞれの測定回の偏差の互いの差分を所定の閾値と比較し、複数の照合電極31のそれぞれについての電位差が異常値(電子回路のノイズなどに起因して、本来の電位差を示していない値)であるか否かを判定するように構成されていてもよい。より具体的には、情報処理装置5によれば、まず、同一の照合表面11dに対して、1回目の測定により得られた複数の照合電極31のそれぞれについての電位差の偏差と、2回目の測定により得られた複数の照合電極31のそれぞれについての電位差の偏差との差分が求められる。ここで、電位差の偏差とは、1回の測定において複数の照合電極31により得られた複数の電位差の平均と、複数の照合電極31のそれぞれにより得られた電位差との差である。つぎに、それぞれの照合電極31毎の偏差の差分が所定の閾値(たとえば10mV)と比較されて、偏差の差分が所定の閾値以下であれば電位差が異常値ではないと判定され、偏差の差分が所定の閾値よりも大きければ電位差が異常値であると判定される。したがって、本実施形態の鋼材電位測定装置1によれば、異常値をより確実に把握することができるので、測定結果の信頼性を向上させることができる。もし、電位差が異常値であると判定されれば、異常値があると判定された照合表面11dについて電位差が再測定されるか、または、異常値は、測定結果の信頼性を判断するための参考値とされる。なお、1回目の測定により得られた電位差と、2回目の測定により得られた電位差との差分を求めるのではなく、1回目の測定により得られた偏差と、2回目の測定により得られた偏差との差分を求めることにより、各照合電極31を互いに相対的に評価することができる。   Furthermore, the information processing device 5 obtains a potential difference deviation for each of the plurality of collation electrodes 31 every two or three or more measurement times on the same collation surface 11d, and the deviations of the respective measurement times are mutually determined. The difference is compared with a predetermined threshold value, and it is determined whether or not the potential difference for each of the plurality of verification electrodes 31 is an abnormal value (a value that does not indicate the original potential difference due to electronic circuit noise or the like). It may be configured as follows. More specifically, according to the information processing apparatus 5, first, with respect to the same verification surface 11d, the deviation of the potential difference for each of the plurality of verification electrodes 31 obtained by the first measurement and the second time A difference from the deviation of the potential difference for each of the plurality of verification electrodes 31 obtained by the measurement is obtained. Here, the deviation of the potential difference is a difference between the average of the plurality of potential differences obtained by the plurality of verification electrodes 31 and the potential difference obtained by each of the plurality of verification electrodes 31 in one measurement. Next, the difference in deviation for each verification electrode 31 is compared with a predetermined threshold (for example, 10 mV). If the difference in deviation is equal to or smaller than the predetermined threshold, it is determined that the potential difference is not an abnormal value. Is greater than a predetermined threshold value, it is determined that the potential difference is an abnormal value. Therefore, according to the steel material potential measuring apparatus 1 of the present embodiment, the abnormal value can be grasped more reliably, and the reliability of the measurement result can be improved. If it is determined that the potential difference is an abnormal value, the potential difference is remeasured for the collation surface 11d determined to have an abnormal value, or the abnormal value is used to determine the reliability of the measurement result. Reference value. Instead of obtaining the difference between the potential difference obtained by the first measurement and the potential difference obtained by the second measurement, the difference obtained by the first measurement was obtained by the second measurement. By obtaining the difference from the deviation, the verification electrodes 31 can be evaluated relative to each other.

<鋼材電位測定方法>
つぎに、上述の鋼材電位測定装置1を用いた本実施形態の鋼材電位測定方法を、図3に示されたフローチャート、ならびに図4および図5に示された模式図を用いて説明する。
<Steel material potential measurement method>
Next, a steel material potential measuring method of the present embodiment using the above-described steel material potential measuring device 1 will be described with reference to the flowchart shown in FIG. 3 and the schematic diagrams shown in FIGS. 4 and 5.

本実施形態の鋼材電位測定方法は、図3に示されるように、工程S1〜工程S4を含んでいる。まず、工程S1において、基準接触部2を基準位置に接触させる。本実施形態では、図4(a)に示されるように、基準接触部2である基準電極22を、基準位置である基準表面11cに接触させる。より具体的には、湿潤状態とされた基準電極22の湿潤パッドをコンクリート構造物11の基準表面11cに当接させ、基準表面11cの位置で基準電極22を保持する。基準電極22を接触させる基準表面11cは、事前の調査等により、直下の鋼材11bの腐食がないまたは少ない箇所が選択される。なお、たとえば、基準電極22を接触させる基準表面11cとして、直下の鋼材11bの腐食が少ない箇所を選択した場合において、後の工程で基準表面11cにおける自然電位よりも高い自然電位の領域が見つかった場合には、その領域を、より腐食が少ないまたは腐食がない箇所として、新たに基準表面11cとしてもよい。また、図4(a)に示された例では、基準電極22を基準表面11cに接触させているが、基準端子21を鋼材11bに接触させてもよい。   As shown in FIG. 3, the steel material potential measurement method of the present embodiment includes steps S1 to S4. First, in step S1, the reference contact portion 2 is brought into contact with the reference position. In this embodiment, as shown in FIG. 4A, the reference electrode 22 that is the reference contact portion 2 is brought into contact with the reference surface 11c that is the reference position. More specifically, the wet pad of the reference electrode 22 in a wet state is brought into contact with the reference surface 11c of the concrete structure 11, and the reference electrode 22 is held at the position of the reference surface 11c. As the reference surface 11c with which the reference electrode 22 is brought into contact, a location where there is no or little corrosion of the steel material 11b immediately below is selected by a preliminary investigation or the like. In addition, for example, when a location where the corrosion of the steel material 11b directly below is selected as the reference surface 11c with which the reference electrode 22 is brought into contact, a region having a natural potential higher than the natural potential on the reference surface 11c was found in a later step. In that case, the region may be newly set as a reference surface 11c as a portion with less corrosion or no corrosion. Moreover, in the example shown by Fig.4 (a), although the reference electrode 22 is made to contact the reference surface 11c, you may make the reference terminal 21 contact the steel material 11b.

つぎに、工程S2において、照合電極ユニット3をコンクリート構造物11の照合表面11dに配置することによって、複数の照合電極31を照合表面11d内の表面に接触させる(図4(a))。より具体的には、基準電極22と同様に、照合電極31の湿潤状態とされた湿潤パッドをコンクリート構造物11の照合表面11d内の表面に当接させ、その表面位置で照合電極31を保持する。本実施形態では、照合電極ユニット3は、図4(a)に示されるように、複数の鋼材11bをまたぐように覆っており、照合表面11dは、複数の鋼材11bをまたぐ大きさとされている。なお、工程S1と工程S2は逆の順番であってもよい。   Next, in step S2, the verification electrode unit 3 is arranged on the verification surface 11d of the concrete structure 11, thereby bringing the plurality of verification electrodes 31 into contact with the surface in the verification surface 11d (FIG. 4A). More specifically, like the reference electrode 22, the wet pad of the verification electrode 31 is brought into contact with the surface in the verification surface 11d of the concrete structure 11, and the verification electrode 31 is held at the surface position. To do. In the present embodiment, as shown in FIG. 4A, the verification electrode unit 3 covers the plurality of steel materials 11b, and the verification surface 11d is sized to straddle the plurality of steel materials 11b. . In addition, process S1 and process S2 may be reverse order.

工程S1および工程S2により、基準接触部2および照合電極ユニット3の配置が完了した後、工程S3において、電位差計測装置4(図1を参照)により、基準接触部2である基準電極22と複数の照合電極31のそれぞれとの間の電位差を計測する。これにより、基準表面11cにおける鋼材11bの自然電位(基準電位)と、照合表面11d内の各表面における鋼材11bの自然電位との差(相対電位)が測定される。このとき、照合電極ユニット3が照合表面11dに配置されたときに、2次元に配列された複数の照合電極31が照合表面11d内の複数の表面に同時に接触されるので、鋼材11bの複数の領域の相対電位を同時に測定することができる。したがって、本実施形態の鋼材電位測定方法によれば、従来法と比べて、鋼材11bの複数の領域の電位を効率的に測定することができる。さらに、鋼材11bの複数の領域の腐食状態を同時に判定することができ、従来法と比べて、鋼材11bが埋設されたコンクリート構造物11における鋼材11bの腐食状態を効率よく判定することができる。なお、照合表面11d内の各表面における自然電位が基準電位よりも所定の閾値以上低ければ、その照合表面11d内の各表面のかぶり厚さ方向の近傍に位置する(各表面の略真下近傍の)鋼材11bに腐食箇所が存在すると判定される。一方、照合表面11d内の各表面における自然電位が基準電位とほぼ同じか、またはその差が所定の閾値の範囲内である場合には、複数の照合電極31が接触している各表面の近傍の鋼材11bに腐食箇所が存在しないと判定される。   After the arrangement of the reference contact portion 2 and the verification electrode unit 3 is completed in steps S1 and S2, in step S3, the potential difference measuring device 4 (see FIG. 1) and the reference electrode 22 as the reference contact portion 2 and the plurality of reference electrodes 22 The potential difference between each of the reference electrodes 31 is measured. Thereby, the difference (relative potential) between the natural potential of the steel material 11b on the reference surface 11c (reference potential) and the natural potential of the steel material 11b on each surface in the reference surface 11d is measured. At this time, when the verification electrode unit 3 is arranged on the verification surface 11d, the plurality of verification electrodes 31 arranged in two dimensions are simultaneously brought into contact with the plurality of surfaces in the verification surface 11d. The relative potential of the region can be measured simultaneously. Therefore, according to the steel material potential measurement method of the present embodiment, the potentials of a plurality of regions of the steel material 11b can be efficiently measured as compared with the conventional method. Furthermore, the corrosion state of the several area | region of the steel material 11b can be determined simultaneously, and the corrosion state of the steel material 11b in the concrete structure 11 with which the steel material 11b was embed | buried can be determined efficiently compared with the conventional method. If the natural potential on each surface in the collation surface 11d is lower than the reference potential by a predetermined threshold or more, it is located in the vicinity of the cover thickness direction of each surface in the collation surface 11d (in the vicinity of almost directly below each surface). ) It is determined that a corrosion site exists in the steel material 11b. On the other hand, when the natural potential on each surface in the verification surface 11d is substantially the same as the reference potential, or the difference is within a predetermined threshold range, the vicinity of each surface in contact with the plurality of verification electrodes 31 It is determined that no corrosion site exists in the steel material 11b.

工程S3の後、工程S4において、他に測定すべき表面が存在するか否かを判断する。他に測定すべき表面が存在すれば(工程S4のYes)、照合電極ユニット3を、コンクリート構造物11の表面に沿って移動させて、工程S2および工程S3を繰り返す(図4(b)〜図4(c))。すなわち、照合電極ユニット3を、コンクリート構造物11の表面に沿って移動させて、複数の照合表面11dに順次配置して、複数の照合表面11d毎に、基準接触部2である基準電極22と複数の照合電極31のそれぞれとの間の電位差を計測する。そして、他に測定すべき表面が存在しなくなるまで(工程S4のNo)、工程S2および工程S3を繰り返す。ここで、本実施形態の鋼材電位測定装置1では、図2(b)に示されるように、照合電極ユニット3の照合電極保持部32が略矩形状に形成され、照合電極31が、照合電極保持部32に略等間隔で行列状に配置され、照合電極保持部32の第1の辺33および第2の辺34のそれぞれと照合電極31との間隔が、照合電極31間の間隔の略半分になるように配置されている。したがって、図4(b)に示されるように、照合電極ユニット3を第1の方向Xおよび/または第2の方向Yに沿って移動させて、第1の方向Xおよび/または第2の方向Yで隣接する複数の照合表面11dに順次配置するだけで、複数の照合電極31のそれぞれをコンクリート構造物11の表面に略等間隔で接触させることができる。したがって、鋼材11bの電位の分布を等間隔で測定することが容易となり、コンクリート構造物11中の鋼材11bの腐食状態の分布を効率よく短時間で正確に判定することができる。特に、工程S1および工程S2の前に、基準電極22および照合電極31とコンクリート構造物11の表面との良好な電気的接触を得るために、コンクリート構造物11の表面に散水を行なうような場合であっても、本実施形態の腐食電位測定方法によれば、効率よく鋼材11bの電位分布を測定し、効率よく鋼材11bの腐食状態を判定することができるので、表面の湿潤状態が変化する前に測定を完了させることができ、従来法と比べて、より正確に鋼材11bの電位を測定し、腐食状態を判定することができる。   After step S3, in step S4, it is determined whether there is another surface to be measured. If there is another surface to be measured (Yes in step S4), the verification electrode unit 3 is moved along the surface of the concrete structure 11, and the steps S2 and S3 are repeated (FIGS. 4B to 4B). FIG. 4 (c)). That is, the reference electrode unit 3 is moved along the surface of the concrete structure 11 and sequentially disposed on the plurality of reference surfaces 11d, and the reference electrode 22 that is the reference contact portion 2 is provided for each of the plurality of reference surfaces 11d. A potential difference between each of the plurality of verification electrodes 31 is measured. Then, step S2 and step S3 are repeated until there is no other surface to be measured (No in step S4). Here, in the steel material potential measuring device 1 of the present embodiment, as shown in FIG. 2B, the verification electrode holding portion 32 of the verification electrode unit 3 is formed in a substantially rectangular shape, and the verification electrode 31 is used as the verification electrode. The holding parts 32 are arranged in a matrix at substantially equal intervals, and the distance between each of the first side 33 and the second side 34 of the verification electrode holding part 32 and the verification electrode 31 is an approximate distance between the verification electrodes 31. It is arranged to be half. Therefore, as shown in FIG. 4B, the reference electrode unit 3 is moved along the first direction X and / or the second direction Y, and the first direction X and / or the second direction is moved. Each of the plurality of verification electrodes 31 can be brought into contact with the surface of the concrete structure 11 at substantially equal intervals simply by sequentially arranging them on the plurality of verification surfaces 11d adjacent by Y. Therefore, it becomes easy to measure the distribution of the potential of the steel material 11b at equal intervals, and the distribution of the corrosion state of the steel material 11b in the concrete structure 11 can be determined efficiently and accurately in a short time. In particular, in order to obtain good electrical contact between the reference electrode 22 and the reference electrode 31 and the surface of the concrete structure 11 before the steps S1 and S2, water is sprayed on the surface of the concrete structure 11. Even so, according to the corrosion potential measurement method of the present embodiment, the potential distribution of the steel material 11b can be measured efficiently, and the corrosion state of the steel material 11b can be determined efficiently, so the wet state of the surface changes. The measurement can be completed before, and the corrosion state can be determined by measuring the potential of the steel material 11b more accurately than in the conventional method.

本実施形態の鋼材電位測定方法はさらに、図3に示されるように、工程S1〜工程S4に引き続いて行なわれる工程S5および工程S6を含んでいてもよい。工程S5においては、複数の照合電極31のそれぞれについて、照合電極31固有の電極電位のずれを補正するために、計測された電位差を校正する。より具体的には、情報処理装置5により、複数の照合電極31のそれぞれについて予め求められた校正式を用いて、複数の照合電極31のそれぞれについて電位差計測装置4により計測された電位差を校正する。情報処理装置5により、複数の照合電極31のそれぞれについて計測された電位差を校正することで、鋼材11bの電位を精度よく測定することができ、鋼材11bの腐食の程度を精度よく判定することができる。   As shown in FIG. 3, the steel material potential measuring method of the present embodiment may further include steps S5 and S6 performed subsequent to steps S1 to S4. In step S <b> 5, the measured potential difference is calibrated for each of the plurality of verification electrodes 31 in order to correct a shift in electrode potential unique to the verification electrode 31. More specifically, the potential difference measured by the potential difference measuring device 4 for each of the plurality of verification electrodes 31 is calibrated by the information processing device 5 using a calibration formula obtained in advance for each of the plurality of verification electrodes 31. . By calibrating the potential difference measured for each of the plurality of verification electrodes 31 by the information processing device 5, the potential of the steel material 11b can be accurately measured, and the degree of corrosion of the steel material 11b can be accurately determined. it can.

また、工程S6においては、複数の照合表面11d毎に、複数の照合電極31のそれぞれについての電位差の統計値を求める。求められる統計値としては、上述したように、同じ照合表面11d内で得られる複数の電位差(計測された電位差および/または校正された電位差)の平均値、照合電極31毎の偏差値、標準偏差値、中心値、最大値、最小値、その他の統計値算出手法により算出される値である。たとえば、複数の照合表面11d毎に電位差の平均値を求めることにより、照合電極31それぞれに対応する小さい領域単位の腐食状態ではなく、大きい領域の照合表面11d単位で腐食状態を判定することができるので、コンクリート構造物11中の鋼材11bの腐食状態分布を大雑把に把握することができる。さらに、照合電極31に対応する領域の中に特異値と判断される可能性がある領域があったとしても、照合表面11d毎に平均を求めることにより、特異値をキャンセルすることができるので、鋼材の腐食状態をより正確に判定することができる(図5(a)および図5(b)を参照)。   In step S6, a statistical value of a potential difference for each of the plurality of verification electrodes 31 is obtained for each of the plurality of verification surfaces 11d. As described above, as the statistical value to be obtained, as described above, an average value of a plurality of potential differences (measured potential difference and / or calibrated potential difference) obtained in the same verification surface 11d, a deviation value for each verification electrode 31, a standard deviation It is a value calculated by a value, center value, maximum value, minimum value, and other statistical value calculation methods. For example, by determining the average value of the potential differences for each of the plurality of verification surfaces 11d, it is possible to determine the corrosion state not in the small area unit corresponding to each verification electrode 31 but in the large area verification surface 11d unit. Therefore, the corrosion state distribution of the steel material 11b in the concrete structure 11 can be roughly grasped. Furthermore, even if there is a region that may be determined to be a singular value in the region corresponding to the collation electrode 31, the singular value can be canceled by obtaining an average for each collation surface 11d. It is possible to more accurately determine the corrosion state of the steel material (see FIGS. 5A and 5B).

また、本実施形態の鋼材電位測定方法はさらに、同一の照合表面11dに対して工程3を繰り返し、複数の照合電極31のそれぞれについて、同一の接触箇所において2回または3回以上計測された電位差の平均値を求める工程を含んでいてもよい。複数の照合電極31のそれぞれについて2つまたは3つ以上の電位差の平均値を求めることにより、複数の照合電極31のうちいずれかに電子回路のノイズなどに起因した異常値が偶然発生したとしても、その偶発的な異常値をキャンセルすることができるので、測定精度を維持し、測定対象の電位分布を正しく把握することができる。本実施形態の鋼材電位測定方法によれば、上述したように鋼材11bの複数の領域の電位を効率的に測定することができるので、複数回の測定を行なったとしても従来法と比べて測定の十分な迅速化が図れるとともに、測定精度を維持することができ、測定の迅速化と精度の維持の両立を図ることができる。   Further, in the steel material potential measuring method of the present embodiment, the step 3 is further repeated for the same reference surface 11d, and the potential difference measured two or more times at the same contact location for each of the plurality of reference electrodes 31. The process of calculating | requiring the average value of may be included. Even if an abnormal value due to electronic circuit noise or the like is accidentally generated in any of the plurality of verification electrodes 31 by obtaining an average value of two or three or more potential differences for each of the plurality of verification electrodes 31. Since the accidental abnormal value can be canceled, the measurement accuracy can be maintained and the potential distribution of the measurement target can be correctly grasped. According to the steel material potential measurement method of the present embodiment, as described above, the potential of a plurality of regions of the steel material 11b can be efficiently measured, so even if a plurality of measurements are performed, measurement is performed as compared with the conventional method. Can be sufficiently speeded up and the measurement accuracy can be maintained, and both the speeding up of the measurement and the maintenance of the accuracy can be achieved.

また、本実施形態の鋼材電位測定方法はさらに、同一の照合表面11dに対して工程3を繰り返し、同一の照合表面11dにおいて、2回または3回以上の測定回毎に複数の照合電極31のそれぞれについての電位差の偏差を求め、それぞれの測定回の偏差の互いの差分を所定の閾値と比較し、複数の照合電極31のそれぞれについての電位差が異常値であるか否かを判定する工程を含んでいてもよい。より具体的には、この工程では、まず、同一の照合表面11dに対して、1回目の測定により得られた複数の照合電極31のそれぞれについての電位差の偏差と、2回目の測定により得られた複数の照合電極31のそれぞれについての電位差の偏差との差分を求める。つぎに、それぞれの照合電極31毎の偏差の差分を所定の閾値(たとえば10mV)と比較して、電位差の偏差が所定の閾値以下であれば電位差が異常値ではないと判定し、電位差の偏差が所定の閾値よりも大きければ電位差が異常値であると判定する。したがって、本実施形態の鋼材電位測定方法によれば、異常値をより確実に把握することができるので、測定結果の信頼性を向上させることができる。もし、電位差が異常値であると判定されれば、異常値があると判定された照合表面11dについて電位差を再測定するか、または、異常値は、測定結果の信頼性を判断するための参考値とする。   Further, the steel material potential measurement method of the present embodiment further repeats step 3 on the same verification surface 11d, and the plurality of verification electrodes 31 are measured every two or three or more measurement times on the same verification surface 11d. A step of obtaining a potential difference deviation for each of them, comparing each difference of measurement deviations with a predetermined threshold value, and determining whether or not the potential difference for each of the plurality of verification electrodes 31 is an abnormal value. May be included. More specifically, in this step, first, with respect to the same verification surface 11d, the potential difference deviation for each of the plurality of verification electrodes 31 obtained by the first measurement and the second measurement are obtained. Further, the difference from the potential difference deviation for each of the plurality of verification electrodes 31 is obtained. Next, the difference in deviation for each verification electrode 31 is compared with a predetermined threshold value (for example, 10 mV), and if the potential difference deviation is equal to or smaller than the predetermined threshold value, it is determined that the potential difference is not an abnormal value. Is greater than a predetermined threshold value, it is determined that the potential difference is an abnormal value. Therefore, according to the steel material potential measurement method of the present embodiment, the abnormal value can be grasped more reliably, and the reliability of the measurement result can be improved. If it is determined that the potential difference is an abnormal value, the potential difference is remeasured for the reference surface 11d determined to have an abnormal value, or the abnormal value is a reference for determining the reliability of the measurement result. Value.

1 鋼材電位測定装置
2 基準接触部
21 基準端子
22 基準電極
3 照合電極ユニット
31 照合電極
32 照合電極保持部
33 第1の辺
34 第2の辺
4 電位差計測装置
5 情報処理装置
51 処理装置本体
52 表示装置
6 導線
11 コンクリート構造物
11a コンクリート
11b 鋼材(鉄筋)
11c 基準表面
11d 照合表面
X 第1の方向
Y 第2の方向
DESCRIPTION OF SYMBOLS 1 Steel material potential measuring apparatus 2 Reference contact part 21 Reference terminal 22 Reference electrode 3 Reference electrode unit 31 Reference electrode 32 Reference electrode holding part 33 1st edge | side 34 2nd edge | side 4 Potential difference measuring device 5 Information processing apparatus 51 Processing apparatus main body 52 Display device 6 Conductor 11 Concrete structure 11a Concrete 11b Steel (rebar)
11c Reference surface 11d Reference surface X First direction Y Second direction

Claims (10)

鋼材電位測定装置を用いて、コンクリート構造物に埋設された鋼材の電位を測定する鋼材電位測定方法であって、
前記鋼材電位測定装置が、
基準位置に接触する基準接触部と、
前記コンクリート構造物の表面に接触する複数の照合電極と、前記複数の照合電極を保持する照合電極保持部とを有する照合電極ユニットと、
前記基準接触部と前記複数の照合電極のそれぞれとが接続され、前記基準接触部と前記複数の照合電極のそれぞれとの間の電位差を計測する電位差計測装置とを備え、
前記複数の照合電極のそれぞれが、前記照合電極保持部に、互いに直交する第1の方向および第2の方向を含む面内で互いに間隔を置いて2次元に配列され、
前記鋼材電位測定方法が、
前記基準接触部を前記基準位置に接触させる工程と、
前記照合電極ユニットを前記コンクリート構造物の照合表面に配置することによって、前記複数の照合電極を前記照合表面内の表面に接触させる工程と、
前記電位差計測装置により、前記基準接触部と前記複数の照合電極のそれぞれとの間の電位差を計測する工程とを含み、
前記照合電極ユニットを、前記コンクリート構造物の表面に沿って移動させて、複数の照合表面に順次配置して、前記複数の照合表面毎に、前記基準接触部と前記複数の照合電極のそれぞれとの間の電位差を計測することを特徴とする鋼材電位測定方法。
A steel material potential measuring method for measuring the potential of a steel material embedded in a concrete structure using a steel material potential measuring device,
The steel material potential measuring device,
A reference contact portion that contacts the reference position;
A plurality of reference electrodes in contact with the surface of the concrete structure, and a reference electrode unit having a reference electrode holding part for holding the plurality of reference electrodes;
The reference contact portion and each of the plurality of verification electrodes are connected, and a potential difference measuring device that measures a potential difference between the reference contact portion and each of the plurality of verification electrodes, and
Each of the plurality of verification electrodes is two-dimensionally arranged on the verification electrode holding portion at a distance from each other in a plane including a first direction and a second direction orthogonal to each other.
The steel material potential measuring method,
Bringing the reference contact portion into contact with the reference position;
Placing the plurality of reference electrodes in contact with the surface in the reference surface by placing the reference electrode unit on the reference surface of the concrete structure;
A step of measuring a potential difference between the reference contact portion and each of the plurality of verification electrodes by the potential difference measuring device;
The reference electrode unit is moved along the surface of the concrete structure and sequentially arranged on a plurality of reference surfaces, and for each of the reference surfaces, the reference contact portion and each of the plurality of reference electrodes A method for measuring the potential of a steel material, characterized by measuring a potential difference between the two.
前記複数の照合電極のそれぞれについて、照合電極固有の電極電位のずれを補正するために、計測された電位差を校正する工程を含む請求項1記載の鋼材電位測定方法。 The steel material potential measuring method according to claim 1, further comprising a step of calibrating the measured potential difference for each of the plurality of verification electrodes in order to correct a shift in electrode potential unique to the verification electrode. 前記複数の照合表面毎に、前記複数の照合電極のそれぞれについての前記電位差の統計値を求める工程を含む請求項1または2記載の鋼材電位測定方法。 The steel material potential measurement method according to claim 1, further comprising a step of obtaining a statistical value of the potential difference for each of the plurality of verification electrodes for each of the plurality of verification surfaces. 前記複数の照合電極の配列間隔が、前記コンクリート構造物に離間して埋設された2つの鋼材間の距離よりも小さく、最も離間して配列される照合電極間の間隔が、前記コンクリート構造物に離間して埋設された2つの鋼材間の距離よりも大きいことを特徴とする請求項1〜3のいずれか1項に記載の鋼材電位測定方法。 The arrangement interval of the plurality of verification electrodes is smaller than the distance between two steel materials that are embedded in the concrete structure so as to be spaced apart from each other, and the interval between the verification electrodes that are arranged the most apart from each other is in the concrete structure. The steel material potential measuring method according to any one of claims 1 to 3, wherein the steel material potential measuring method is larger than a distance between two steel materials embedded separately. 前記照合電極保持部が、前記第1の方向に沿って延びる一対の第1の辺および前記第2の方向に沿って延びる一対の第2の辺を有する略矩形状に形成され、
前記複数の照合電極が、前記照合電極保持部に、前記第1の方向および前記第2の方向に沿って略等間隔の行列状に配列され、
前記第1の辺と前記第1の辺に最も近い照合電極との間の間隔、および前記第2の辺と前記第2の辺に最も近い照合電極との間の間隔がともに、前記第1の方向および前記第2の方向における照合電極の配列間隔の略半分であることを特徴とする請求項1〜4のいずれか1項に記載の鋼材電位測定方法。
The reference electrode holding portion is formed in a substantially rectangular shape having a pair of first sides extending along the first direction and a pair of second sides extending along the second direction;
The plurality of verification electrodes are arranged in a substantially equidistant matrix along the first direction and the second direction on the verification electrode holding unit,
Both the distance between the first side and the reference electrode closest to the first side and the distance between the second side and the reference electrode closest to the second side are the first side. 5. The steel material potential measurement method according to claim 1, wherein the steel material potential measurement method is approximately half of an arrangement interval of the reference electrodes in the first direction and the second direction.
コンクリート構造物に埋設された鋼材の電位を測定するために用いられる鋼材電位測定装置であって、
基準位置に接触する基準接触部と、
前記コンクリート構造物の表面に接触する複数の照合電極と、前記複数の照合電極を保持する照合電極保持部とを有する照合電極ユニットと、
前記基準接触部と前記複数の照合電極のそれぞれとが接続され、前記基準接触部と前記複数の照合電極のそれぞれとの間の電位差を計測する電位差計測装置とを備え、
前記複数の照合電極のそれぞれが、前記照合電極保持部に、互いに直交する第1の方向および第2の方向を含む面内で互いに間隔を置いて2次元に配列されていることを特徴とする鋼材電位測定装置。
A steel material potential measuring device used to measure the potential of a steel material embedded in a concrete structure,
A reference contact portion that contacts the reference position;
A plurality of reference electrodes in contact with the surface of the concrete structure, and a reference electrode unit having a reference electrode holding part for holding the plurality of reference electrodes;
The reference contact portion and each of the plurality of verification electrodes are connected, and a potential difference measuring device that measures a potential difference between the reference contact portion and each of the plurality of verification electrodes, and
Each of the plurality of verification electrodes is two-dimensionally arranged at a distance from each other in a plane including a first direction and a second direction orthogonal to each other on the verification electrode holding portion. Steel potential measuring device.
前記複数の照合電極の配列間隔が、前記コンクリート構造物に離間して埋設された2つの鋼材間の距離よりも小さく、最も離間して配列される照合電極間の間隔が、前記コンクリート構造物に離間して埋設された2つの鋼材間の距離よりも大きいことを特徴とする請求項6記載の鋼材電位測定装置。 The arrangement interval of the plurality of verification electrodes is smaller than the distance between two steel materials that are embedded in the concrete structure so as to be spaced apart from each other, and the interval between the verification electrodes that are arranged the most apart from each other is in the concrete structure. The steel material potential measuring device according to claim 6, wherein the steel material potential measuring device is larger than a distance between two steel materials embedded in a separated manner. 前記照合電極保持部が、前記第1の方向に沿って延びる一対の第1の辺および前記第2の方向に沿って延びる一対の第2の辺を有する略矩形状に形成され、
前記複数の照合電極が、前記照合電極保持部に、前記第1の方向および前記第2の方向に沿って略等間隔の行列状に配列され、
前記第1の辺と前記第1の辺に最も近い照合電極との間の間隔、および前記第2の辺と前記第2の辺に最も近い照合電極との間の間隔がともに、前記第1の方向および前記第2の方向における照合電極の配列間隔の略半分であることを特徴とする請求項6または7記載の鋼材電位測定装置。
The reference electrode holding portion is formed in a substantially rectangular shape having a pair of first sides extending along the first direction and a pair of second sides extending along the second direction;
The plurality of verification electrodes are arranged in a substantially equidistant matrix along the first direction and the second direction on the verification electrode holding unit,
Both the distance between the first side and the reference electrode closest to the first side and the distance between the second side and the reference electrode closest to the second side are the first side. The steel material potential measuring device according to claim 6 or 7, wherein the steel material potential measuring device is approximately half of the arrangement interval of the reference electrodes in the direction of and the second direction.
前記鋼材電位測定装置が、情報処理装置を備え、
前記情報処理装置が、前記複数の照合電極のそれぞれについて、照合電極固有の電極電位のずれを補正するために、計測された電位差を校正するように構成されることを特徴とすする請求項6〜8のいずれか1項に記載の鋼材電位測定装置。
The steel material potential measuring device includes an information processing device,
7. The information processing apparatus is configured to calibrate a measured potential difference for each of the plurality of verification electrodes in order to correct a shift in electrode potential unique to the verification electrode. The steel material electric potential measuring apparatus of any one of -8.
前記鋼材電位測定装置が、情報処理装置を備え、
前記情報処理装置が、前記複数の照合表面毎に、前記複数の照合電極のそれぞれについての前記電位差の統計値を求めるように構成されることを特徴とする請求項6〜9のいずれか1項に記載の鋼材電位測定装置。
The steel material potential measuring device includes an information processing device,
The information processing apparatus is configured to obtain a statistical value of the potential difference for each of the plurality of verification electrodes for each of the plurality of verification surfaces. The steel material potential measuring device according to 1.
JP2016006488A 2016-01-15 2016-01-15 Steel material potential measuring method and steel material potential measuring device Active JP6158961B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016006488A JP6158961B1 (en) 2016-01-15 2016-01-15 Steel material potential measuring method and steel material potential measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016006488A JP6158961B1 (en) 2016-01-15 2016-01-15 Steel material potential measuring method and steel material potential measuring device

Publications (2)

Publication Number Publication Date
JP6158961B1 true JP6158961B1 (en) 2017-07-05
JP2017125822A JP2017125822A (en) 2017-07-20

Family

ID=59273030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016006488A Active JP6158961B1 (en) 2016-01-15 2016-01-15 Steel material potential measuring method and steel material potential measuring device

Country Status (1)

Country Link
JP (1) JP6158961B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6417463B1 (en) * 2017-11-20 2018-11-07 株式会社ナカボーテック Reference electrode, reference electrode unit, metal corrosion notification device and metal corrosion notification system
JP2024535052A (en) * 2021-09-17 2024-09-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrochemical Probes

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716993Y2 (en) * 1985-05-21 1995-04-19 日本防蝕工業株式会社 Rotary multi-point simultaneous potential measurement device
US4758324A (en) * 1985-10-03 1988-07-19 Colebrand Limited Apparatus for determining potential differences
JPS63163266A (en) * 1986-12-26 1988-07-06 Nippon Steel Corp Corrosion detecting end of steel products in concrete and method for evaluating corrosion of steel products using said end
FR2634887A1 (en) * 1988-07-26 1990-02-02 France Etat Ponts Chaussees METHOD FOR DIAGNOSING THE CORROSION OF REINFORCEMENTS OF AN ARMED CONCRETE STRUCTURE
US5259944A (en) * 1990-05-18 1993-11-09 Geotecnia Y Cimientos, S.A.-Geocisa Corrosion detecting probes for use with a corrosion-rate meter for electrochemically determining the corrosion rate of reinforced concrete structures
JPH095286A (en) * 1995-06-20 1997-01-10 Nippon Boshoku Kogyo Kk Potential measuring mark sheet and method for measuring potential of reinforcing bar therewith
JPH10221292A (en) * 1997-02-03 1998-08-21 Denki Kagaku Kogyo Kk Detecting method for steel material corrosion in concrete
JP3973768B2 (en) * 1998-07-17 2007-09-12 株式会社太平洋コンサルタント Evaluation method of corrosion state of reinforcing steel in concrete structures
JP2000044364A (en) * 1998-07-22 2000-02-15 Denki Kagaku Kogyo Kk Detection of repair-needing portion of concrete structure and its repair
JP6018467B2 (en) * 2012-09-20 2016-11-02 ショーボンド建設株式会社 Reference electrode and natural potential measurement method

Also Published As

Publication number Publication date
JP2017125822A (en) 2017-07-20

Similar Documents

Publication Publication Date Title
US9829452B2 (en) Corrosion detection in structural tendons
WO2022193454A1 (en) Current sensor, current measurement device, system and apparatus, and storage medium
EP3115781B1 (en) System for assessing chloride concentration and corresponding method and sensor
US20090192730A1 (en) Damage Detection Apparatus, Damage Detection Method and Recording Medium
CN205959980U (en) Rete test structure and array substrate
US4296379A (en) Ground prospecting method utilizing electrical resistivity measurements for measuring the resistivity of unit blocks of the ground
JP5701961B2 (en) Electrical conductivity measurement method and electrical conductivity measurement system using the same
JP6158961B1 (en) Steel material potential measuring method and steel material potential measuring device
CN105203847A (en) Method for measuring thin layer material square resistance and connection point contact resistance
Lim et al. A quantitative analysis of the geometric effects of reinforcement in concrete resistivity measurement above reinforcement
JP5571710B2 (en) Corrosion sensor
KR101353388B1 (en) Strain measuring method using multiple electrode
JP2010217134A (en) Method and device for measuring main axis electric resistivity of two-dimensional and three-dimensional anisotropic substances by multipoint voltage-current probe method
US8778167B2 (en) Method and device for determining the location of corrosion sites in reinforced concrete
JP6338238B2 (en) Concrete body chloride concentration measuring system and concrete body chloride concentration measuring method
WO2019084694A1 (en) System, electrode and method for evaluating a condition of steel reinforcements in concrete
KR20070088016A (en) Monitoring method for crack growth in real steel structure and estimation method for residual life of real steel structure
Lim et al. Mathematical modeling for quantitative estimation of geometric effects of nearby rebar in electrical resistivity measurement
JP5946867B2 (en) Method for identifying corrosion location of steel material in concrete structure and potential difference measuring device for identifying corrosion location
JP7346156B2 (en) Buried steel detection device, buried steel detection method, and buried steel detection program
JP2004093213A (en) Characteristic distribution measuring device
KR101242477B1 (en) Apparatus detecting energized insulator polymer for distribution line
CN202994100U (en) Lead insulation layer thickness measuring instrument
JP4735075B2 (en) Sensor for crack depth measuring instrument and crack depth measuring instrument
KR101600813B1 (en) Estimating methode for the status of bar steel arrangement in the concrete

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170608

R150 Certificate of patent or registration of utility model

Ref document number: 6158961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250