JP2005017107A - Calibration method for leak inspection device and leak inspection device - Google Patents

Calibration method for leak inspection device and leak inspection device Download PDF

Info

Publication number
JP2005017107A
JP2005017107A JP2003182206A JP2003182206A JP2005017107A JP 2005017107 A JP2005017107 A JP 2005017107A JP 2003182206 A JP2003182206 A JP 2003182206A JP 2003182206 A JP2003182206 A JP 2003182206A JP 2005017107 A JP2005017107 A JP 2005017107A
Authority
JP
Japan
Prior art keywords
temperature
value
characteristic curve
drift
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003182206A
Other languages
Japanese (ja)
Other versions
JP3751958B2 (en
Inventor
Akio Furuse
昭男 古瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Instruments Co Ltd
Original Assignee
Cosmo Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Instruments Co Ltd filed Critical Cosmo Instruments Co Ltd
Priority to JP2003182206A priority Critical patent/JP3751958B2/en
Publication of JP2005017107A publication Critical patent/JP2005017107A/en
Application granted granted Critical
Publication of JP3751958B2 publication Critical patent/JP3751958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To always correctly compensate drift by estimating a drift compensation quantity of a leak inspection device from a drift characteristic curve. <P>SOLUTION: After estimating a value of differential pressure caused between an inspection body and a reference tank as a first measured value D1, the variation of the differential pressure caused during elapsing of a specific time from a time point having passed longer time than the specific time is obtained as a second measured value ΔD3. Gaining the first measured value and the second measured value by using the inspection body set at a different temperature from a reference ambient temperature and a seal jig maintained at nearly equal temperature to the reference ambient temperature is executed at every plurality of temperature difference by changing the temperature of the inspection body. The first characteristic curve X1 of each temperature difference vs the first measured value D1, and the second characteristic curve X2 of each temperature difference vs the first measured value ΔD3 are recorded. The temperature characteristics of the drift value included in the first characteristic curve X1 is obtained from the difference between the first characteristic curve X1 and the second characteristic curve X2. By utilizing the temperature characteristics of the drift value in the inspection mode, the drift compensation value is obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は各種の容器或はガス器具、エンジンのシリンダブロック等の洩れの有無を検査する洩れ検査装置に関する。
【0002】
【従来の技術】
洩れ検査装置の特にエアーリークテスタと呼ばれている検査装置には、
イ、検査体に空気圧を封入し、その空気圧の変化を監視し、空気圧が規定値より低下するとその被検査体は洩れが有ると判定するゲージ圧方式と呼ばれる方式と、
ロ、被検査体と基準タンクの双方に空気圧を封入し、両者間に差圧が発生するか否かにより洩れの有無を判定する差圧式と、
が存在する。
【0003】
ゲージ圧式は構造が簡単である反面、検出感度が低いため、現況ではあまり実用されてなく、一般には差圧式の洩れ検査装置が広く実用されている。
エアーリークテスタの最大の欠点は空気圧を利用することに起因する種々の弊害が生じる点である。つまり、空気は被検査体の温度、或は被検査体に接触する治具等の温度、加圧した空気の断熱変化による温度の影響を受け、洩れが無いのに洩れのあるような圧力変動(これをドリフトと称している)を来し、洩れの有無の判定を難しいものとしている。
【0004】
このため、本出願人は従来より各種の洩れ検査方法及び検査装置のドリフト補正に関して各種の提案を行なってきた。(特許文献1、特許文献2、特許文献3)。
図4に従来から用いられている差圧検出型の洩れ検査装置の概略の構成を示す。この形式の洩れ検査装置は、例えばコンプレッサのような空圧源10と、この空圧源10から供給される圧搾空気圧を調整する調圧弁11と、調圧弁11で調整された空気圧の圧力値を測定して表示する圧力計12と、3方電磁弁13と、電磁弁14A、14Bと、被検査体17の開口部分を塞いで被検査体17に圧搾空気圧を印加するシール治具16と、基準タンク18と、被検査体17と基準タンク18との間の差圧を測定する差圧検出器15と、シール治具16と被検査体17との間の温度と温度差又は外気温度と被検査体17との間の温度と温度差を測定する温度センサ16A、17Aと、差圧検出器15の出力信号を増幅する可変利得増幅器19と、この可変利得増幅器19の出力信号を受けて洩れの有無を判定する判定手段20と、判定手段20の判定結果を表示する表示器21とによって構成される。
【0005】
非検査モードでは3方電磁弁13がA−B間が導通した状態で電磁弁14Aと14B
が閉じた状態に維持され、その状態で調圧弁11により空圧源10からの空気圧が調整されて圧力計12に所望のテスト圧が表示される。
検査モードでは電磁弁14A、14Bが開の状態に制御され、電磁弁14Aと、14Bを通じて被検査体17と基準タンク18に圧搾空気が印加される。この圧搾空気の印加状態を図5に示すように加圧期間T1と称している。
【0006】
加圧期間T1が経過(T1=数秒)すると電磁弁14A、14Bが閉じられ、一定期間の安定期間が設けられる。この安定期間を一般に平衡期間T2と称している。平衡期間T2の期間に差圧検出器15が判定値NGを超える大きな差圧検出信号ΔDS(図5参照)を出力した場合は、判定手段20はそのときシール治具16に接続されている被検査体17は大きな洩れが有ると判定し、表示器21にその判定結果を表示し、検査を終了する。
【0007】
平衡期間T2の期間内で差圧検出値が判定値NGを超えなかった場合は「大きな洩れが無い」と判定され、差圧検出器15の検出信号は強制的にゼロリセットされる。ゼロリセット後、可変利得増幅器19の利得は高い利得に切り替えられ、検査期間T3に入る。
検査期間T3で差圧検出器15の検出信号が判定値NGを超えなかった場合は「微少な洩れ無し」と判定される。もし検査期間T3の期間内に差圧検出信号が判定値NGを超えると、この場合は「微少な洩れが有る」と判定する。
【0008】
検査期間T3が終了すると3方電磁弁13はB−C間が導通状態に制御され、また電磁弁14A、14Bが開の状態に制御されて被検査体17及び基準タンク18内の圧縮空気を大気に排気し、初期状態に戻される。
ところで、この種の差圧検出型の洩れ検査装置では被検査体17の温度変化、周囲温度の変化等の外乱要因により洩れが無いのに差圧検出信号を発生する現象が見られる。この現象を一般にドリフトと称している。ドリフトの発生により「洩れが無いのに洩れ有り」と判定したり、「洩れが有るのに洩れ無し」と判定する不都合が生じる。
【0009】
この不都合を解消するためにドリフト補正が施される。図6乃至図8を用いて従来のドリフト補正の方法を説明する。図6に示す曲線P1は差圧検出器15が出力する差圧検出信号を示す。この差圧検出信号には曲線P2で示すドリフト量と、曲線P3で示す洩れ量とを含んでいる。
洩れによって発生する差圧は平衡期間T2の開始時点からある一定の増加率で上昇する直線で表される。これに対し、空気を加圧したことによる断熱変化によるドリフト量は検査期間T3の開始直後は内部空気温度と被検査体の温度差のため指数関数的に上昇するが、終局的には飽和し、一定値を維持する。
【0010】
従って、このドリフトが一定値に収束した状態で洩れ量を測定すれば真の洩れ量を測定することができる。つまり、検査期間T3を終了する時点で差圧値D1を測定しておき、その時点から更に差圧測定状態を維持し、所定の時間、例えば数10秒間程度経過した時点で差圧値D2を測定し、その測定時点から検査期間T3と同じ期間T3(数秒程度)を経過後に再び差圧値D3を測定する。この測定によりD3−D2は洩れによる圧力変化値である。よってD3−D2の減算結果が判定値NGより大きいか小さいかによって洩れの有無を判定すればドリフトに影響されずに正しい判定を下すことができる。
【0011】
然し乍ら、この検査方法を採った場合には検査時間が数10秒ずつ必要であることから、実際の検査に利用することはできない。このため、一般にはΔD3=D3−D2を演算し、この洩れ量ΔD3を第1測定値D1から減算すると残りはドリフト値となる。つまり、ドリフト値Dは、
D=D1−ΔD3 ………(1)
で求められる。このドリフト値Dを記録しておくことにより次回以後の検査では第1測定値D1からドリフト値Dを除去すれば短時間にドリフト値を除去した洩れ量を算出することができ、正しい判定を行なうことができる。尚、測定値D1、D2及びD3を測定し、ドリフト値Dを求める作業を一般にマスタリングと称している。
【0012】
【特許文献1】
特開2001−50854号公報
【特許文献2】
特開2002−22592号公報
【特許文献3】
特開2003−106923号公報
【0013】
【発明が解決しようとする課題】
上記した(1)式で得られたドリフト値Dを第1測定値D1から除去すれば正しいドリフト補正を施すことができると説明したが、現実には被検査体17は常温とは限らないため、不都合が発生することがある。以下にその理由を説明する。図7は(1)式で求めたドリフト量Dを第1測定値D1から除去すれば正しくドリフト補正を行なうことができる状況を示す。つまり、図7に示す横軸は環境温度として測定するシール治具16と被検査体17との間の温度差、縦軸は差圧値を示す。X1は温度差毎に測定した第1測定値D1−1、D2−2、D3−3…をプロットして求めた第1特性曲線、X2は各温度差毎に測定した第2測定値ΔD3−1、ΔD3−2、ΔD3−3をプロットして求めた第2特性曲線を示す。尚、X1とX2を測定する際には洩れの無い被検査体を用いる。洩れの無い被検査体を用いることにより断熱変化のドリフト量がゼロになるため第2特性曲線X2は原点を通る曲線を得ることができる。また、洩れの無い被検査体を用いてマスタリングを行なっているにも係わらず、第2特性曲線X2の傾きがゼロにならない理由は被検査体17とシール治具16との間の温度差により、被検査体17とシール治具16との間で熱交換が発生し、この熱交換により被検査体17内の空気に温度変化を与えてドリフトが発生するからである。
【0014】
図7に示すように、シール治具16と被検査体17との間の温度差がゼロ(外乱要因が無い状態)を中心に温度差を或る範囲に限れば第1特性曲線X1と第2特性曲線X2はほぼ直線と見なすことができる。更に、第1特性曲線X1と第2特性曲線X2がほぼ平行している場合にはどの温度差において検査を行っても、その検査の測定値D1−nからドリフト量Dを差し引くことにより第2測定値ΔD3−nに対応した値を求めることができ、正しいドリフト補正を施すことができる。
【0015】
これに対し、図8に示すように断熱変化によるドリフトの温度特性のために第1測定値D1の第1特性曲線X1と第2測定値ΔD3の第2特性曲線X2の傾斜が異なっている場合には、各温度差毎にドリフト補正量がD、D、D、のように異なる値をとるため、ドリフト補正量を求めた温度の範囲以外の温度では正しいドリフト補正を施すことができないため、環境温度が変化する都度マスタリングを行なわなくてはならない不都合が生じる。
【0016】
このような場合、被検査体とシール治具又は外気温度の温度差毎にマスタリングを実行しドリフト補正値を予め求めて記録しておくことも考えられるが、その作業は膨大であり実現は困難である。特に、被検査体の各種毎にその作業を行わなくてはならないため、更にその実現は困難である。
この発明の目的は図8に示したように、第1測定値D1の第1特性曲線X1と第2測定値ΔD3の第2特性曲線X2の傾斜が異なる場合でも、ドリフト校正を行なった温度以外の温度でも正しく第1特性曲線X1の特性を修正することができ修正されたドリフト特性曲線から正しい、洩れ量を求めることができる洩れ検査装置の校正方法及びこの校正方法を用いて動作する洩れ検査装置を提供しようとするものである。
【0017】
【課題を解決するための手段】
この発明の請求項1では被検査体と基準タンクとの双方に同一の空気圧を封入し、封入後から所定の時間が経過する間に被検査体と基準タンクとの間に差圧が発生するか否かを計測して被検査体に洩れが有るか否かを判定する洩れ検査装置の校正方法において、校正モードで洩れのない乾燥された被検査体の開口部を基準環境温度に等しい温度のシール治具で閉塞し、この閉塞状態で被検査体と基準タンクに空気圧を封入し、空気圧の封入後の所定時間が経過する間に被検査体と基準タンクとの間に発生する差圧値を第1測定値D1として取得し、第1測定値D1を取得した後、所定時間より長い時間経過した時点から所定時間にほぼ等しい時間が経過する間に被検査体と基準タンクとの間に発生する差圧値を第2測定値ΔD3として取得するドリフト値取得方法において、基準環境温度と異なる温度に設定された被検査体と基準環境温度にほぼ等しい温度に維持されたシール治具を使って第1測定値と第2測定値を取得することを被検査体の温度を変更して複数の温度差毎に実行し、各温度差対第1測定値D1の第1特性曲線X1と、各温度差対第2測定値ΔD3の第2特性曲線X2を記録させ、これら第1特性曲線X1と、第2特性曲線X2の差から第1特性曲線X1に含まれる空気圧印加直後に発生する空気の断熱変化によって発生するドリフト値の温度特性を求め、検査モードでこのドリフト値の温度特性を利用して上記環境温度以外の任意の環境温度におけるドリフト補正値を求める洩れ検査装置の校正方法を提供する。
【0018】
この発明の請求項2では請求項1記載の洩れ検査装置の校正方法において、被検査体とシール治具の温度が共に基準環境温度にある場合の第1測定値D1を基準温度ドリフト値A1、上記基準環境温度からΔT変化した場合の第1特性曲線及び第2特性曲線の傾きをa1/ΔT、a2/ΔT、検査時における環境温度と校正時の基準環境温度差がΔT1、シール治具温度と被検査体との間の温度差がΔT2である場合、検査毎にドリフト補正値A2をA2=A1+(a1−a2)ΔT1/ΔT+a1・ΔT2/ΔTで算出し、このドリフト補正値A2を検査時に取得した第1測定値D1から減算し、この減算結果と判定値とを比較して洩れの有無を判定する洩れ検査装置の校正方法を提供する。
【0019】
この発明の請求項3では被検査体と基準タンクとの双方に空気圧を封入し、封入後から所定時間が経過する間に被検査体と基準タンクとの間に差圧が発生するか否かにより被検査体の洩れの有無を判定する洩れ検査装置において、環境温度を測定する環境温度測定手段と、被検査体と環境温度との温度差を測定する温度差測定手段と、校正モードにおいて請求項1記載の校正方法で取得する基準環境温度における第1測定値D1と、第2測定値D2とで求められる第1特性曲線及び第2特性曲線とを記録する第1及び第2特性曲線記録手段と、これら第1特性曲線記録手段及び第2特性曲線記録手段に記録した第1特性曲線及び第2特性曲線とから、被検査体とシール治具の温度が共に基準温度である場合の第1測定値D1を基準温度ドリフト値A1として取り出す基準温度ドリフト値取得手段と、第1特性曲線及び第2特性曲線とから温度差ΔTにおける第1特性曲線及び第2特性曲線の傾きa1/ΔT及びa2/ΔTを求める断熱特性算出手段と、洩れ検査時の環境温度と校正モード時の基準環境温度との差をΔT1、洩れ検査時のシール治具温度と被検査体の温度差をΔT2とした場合、ドリフト補正値A2を
A2=A1+(a1−a2)ΔT1/ΔT+a1・ΔT2/ΔT
で算出するドリフト補正値算出手段と、このドリフト補正値算出手段で算出したドリフト補正値A2を洩れ検査時に取得した第1測定値D1から減算する減算手段と、この減算手段で減算した減算結果と判定値とを比較し、洩れの有無を判定する判定手段とによって構成した洩れ検査装置を提供する。
【0020】
【発明の実施の形態】
被検査体に空気圧を印加した直後に発生する空気の断熱変化によって発生するドリフトの温度特性を把握することにより、信頼性の高い洩れ検査を手間を掛けずに実現した。
図1にこの発明による洩れ検査装置の一実施例を示す。図4と対応する部分には同一符号を付し、その重複説明は省略する。この発明の特徴は可変利得増幅器19と判定手段20の間に設けるドリフト補正装置30の構成を特徴とするものである。この発明で特徴とするドリフト補正装置30は環境温度測定手段31と、温度差測定手段32と、第1特性曲線記録手段33と、第2特性曲線記録手段34と、基準温度ドリフト取得手段35と、断熱特性算出手段36と、ドリフト値算出手段37と、減算手段38とによって構成される。
【0021】
環境温度測定手段31はシール治具16の温度を測定する温度センサ16Aの測定値を環境温度(外気温度)として取得する。温度差測定手段32はシール治具16の温度と被検査体17との温度差を測定する。このためにはシール治具16の温度を測定する温度センサ16Aと被検査体17の温度を測定する温度センサ17Aの測定値を取り込み、その差の値を出力する。
第1特性曲線記録手段33及び第2特性曲線記録手段34は図6で説明したマスタリングによって取得される第1測定値D1−1、D1−2、D1−3…と第2測定値ΔD3−1、ΔD3−2、ΔD3−3…を記録し、これら第1測定値D1−1、D1−2D、D1−3…と第2測定値ΔD3−1、ΔD3−2、ΔD3−3…をそれぞれ例えば補間演算等によりプロットして第1特性曲線X1と第2特性曲線X2を求め、第1特性曲線X1と第2特性曲線X2を記録する。
【0022】
基準温度ドリフト取得手段35は第1特性曲線記録手段33に第1特性曲線X1として記録した複数の第1測定値D1の中の環境温度と被検査体17の温度差がゼロの状態に相当する第1測定値D1を基準温度ドリフト値A1として取得し、その取得値をドリフト値算出手段37に出力する。
断熱特性算出手段36は第1特性曲線記録手段33と第2特性曲線記録手段34から第1特性曲線X1と、第2特性曲線X2の差を算出し、その算出結果をドリフト値算出手段37に入力する。
【0023】
ドリフト値算出手段37では環境温度測定手段31から与えられる環境温度と、温度差測定手段32から与えられる環境温度と被検査体17との間の温度差と、基準温度ドリフト値取得手段35から与えられる基準温度ドリフト値A1と、断熱特性算出手段36から与えられる傾きa1/ΔTとa2/ΔTを用いて環境温度測定手段31から与えられる環境温度におけるドリフト補正値A2を(2)式で演算する。
【0024】
A2=A1+(a1−a2)ΔT1/ΔT+a1・ΔT2/ΔT…(2)
ここでΔT1は校正モードで定めた基準環境温度と検査モードの各検査毎に測定した環境温度との差の温度を表わす。つまり校正モードでマスクリングを行なった際にシール治具16と被検査体17との間の温度差がゼロの状態の環境温度を基準環境温度と定め、この基準環境温度を環境温度測定手段31に記録しておく、検査モードでは洩れ検査を行なう毎にシール治具16の温度を環境温度として測定し、その測定した温度と基準環境温度との差をΔT1としてドリフト値算出手段37に出力する。
【0025】
ΔT2は検査モードで各被検査体の検査毎にシール治具16の温度と被検査体17の温度差を測定し、その温度差をΔT2として被検査体とシール治具の温度が異なるドリフト値を求めドリフト値算出手段37に入力する。
被検査体17の洩れ検査を行なう毎に(2)式を演算し、ドリフト値A2を求める。(2)式で求めたドリフト値A2は減算手段38に入力され、この減算手段38で測定値から差し引かれ、測定値からドリフト分が除去される。判定手段20ではドリフト分が除去された真の洩れによる差圧値が判定値NGと比較され、差圧値が判定値NGより小さければ洩れ無し、大きければ洩れ有りと判定される。
【0026】
(2)式で求めたドリフト値は被検査体17に空気圧を封入した時点で発生する空気の断熱変化に伴なって発生するドリフトの温度特性に従って補正されており、校正モードでマスタリングを行なった基準環境温度以外の環境温度下でも正しいドリフト補正値を求めることができる。以下にその理由を明らかにするために、(2)式の導出過程を説明する。
図2に示すグラフは洩れの無い乾燥した被検査体17を用いて、被検査体17の温度を変化させ、マスタリングにより第1測定値D1の第1特性曲線X1と、第2測定値ΔD3の第2特性曲線X2を採取し、同一のグラフに表わしたものである。
【0027】
図2では25℃を基準環境温度としている。従って、被検査体17とシール治具16が共に25℃で温度差が無い状態とされ、この温度差がゼロの状態を基準環境温度とし、25℃における断熱変化によるドリフト値(上述では基準温度ドリフトと称した)をA1としている。測定値D1に含まれる断熱変化のみの傾きをb1/ΔTと仮定したとき、
b1/ΔT=a1/ΔT−a2/ΔT ………(3)
断熱変化の傾きがゼロであれば当然、
a1=a2
である。
【0028】
また被検査体17とシール治具16の熱量移動がなければb1=a1である。
次に、環境温度が25℃から25℃+ΔT1(図2参照)に変化したとき、すなわち、被検査体17の温度もシール治具16も25℃+ΔT1のときの断熱変化によるドリフト成分を求める。b1はΔTの温度変化があったときの断熱変化によるドリフトの増加分とすると、
A1+(b1/ΔT)ΔT1=A1+(a1−a2)ΔT1/ΔT…(4)
(4)式の右辺第2項が被検査体17とシール治具16の温度が同時に同じ温度25℃+ΔT1に変化したことによる断熱変化によるドリフト増加分である。
【0029】
次に25℃+ΔT1の温度(シール治具温度)を基準としたとき、被検査体17の温度が25℃+ΔT1+ΔT2(図2参照)における第1測定値D1のドリフト成分A2は、
A2=A1+(a1−a2)ΔT1/ΔT+a1・ΔT2/ΔT
となり、上記した(2)式が得られる。
シール治具16の温度が被検査体17の温度の影響を受ける場合、ΔT1は校正時の基準環境温度(この例では25℃)と、検査モード時の環境温度との差である。ΔT2は被検査体17の温度とシール治具16との温度差である。
【0030】
マスタリングによる特性曲線の修正
第1特性曲線X1と第2特性曲線X2が線形である範囲内において、検査時にマスタリングで特性曲線X1の特性(主に基準温度ドリフト値A1)を修正しなくても、任意の被検査体17の温度、シール治具16の温度において(2)式でドリフト修正量A2を求めることができるが、シール治具16と被検査体17の任意の温度においてマスタリングにより特性曲線X1を修正することもできる。このことにより広い温度範囲において特性曲線X1を利用することができる。以下にその理由を説明する。
【0031】
任意のシール治具温度TXにおいて、被検査体17の温度がTX+ΔTXであったとき、マスタリングにより第1測定値D1の差圧測定値がAXであり、第2測定値ΔD3の値がa2xであったとすると、
図2において、第2測定値ΔD3の温度差ΔTXのとき、差圧測定値がa2x′であるから、洩れによる差圧δXは
δX=a2x−a2x′ ………(5)
第1測定値D1の測定値AXには検査モードで求めた洩れ成分と、断熱変化による成分と、温度差ΔTXによるドリフト成分(熱量移動によるドリフト成分)が含まれている。温度TX+ΔTXのときの断熱変化のみのドリフト成分AX′は、
AX′=AX−(a2x−a2x′)−a2x′=AX−a2x……(6)
即ち修正すべき断熱変化のドリフト値は、第1測定値D1の測定値から第2測定値ΔD3の値を差し引いた値である。(但し、第1測定値D1と第2測定値ΔD3を測定する時点で被検査体17とシール治具16の温度差が変わらないと仮定した)。この場合、断熱変化の温度ドリフトAX′は被検査体17とシール治具16の温度が等しいときのTX+ΔTXのドリフト値に等しい。
【0032】
(2)式は、A1がAX′に修正され、基準環境温度がTX+ΔTXに変更され、特性曲線の傾きは変わらない。第1特性曲線X1と第2特性曲線X2からグラフ化することができる。図3に点線で示す曲線Cが断熱変化の温度特性を表している。断熱変化の温度特性がグラフ化できれば、環境温度がどの程度変化したらマスタリングによりドリフト特性曲線を修正したらよいか判断することができる。つまり、断熱変化の温度特性は基準環境温度TにおいてA1を通る曲線で表される。これが直線で表される温度範囲において断熱変化の温度特性を修正することができる。
【0033】
断熱変化の温度特性は(第1特性曲線X1−第2特性曲線X2)で求めることができる。被検査体17とシール治具16の温度差によるドリフト補正量は(2)式の第三項がこれに相当する。図3では断熱変化の温度特性の横軸が被検査体17の温度と基準環境温度との差で表しているが、これは第1特性曲線X1と第2特性曲線X2のグラフを合せて描いているからであり、断熱変化の温度特性に限れば、横軸は基準環境温度と検査時の環境温度との差が正しい。断熱変化の温度特性の修正は環境温度変化に対して行なうからである。被検査体とシール治具間が断熱されているとき、X2の特性の傾きはゼロになるので、X1の特性曲線は断熱変化の温度特性曲線を表わしている。この場合のドリフト補正量A2は被検査体の温度と校正時基準環境温度との温度差よりX1の特性曲線から求めることができる。
【0034】
湿度補正について
被検査体の濡れも無視できないドリフトの原因の一つである。温度ドリフト補正を難しくしているのも濡れが原因である。濡れに起因するドリフトは被検査体の温度の影響を受ける。被検査体に濡れが有ると、水分の蒸発により被検査体の内圧を上昇させる(乾燥被検査体では被検査体の温度が高いと内圧を降下させる)ので洩れ検査の検出感度を低下させる。濡れ補正は大気圧状態で被検査体内圧の変化を計測して補正するか、被検査体の温度を計測する方法と同じく、外部から被検査体表面の蒸気圧変化を大気圧または負圧の変化として計測すればよい。詳しくは「特願2003−167252」(2003年6月12日に出願)参照。テストサイクルの短縮のためには内部でよりも外部での濡れの計測が必要である。この場合、シール治具に工夫をし、負圧にてワーク表面の濡れ状態を測定する方法が実用的である。負圧で測定すればシールの変形の影響が小さく、蒸気圧の変化に対しては鋭敏である。
【0035】
【発明の効果】
この発明によれば校正モードで基準環境温度と被検査体との温度差毎に取得した第1測定値D1と第2測定値ΔD3で求められる第1特性曲線X1と第2測定曲線X2から、その差により空気圧の断熱変化で発生するドリフトの温度特性を求めることができる。従って校正時の基準環境温度以外の任意の温度で洩れ検査を行なっても、マスタリングにより第1特性曲線X1を校正することなく正しいドリフト補正値を計算で求めることができ、このドリフト補正値を利用することにより、正しいドリフト補正を施すことができ、洩れ検査の信頼性を高めることができる。また、特に利用者には環境温度が変わる毎にマスタリングを実行しなくて済む検査装置を提供するから、取扱いが容易な洩れ検査装置を提供することができる利点が得られる。
【図面の簡単な説明】
【図1】この発明の実施例1を説明するためのブロック図。
【図2】図1に示した実施例1の動作を説明するためのグラフ。
【図3】図1に示した実施例1の要部を説明するためのグラフ。
【図4】従来の技術を説明するためのブロック図。
【図5】従来の洩れ検査装置の動作を説明するためのタイミングチャート。
【図6】洩れ検査装置に発生するドリフトの内容を説明するためのグラフ。
【図7】洩れ検査装置のドリフト補正方法の一例を説明するためのグラフ。
【図8】洩れ検査装置のドリフト補正方法の他の例を説明するためのグラフ。
【符号の説明】
10 空圧源 30 ドリフト補正装置
11 調圧弁 31 環境温度測定手段
12 圧力計 32 温度差測定手段
13 3方電磁弁 33 第1特性曲線記録手段
14A、14B 電磁弁 34 第2特性曲線記録手段
15 差圧検出器 35 基準温度ドリフト取得手段
16 シール治具 36 断熱特性算出手段
17 被検査体 37 ドリフト値算出手段
18 基準タンク 38 減算手段
19 可変利得増幅器
20 判定手段
21 表示器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a leak inspection apparatus for inspecting the presence or absence of leakage in various containers, gas appliances, engine cylinder blocks, and the like.
[0002]
[Prior art]
In the inspection device called leak tester, especially air leak tester,
B) Enclose air pressure into the test object, monitor the change in the air pressure, and when the air pressure falls below the specified value, determine that the object to be inspected has a leak pressure system,
(B) A differential pressure type in which air pressure is sealed in both the object to be inspected and a reference tank, and whether there is a leak or not is determined by whether or not a differential pressure is generated between the two.
Exists.
[0003]
The gauge pressure type has a simple structure, but its detection sensitivity is low, so it is not practically used at present. In general, a differential pressure type leak inspection apparatus is widely used.
The biggest drawback of the air leak tester is that various adverse effects resulting from the use of air pressure occur. In other words, air is affected by the temperature of the object to be inspected, the temperature of the jig etc. that contacts the object to be inspected, and the temperature due to the adiabatic change of the pressurized air. (This is called drift), making it difficult to determine the presence or absence of leakage.
[0004]
For this reason, the present applicant has conventionally made various proposals regarding various leak inspection methods and drift correction of inspection apparatuses. (Patent Literature 1, Patent Literature 2, Patent Literature 3).
FIG. 4 shows a schematic configuration of a conventional differential pressure detection type leak inspection apparatus. This type of leakage inspection apparatus includes an air pressure source 10 such as a compressor, a pressure adjusting valve 11 that adjusts a compressed air pressure supplied from the air pressure source 10, and a pressure value of the air pressure adjusted by the pressure adjusting valve 11. A pressure gauge 12 to be measured and displayed, a three-way solenoid valve 13, solenoid valves 14A and 14B, and a sealing jig 16 for closing the opening of the subject 17 and applying a compressed air pressure to the subject 17; The reference tank 18, the differential pressure detector 15 that measures the differential pressure between the object 17 to be inspected, and the reference tank 18, the temperature and the temperature difference between the sealing jig 16 and the object 17 to be inspected, or the outside air temperature. In response to the temperature sensors 16A and 17A for measuring the temperature and the temperature difference with the device under test 17, the variable gain amplifier 19 for amplifying the output signal of the differential pressure detector 15, and the output signal of the variable gain amplifier 19 Determination means 20 for determining the presence or absence of leakage Constituted by a display device 21 for displaying the determination result of the determining unit 20.
[0005]
In the non-inspection mode, the solenoid valves 14A and 14B are in a state where the three-way solenoid valve 13 is conductive between A and B.
Is maintained in a closed state, and in this state, the air pressure from the air pressure source 10 is adjusted by the pressure regulating valve 11, and a desired test pressure is displayed on the pressure gauge 12.
In the inspection mode, the electromagnetic valves 14A and 14B are controlled to be in an open state, and compressed air is applied to the device under test 17 and the reference tank 18 through the electromagnetic valves 14A and 14B. This application state of compressed air is referred to as a pressurization period T1 as shown in FIG.
[0006]
When the pressurization period T1 elapses (T1 = several seconds), the solenoid valves 14A and 14B are closed, and a stable period of a certain period is provided. This stable period is generally called an equilibrium period T2. If the differential pressure detector 15 outputs a large differential pressure detection signal ΔDS (see FIG. 5) exceeding the determination value NG during the equilibrium period T2, the determination means 20 is then connected to the sealing jig 16 at that time. The inspection body 17 determines that there is a large leak, displays the determination result on the display 21, and ends the inspection.
[0007]
If the differential pressure detection value does not exceed the determination value NG within the equilibrium period T2, it is determined that there is no major leakage, and the detection signal of the differential pressure detector 15 is forcibly reset to zero. After the zero reset, the gain of the variable gain amplifier 19 is switched to a high gain and enters a test period T3.
If the detection signal of the differential pressure detector 15 does not exceed the determination value NG in the inspection period T3, it is determined that “there is no slight leakage”. If the differential pressure detection signal exceeds the determination value NG within the inspection period T3, it is determined that “there is a slight leak” in this case.
[0008]
When the inspection period T3 ends, the three-way solenoid valve 13 is controlled to be in a conductive state between B and C, and the solenoid valves 14A and 14B are controlled to be in an open state, so that the compressed air in the object 17 and the reference tank 18 is discharged. Exhaust to atmosphere and return to initial state.
By the way, in this type of differential pressure detection type leak inspection apparatus, there is a phenomenon in which a differential pressure detection signal is generated even though there is no leakage due to disturbance factors such as a change in temperature of the object 17 and a change in ambient temperature. This phenomenon is generally called drift. Due to the occurrence of drift, there is a problem that it is determined that “there is no leakage even though there is no leakage” or “no leakage even though there is leakage”.
[0009]
In order to eliminate this inconvenience, drift correction is performed. A conventional drift correction method will be described with reference to FIGS. A curve P1 shown in FIG. 6 shows a differential pressure detection signal output from the differential pressure detector 15. This differential pressure detection signal includes the drift amount indicated by the curve P2 and the leakage amount indicated by the curve P3.
The differential pressure generated by leakage is represented by a straight line that rises at a certain rate from the start of the equilibrium period T2. On the other hand, the drift amount due to the adiabatic change caused by pressurizing the air increases exponentially due to the temperature difference between the internal air temperature and the object to be inspected immediately after the start of the inspection period T3, but eventually becomes saturated. , Maintain a constant value.
[0010]
Therefore, if the leakage amount is measured in a state where the drift converges to a constant value, the true leakage amount can be measured. That is, the differential pressure value D1 is measured at the end of the inspection period T3, the differential pressure measurement state is further maintained from that time, and the differential pressure value D2 is obtained when a predetermined time, for example, several tens of seconds elapses. The differential pressure value D3 is measured again after elapse of the same period T3 (about several seconds) as the inspection period T3 from the measurement time point. By this measurement, D3-D2 is a pressure change value due to leakage. Therefore, if the presence or absence of leakage is determined based on whether the subtraction result of D3-D2 is larger or smaller than the determination value NG, a correct determination can be made without being affected by drift.
[0011]
However, when this inspection method is adopted, since the inspection time is several tens of seconds, it cannot be used for actual inspection. For this reason, in general, when ΔD3 = D3−D2 is calculated and the leakage amount ΔD3 is subtracted from the first measured value D1, the remainder becomes a drift value. That is, the drift value D is
D = D1−ΔD3 (1)
Is required. By recording the drift value D, in the next and subsequent inspections, if the drift value D is removed from the first measured value D1, the leakage amount from which the drift value has been removed can be calculated in a short time, and a correct determination is made. be able to. The operation of measuring the measured values D1, D2, and D3 and obtaining the drift value D is generally called mastering.
[0012]
[Patent Document 1]
JP 2001-50854 A
[Patent Document 2]
JP 2002-22592 A
[Patent Document 3]
JP 2003-106923 A
[0013]
[Problems to be solved by the invention]
Although it has been described that correct drift correction can be performed by removing the drift value D obtained by the above equation (1) from the first measurement value D1, the object 17 is not always at room temperature in reality. Inconvenience may occur. The reason will be described below. FIG. 7 shows a situation in which the drift correction can be correctly performed by removing the drift amount D obtained by the equation (1) from the first measurement value D1. That is, the horizontal axis shown in FIG. 7 indicates the temperature difference between the sealing jig 16 and the inspection object 17 measured as the environmental temperature, and the vertical axis indicates the differential pressure value. X1 is a first characteristic curve obtained by plotting the first measured values D1-1, D2-2, D3-3, ... measured for each temperature difference, and X2 is a second measured value ΔD3- measured for each temperature difference. 1, the 2nd characteristic curve calculated | required by plotting (DELTA) D3-2 and (DELTA) D3-3 is shown. In addition, when measuring X1 and X2, a test object without leakage is used. Since the drift amount of the adiabatic change becomes zero by using the inspected object without leakage, the second characteristic curve X2 can obtain a curve passing through the origin. The reason why the slope of the second characteristic curve X2 does not become zero despite the mastering using the inspected object without leakage is due to the temperature difference between the inspected object 17 and the sealing jig 16. This is because heat exchange occurs between the object to be inspected 17 and the sealing jig 16, and this heat exchange causes a temperature change to the air in the object to be inspected 17 to cause drift.
[0014]
As shown in FIG. 7, the first characteristic curve X1 and the first characteristic curve X1 are obtained when the temperature difference between the sealing jig 16 and the inspection object 17 is limited to a certain range centering on zero (no disturbance factor). The two characteristic curve X2 can be regarded as a substantially straight line. Further, when the first characteristic curve X1 and the second characteristic curve X2 are substantially parallel, the second characteristic curve X1 is obtained by subtracting the drift amount D from the measured value D1-n of any inspection regardless of the temperature difference. A value corresponding to the measured value ΔD3-n can be obtained, and correct drift correction can be performed.
[0015]
On the other hand, as shown in FIG. 8, the slope of the first characteristic curve X1 of the first measurement value D1 and the second characteristic curve X2 of the second measurement value ΔD3 are different due to the temperature characteristic of drift due to adiabatic change. The drift correction amount is D for each temperature difference.A, DB, DCSince different values are taken as described above, correct drift correction cannot be performed at a temperature outside the range of the temperature at which the drift correction amount is obtained, and therefore, inconvenience that mastering must be performed every time the environmental temperature changes occurs.
[0016]
In such a case, it is conceivable that mastering is performed for each temperature difference between the object to be inspected and the sealing jig or the outside air temperature, and the drift correction value is obtained and recorded in advance, but the work is enormous and difficult to realize. It is. In particular, the work must be performed for each type of object to be inspected.
As shown in FIG. 8, the object of the present invention is other than the temperature at which drift calibration is performed, even when the first characteristic curve X1 of the first measurement value D1 and the second characteristic curve X2 of the second measurement value ΔD3 are different in slope. A leak inspection apparatus that can correct the characteristic of the first characteristic curve X1 correctly even at a temperature of which the correct leak amount can be obtained from the corrected drift characteristic curve, and a leak inspection that operates using this calibration method The device is to be provided.
[0017]
[Means for Solving the Problems]
According to the first aspect of the present invention, the same air pressure is sealed in both the object to be inspected and the reference tank, and a differential pressure is generated between the object to be inspected and the reference tank while a predetermined time elapses after the sealing. In a calibration method for a leak inspection apparatus that measures whether or not there is a leak in the object to be inspected, a temperature equal to the reference environment temperature at the opening of the inspected dry object that does not leak in the calibration mode In this closed state, air pressure is sealed between the object to be inspected and the reference tank, and the differential pressure generated between the object to be inspected and the reference tank after a predetermined time has passed after the air pressure is sealed. The value is acquired as the first measurement value D1, and after the first measurement value D1 is acquired, the time between the inspected object and the reference tank has elapsed during a time substantially equal to the predetermined time from the time when the time longer than the predetermined time has elapsed. Is obtained as a second measured value ΔD3. In the drift value acquisition method, the first measurement value and the second measurement value are acquired using a test object set to a temperature different from the reference environment temperature and a seal jig maintained at a temperature substantially equal to the reference environment temperature. Is performed for each of a plurality of temperature differences by changing the temperature of the object to be inspected, and the first characteristic curve X1 of each temperature difference versus the first measured value D1 and the second characteristic curve of each temperature difference versus the second measured value ΔD3. X2 is recorded, and from the difference between the first characteristic curve X1 and the second characteristic curve X2, the temperature characteristic of the drift value generated by the adiabatic change of the air generated immediately after the application of air pressure included in the first characteristic curve X1 is obtained, Provided is a method for calibrating a leakage inspection apparatus for obtaining a drift correction value at an arbitrary environmental temperature other than the environmental temperature using the temperature characteristic of the drift value in an inspection mode.
[0018]
According to a second aspect of the present invention, in the calibration method for a leakage inspection apparatus according to the first aspect, the first measured value D1 when the temperatures of the object to be inspected and the sealing jig are both at the reference environmental temperature is set to the reference temperature drift value A1, The slopes of the first characteristic curve and the second characteristic curve when ΔT is changed from the reference environmental temperature are a1 / ΔT and a2 / ΔT, the difference between the environmental temperature during inspection and the reference environmental temperature during calibration is ΔT1, and the seal jig temperature When the temperature difference between the test object and the object to be inspected is ΔT2, the drift correction value A2 is calculated as A2 = A1 + (a1−a2) ΔT1 / ΔT + a1 · ΔT2 / ΔT for each inspection, and the drift correction value A2 is inspected. There is provided a calibration method for a leakage inspection apparatus that subtracts the first measurement value D1 acquired from time to time and compares the subtraction result with a determination value to determine the presence or absence of leakage.
[0019]
According to claim 3 of the present invention, air pressure is sealed in both the object to be inspected and the reference tank, and whether or not a differential pressure is generated between the object to be inspected and the reference tank during a predetermined time after the sealing. In the leak inspection apparatus for determining whether or not the inspection object leaks, an environmental temperature measurement means for measuring the environmental temperature, a temperature difference measurement means for measuring a temperature difference between the inspection object and the environmental temperature, and a calibration mode are requested. The first and second characteristic curve records for recording the first characteristic curve and the second characteristic curve obtained from the first measured value D1 and the second measured value D2 at the reference environmental temperature acquired by the calibration method according to Item 1. And the first characteristic curve and the second characteristic curve recorded in the first characteristic curve recording means and the second characteristic curve recording means, the first characteristic curve when the temperature of the object to be inspected and the sealing jig are both the reference temperature. 1 measured value D1 as reference temperature drift Adiabatic characteristic calculation for obtaining slopes a1 / ΔT and a2 / ΔT of the first characteristic curve and the second characteristic curve at the temperature difference ΔT from the reference temperature drift value acquisition means extracted as the value A1, and the first characteristic curve and the second characteristic curve If the difference between the environmental temperature at the time of leakage inspection and the reference environmental temperature at the calibration mode is ΔT1, and the difference between the temperature of the sealing jig at the time of leakage inspection and the temperature of the object to be inspected is ΔT2, the drift correction value A2 is
A2 = A1 + (a1-a2) ΔT1 / ΔT + a1 · ΔT2 / ΔT
The drift correction value calculation means calculated by the above, a subtraction means for subtracting the drift correction value A2 calculated by the drift correction value calculation means from the first measured value D1 acquired at the time of leak inspection, and the subtraction result subtracted by the subtraction means There is provided a leak inspection apparatus comprising a determination means for comparing a determination value and determining the presence or absence of leakage.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
By grasping the temperature characteristics of the drift caused by the adiabatic change of air that occurs immediately after the air pressure is applied to the object to be inspected, a highly reliable leak test was realized without any hassle.
FIG. 1 shows an embodiment of a leak inspection apparatus according to the present invention. Parts corresponding to those in FIG. 4 are denoted by the same reference numerals, and redundant description thereof is omitted. A feature of the present invention is that a drift correcting device 30 provided between the variable gain amplifier 19 and the judging means 20 is characterized. The drift correction device 30 characterized by the present invention includes an environmental temperature measurement means 31, a temperature difference measurement means 32, a first characteristic curve recording means 33, a second characteristic curve recording means 34, and a reference temperature drift acquisition means 35. The adiabatic characteristic calculating means 36, the drift value calculating means 37, and the subtracting means 38 are configured.
[0021]
The environmental temperature measuring means 31 acquires the measured value of the temperature sensor 16A that measures the temperature of the sealing jig 16 as the environmental temperature (outside air temperature). The temperature difference measuring means 32 measures the temperature difference between the temperature of the sealing jig 16 and the inspection object 17. For this purpose, the measured values of the temperature sensor 16A for measuring the temperature of the sealing jig 16 and the temperature sensor 17A for measuring the temperature of the inspection object 17 are taken in, and the difference value is output.
The first characteristic curve recording means 33 and the second characteristic curve recording means 34 are the first measurement values D1-1, D1-2, D1-3,... And the second measurement value ΔD3-1 acquired by the mastering described in FIG. , ΔD3-2, ΔD3-3, etc., and the first measured values D1-1, D1-2D, D1-3,... And the second measured values ΔD3-1, ΔD3-2, ΔD3-3,. The first characteristic curve X1 and the second characteristic curve X2 are obtained by plotting by interpolation calculation or the like, and the first characteristic curve X1 and the second characteristic curve X2 are recorded.
[0022]
The reference temperature drift acquisition unit 35 corresponds to a state in which the temperature difference between the environmental temperature in the plurality of first measured values D1 recorded as the first characteristic curve X1 in the first characteristic curve recording unit 33 and the temperature of the object to be inspected 17 is zero. The first measurement value D1 is acquired as the reference temperature drift value A1, and the acquired value is output to the drift value calculation means 37.
The adiabatic characteristic calculating means 36 calculates the difference between the first characteristic curve X1 and the second characteristic curve X2 from the first characteristic curve recording means 33 and the second characteristic curve recording means 34, and sends the calculation result to the drift value calculating means 37. input.
[0023]
In the drift value calculation means 37, the environmental temperature given from the environmental temperature measurement means 31, the temperature difference between the environmental temperature given from the temperature difference measurement means 32 and the object to be inspected 17, and the reference temperature drift value acquisition means 35 give The drift correction value A2 at the environmental temperature given from the environmental temperature measuring means 31 is calculated by the equation (2) using the reference temperature drift value A1 and the gradients a1 / ΔT and a2 / ΔT given from the adiabatic characteristic calculating means 36. .
[0024]
A2 = A1 + (a1-a2) ΔT1 / ΔT + a1 · ΔT2 / ΔT (2)
Here, ΔT1 represents a temperature difference between the reference environmental temperature determined in the calibration mode and the environmental temperature measured for each inspection in the inspection mode. That is, when the mask ring is performed in the calibration mode, the environmental temperature in which the temperature difference between the sealing jig 16 and the object to be inspected 17 is zero is determined as the reference environmental temperature. In the inspection mode, every time a leakage inspection is performed, the temperature of the sealing jig 16 is measured as the environmental temperature, and the difference between the measured temperature and the reference environmental temperature is output to the drift value calculating means 37 as ΔT1. .
[0025]
ΔT2 is a drift value in which the temperature difference between the sealing jig 16 and the inspection object 17 is measured for each inspection of each inspection object in the inspection mode, and the temperature difference is ΔT2 and the temperatures of the inspection object and the sealing jig are different. Is input to the drift value calculating means 37.
Every time the leakage inspection of the inspection object 17 is performed, the equation (2) is calculated to obtain the drift value A2. The drift value A2 obtained by the equation (2) is input to the subtracting means 38, and is subtracted from the measured value by the subtracting means 38, and the drift amount is removed from the measured value. The determination means 20 compares the differential pressure value due to true leakage from which the drift has been removed with the determination value NG, and if the differential pressure value is smaller than the determination value NG, it is determined that there is no leakage, and if it is larger, it is determined that there is leakage.
[0026]
The drift value obtained by the equation (2) is corrected according to the temperature characteristic of the drift generated along with the adiabatic change of the air generated at the time when the air pressure is sealed in the object to be inspected 17, and mastering was performed in the calibration mode. A correct drift correction value can be obtained even under an ambient temperature other than the reference ambient temperature. In order to clarify the reason, the derivation process of equation (2) will be described below.
The graph shown in FIG. 2 uses a dry inspected object 17 having no leakage, changes the temperature of the inspected object 17, and performs mastering of the first characteristic curve X1 of the first measured value D1 and the second measured value ΔD3. The second characteristic curve X2 is sampled and represented in the same graph.
[0027]
In FIG. 2, 25 ° C. is set as the reference environmental temperature. Therefore, both the inspected object 17 and the sealing jig 16 are in a state where there is no temperature difference at 25 ° C., and the state where this temperature difference is zero is the reference environment temperature, and the drift value due to the adiabatic change at 25 ° C. A1) is referred to as drift. Assuming that the slope of only the adiabatic change included in the measured value D1 is b1 / ΔT,
b1 / ΔT = a1 / ΔT−a2 / ΔT (3)
Naturally, if the slope of the adiabatic change is zero,
a1 = a2
It is.
[0028]
Further, b1 = a1 if there is no heat transfer between the device under test 17 and the sealing jig 16.
Next, when the environmental temperature changes from 25 ° C. to 25 ° C. + ΔT1 (see FIG. 2), that is, the drift component due to the adiabatic change when the temperature of the device under test 17 and the sealing jig 16 are both 25 ° C. + ΔT1 is obtained. If b1 is an increase in drift due to adiabatic change when there is a temperature change of ΔT,
A1 + (b1 / ΔT) ΔT1 = A1 + (a1−a2) ΔT1 / ΔT (4)
The second term on the right side of the equation (4) is an increase in drift due to adiabatic change caused by the temperature of the object 17 and the sealing jig 16 being simultaneously changed to the same temperature of 25 ° C. + ΔT1.
[0029]
Next, when the temperature of 25 ° C. + ΔT1 (sealing jig temperature) is used as a reference, the drift component A2 of the first measured value D1 when the temperature of the inspection object 17 is 25 ° C. + ΔT1 + ΔT2 (see FIG. 2) is
A2 = A1 + (a1-a2) ΔT1 / ΔT + a1 · ΔT2 / ΔT
Thus, the above equation (2) is obtained.
When the temperature of the sealing jig 16 is affected by the temperature of the object 17 to be inspected, ΔT1 is the difference between the reference environmental temperature during calibration (25 ° C. in this example) and the environmental temperature during the inspection mode. ΔT2 is a temperature difference between the temperature of the inspection object 17 and the sealing jig 16.
[0030]
Correction of characteristic curve by mastering
In the range where the first characteristic curve X1 and the second characteristic curve X2 are linear, any inspection object 17 can be obtained without correcting the characteristic of the characteristic curve X1 (mainly the reference temperature drift value A1) by mastering during inspection. The drift correction amount A2 can be obtained by the equation (2) at the temperature of the sealing jig 16 and the temperature of the sealing jig 16, but the characteristic curve X1 can be corrected by mastering at any temperature of the sealing jig 16 and the object to be inspected 17. it can. Thus, the characteristic curve X1 can be used in a wide temperature range. The reason will be described below.
[0031]
When the temperature of the inspection object 17 is TX + ΔTX at an arbitrary sealing jig temperature TX, the differential pressure measurement value of the first measurement value D1 is AX and the second measurement value ΔD3 is a2x by mastering. Assuming
In FIG. 2, when the temperature difference ΔTX of the second measured value ΔD3, the measured differential pressure value is a2x ′, so the differential pressure δX due to leakage is
δX = a2x−a2x ′ (5)
The measurement value AX of the first measurement value D1 includes a leakage component obtained in the inspection mode, a component due to adiabatic change, and a drift component due to a temperature difference ΔTX (drift component due to heat transfer). The drift component AX ′ of only adiabatic change at the temperature TX + ΔTX is
AX ′ = AX− (a2x−a2x ′) − a2x ′ = AX−a2x (6)
That is, the drift value of the adiabatic change to be corrected is a value obtained by subtracting the value of the second measurement value ΔD3 from the measurement value of the first measurement value D1. (However, it is assumed that the temperature difference between the device under test 17 and the sealing jig 16 does not change when the first measurement value D1 and the second measurement value ΔD3 are measured). In this case, the temperature drift AX ′ of the adiabatic change is equal to the drift value of TX + ΔTX when the temperatures of the inspection object 17 and the sealing jig 16 are equal.
[0032]
In the equation (2), A1 is corrected to AX ′, the reference environment temperature is changed to TX + ΔTX, and the slope of the characteristic curve does not change. It can be graphed from the first characteristic curve X1 and the second characteristic curve X2. A curve C indicated by a dotted line in FIG. 3 represents a temperature characteristic of the adiabatic change. If the temperature characteristics of the adiabatic change can be graphed, it can be determined how much the ambient temperature changes should be corrected by the mastering. In other words, the temperature characteristic of the adiabatic change is the reference environment temperature T0Is represented by a curve passing through A1. The temperature characteristic of the adiabatic change can be corrected in the temperature range in which this is represented by a straight line.
[0033]
The temperature characteristic of the adiabatic change can be obtained by (first characteristic curve X1−second characteristic curve X2). The drift correction amount due to the temperature difference between the object to be inspected 17 and the sealing jig 16 corresponds to the third term of the equation (2). In FIG. 3, the horizontal axis of the temperature characteristic of the adiabatic change is represented by the difference between the temperature of the inspected object 17 and the reference environment temperature, which is drawn by combining the graphs of the first characteristic curve X1 and the second characteristic curve X2. This is because the difference between the reference ambient temperature and the ambient temperature at the time of inspection is correct on the horizontal axis as far as the temperature characteristics of the adiabatic change are concerned. This is because the temperature characteristic of the adiabatic change is corrected for the environmental temperature change. When the object to be inspected and the sealing jig are insulated, the slope of the characteristic of X2 becomes zero, so the characteristic curve of X1 represents the temperature characteristic curve of the adiabatic change. The drift correction amount A2 in this case can be obtained from the characteristic curve of X1 from the temperature difference between the temperature of the object to be inspected and the reference environmental temperature during calibration.
[0034]
About humidity correction
The wetness of the object to be inspected is one of the causes of drift that cannot be ignored. It is also caused by wetting that makes temperature drift correction difficult. Drift due to wetting is affected by the temperature of the object to be inspected. If the object to be inspected is wet, the internal pressure of the object to be inspected is increased by evaporation of moisture (in the case of a dry object to be inspected, the internal pressure is decreased when the temperature of the object to be inspected is high), so that the detection sensitivity of the leak inspection is lowered. Wet correction is performed by measuring changes in the in-vivo pressure in the atmospheric pressure state, or by measuring the vapor pressure change on the surface of the inspected object from the outside at atmospheric pressure or negative pressure, as in the method of measuring the temperature of the inspected object. What is necessary is just to measure as a change. For details, see “Japanese Patent Application No. 2003-167252” (filed on Jun. 12, 2003). In order to shorten the test cycle, it is necessary to measure wetness outside rather than inside. In this case, it is practical to devise a sealing jig and measure the wet state of the workpiece surface with negative pressure. If measured at negative pressure, the effect of seal deformation is small, and it is sensitive to changes in vapor pressure.
[0035]
【The invention's effect】
According to the present invention, from the first characteristic curve X1 and the second measurement curve X2 obtained from the first measurement value D1 and the second measurement value ΔD3 acquired for each temperature difference between the reference environment temperature and the object to be inspected in the calibration mode, Due to the difference, it is possible to obtain the temperature characteristic of the drift generated by the adiabatic change of the air pressure. Therefore, even if leakage inspection is performed at any temperature other than the reference environment temperature at the time of calibration, a correct drift correction value can be obtained by calculation without calibrating the first characteristic curve X1 by mastering, and this drift correction value is used. By doing so, correct drift correction can be performed and the reliability of the leak test can be improved. In particular, since the user is provided with an inspection device that does not need to perform mastering each time the environmental temperature changes, there is an advantage that a leakage inspection device that is easy to handle can be provided.
[Brief description of the drawings]
FIG. 1 is a block diagram for explaining Embodiment 1 of the present invention;
FIG. 2 is a graph for explaining the operation of the embodiment 1 shown in FIG. 1;
FIG. 3 is a graph for explaining a main part of the first embodiment shown in FIG. 1;
FIG. 4 is a block diagram for explaining a conventional technique.
FIG. 5 is a timing chart for explaining the operation of a conventional leakage inspection apparatus.
FIG. 6 is a graph for explaining the content of drift occurring in the leakage inspection apparatus.
FIG. 7 is a graph for explaining an example of a drift correction method of the leakage inspection apparatus.
FIG. 8 is a graph for explaining another example of the drift correction method of the leakage inspection apparatus.
[Explanation of symbols]
10 Pneumatic pressure source 30 Drift correction device
11 Pressure regulating valve 31 Ambient temperature measuring means
12 Pressure gauge 32 Temperature difference measuring means
13 Three-way solenoid valve 33 First characteristic curve recording means
14A, 14B Solenoid valve 34 Second characteristic curve recording means
15 Differential pressure detector 35 Reference temperature drift acquisition means
16 Sealing jig 36 Adiabatic characteristic calculation means
17 Inspected object 37 Drift value calculation means
18 Reference tank 38 Subtraction means
19 Variable gain amplifier
20 judgment means
21 Display

Claims (3)

被検査体と基準タンクとの双方に同一の空気圧を封入し、封入後から所定の時間が経過する間に上記被検査体と基準タンクとの間に差圧が発生するか否かを計測して上記被検査体に洩れが有るか否かを判定する洩れ検査装置の校正方法において、
校正モードで洩れのない乾燥された被検査体の開口部を基準環境温度に等しい温度のシール治具で閉塞し、この閉塞状態で被検査体と基準タンクに空気圧を封入し、空気圧の封入後の所定時間が経過する間に上記被検査体と基準タンクとの間に発生する差圧値を第1測定値D1として取得し、第1測定値D1を取得した後、上記所定時間より長い時間経過した時点から上記所定時間にほぼ等しい時間が経過する間に被検査体と基準タンクとの間に発生する差圧変化値を第2測定値ΔD3として取得するドリフト値取得方法において、上記基準環境温度と異なる温度に設定された被検査体と上記基準環境温度にほぼ等しい温度に維持されたシール治具を使って上記第1測定値と第2測定値を取得することを上記被検査体の温度を変更して複数の温度差毎に実行し、各温度差対第1測定値D1の第1特性曲線X1と、各温度差対第2測定値ΔD3の第2特性曲線X2を記録させ、これら第1特性曲線X1と、第2特性曲線X2の差から上記第1特性曲線X1に含まれる空気圧印加直後に発生する空気の断熱変化によって発生するドリフト値の温度特性を求め、
検査モードでこのドリフト値の温度特性を利用して上記環境温度以外の任意の環境温度におけるドリフト補正値を求めることを特徴とする洩れ検査装置の校正方法。
The same air pressure is sealed in both the object to be inspected and the reference tank, and it is measured whether or not a differential pressure is generated between the object to be inspected and the reference tank while a predetermined time elapses after the sealing. In the calibration method of the leakage inspection apparatus for determining whether or not there is leakage in the inspection object,
In the calibration mode, the opening of the inspected and dried object to be inspected is closed with a sealing jig whose temperature is equal to the reference environment temperature. In this closed state, air pressure is sealed in the object to be inspected and the reference tank. After the predetermined time elapses, a differential pressure value generated between the object to be inspected and the reference tank is acquired as the first measured value D1, and after acquiring the first measured value D1, a time longer than the predetermined time is acquired. In the drift value acquisition method for acquiring, as the second measured value ΔD3, the differential pressure change value generated between the object to be inspected and the reference tank during a time substantially equal to the predetermined time from the elapsed time, the reference environment The first measurement value and the second measurement value are obtained using the inspection object set to a temperature different from the temperature and the sealing jig maintained at a temperature substantially equal to the reference environmental temperature. Change the temperature to multiple The first characteristic curve X1 of each temperature difference versus the first measured value D1 and the second characteristic curve X2 of each temperature difference versus the second measured value ΔD3 are recorded for each temperature difference, and these first characteristic curves X1 and The temperature characteristic of the drift value generated by the adiabatic change of the air generated immediately after application of the air pressure included in the first characteristic curve X1 is obtained from the difference of the second characteristic curve X2,
A calibration method for a leak inspection apparatus, characterized in that a drift correction value at an arbitrary environmental temperature other than the environmental temperature is obtained by using the temperature characteristic of the drift value in an inspection mode.
請求項1記載の洩れ検査装置の校正方法において、上記被検査体とシール治具の温度が共に上記基準環境温度にある場合の第1測定値D1を基準温度ドリフト値A1、上記基準環境温度からΔT変化した場合の上記第1特性曲線及び第2特性曲線の傾きをa1/ΔT、a2/ΔT、検査時における環境温度と校正時の基準環境温度差がΔT1である場合、シール治具温度と被検査体との間の温度差がΔT2である場合、検査毎にドリフト補正値A2をA2=A1+(a1−a2)ΔT1/ΔT+a1・ΔT2/ΔTで算出し、このドリフト補正値A2を検査時に取得した第1測定値D1から減算し、この減算結果と判定値とを比較して洩れの有無を判定する洩れ検査装置の校正方法。2. The method of calibrating a leakage inspection apparatus according to claim 1, wherein the first measured value D1 when the temperatures of the object to be inspected and the sealing jig are both at the reference environmental temperature is determined from the reference temperature drift value A1 and the reference environmental temperature. The slopes of the first characteristic curve and the second characteristic curve when ΔT changes are a1 / ΔT and a2 / ΔT, and when the difference between the environmental temperature at the time of inspection and the reference environmental temperature at the time of calibration is ΔT1, When the temperature difference with the object to be inspected is ΔT2, the drift correction value A2 is calculated as A2 = A1 + (a1−a2) ΔT1 / ΔT + a1 · ΔT2 / ΔT for each inspection, and this drift correction value A2 is calculated during the inspection. A method for calibrating a leakage inspection apparatus that subtracts the obtained first measurement value D1 and compares the subtraction result with a determination value to determine the presence or absence of leakage. 被検査体と基準タンクとの双方に空気圧を封入し、封入後から所定時間が経過する間に上記被検査体と基準タンクとの間に差圧が発生するか否かにより上記被検査体の洩れの有無を判定する洩れ検査装置において、
A.環境温度を測定する環境温度測定手段と、
B.被検査体と環境温度との温度差を測定する温度差測定手段と、
C.校正モードにおいて請求項1記載の校正方法で取得する基準環境温度における第1測定値D1と、第2測定値D2とで求められる第1特性曲線及び第2特性曲線とを記録する第1及び第2特性曲線記録手段と、
D.これら第1特性曲線記録手段及び第2特性曲線記録手段に記録した第1特性曲線及び第2特性曲線とから、上記被検査体とシール治具の温度が共に基準温度である場合の第1測定値D1を基準温度ドリフト値A1として取り出す基準温度ドリフト値取得手段と、
E.上記第1特性曲線及び第2特性曲線とから温度差ΔTにおける上記第1特性曲線及び第2特性曲線の傾きa1/ΔT及びa2/ΔTを求める断熱特性算出手段と、
F.洩れ検査時の環境温度と上記校正モード時の基準環境温度との差をΔT1、洩れ検査時のシール治具温度と被検査体の温度差をΔT2とした場合、ドリフト補正値A2を
A2=A1+(a1−a2)ΔT1/ΔT+a1・ΔT2/ΔT
で算出するドリフト補正値算出手段と、
G.このドリフト補正値算出手段で算出したドリフト補正値A2を洩れ検査時に取得した第1測定値D1から減算する減算手段と、
H.この減算手段で減算した減算結果と判定値とを比較し、洩れの有無を判定する判定手段と、によって構成したことを特徴とする洩れ検査装置。
Air pressure is sealed in both the object to be inspected and the reference tank, and depending on whether or not a differential pressure is generated between the object to be inspected and the reference tank during a predetermined time after the sealing, In a leak inspection device that determines the presence or absence of leakage,
A. Environmental temperature measuring means for measuring environmental temperature;
B. Temperature difference measuring means for measuring the temperature difference between the object to be inspected and the environmental temperature;
C. The first and second characteristic curves for recording the first characteristic curve and the second characteristic curve obtained from the first measurement value D1 and the second measurement value D2 at the reference environmental temperature obtained by the calibration method according to claim 1 in the calibration mode. Two characteristic curve recording means;
D. Based on the first characteristic curve and the second characteristic curve recorded in the first characteristic curve recording unit and the second characteristic curve recording unit, the first measurement is performed when both the temperature of the object to be inspected and the sealing jig are the reference temperature. A reference temperature drift value acquisition means for taking out the value D1 as a reference temperature drift value A1,
E. Adiabatic characteristic calculating means for obtaining slopes a1 / ΔT and a2 / ΔT of the first characteristic curve and the second characteristic curve at a temperature difference ΔT from the first characteristic curve and the second characteristic curve;
F. When the difference between the environmental temperature at the time of leak inspection and the reference environmental temperature at the time of the calibration mode is ΔT1, and the temperature difference between the seal jig temperature at the time of leak inspection and the temperature of the object to be inspected is ΔT2, the drift correction value A2 is A2 = A1 + (A1-a2) ΔT1 / ΔT + a1 · ΔT2 / ΔT
Drift correction value calculating means for calculating in
G. Subtracting means for subtracting the drift correction value A2 calculated by the drift correction value calculating means from the first measured value D1 acquired at the time of the leak inspection;
H. A leakage inspection apparatus comprising: a determination unit that compares a subtraction result subtracted by the subtraction unit with a determination value to determine the presence or absence of leakage.
JP2003182206A 2003-06-26 2003-06-26 Leak inspection device calibration method, leak inspection device Expired - Fee Related JP3751958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003182206A JP3751958B2 (en) 2003-06-26 2003-06-26 Leak inspection device calibration method, leak inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003182206A JP3751958B2 (en) 2003-06-26 2003-06-26 Leak inspection device calibration method, leak inspection device

Publications (2)

Publication Number Publication Date
JP2005017107A true JP2005017107A (en) 2005-01-20
JP3751958B2 JP3751958B2 (en) 2006-03-08

Family

ID=34182651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003182206A Expired - Fee Related JP3751958B2 (en) 2003-06-26 2003-06-26 Leak inspection device calibration method, leak inspection device

Country Status (1)

Country Link
JP (1) JP3751958B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136109A1 (en) * 2006-05-24 2007-11-29 Cosmo Instruments Co., Ltd. Leak inspection method and leak inspector
CN100425964C (en) * 2005-05-27 2008-10-15 宁波宝新不锈钢有限公司 Measuring method for leakage of hydraulic system and its application

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425964C (en) * 2005-05-27 2008-10-15 宁波宝新不锈钢有限公司 Measuring method for leakage of hydraulic system and its application
WO2007136109A1 (en) * 2006-05-24 2007-11-29 Cosmo Instruments Co., Ltd. Leak inspection method and leak inspector
JPWO2007136109A1 (en) * 2006-05-24 2009-10-01 株式会社コスモ計器 Leak inspection method and leak inspection apparatus using the same
US7818133B2 (en) 2006-05-24 2010-10-19 Cosmo Instruments Co., Ltd. Leak inspection method and leak inspector
JP4673918B2 (en) * 2006-05-24 2011-04-20 株式会社コスモ計器 Leak inspection method and leak inspection apparatus using the same

Also Published As

Publication number Publication date
JP3751958B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
US7818133B2 (en) Leak inspection method and leak inspector
US8205484B2 (en) Apparatus and method for leak testing
JP4019322B2 (en) Method and apparatus for calibrating a humidity sensor and sensor mechanism comprising a calibratable humidity sensor
US4272985A (en) Method of and apparatus for compensating for temperature in leak testing
JPH11118657A (en) Drift correction value calculator and leakage detector equipped with calculator
JP6738702B2 (en) Leak inspection method Leak inspection device
JP2012255687A (en) Pressure leakage measuring method
JP3751958B2 (en) Leak inspection device calibration method, leak inspection device
JP6370113B2 (en) Pressure gauge inspection method
JP2004198396A (en) Method for obtaining drift value of leak detector, method for obtaining zero-point fluctuation value, method for obtaining humidity correction coefficient, and method for calibrating leakage detector and the leakage detector
JP3983479B2 (en) Battery leakage inspection device
JP3411374B2 (en) Temperature compensation method in leak test
JP5221410B2 (en) Leak test apparatus and method, and temperature sensitive member
JP4087773B2 (en) Leak inspection device calibration method, leak inspection device
JP2010266282A (en) Device and method for leakage test
US20230280233A1 (en) Leak detection method and system
JP4630769B2 (en) Leak test method and temperature sensitive member used therefor
JPH11304632A (en) Computing device for drift correction value for leak inspection and leak inspection apparatus using it
JP3186644B2 (en) Gas leak inspection method
JP7162301B2 (en) PRESSURE GAUGE INSPECTION METHOD AND PRESSURE GAUGE INSPECTION DEVICE
US9810564B2 (en) Method of determining an internal volume of a filter or bag device, computer program product and a testing apparatus for performing the method
JP5340802B2 (en) Leak test apparatus and method
JP3382727B2 (en) Leak test equipment
JP2003106923A (en) Method for obtaining drift value of leak inspection device, method for obtaining method for obtaining drift value of leak inspection device, method for obtaining zero point fluctuation value, method for compensating drift of leak inspection device, and leak inspection device
JP2017129477A (en) Leakage inspection device and method

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050707

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050726

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050922

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20051122

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051208

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees