JP2005016407A - Control device for spark ignition type engine - Google Patents

Control device for spark ignition type engine Download PDF

Info

Publication number
JP2005016407A
JP2005016407A JP2003181782A JP2003181782A JP2005016407A JP 2005016407 A JP2005016407 A JP 2005016407A JP 2003181782 A JP2003181782 A JP 2003181782A JP 2003181782 A JP2003181782 A JP 2003181782A JP 2005016407 A JP2005016407 A JP 2005016407A
Authority
JP
Japan
Prior art keywords
ignition
egr
region
compression self
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003181782A
Other languages
Japanese (ja)
Other versions
JP4082292B2 (en
Inventor
Mitsuo Hitomi
光夫 人見
Yoshinori Hayashi
好徳 林
Koji Sumita
孝司 住田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2003181782A priority Critical patent/JP4082292B2/en
Priority to US10/859,605 priority patent/US6968825B2/en
Priority to EP04013412.4A priority patent/EP1484491B1/en
Publication of JP2005016407A publication Critical patent/JP2005016407A/en
Application granted granted Critical
Publication of JP4082292B2 publication Critical patent/JP4082292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0057Specific combustion modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Valve Device For Special Equipments (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To expand a compression self-ignition combustion region into a high-speed high-load side and effectively suppress knocking in a region in the high-speed high-load side of the compression self-ignition combustion region. <P>SOLUTION: This control device for a spark ignition type engine has an EGR control means 32 comprised of a valve operation control means 33 for controlling operation of an intake/exhaust valve such that hot burned gas by internal EGR is left inside a combustion chamber and a cold EGR control means 34 for controlling introduction of cooled external EGR. In this control device, EGR is controlled in an operation region in a low-speed low-load side of the compression self-ignition combustion region, such that the hot burned gas is left inside the combustion chamber. In the operation region in the high-speed high-load side of the compression self-ignition combustion region, the EGR is controlled such that cooled EGR gas is introduced into inside of the combustion chamber. In addition, this control device is provided with a means 36 for performing ignition assist at the time of compression self-ignition combustion. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、温間時における部分負荷域で燃焼室内の混合気を圧縮自己着火により燃焼させる火花点火式エンジンに関するものである。
【0002】
【従来の技術】
近来、火花点火式エンジン(ガソリンエンジン)において、燃費改善の手法として圧縮自己着火が研究されており、この圧縮自己着火は、ディーゼルエンジンと同様に圧縮行程終期に燃焼室内を高温、高圧にして混合気を自己着火させるものである。この圧縮自己着火によると、燃焼室全体が一気に燃焼するため、燃焼効率が高められて燃費が大幅に改善され、かつ、NOxの発生が抑制され、エミッションの改善にも有利となる。
【0003】
このような圧縮自己着火を効果的に行わせる手法として、いわゆる内部EGRにより燃焼室内に熱い既燃ガスを多く残すようにするものが提案されている。例えば、特許文献1に記載されたエンジンでは、所定の部分負荷領域で、排気弁が閉じた後に吸気弁が開くようにしてその間にマイナスオーバラップ(吸・排気弁がともに閉じた状態となる期間)を設定することにより、内部EGRの量を多くし、この内部EGRにより燃焼室内の温度を高めて圧縮自己着火が行われるようにしている。
【0004】
【特許文献1】
特開2001−152919号公報
【0005】
【発明が解決しようとする課題】
上記のような従来の装置によると、比較的低速・低負荷の領域で、内部EGRによる燃焼室温度上昇作用で効果的に圧縮自己着火が行われるが、高速・高負荷側では燃焼室温度が上昇し過ぎてノッキングが生じ易くなる。そして、ノッキングが生じ易くなる領域では内部EGR及び自己圧縮着火が停止される(吸・排気弁が通常タイミングにされるとともに強制点火が行われる)が、燃費及びエミッションの向上のためにはできるだけ圧縮自己着火燃焼領域を広げることが望ましく、この点で改善の余地が残されていた。
【0006】
本発明はこのような事情に鑑み、圧縮自己着火燃焼領域を高速・高負荷側に拡大することができ、かつ、その圧縮自己着火燃焼領域のうちの高速・高負荷側の領域でノッキングを有効に抑制することができる火花点火式エンジンの制御装置を提供するものである。
【0007】
【課題を解決するための手段】
本発明は、温間時における部分負荷域で燃焼室内の混合気を圧縮自己着火により燃焼させる火花点火式エンジンにおいて、圧縮自己着火により燃焼を行わせる運転領域である圧縮自己着火燃焼領域のうちの低速低負荷側の運転領域では、燃焼室内に熱い既燃ガスが残るようにEGR制御し、上記圧縮自己着火燃焼領域のうちの高速高負荷側の運転領域では、冷却されたEGRガスが燃焼室内に導入されるようにEGR制御して、自己圧縮着火の際の燃焼室内温度を調整するEGR制御手段と、圧縮自己着火燃焼領域において少なくとも冷却されたEGRガスの導入により着火性が低下するときに圧縮自己着火を促進する着火アシスト手段とを備えたものである。
【0008】
この発明によると、圧縮自己着火燃焼領域のうちの低速低負荷側の運転領域では、燃焼室内に残される熱い既燃ガスによって燃焼室内温度が高められることにより、圧縮自己着火燃焼が良好に行われる。また、圧縮自己着火燃焼領域のうちの高速高負荷側の運転領域では、燃焼室内温度が上昇しすぎる傾向があるのに対し、冷却されたEGRガスの導入によって過度の温度上昇が抑制され、ノッキングが防止される。そして、このEGRガスの導入により、ノッキングが防止される反面、圧縮自己着火が生じにくくなる傾向を招くが、着火アシストが行われることにより良好な圧縮自己着火燃焼が確保される。
【0009】
つまり、従来では圧縮自己着火燃焼を行わせようとするとノッキングが生じるため圧縮自己着火燃焼を行わせていなかった比較的高速高負荷の領域でも、冷却されたEGRガスの導入と着火アシストとにより、ノッキングが回避されつつ圧縮自己着火燃焼が良好に行われ、圧縮自己着火燃焼領域が拡大されることとなる。
【0010】
この発明において、上記EGR制御手段は、燃焼室内に残る熱い既燃ガスの量を、上記圧縮自己着火燃焼領域で負荷が高くなるにつれて減少させるとともに、燃焼室内に導入される冷却されたEGRガスの量を、上記圧縮自己着火燃焼領域内の高負荷側の運転領域において負荷が高くなるにつれて増加させるように制御するようになっていることが好ましい。
【0011】
このようにすると、圧縮自己着火燃焼領域で、負荷が高くなるにつれて燃焼室内の温度が過度に上昇し易くなる傾向に対し、これを是正するように熱い既燃ガスと冷却されたEGRガスの比率が調整される。
【0012】
上記EGR制御手段は、吸・排気弁の作動を制御することにより内部EGRをコントロールするバルブ作動制御手段と、排気通路から冷却手段を有するEGR通路を通って還流される外部EGRをコントロールするコールドEGR制御手段とを含むものであればよい。
【0013】
このようにすると、熱い既燃ガスの量及び冷却されたEGRガスの量をそれぞれ効果的に調整することができる。
【0014】
また、上記着火アシスト手段は、圧縮上死点前に後続気筒内の混合気を点火する点火制御手段からなるものであればよい。
【0015】
このようにすると、上記の圧縮上死点の直前に点火による圧力の急上昇により、圧縮自己着火が促進される。
【0016】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を説明する。
【0017】
図1及び図2は本発明が適用されるエンジンの一実施形態を概略的に示すものである。これらの図において、エンジン本体1は複数の気筒2を有し、各気筒2にはピストン3が嵌挿され、ピストン3の上方に燃焼室4が形成されている。
【0018】
各気筒2の燃焼室4の頂部には点火プラグ5が装備され、そのプラグ先端が燃焼室4内に臨んでいる。この点火プラグ5には、電子制御による点火時期のコントロールが可能な点火回路6が接続されている。
【0019】
各気筒2の燃焼室4に対して吸気ポート7及び排気ポート8が開口し、これらのポート7,8に吸気通路9、排気通路10等が接続されている。上記吸気ポート7には、燃料を噴射供給する燃料噴射弁11が設けられている。この燃料噴射弁11は、図略のニードル弁及びソレノイドを内蔵し、後述のパルス信号が入力されることにより、そのパルス入力時期にパルス幅に対応する時間だけ駆動されて開弁し、その開弁時間に応じた量の燃料を噴射するように構成されている。また、吸気通路9には、吸入空気量を調節するスロットル弁12が設けられている。
【0020】
上記吸気ポート7及び排気ポート8は吸気弁及び排気弁により開閉されるようになっている。図示の例では、1気筒当り2個ずつの吸気弁13a,13b及び排気弁14a,14bが設けられている。
【0021】
上記燃焼室4に対して内部EGR(燃焼室内に残る熱い既燃ガス)を調節するため、吸・排気弁の少なくとも一方の開閉時期が変更可能となっている。当実施形態では、1気筒当り2個の排気弁14a,14bのうちの一方の排気弁14aに対してバルブリフト可変機構15が設けられるとともに、排気弁14a,14bに対して位相式のバルブタイミング可変機構20が設けられている。
【0022】
バルブリフト可変機構15は、2種類のカム16a,16bにより排気弁14aを排気行程に加えて吸気行程でも開くようにする圧縮自己着火燃焼用のバルブ作動状態と、吸気行程での作動を停止させて排気行程でのみ排気弁14aを作動させる通常燃焼用のバルブ作動状態とに切換可能となっている。
【0023】
バルブリフト可変機構15の具体的構造は図3に示すようになっており、この構造を、図4のバルブ作動説明図も参照しつつ説明する。
【0024】
図3に示すバルブリフト可変機構15は、カムシャフト16上に配設された第1カム161及び第2カム162を有し、第1カム161は排気行程で排気弁14aを開き、第2カム162は吸気行程で排気弁14aを開くように、これら2種類のカム161,162のカムノーズがカムシャフト回転角で略90°(クランク角で略180°)だけずれた配置となっている。図4中のExは上記第1カム161による排気弁14aの開弁特性、ExIは上記第2カム162による排気弁14aの開弁特性、Inは吸気弁13a,13bの開弁特性であり、この図に示すように、上記第1カム161による開弁特性Exでは排気弁14aが略排気行程期間中開かれ、上記第1カム161による開弁特性ExIでは排気弁14aの開弁期間が吸気弁(In)の開弁期間より短くて、吸気行程内の一部の期間だけ開かれるようになっている。
【0025】
これらのカム161,162には、ロッカーシャフト17に基端部が揺動可能に支承された第1ロッカーアーム171及び第2ロッカーアーム172の各中間部が当接し、第1ロッカーアーム171の先端に排気弁14aが連結されるとともに、切換機構によって第1ロッカーアーム171に対して第2ロッカーアーム172を連結、分離可能とされている。
【0026】
上記切換機構は、図示しないが、各ロッカーアーム171,172に設けられたプランジャ穴に亘って移動可能なプランジャを備え、このプランジャが油圧で作動されて変位することにより、プランジャを介して各ロッカーアーム171,172が一体に揺動するように連結される連結状態と、各ロッカーアーム171,172が独立して揺動する分離状態とに切換可能とされている。そして、上記連結状態では、第1カム161の回転に伴う第1ロッカーアーム171の揺動及び第2カム162の回転に伴う第2ロッカーアーム172の揺動がともに排気弁14aに伝えられて排気行程での開作動(Ex)及び吸気行程での開作動(ExI)行われ、一方、分離状態では、上記第2カム162の回転に伴う第2ロッカーアーム172の揺動が排気弁14aに伝えられなくなることにより、排気行程での開作動(Ex)のみが行われるようになっている。なお、バルブリフト可変機構15が設けられていない排気弁14bは、常に排気行程での開作動のみが行われる。
【0027】
上記切換機構に対して、油圧の給排を制御する制御弁18(図2参照)が設けられている。
【0028】
また、図1及び図2に示すバルブタイミング可変機構20は、クランクシャフトに対するカムシャフトの位相を変えることにより排気弁14a,14bの開閉タイミングを変更するようになっている。なお、図示の実施形態では、吸気弁13a,13bに対してもバルブタイミング可変機構21が設けられている。
【0029】
さらにエンジンには、図1に示すように、外部EGRによる冷却されたEGRガスを燃焼室に導くために、排気通路10と吸気通路9とを接続するEGR通路22が設けられ、このEGR通路22に、EGRガスを冷却する冷却手段としてのEGRクーラー23が介設されるとともに、EGRガス量をコントロールするためのEGRバルブ24が設けられている。
【0030】
図2に示すように、点火回路6、燃料噴射弁11、バルブリフト可変機構15の制御弁18、バルブタイミング可変機構20,21及びEGRバルブ24は、ECU(エンジンコントロールユニット)30により制御される。このECU30には、スロットル弁12の開度を検出するスロットル開度センサ25、エンジン回転数を検出する回転数センサ26、エンジン冷却水の水温を検出する水温センサ27等の各種センサからの信号が入力されるようになっている。
【0031】
上記ECU30は、運転状態判別手段31と、バルブ作動制御手段33及びコールドEGR制御手段34からなるEGR制御手段32と、点火制御手段35と、燃料噴射制御手段36とを機能的に含んでいる。
【0032】
上記運転状態判別手段31は、水温センサ27からの信号に基づいて水温が所定温度以上の温間時か否かを判別するとともに、温間時である場合に、上記スロットル開度センサ25からの信号等によって求められるエンジン負荷と回転数センサ26からの信号によって求められるエンジン回転数とでエンジンの運転状態を調べ、図6に示す運転領域のマップの中のいずれの領域にあるかを判別する。ここで、図6に示すマップを説明すると、低・中負荷かつ低・中速にわたる部分負荷領域が圧縮自己着火燃焼領域Aとされ、これより高負荷側及び高速側の領域Bが通常燃焼領域とされている。また、圧縮自己着火燃焼領域Aのうちの低速・低負荷側の領域は内部EGRによる熱い既燃性ガスを燃焼室内に多く残存させるホットEGR領域A1とされ、圧縮自己着火燃焼領域Aのうちの高速側及び高負荷側の領域は、内部EGRに加え、冷却された外部EGRガスの導入を行うコールドEGR領域A2とされている。
【0033】
上記バルブ作動制御手段33は、運転状態判別手段31により判別される運転状態に応じ、上記制御弁18を制御することによってバルブリフト可変機構15を制御するとともに、バルブタイミング可変機構20を制御し、これらの制御によってホットEGR量(内部EGR量)を制御する。
【0034】
具体的には、運転状態が圧縮自己着火燃焼領域Aにある場合、図4に示した圧縮自己着火用のバルブ作動状態とするようにバルブリフト可変機構15を制御する。これにより、吸気行程中に排気弁14aが開かれるため排気ポート8から排気が逆流して燃焼室4内に流入し、多量のホットEGRが得られる。この場合、吸気行程中の排気弁14aの開閉動作(図4中の特性ExI)が遅れ側にずれるほど、新気が先に燃焼室内に多く流入するのでホットEGRの比率が減少する。そこで、圧縮自己着火燃焼領域Aの低負荷側では図4中に実線で示すような比較的早いバルブタイミングとし、圧縮自己着火燃焼領域Aの高負荷側となるにつれ、図4中に二点鎖線で示すように排気弁のバルブタイミング(特性Ex及びExI)を遅くすることによりホットEGRの比率を減少させるように、バルブタイミング可変機構20を制御する。
【0035】
なお、このように排気弁のバルブタイミングを制御する代りに、図5に示すように、排気弁のバルブタイミングを固定とする一方、吸気弁に対するバルブタイミング可変機構21を用いて吸気弁のバルブタイミングを変化させることによりホットEGRの比率を変化させることもできる。この場合、圧縮自己着火燃焼領域Aの低負荷側では吸気弁(特性In)を図5中に実線で示すように比較的遅いバルブタイミング(ポンピングロス低減にも有利な遅閉じ)とし、圧縮自己着火燃焼領域Aの高負荷側となるにつれ、図5中に二点鎖線で示すように吸気弁のバルブタイミング(特性In)を早くすることによりホットEGRの比率を減少させるようにすればよい。
【0036】
また、コールドEGR制御手段34は、運転状態判別手段31により判別される運転状態に応じ、上記EGRバルブ24を制御することによってコールドEGR量(外部EGR量)を制御する。具体的には、圧縮自己着火燃焼領域AのうちのホットEGR領域A1ではEGRバルブ24を閉じ、コールドEGR領域A2では、EGRバルブ24を開くとともに、その開度を負荷の増大に伴って大きくするようにしている。
【0037】
従って、圧縮自己着火燃焼領域A内での負荷の変化に応じたホットEGR及びコールドEGRのEGR率の変化は図7に示すようになる。すなわち、圧縮自己着火燃焼領域A内の低負荷側の領域(図6中のホットEGR領域A1に相当)ではホットEGRのみが与えられ、かつ、そのEGR率が負荷の増大に伴って減少し、また、圧縮自己着火燃焼領域A内の高負荷側の領域(図6中のコールドEGR領域A2に相当)ではホットEGRに加えてコールドEGRが与えられ、かつ、負荷の増大に伴ってホットEGRのEGR率が減少するとともにコールドEGRのEGR率が増加する。
【0038】
図2に戻って、ECU30における点火時期制御手段35は、点火プラグ5によるエンジンの点火時期を運転状態に応じて制御し、特に圧縮着火燃焼領域Aでは、圧縮自己着火を促進する着火アシスト手段として機能し、圧縮上死点前で、かつ圧縮上死点近傍の時期に点火(図4中に符号Sを付して示す)を行うようになっている。
【0039】
燃料噴射制御手段36は、運転状態に応じて燃料噴射弁11からの噴射量及び噴射タイミングを制御する。そして、燃料噴射制御手段36による燃料噴射量の制御と、図外のスロットル弁駆動モータ等の制御による吸入空気量の制御とによって空燃比が制御され、上記圧縮自己着火燃焼領域Aでは理論空燃比よりもリーンな空燃比(空気過剰率λがλ>1)に制御されるようになっている。
【0040】
また、燃料噴射時期は吸気行程内に設定されるが、特に圧縮自己着火燃焼領域Aでは、図4のように吸気行程中の一部の期間に排気弁14aが開くという状況下において、確実に吸気が燃焼室に流入するタイミングで燃料が噴射されるようにし、例えば吸気行程中の排気弁開弁期間(ExI)より後まで燃料が噴射されるようにする。あるいは、吸気行程中の排気弁開弁期間(ExI)の前に燃料を噴射するようにしてもよく、また、吸気行程中の排気弁開弁期間(ExI)の前と後に分割して燃料を噴射するようにしもよい。
【0041】
以上のような当実施形態の装置によると、所定の部分負荷領域である圧縮自己着火燃焼領域Aでは、図4に示すように排気弁14aが吸気行程でも開くように制御されることにより多量のホットEGRが得られ、このホットEGRで燃焼室4内の温度が高められることにより圧縮自己着火が行われる。
【0042】
このように圧縮自己着火が行われると、空燃比がリーンの状態や多量のEGRが導入される状態でも、同時多点着火により燃焼室全体が一気に燃焼するため、仕事に寄与しない遅い燃焼が避けられ、大幅に燃費が改善される。さらに、圧縮自己着火による急速燃焼が行われると可及的に酸素と窒素との反応が避けられることから、NOxの発生が充分に抑制され、エミッションの改善にも有利となる。
【0043】
また、圧縮自己着火燃焼領域Aのうちの高速側及び高負荷側の領域であるコールドEGR領域A2では、ホットEGRに加えてコールドEGRが燃焼室に導入され、かつ、負荷が高くなるにつれてホットEGRの比率が減少し、コールドEGRの比率が増加するため、高速・高負荷側ではホットEGRにより燃焼室温度が過度に上昇してノッキングを生じるといった事態を招かないように、コールドEGRにより燃焼室温度が調整される。
【0044】
また、このようにホットEGRに加えてコールドEGRを導入すると、ノッキングを効果的に防止できる反面、燃焼室温度の上昇が抑えられることで圧縮自己着火が起こり難くなる場合が生じるが、点火制御手段35による着火アシスト手段としての制御により、圧縮自己着火が促進される。
【0045】
すなわち、圧縮上死点の直前に点火が行われることで点火プラグ5周りの圧力が急上昇する。そして、コールドEGRの混入により過度の温度上昇は避けられながらもホットEGRによって燃焼室内の温度はかなり高くなっているので、この温度と、圧縮上死点直前の点火による圧力の急上昇とにより、圧縮自己着火が良好に行われることとなる。
【0046】
そして、このようにホットEGRのみではノッキングが生じ易くなるような比較的高速・高負荷の領域でも、コールドEGRの混入による過度の温度上昇の抑制と着火アシストとにより、ノッキングを防止しつつ有効に自己圧縮着火を行わせることができるため、圧縮自己着火燃焼領域を高速・高負荷側に拡大することができ、燃費及びエミッションの改善効果を高めることができる。
【0047】
また、圧縮自己着火燃焼領域Aのうちの低速・低負荷側の領域であるホットEGR領域A1では、本来的に燃焼室温度が低いので、ホットEGRのみとされるとともに、低負荷側ほどEGR率が大きくされることにより、自己着火性が高められる。そして、当実施形態ではこの領域A1でも着火アシストが行われることにより、ホットEGRだけでは充分に温度が上昇し難い極低速・低負荷の領域等でも、圧縮自己着火が良好に行われることとなる。
【0048】
一方、全開負荷やそれに近い高負荷側及び高速側の領域である通常燃焼領域Bでは、排気弁14aが排気行程のみで開かれる状態にバルブリフト可変機構15が切り換えられて、ホットEGRの導入が停止され、かつ、EGRバルブ24も閉じられた状態で、強制点火による通常燃焼が行われる。
【0049】
なお、本発明の装置の具体的構造は上記実施形態に限定されず、種々変更可能である。その数例を以下に説明する。
【0050】
▲1▼上記実施形態の構成に加え、1気筒当り2個の吸気弁13a,13bのうちの一方の吸気弁13aに対し弁停止機構を設けて、低負荷時にこの吸気弁13aの作動を停止させ(もしくはそのリフト量を極小とし)、吸気スワールを生じさせるようにしてもよい。この場合、作動停止(もしくは極小リフト)とされる吸気弁13aと、低負荷時に吸気行程でも開かれる排気弁14aとが向かい合うように配置しておけば、吸気スワール及び内部EGRの流動がスムーズに行われる。
【0051】
▲2▼上記実施形態では、一方の排気弁14aに対してバルブリフト可変機構15を設けているが、その代りに、一方の吸気弁13aに対してバルブリフト可変機構を設け、圧縮自己着火燃焼領域で図8に示すように吸気弁が吸気行程での開弁(In)に加えて排気行程内でも開弁(InE)するようにしておいてもよい。このようにすれば、排気行程中に排気の一部が吸気ポートに吹き返され、これが次の吸気行程で燃焼室に流入してホットEGR(内部EGR)となる。
【0052】
▲3▼内部EGRを生じさせる手法としては、上記の例のほかに、排気弁が閉じた後に吸気弁が開くようにしてその間にマイナスオーバラップ(吸・排気弁がともに閉じた状態となる期間)を設定するようにしてもよい。
【0053】
▲4▼上記実施形態では吸気ポートに燃料噴射弁が設けられているが、燃焼室に直接燃料を噴射するように燃料噴射弁を設けてもよく、このようにすれば噴射時期の設定自由度が高くなる。
【0054】
▲5▼上記実施形態では、圧縮自己着火燃焼領域Aで常に着火アシストを行っているが、少なくとも圧縮自己着火燃焼領域A内のコールドEGR領域A2でコールドEGRが導入されているときに着火アシストを行うようにすればよい。例えば、コールドEGR領域A2とホットEGR領域A1内の極低負荷の領域で着火アシストを行い、ホットEGRによって良好に圧縮自己着火燃焼が行われる運転領域では着火アシストを停止するようにしてもよい。
【0055】
【発明の効果】
以上のように本発明の制御装置によると、圧縮自己着火燃焼領域のうちの低速低負荷側の運転領域では、燃焼室内に熱い既燃ガスが残るようにEGR制御し、圧縮自己着火燃焼領域のうちの高速高負荷側の運転領域では、冷却されたEGRガスが燃焼室内に導入されるようにEGR制御するとともに、着火アシストを行うようにしているため、圧縮自己着火燃焼領域で圧縮自己着火燃焼が良好に行われ、特に比較的高速高負荷側の運転領域でも、ノッキングが防止されつつ、良好な圧縮自己着火燃焼が確保される。従って、圧縮自己着火燃焼領域を拡大させることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態による制御装置を備えたエンジン全体の概略平面図である。
【図2】エンジン等の概略断面図である。
【図3】バルブリフト可変機構を示す斜視図である。
【図4】バルブ作動の一例を示す説明図である。
【図5】バルブ作動の別の例を示す説明図である。
【図6】運転領域のマップを示す説明図である。
【図7】エンジン負荷とホットEGR及びコールドEGRのEGR率との関係を示す説明図である。
【図8】バルブ作動についての別の実施形態を示す説明図である。
【符号の説明】
1 エンジン本体
5 点火プラグ
8 点火回路
11 燃料噴射弁
13a,13b 吸気ポート
14a,14b 排気ポート
15 バルブリフト可変機構
20,21 バルブタイミング可変機構
22 EGR通路
23 EGRクーラー
24 EGRバルブ
30 ECU
32 EGR制御手段
33 バルブ作動制御手段
34 コールドEGR制御手段
35 点火制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spark ignition engine that burns an air-fuel mixture in a combustion chamber by compression self-ignition in a partial load region during warm conditions.
[0002]
[Prior art]
Recently, compression self-ignition has been studied as a technique for improving fuel consumption in spark ignition engines (gasoline engines), and this compression self-ignition is mixed at a high temperature and high pressure in the combustion chamber at the end of the compression stroke, just like a diesel engine. Qi self-ignite. According to this compression self-ignition, since the entire combustion chamber burns at once, the combustion efficiency is improved, the fuel consumption is greatly improved, the generation of NOx is suppressed, and the emission is advantageously improved.
[0003]
As a technique for effectively performing such compression self-ignition, there has been proposed a technique in which a large amount of hot burned gas is left in the combustion chamber by so-called internal EGR. For example, in the engine described in Patent Document 1, in a predetermined partial load region, after the exhaust valve is closed, the intake valve is opened so that a negative overlap (a period in which both the intake and exhaust valves are closed) is performed. ) Is increased, the amount of internal EGR is increased, and the temperature in the combustion chamber is increased by this internal EGR so that compression self-ignition is performed.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-152919
[Problems to be solved by the invention]
According to the conventional apparatus as described above, compression self-ignition is effectively performed in the region of relatively low speed and low load by the combustion chamber temperature rising action by the internal EGR, but the combustion chamber temperature is high on the high speed and high load side. It rises too much and knocking easily occurs. In the region where knocking is likely to occur, internal EGR and self-compression ignition are stopped (the intake and exhaust valves are set to normal timing and forced ignition is performed), but compression is possible as much as possible in order to improve fuel consumption and emissions. It is desirable to widen the auto-ignition combustion area, and there remains room for improvement in this regard.
[0006]
In view of such circumstances, the present invention can expand the compression self-ignition combustion region to the high-speed / high-load side, and is effective in knocking in the high-speed / high-load side of the compression self-ignition combustion region. The present invention provides a control device for a spark ignition engine that can be suppressed to a low level.
[0007]
[Means for Solving the Problems]
The present invention relates to a compression ignition combustion region which is an operation region in which combustion is performed by compression self-ignition in a spark ignition engine in which an air-fuel mixture in a combustion chamber is combusted by compression self-ignition in a partial load region at a warm time. In the operation region on the low speed and low load side, EGR control is performed so that hot burned gas remains in the combustion chamber. In the operation region on the high speed and high load side in the compression self-ignition combustion region, the cooled EGR gas is transferred to the combustion chamber. EGR control means for adjusting the temperature in the combustion chamber at the time of self-compression ignition by performing EGR control so as to be introduced into the engine, and when ignitability is reduced by introduction of at least cooled EGR gas in the compression self-ignition combustion region And an ignition assist means for promoting compression self-ignition.
[0008]
According to the present invention, in the operation region on the low-speed and low-load side in the compression self-ignition combustion region, the combustion chamber temperature is increased by the hot burned gas remaining in the combustion chamber, so that compression self-ignition combustion is favorably performed. . Further, in the operation region on the high speed and high load side in the compression self-ignition combustion region, the temperature in the combustion chamber tends to rise too much, but the introduction of the cooled EGR gas suppresses an excessive temperature rise and knocks. Is prevented. Although the introduction of EGR gas prevents knocking, it tends to make compression self-ignition less likely to occur, but good compression self-ignition combustion is ensured by performing the ignition assist.
[0009]
In other words, knocking occurs when trying to perform compression self-ignition combustion in the past, so even in a relatively high speed and high load region where compression self-ignition combustion was not performed, by introduction of cooled EGR gas and ignition assist, The compression self-ignition combustion is favorably performed while knocking is avoided, and the compression self-ignition combustion region is expanded.
[0010]
In the present invention, the EGR control means reduces the amount of hot burned gas remaining in the combustion chamber as the load increases in the compression self-ignition combustion region, and reduces the amount of cooled EGR gas introduced into the combustion chamber. It is preferable that the amount be controlled to increase as the load increases in the high load side operation region in the compression self-ignition combustion region.
[0011]
In this manner, in the compression self-ignition combustion region, the ratio of the hot burned gas and the cooled EGR gas is corrected so as to correct the tendency that the temperature in the combustion chamber tends to rise excessively as the load increases. Is adjusted.
[0012]
The EGR control means includes a valve operation control means for controlling the internal EGR by controlling the operation of the intake / exhaust valves, and a cold EGR for controlling the external EGR returned from the exhaust passage through the EGR passage having the cooling means. What is necessary is just to include a control means.
[0013]
In this way, the amount of hot burned gas and the amount of cooled EGR gas can be adjusted effectively.
[0014]
Further, the ignition assist means may be an ignition control means for igniting the air-fuel mixture in the succeeding cylinder before the compression top dead center.
[0015]
If it does in this way, compression self-ignition will be accelerated | stimulated by the rapid rise of the pressure by ignition just before said compression top dead center.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
1 and 2 schematically show an embodiment of an engine to which the present invention is applied. In these drawings, the engine body 1 has a plurality of cylinders 2, pistons 3 are fitted in the respective cylinders 2, and combustion chambers 4 are formed above the pistons 3.
[0018]
A spark plug 5 is provided at the top of the combustion chamber 4 of each cylinder 2, and the tip of the plug faces the combustion chamber 4. An ignition circuit 6 capable of controlling ignition timing by electronic control is connected to the spark plug 5.
[0019]
An intake port 7 and an exhaust port 8 are opened to the combustion chamber 4 of each cylinder 2, and an intake passage 9 and an exhaust passage 10 are connected to these ports 7 and 8. The intake port 7 is provided with a fuel injection valve 11 for supplying and supplying fuel. The fuel injection valve 11 includes a needle valve and a solenoid (not shown). When a pulse signal (described later) is input, the fuel injection valve 11 is driven and opened for a time corresponding to the pulse width at the pulse input timing. An amount of fuel corresponding to the valve time is injected. The intake passage 9 is provided with a throttle valve 12 for adjusting the intake air amount.
[0020]
The intake port 7 and the exhaust port 8 are opened and closed by an intake valve and an exhaust valve. In the illustrated example, two intake valves 13a and 13b and two exhaust valves 14a and 14b are provided for each cylinder.
[0021]
In order to adjust the internal EGR (hot burned gas remaining in the combustion chamber) with respect to the combustion chamber 4, the opening / closing timing of at least one of the intake and exhaust valves can be changed. In the present embodiment, a variable valve lift mechanism 15 is provided for one of the two exhaust valves 14a, 14b per cylinder, and a phase valve timing is provided for the exhaust valves 14a, 14b. A variable mechanism 20 is provided.
[0022]
The variable valve lift mechanism 15 stops the valve operating state for compression self-ignition combustion in which the exhaust valve 14a is opened in the intake stroke in addition to the exhaust stroke by two types of cams 16a and 16b, and the operation in the intake stroke. Thus, it is possible to switch to the normal combustion valve operating state in which the exhaust valve 14a is operated only in the exhaust stroke.
[0023]
The specific structure of the variable valve lift 15 is as shown in FIG. 3, and this structure will be described with reference to the valve operation explanatory view of FIG.
[0024]
The variable valve lift mechanism 15 shown in FIG. 3 has a first cam 161 and a second cam 162 disposed on the camshaft 16, and the first cam 161 opens the exhaust valve 14a in the exhaust stroke, and the second cam The cam nose of these two types of cams 161 and 162 is displaced by approximately 90 ° in camshaft rotation angle (approximately 180 ° in crank angle) so that the exhaust valve 14a is opened during the intake stroke. In FIG. 4, Ex is the valve opening characteristic of the exhaust valve 14a by the first cam 161, ExI is the valve opening characteristic of the exhaust valve 14a by the second cam 162, and In is the valve opening characteristic of the intake valves 13a and 13b. As shown in this figure, in the valve opening characteristic Ex by the first cam 161, the exhaust valve 14a is opened substantially during the exhaust stroke period, and in the valve opening characteristic ExI by the first cam 161, the valve opening period of the exhaust valve 14a is the intake air. It is shorter than the valve opening period of the valve (In), and is opened only for a part of the intake stroke.
[0025]
These cams 161 and 162 are in contact with intermediate portions of the first rocker arm 171 and the second rocker arm 172 whose base end portions are supported on the rocker shaft 17 so as to be able to swing, and the distal end of the first rocker arm 171 is contacted. The exhaust valve 14a is connected to the first rocker arm 171 and the second rocker arm 172 can be connected to and separated from the first rocker arm 171 by a switching mechanism.
[0026]
Although not shown, the switching mechanism includes a plunger that can move over plunger holes provided in the rocker arms 171 and 172, and the plunger is actuated by hydraulic pressure to displace the plungers via the plungers. It is possible to switch between a connected state in which the arms 171 and 172 are connected so as to swing together and a separated state in which the rocker arms 171 and 172 swing independently. In the connected state, the swing of the first rocker arm 171 accompanying the rotation of the first cam 161 and the swing of the second rocker arm 172 accompanying the rotation of the second cam 162 are both transmitted to the exhaust valve 14a and exhausted. While the opening operation (Ex) in the stroke and the opening operation (ExI) in the intake stroke are performed, in the separated state, the swing of the second rocker arm 172 accompanying the rotation of the second cam 162 is transmitted to the exhaust valve 14a. By not being able to do so, only the opening operation (Ex) in the exhaust stroke is performed. Note that the exhaust valve 14b not provided with the variable valve lift mechanism 15 is always only opened in the exhaust stroke.
[0027]
A control valve 18 (see FIG. 2) for controlling supply and discharge of hydraulic pressure is provided for the switching mechanism.
[0028]
Further, the variable valve timing mechanism 20 shown in FIGS. 1 and 2 changes the opening / closing timing of the exhaust valves 14a and 14b by changing the phase of the camshaft with respect to the crankshaft. In the illustrated embodiment, a variable valve timing mechanism 21 is also provided for the intake valves 13a and 13b.
[0029]
Further, as shown in FIG. 1, the engine is provided with an EGR passage 22 that connects the exhaust passage 10 and the intake passage 9 in order to guide the EGR gas cooled by the external EGR to the combustion chamber. In addition, an EGR cooler 23 is provided as a cooling means for cooling the EGR gas, and an EGR valve 24 for controlling the amount of EGR gas is provided.
[0030]
As shown in FIG. 2, the ignition circuit 6, the fuel injection valve 11, the control valve 18 of the variable valve lift mechanism 15, the variable valve timing mechanisms 20, 21 and the EGR valve 24 are controlled by an ECU (engine control unit) 30. . The ECU 30 receives signals from various sensors such as a throttle opening sensor 25 that detects the opening of the throttle valve 12, a rotation speed sensor 26 that detects the engine speed, and a water temperature sensor 27 that detects the temperature of the engine coolant. It is designed to be entered.
[0031]
The ECU 30 functionally includes an operating state determination unit 31, an EGR control unit 32 including a valve operation control unit 33 and a cold EGR control unit 34, an ignition control unit 35, and a fuel injection control unit 36.
[0032]
Based on the signal from the water temperature sensor 27, the operating state determination means 31 determines whether or not the water temperature is warmer than a predetermined temperature. The engine operating state is examined based on the engine load obtained from the signal or the like and the engine rotational speed obtained from the signal from the rotational speed sensor 26 to determine which region in the operational region map shown in FIG. . Here, the map shown in FIG. 6 will be described. A partial load region extending over a low / medium load and a low / medium speed is defined as a compression self-ignition combustion region A, and a region B on the higher load side and the higher speed side is defined as a normal combustion region. It is said that. Further, the low-speed / low-load side region in the compression self-ignition combustion region A is a hot EGR region A1 in which a large amount of hot burned gas from the internal EGR remains in the combustion chamber. The region on the high speed side and the high load side is a cold EGR region A2 where the cooled external EGR gas is introduced in addition to the internal EGR.
[0033]
The valve operation control means 33 controls the valve lift variable mechanism 15 by controlling the control valve 18 according to the operation state determined by the operation state determination means 31, and also controls the valve timing variable mechanism 20, By these controls, the hot EGR amount (internal EGR amount) is controlled.
[0034]
Specifically, when the operation state is in the compression self-ignition combustion region A, the variable valve lift mechanism 15 is controlled so that the valve operation state for compression self-ignition shown in FIG. Thereby, since the exhaust valve 14a is opened during the intake stroke, the exhaust flows backward from the exhaust port 8 and flows into the combustion chamber 4 to obtain a large amount of hot EGR. In this case, as the opening / closing operation (characteristic ExI in FIG. 4) of the exhaust valve 14a during the intake stroke shifts to the delay side, a larger amount of fresh air flows into the combustion chamber first, so the ratio of hot EGR decreases. Therefore, a relatively early valve timing as indicated by a solid line in FIG. 4 is set on the low load side of the compression self-ignition combustion region A, and as the compression load on the high load side of the compression self-ignition combustion region A is reached, a two-dot chain line in FIG. The valve timing variable mechanism 20 is controlled so as to reduce the ratio of hot EGR by delaying the valve timing (characteristics Ex and ExI) of the exhaust valve as shown in FIG.
[0035]
Instead of controlling the valve timing of the exhaust valve in this way, as shown in FIG. 5, the valve timing of the exhaust valve is fixed while the valve timing of the intake valve is fixed using the variable valve timing mechanism 21 for the intake valve. The ratio of hot EGR can also be changed by changing. In this case, on the low load side of the compression self-ignition combustion region A, the intake valve (characteristic In) is set to a relatively slow valve timing (slow closing advantageous for reducing pumping loss) as shown by a solid line in FIG. As the ignition combustion region A becomes higher, the hot EGR ratio may be reduced by increasing the valve timing (characteristic In) of the intake valve as indicated by a two-dot chain line in FIG.
[0036]
The cold EGR control unit 34 controls the cold EGR amount (external EGR amount) by controlling the EGR valve 24 according to the operation state determined by the operation state determination unit 31. Specifically, the EGR valve 24 is closed in the hot EGR region A1 in the compression self-ignition combustion region A, and the EGR valve 24 is opened in the cold EGR region A2, and the opening thereof is increased as the load increases. I am doing so.
[0037]
Therefore, the change in the EGR rate of the hot EGR and the cold EGR according to the change of the load in the compression self-ignition combustion region A is as shown in FIG. That is, only the hot EGR is given in the low load side region (corresponding to the hot EGR region A1 in FIG. 6) in the compression self-ignition combustion region A, and the EGR rate decreases as the load increases. Further, in the high load side region (corresponding to the cold EGR region A2 in FIG. 6) in the compression self-ignition combustion region A, cold EGR is given in addition to hot EGR, and the hot EGR is increased as the load increases. As the EGR rate decreases, the EGR rate of cold EGR increases.
[0038]
Returning to FIG. 2, the ignition timing control means 35 in the ECU 30 controls the ignition timing of the engine by the spark plug 5 according to the operating state, and particularly in the compression ignition combustion region A, as ignition assist means for promoting compression self-ignition. It functions and is ignited (shown with a symbol S in FIG. 4) at a timing before the compression top dead center and in the vicinity of the compression top dead center.
[0039]
The fuel injection control means 36 controls the injection amount and the injection timing from the fuel injection valve 11 according to the operating state. The air-fuel ratio is controlled by the control of the fuel injection amount by the fuel injection control means 36 and the control of the intake air amount by the control of a throttle valve drive motor or the like (not shown). In the compressed self-ignition combustion region A, the stoichiometric air-fuel ratio is controlled. The leaner air-fuel ratio (the excess air ratio λ is λ> 1) is controlled.
[0040]
In addition, the fuel injection timing is set within the intake stroke, but particularly in the compression self-ignition combustion region A, the fuel injection timing is surely ensured in the situation where the exhaust valve 14a opens during a part of the intake stroke as shown in FIG. The fuel is injected at the timing when the intake air flows into the combustion chamber. For example, the fuel is injected until after the exhaust valve opening period (ExI) during the intake stroke. Alternatively, the fuel may be injected before the exhaust valve opening period (ExI) during the intake stroke, or the fuel is divided before and after the exhaust valve opening period (ExI) during the intake stroke. You may make it spray.
[0041]
According to the apparatus of the present embodiment as described above, in the compression self-ignition combustion region A that is a predetermined partial load region, a large amount is obtained by controlling the exhaust valve 14a to open even during the intake stroke as shown in FIG. Hot EGR is obtained, and compression self-ignition is performed by raising the temperature in the combustion chamber 4 with this hot EGR.
[0042]
When compression self-ignition is performed in this way, even if the air-fuel ratio is lean or a large amount of EGR is introduced, the entire combustion chamber burns at once due to simultaneous multi-point ignition, so avoid slow combustion that does not contribute to work. The fuel efficiency is greatly improved. Furthermore, when rapid combustion by compression self-ignition is performed, the reaction between oxygen and nitrogen is avoided as much as possible, so that generation of NOx is sufficiently suppressed, which is advantageous in improving emissions.
[0043]
Further, in the cold EGR region A2, which is the high-speed side and high-load side region in the compression self-ignition combustion region A, in addition to hot EGR, cold EGR is introduced into the combustion chamber and hot EGR is increased as the load increases. The ratio of the combustion chamber temperature decreases and the ratio of the cold EGR increases. On the high speed / high load side, the combustion chamber temperature is increased by the cold EGR so that the combustion chamber temperature does not rise excessively due to hot EGR and causes knocking. Is adjusted.
[0044]
In addition, when cold EGR is introduced in addition to hot EGR in this way, knocking can be effectively prevented, but the increase in the combustion chamber temperature is suppressed, and compression self-ignition may not occur easily. The compression self-ignition is promoted by the control by 35 as the ignition assist means.
[0045]
That is, the ignition is performed immediately before the compression top dead center, so that the pressure around the spark plug 5 rapidly increases. The temperature inside the combustion chamber is considerably high due to hot EGR while avoiding an excessive temperature rise due to the mixing of cold EGR, and the compression is caused by this temperature and the sudden rise in pressure due to ignition just before the compression top dead center. Self-ignition is performed well.
[0046]
Thus, even in a relatively high speed / high load area where knocking is likely to occur with hot EGR alone, it is effective while preventing knocking by suppressing excessive temperature rise due to mixing of cold EGR and ignition assist. Since the self-compression ignition can be performed, the compression self-ignition combustion region can be expanded to the high speed / high load side, and the improvement effect of fuel consumption and emission can be enhanced.
[0047]
Further, in the hot EGR region A1, which is the low-speed / low-load side region in the compression self-ignition combustion region A, the combustion chamber temperature is inherently low, so that only the hot EGR is used, and the EGR rate becomes lower at the lower load side. By increasing the value, self-ignitability is improved. In this embodiment, the ignition assist is performed also in this region A1, so that the compression self-ignition is favorably performed even in an extremely low speed / low load region where the temperature is not easily raised by the hot EGR alone. .
[0048]
On the other hand, in the normal combustion region B, which is a fully open load or a region close to the high load side and high speed side, the variable valve lift mechanism 15 is switched to a state where the exhaust valve 14a is opened only in the exhaust stroke, and hot EGR is introduced. Normal combustion by forced ignition is performed in a state where the engine is stopped and the EGR valve 24 is also closed.
[0049]
In addition, the specific structure of the apparatus of the present invention is not limited to the above embodiment, and can be variously changed. Some examples will be described below.
[0050]
(1) In addition to the configuration of the above embodiment, a valve stop mechanism is provided for one of the two intake valves 13a and 13b per cylinder, and the operation of the intake valve 13a is stopped at low load. (Or the lift amount is minimized), and an intake swirl may be generated. In this case, if the intake valve 13a that is deactivated (or minimal lift) and the exhaust valve 14a that is opened even in the intake stroke at low load are arranged to face each other, the flow of the intake swirl and the internal EGR is smooth. Done.
[0051]
(2) In the above embodiment, the variable valve lift mechanism 15 is provided for the one exhaust valve 14a. Instead, the variable valve lift mechanism is provided for the one intake valve 13a, and compression self-ignition combustion is performed. In the region, as shown in FIG. 8, the intake valve may be opened (InE) in the exhaust stroke in addition to the opening (In) in the intake stroke. In this way, part of the exhaust is blown back to the intake port during the exhaust stroke, and this flows into the combustion chamber in the next intake stroke and becomes hot EGR (internal EGR).
[0052]
(3) In addition to the above example, the internal EGR may be caused by a method in which the intake valve is opened after the exhaust valve is closed, and a negative overlap (a period during which both the intake and exhaust valves are closed). ) May be set.
[0053]
(4) In the above embodiment, the fuel injection valve is provided at the intake port. However, the fuel injection valve may be provided so as to inject fuel directly into the combustion chamber. Becomes higher.
[0054]
(5) In the above embodiment, the ignition assist is always performed in the compression self-ignition combustion region A, but the ignition assist is performed at least when the cold EGR region A2 in the compression self-ignition combustion region A is introduced. You just have to do it. For example, the ignition assist may be performed in an extremely low load region in the cold EGR region A2 and the hot EGR region A1, and the ignition assist may be stopped in an operation region in which compression self-ignition combustion is favorably performed by the hot EGR.
[0055]
【The invention's effect】
As described above, according to the control device of the present invention, the EGR control is performed so that the hot burned gas remains in the combustion chamber in the operation region on the low speed and low load side in the compression self-ignition combustion region. In the operating region on the high speed and high load side, the EGR control is performed so that the cooled EGR gas is introduced into the combustion chamber, and the ignition assist is performed. Therefore, the compression auto ignition combustion is performed in the compression auto ignition combustion region. In particular, even in an operation region on the relatively high speed and high load side, knocking is prevented and good compression self-ignition combustion is ensured. Therefore, the compression self-ignition combustion region can be expanded.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of an entire engine including a control device according to an embodiment of the present invention.
FIG. 2 is a schematic sectional view of an engine or the like.
FIG. 3 is a perspective view showing a variable valve lift mechanism.
FIG. 4 is an explanatory diagram showing an example of valve operation.
FIG. 5 is an explanatory diagram showing another example of valve operation.
FIG. 6 is an explanatory diagram showing a map of an operation region.
FIG. 7 is an explanatory diagram showing a relationship between an engine load and an EGR rate of hot EGR and cold EGR.
FIG. 8 is an explanatory view showing another embodiment of the valve operation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Engine body 5 Spark plug 8 Ignition circuit 11 Fuel injection valve 13a, 13b Intake port 14a, 14b Exhaust port 15 Valve lift variable mechanism 20, 21 Valve timing variable mechanism 22 EGR passage 23 EGR cooler 24 EGR valve 30 ECU
32 EGR control means 33 Valve operation control means 34 Cold EGR control means 35 Ignition control means

Claims (4)

温間時における部分負荷域で燃焼室内の混合気を圧縮自己着火により燃焼させる火花点火式エンジンにおいて、
圧縮自己着火により燃焼を行わせる運転領域である圧縮自己着火燃焼領域のうちの低速低負荷側の運転領域では、燃焼室内に熱い既燃ガスが残るようにEGR制御し、上記圧縮自己着火燃焼領域のうちの高速高負荷側の運転領域では、冷却されたEGRガスが燃焼室内に導入されるようにEGR制御して、自己圧縮着火の際の燃焼室内温度を調整するEGR制御手段と、
圧縮自己着火燃焼領域において少なくとも冷却されたEGRガスの導入により着火性が低下するときに圧縮自己着火を促進する着火アシスト手段とを備えたことを特徴とする火花点火式エンジンの制御装置。
In a spark ignition engine that burns an air-fuel mixture in a combustion chamber by compression self-ignition in a partial load region during warm,
In the operation region on the low-speed and low-load side of the compression self-ignition combustion region that is an operation region in which combustion is performed by compression self-ignition, EGR control is performed so that hot burned gas remains in the combustion chamber, and the compression self-ignition combustion region EGR control means for adjusting the temperature in the combustion chamber during self-compression ignition by performing EGR control so that the cooled EGR gas is introduced into the combustion chamber in the high speed and high load side operation region
A control device for a spark ignition type engine, comprising: an ignition assisting means for accelerating compression self-ignition when ignitability is reduced by introduction of at least cooled EGR gas in a compression self-ignition combustion region.
上記EGR制御手段は、燃焼室内に残る熱い既燃ガスの量を、上記圧縮自己着火燃焼領域で負荷が高くなるにつれて減少させるとともに、燃焼室内に導入される冷却されたEGRガスの量を、上記圧縮自己着火燃焼領域内の高負荷側の運転領域において負荷が高くなるにつれて増加させるように制御することを特徴とする請求項1記載の火花点火式エンジンの制御装置。The EGR control means reduces the amount of hot burned gas remaining in the combustion chamber as the load increases in the compression self-ignition combustion region, and reduces the amount of cooled EGR gas introduced into the combustion chamber. 2. The control device for a spark ignition engine according to claim 1, wherein control is performed so that the load increases as the load increases in an operation region on a high load side in the compression self-ignition combustion region. 上記EGR制御手段は、吸・排気弁の作動を制御することにより内部EGRをコントロールするバルブ作動制御手段と、排気通路から冷却手段を有するEGR通路を通って還流される外部EGRをコントロールするコールドEGR制御手段とを含むことを特徴とする請求項1又は2記載の火花点火式エンジンの制御装置。The EGR control means includes a valve operation control means for controlling the internal EGR by controlling the operation of the intake / exhaust valves, and a cold EGR for controlling the external EGR returned from the exhaust passage through the EGR passage having the cooling means. The control device for a spark ignition type engine according to claim 1 or 2, further comprising control means. 着火アシスト手段は、圧縮上死点前に後続気筒内の混合気を点火する点火制御手段からなることを特徴とする請求項1に記載の火花点火式エンジンの制御装置。2. The spark ignition engine control apparatus according to claim 1, wherein the ignition assist means comprises ignition control means for igniting an air-fuel mixture in the succeeding cylinder before compression top dead center.
JP2003181782A 2003-06-06 2003-06-25 Control device for spark ignition engine Expired - Fee Related JP4082292B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003181782A JP4082292B2 (en) 2003-06-25 2003-06-25 Control device for spark ignition engine
US10/859,605 US6968825B2 (en) 2003-06-06 2004-06-03 Control device for spark-ignition engine
EP04013412.4A EP1484491B1 (en) 2003-06-06 2004-06-07 Control device for spark-ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003181782A JP4082292B2 (en) 2003-06-25 2003-06-25 Control device for spark ignition engine

Publications (2)

Publication Number Publication Date
JP2005016407A true JP2005016407A (en) 2005-01-20
JP4082292B2 JP4082292B2 (en) 2008-04-30

Family

ID=34182379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003181782A Expired - Fee Related JP4082292B2 (en) 2003-06-06 2003-06-25 Control device for spark ignition engine

Country Status (1)

Country Link
JP (1) JP4082292B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233961A (en) * 2005-01-31 2006-09-07 Honda Motor Co Ltd Natural aspiration type internal combustion engine
JP2007262926A (en) * 2006-03-27 2007-10-11 Toyota Motor Corp Conbustion control device for compressed self ignition engine
JP2009174432A (en) * 2008-01-24 2009-08-06 Mazda Motor Corp Engine intake/exhaust control method and engine intake/exhaust control device
JP2010112371A (en) * 2008-11-07 2010-05-20 Crf Soc Consortile Per Azioni Diesel engine having system for variable control of intake valve and internal exhaust gas recirculation
US7725244B2 (en) 2006-12-28 2010-05-25 Honda Motor Co., Ltd. Control apparatus and method for internal combustion engine
JP2010223231A (en) * 2009-03-23 2010-10-07 Dr Ing Hcf Porsche Ag Internal combustion engine
CN101413451B (en) * 2007-10-16 2012-05-23 株式会社丰田自动织机 Premixing compression ignition engine
JP2012211542A (en) * 2011-03-31 2012-11-01 Mazda Motor Corp Gasoline engine
JP2012246784A (en) * 2011-05-25 2012-12-13 Mazda Motor Corp Spark ignition engine control device
JP2013133814A (en) * 2011-12-27 2013-07-08 Honda Motor Co Ltd Control device for compression-ignition internal combustion engine
JP2014047643A (en) * 2012-08-29 2014-03-17 Mazda Motor Corp Spark ignition type engine
JP2014047629A (en) * 2012-08-29 2014-03-17 Mazda Motor Corp Spark ignition type direct-injection engine
WO2015064066A1 (en) * 2013-10-29 2015-05-07 マツダ株式会社 Control device for compression-ignition engine
US9624868B2 (en) 2012-09-07 2017-04-18 Mazda Motor Corporation Spark-ignition direct injection engine
CN108952946A (en) * 2017-05-19 2018-12-07 马自达汽车株式会社 The control device of compression ignition engine
JP2018204477A (en) * 2017-05-31 2018-12-27 マツダ株式会社 Compression ignition type engine
CN109424458A (en) * 2017-08-24 2019-03-05 马自达汽车株式会社 The control device of homogeneous charge compression ignition formula engine
US10502147B2 (en) 2016-11-22 2019-12-10 Mazda Motor Corporation Control apparatus for engine
US10907550B2 (en) 2016-11-22 2021-02-02 Mazda Motor Corporation Control apparatus for engine
US10982615B2 (en) 2016-11-25 2021-04-20 Mazda Motor Corporation Engine control device

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096584A1 (en) 2016-11-22 2018-05-31 マツダ株式会社 Control device of compression autoignition engine
WO2018096586A1 (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control device of compression autoignition engine
JP6601371B2 (en) * 2016-11-22 2019-11-06 マツダ株式会社 Control device for compression self-ignition engine
WO2018096585A1 (en) 2016-11-22 2018-05-31 マツダ株式会社 Control device of compression autoignition engine
JP6558408B2 (en) 2016-11-22 2019-08-14 マツダ株式会社 Control device for compression self-ignition engine
WO2018096587A1 (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control device of compression autoignition engine
EP3421765B1 (en) 2016-11-25 2020-09-30 Mazda Motor Corporation Compression autoignition engine
JP6562163B2 (en) 2016-11-25 2019-08-21 マツダ株式会社 Combustion control device for compression self-ignition engine
JP6493504B2 (en) * 2017-05-19 2019-04-03 マツダ株式会社 Control device for compression ignition engine
JP6558426B2 (en) * 2017-05-19 2019-08-14 マツダ株式会社 Control device for compression ignition engine
JP6558427B2 (en) * 2017-05-19 2019-08-14 マツダ株式会社 Control device for compression ignition engine
US10487720B2 (en) 2017-05-19 2019-11-26 Mazda Motor Corporation Control system of compression-ignition engine
US10697391B2 (en) 2017-05-19 2020-06-30 Mazda Motor Corporation Control system of compression-ignition engine
EP3647574B1 (en) 2017-08-25 2021-09-15 Mazda Motor Corporation Premixed compression ignition type engine with supercharging system
JP6555312B2 (en) 2017-09-27 2019-08-07 マツダ株式会社 Turbocharged engine
JP6493505B1 (en) * 2017-12-15 2019-04-03 マツダ株式会社 Control device for compression ignition engine
JP6642559B2 (en) 2017-12-15 2020-02-05 マツダ株式会社 Control device for compression ignition engine
JP6558431B2 (en) * 2017-12-15 2019-08-14 マツダ株式会社 Control device for compression ignition engine
JP6825582B2 (en) 2018-01-30 2021-02-03 マツダ株式会社 Engine control method and engine control device
JP6992675B2 (en) 2018-05-22 2022-01-13 マツダ株式会社 How to design the control logic of a compression ignition engine
US10767577B2 (en) 2018-05-22 2020-09-08 Mazda Motor Corporation Method of implementing control logic of compression-ignition engine
US10760519B2 (en) 2018-05-22 2020-09-01 Mazda Motor Corporation Control device of compression-ignition engine

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4555771B2 (en) * 2005-01-31 2010-10-06 本田技研工業株式会社 Naturally aspirated internal combustion engine
JP2006233961A (en) * 2005-01-31 2006-09-07 Honda Motor Co Ltd Natural aspiration type internal combustion engine
JP2007262926A (en) * 2006-03-27 2007-10-11 Toyota Motor Corp Conbustion control device for compressed self ignition engine
JP4735365B2 (en) * 2006-03-27 2011-07-27 トヨタ自動車株式会社 Combustion control device for compression self-ignition engine
US7725244B2 (en) 2006-12-28 2010-05-25 Honda Motor Co., Ltd. Control apparatus and method for internal combustion engine
CN101413451B (en) * 2007-10-16 2012-05-23 株式会社丰田自动织机 Premixing compression ignition engine
JP2009174432A (en) * 2008-01-24 2009-08-06 Mazda Motor Corp Engine intake/exhaust control method and engine intake/exhaust control device
JP2010112371A (en) * 2008-11-07 2010-05-20 Crf Soc Consortile Per Azioni Diesel engine having system for variable control of intake valve and internal exhaust gas recirculation
JP2010223231A (en) * 2009-03-23 2010-10-07 Dr Ing Hcf Porsche Ag Internal combustion engine
US8479509B2 (en) 2009-03-23 2013-07-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Internal combustion engine
JP2012211542A (en) * 2011-03-31 2012-11-01 Mazda Motor Corp Gasoline engine
JP2012246784A (en) * 2011-05-25 2012-12-13 Mazda Motor Corp Spark ignition engine control device
JP2013133814A (en) * 2011-12-27 2013-07-08 Honda Motor Co Ltd Control device for compression-ignition internal combustion engine
JP2014047629A (en) * 2012-08-29 2014-03-17 Mazda Motor Corp Spark ignition type direct-injection engine
JP2014047643A (en) * 2012-08-29 2014-03-17 Mazda Motor Corp Spark ignition type engine
US9624868B2 (en) 2012-09-07 2017-04-18 Mazda Motor Corporation Spark-ignition direct injection engine
WO2015064066A1 (en) * 2013-10-29 2015-05-07 マツダ株式会社 Control device for compression-ignition engine
JP2015086753A (en) * 2013-10-29 2015-05-07 マツダ株式会社 Control device for compression ignition type engine
US9719441B2 (en) 2013-10-29 2017-08-01 Mazda Motor Corporation Control device for compression ignition-type engine
US10502147B2 (en) 2016-11-22 2019-12-10 Mazda Motor Corporation Control apparatus for engine
US10907550B2 (en) 2016-11-22 2021-02-02 Mazda Motor Corporation Control apparatus for engine
US10982615B2 (en) 2016-11-25 2021-04-20 Mazda Motor Corporation Engine control device
CN108952946B (en) * 2017-05-19 2020-12-04 马自达汽车株式会社 Control device for compression ignition engine
CN108952946A (en) * 2017-05-19 2018-12-07 马自达汽车株式会社 The control device of compression ignition engine
JP2018204477A (en) * 2017-05-31 2018-12-27 マツダ株式会社 Compression ignition type engine
CN109424458A (en) * 2017-08-24 2019-03-05 马自达汽车株式会社 The control device of homogeneous charge compression ignition formula engine
US10895215B2 (en) * 2017-08-24 2021-01-19 Mazda Motor Corporation Control system for pre-mixture compression-ignition engine
CN109424458B (en) * 2017-08-24 2021-10-26 马自达汽车株式会社 Control device for premixed compression ignition engine

Also Published As

Publication number Publication date
JP4082292B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
JP4082292B2 (en) Control device for spark ignition engine
JP4172340B2 (en) Control device for spark ignition engine
US9702316B2 (en) Spark-ignition direct injection engine
US7219634B2 (en) Spark ignition engine control device
EP1406002B1 (en) Spark-ignition engine controller
JP3894089B2 (en) Control device for spark ignition engine
JP6268965B2 (en) Control device for compression ignition engine
JP6252647B1 (en) Control device for premixed compression ignition engine
JP6131840B2 (en) Control device for compression ignition engine
JP5589906B2 (en) gasoline engine
US10337427B2 (en) Control device of compression self-ignition engine
JP6213175B2 (en) Control device for compression ignition engine
JP2013245602A (en) Compression self-ignition gasoline engine
JP6245114B2 (en) Control device for compression ignition engine
JP4407492B2 (en) 4-cycle gasoline engine
JP3925379B2 (en) Control device for a spark ignition engine with a supercharger
JP4591300B2 (en) 4-cycle spark ignition engine
JP3885702B2 (en) Control device for spark ignition engine
JP3922153B2 (en) Control device for spark ignition engine
JP6090352B6 (en) Compression self-ignition gasoline engine
JP6090352B2 (en) Compression self-ignition gasoline engine
JP3885697B2 (en) Control device for spark ignition engine
JP4123122B2 (en) Control device for spark ignition engine
JP3815402B2 (en) Control device for spark ignition engine
JP6131839B2 (en) Control device for compression ignition engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4082292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees