JP2005016292A - Combined footing of pile and diaphragm wall - Google Patents

Combined footing of pile and diaphragm wall Download PDF

Info

Publication number
JP2005016292A
JP2005016292A JP2004159086A JP2004159086A JP2005016292A JP 2005016292 A JP2005016292 A JP 2005016292A JP 2004159086 A JP2004159086 A JP 2004159086A JP 2004159086 A JP2004159086 A JP 2004159086A JP 2005016292 A JP2005016292 A JP 2005016292A
Authority
JP
Japan
Prior art keywords
continuous underground
ground
underground wall
pile
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004159086A
Other languages
Japanese (ja)
Inventor
Osamu Chiba
脩 千葉
Noriaki Isemoto
昇昭 伊勢本
Takashi Nagareda
隆 流田
Yoshitoshi Yasui
美敏 保井
Osamu Kaneko
治 金子
Takeshi Azumaguchi
剛 東口
Hiroshi Asega
宏 阿世賀
Yoshio Takeuchi
義夫 武内
Keiichi Miyazaki
啓一 宮崎
Toshiyuki Hagiwara
敏行 萩原
Toshiaki Arai
寿昭 新井
Shinichiro Imamura
眞一郎 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Toda Corp
Original Assignee
Nishimatsu Construction Co Ltd
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd, Toda Corp filed Critical Nishimatsu Construction Co Ltd
Priority to JP2004159086A priority Critical patent/JP2005016292A/en
Publication of JP2005016292A publication Critical patent/JP2005016292A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the combined footing of a pile and a diaphragm wall, by which the axial-force load of a building can be borne sufficiently in a soft ground, a response displacement in the case of an earthquake is decreased and a habitability is improved and upper skeletons are lessened by the diminution of an input to an upper structure or the classifications of the structures can be changed while the reduction of a pile section and a liquefaction countermeasure are carried out and it is possible that a total cost is reduced even by using the diaphragm wall and the terms of works are shortened. <P>SOLUTION: In the combined footing 14 of the piles and the diaphragm wall, the combined footing 14 has a plurality of the piles 16a and 16b installed up to a bearing ground 22 and the diaphragm wall 18 integrally mounted together with the piles 16a, 16b, surrounding the piles, and is built at a place, where a soft ground is deposited in 30 m or more. The diaphragm wall 18 is disposed along the outer periphery of the building 10 having an approximately square form in a plan view, and formed in a depth shallower than the ground 22. The piles 16a are disposed even at the places of an outermost periphery in the diaphragm wall 18, and the axial-force load of the building 10 is borne to the piles 16a. Only a horizontal load in the case of the earthquake is borne mainly by the diaphragm wall 18. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、杭と連続地中壁の複合基礎に関し、特に、軟弱地盤における杭と連続地中壁の複合基礎に関する。   The present invention relates to a composite foundation of a pile and a continuous underground wall, and particularly to a composite foundation of a pile and a continuous underground wall in soft ground.

一般に、建物の軸力を受けるため基礎杭が用いられている。   Generally, foundation piles are used to receive the axial force of buildings.

軟弱地盤では、地震時の水平荷重が加わったときの対処として、杭頭部を天端から杭径の5倍程度に相当する長さ分杭径を太くしたり鋼管を巻くなどの補強をするようにしている。   In soft ground, as a countermeasure when a horizontal load is applied in the event of an earthquake, the pile head is reinforced by increasing the pile diameter by a length equivalent to about 5 times the pile diameter from the top or winding a steel pipe. I am doing so.

しかし、軟弱地盤が厚く堆積するような場所に高層建物を建築するような場合、杭頭部を太くしただけでは建物の応答変位値が大きくなるため、杭基礎を連続地中壁杭にて囲うことが行われる場合がある。   However, when building a high-rise building in a place where soft ground accumulates thickly, the response displacement value of the building increases only by increasing the pile head, so the pile foundation is surrounded by continuous underground wall piles. Things may be done.

このように、連続地中壁を連続地中壁杭として使用する場合には、軸力荷重により連続地中壁杭の厚さが決まってしまい、厚い連続地中壁杭を支持地盤まで長く作らなければならず、掘削量やコンクリートの量が増え、非常に不経済で、工期も長くなり、掘削土量が増大し、建設残土が増大してしまうこととなる。   Thus, when using a continuous underground wall as a continuous underground wall pile, the thickness of the continuous underground wall pile is determined by the axial force load, and the thick continuous underground wall pile is made long to the support ground. The amount of excavation and concrete must be increased, which is very uneconomical, the construction period is lengthened, the amount of excavated soil is increased, and the construction soil is increased.

また、支持地盤までが深いと、厚い連続地中壁杭を深く、精度よく構築することが困難となる。   In addition, if the supporting ground is deep, it is difficult to construct a thick continuous underground wall pile deeply and accurately.

そのため、連続地中壁を支持地盤より浅く根入れさせ、この連続地中壁に囲まれた地盤変形抑制領域において支持地盤にまで根入れされた杭及び地盤アンカーにて建物を補強する技術が提案されている(特許文献1参照)。
特開2001−288758号公報
Therefore, a technology to reinforce the building with piles and ground anchors rooted to the supporting ground in the ground deformation suppression region surrounded by this continuous ground wall is proposed by rooting the continuous underground wall shallower than the supporting ground. (See Patent Document 1).
JP 2001-288758 A

このような特許文献1に記載されるような技術では、連続地中壁が杭とともに建物の鉛直荷重を支持するようになっており、杭は連続地中壁から離れた位置に設けられるようになっている。   In such a technique as described in Patent Document 1, the continuous underground wall supports the vertical load of the building together with the pile, and the pile is provided at a position away from the continuous underground wall. It has become.

このように、連続地中壁が支持地盤より浅く根入れされているにもかかわらず、建物の鉛直荷重を支持するためには、ある程度硬い地盤でなければならない。   As described above, in order to support the vertical load of the building, the ground wall must be hard to some extent even though the continuous underground wall is shallower than the supporting ground.

これに対し、例えば、東京湾岸地域などの軟弱地盤においては、前述の技術では建物の鉛直荷重を十分に支持することができない。   On the other hand, for example, in the soft ground such as the Tokyo Bay area, the vertical load of the building cannot be sufficiently supported by the above-described technique.

本発明の目的は、軟弱地盤において建物の軸力荷重を十分に支持でき、地震時の応答変位を低減して居住性を向上させ、上部構造への入力低減による上部躯体の低減、また、構造種別の変更を可能とするとともに、杭断面低減及び液状化対策も可能として、連続地中壁を用いてもトータルなコスト低減、工期短縮が可能な杭と連続地中壁の複合基礎を提供することにある。   The object of the present invention is to sufficiently support the axial load of a building on soft ground, to reduce the response displacement at the time of earthquake, to improve the habitability, to reduce the upper frame by reducing the input to the superstructure, and to the structure Providing a composite foundation of piles and continuous underground walls that can reduce the cost of construction and shorten the construction period even when using continuous underground walls, making it possible to change types and reduce pile cross-section and liquefaction measures. There is.

前記目的を達成するため、本発明の杭と連続地中壁の複合基礎は、支持地盤まで到達して設けられる複数本の杭と、この杭を囲って前記杭と一体に設けられる連続地中壁とを有し、軟弱な地盤が30m以上堆積した場所に構築される杭と連続地中壁の複合基礎であって、
前記連続地中壁は、平面視ほぼ正方形または多角形の建物の外周に沿って配設され、かつ、前記支持地盤よりも浅く形成され、
前記杭は、前記連続地中壁内の最外周位置にも配設されて、前記杭に建物の軸力荷重を負担させ、
前記連続地中壁には、主として地震時の水平荷重のみを負担させることを特徴とする。
In order to achieve the above object, the composite foundation of the pile and continuous underground wall of the present invention includes a plurality of piles that are provided to reach the supporting ground, and a continuous underground that is provided integrally with the pile surrounding the pile. A composite foundation of a pile and a continuous underground wall that has a wall and is built in a place where more than 30m of soft ground is deposited,
The continuous underground wall is disposed along the outer periphery of a substantially square or polygonal building in plan view, and is formed shallower than the supporting ground,
The pile is also disposed at the outermost peripheral position in the continuous underground wall, and the pile bears the axial load of the building,
The continuous underground wall mainly bears only a horizontal load during an earthquake.

本発明によれば、平面視ほぼ正方形または多角形の建物の外周に沿って支持地盤よりも浅い連続地中壁を配設し、この連続地中壁内の最外周位置にも杭を配設し、杭に建物の軸力荷重を負担させ、連続地中壁には主として地震時の水平荷重のみを負担させることで、建物を安定して支持し、かつ、ほぼ正方形状に構築された連続地中壁によって建物の下部を剛性の高い状態で囲い、変形しにくい状態とすることで、地震時の応答変位を低減して居住性を向上させることができる。   According to the present invention, the continuous underground wall shallower than the supporting ground is disposed along the outer periphery of the substantially square or polygonal building in plan view, and the pile is also disposed at the outermost peripheral position in the continuous underground wall. The pile is loaded with the axial load of the building, and the continuous underground wall is loaded with only the horizontal load mainly during an earthquake, so that the building is supported stably and is constructed in a substantially square shape. By enclosing the lower part of the building in a highly rigid state with the underground wall and making it difficult to deform, it is possible to reduce the response displacement during an earthquake and improve the comfortability.

従って、地盤が30m以上堆積した場所に対しても、建物の軸力荷重を十分に支持でき、上部構造への地震入力低減も図ることができる。   Therefore, it is possible to sufficiently support the building's axial load even in places where the ground has accumulated 30 m or more, and to reduce the earthquake input to the superstructure.

なお、ここでほぼ正方形とは、縦及び横の辺の比が0.7〜1.0程度のものをいう。   Here, “substantially square” means that the ratio of the vertical and horizontal sides is about 0.7 to 1.0.

また、多角形とは、平面視十字状の形状、五角形、六角形、八角形等の形状のものをいう。   The polygon means a shape having a cross shape in plan view, a pentagon, a hexagon, an octagon, or the like.

また、この連続地中壁による上部構造への地震入力低減によって、上部躯体の低減や構造種別、例えば、耐力の大きなコンクリート・フィルド・スチール・チューブ(CFT)構造やSRC構造をRC構造に変更して、上部構造のコストを下げることができ、コストの高い連続地中壁を用いた場合でも、上部構造を含めたトータルコストを低減することができる。   In addition, by reducing the seismic input to the superstructure by this continuous underground wall, the upper frame is reduced and the structural type, for example, the concrete-filled steel tube (CFT) structure and SRC structure, which have high yield strength, are changed to the RC structure. Thus, the cost of the upper structure can be reduced, and even when a high-cost continuous underground wall is used, the total cost including the upper structure can be reduced.

さらに、杭は軸力荷重を受けるだけですみ、水平荷重はほとんどかからないため、杭頭を拡径とする必要がなく、しかも、杭径を細くすることができるので、杭に要するコストを削減することができ、工期も短縮することができる。   In addition, the pile only needs to receive an axial load, horizontal load is hardly applied, so there is no need to increase the diameter of the pile head, and the pile diameter can be reduced, reducing the cost required for the pile. And the construction period can be shortened.

また、連続地中壁は、主として水平力のみを受ければよく、軸力を負担する必要がないため、連続地中壁を薄くすることができ、短くすることも可能となり、コスト低減及び工期短縮が可能となる。   In addition, the continuous underground wall only needs to receive only horizontal force, and it is not necessary to bear the axial force, so the continuous underground wall can be made thinner and shorter, reducing costs and construction time. Is possible.

ここで、連続地中壁は、RC壁の他S壁、SRC壁、ソイルセメント壁を含んでおり、杭は場所打ち杭の他鋼管杭を含む。   Here, the continuous underground wall includes an RC wall, an S wall, an SRC wall, and a soil cement wall, and the pile includes a cast-in-place pile and a steel pipe pile.

さらに、連続地中壁によって囲まれた部分における液状化防止も可能となる。   Furthermore, it is possible to prevent liquefaction in the portion surrounded by the continuous underground wall.

また、連続地中壁が支持地盤までないことから、連続地中壁下方では透水性が妨げられず、周辺環境への影響を与えないものとすることができる。   Further, since the continuous underground wall does not reach the supporting ground, the water permeability is not hindered below the continuous underground wall, and the surrounding environment can be prevented from being affected.

本発明においては、前記支持地盤までの深さが40m〜70mの地盤に用いられるようにすることができる。   In this invention, the depth to the said support ground can be used for the ground of 40m-70m.

このような構成とすることにより、支持地盤の深度が深い場合に支持地盤まで連続地中壁を形成する場合に比しコスト削減効果を大きくすることができる。   By setting it as such a structure, when the depth of a support ground is deep, a cost reduction effect can be enlarged compared with the case where a continuous underground wall is formed to a support ground.

本発明においては、連続地中壁の深さを、基礎底から支持地盤の深さに対して30〜70%とすることができる。   In this invention, the depth of a continuous underground wall can be 30 to 70% with respect to the depth of a support ground from a foundation bottom.

このような構成とすることにより、連続地中壁の深さを基礎底から支持地盤までの深さに対して30%とすることにより、支持地盤まで連続地中壁を形成した場合の変量に対し変位量を大きく変化させない範囲で連続地中壁を形成することができ、しかも、コストメリットを大きくすることができる。   By adopting such a configuration, the depth of the continuous underground wall is set to 30% with respect to the depth from the foundation bottom to the supporting ground, so that the continuous underground wall is formed to the supporting ground. On the other hand, a continuous underground wall can be formed in a range in which the amount of displacement is not significantly changed, and cost merit can be increased.

また、連続地中壁の深さを基礎底から支持地盤までの深さに対して70%とすることで、コストメリットは小さくなるが、支持地盤まで連続地中壁を形成した場合と同等に変位量を小さく抑えることができる。   Also, by setting the depth of the continuous underground wall to 70% of the depth from the foundation bottom to the supporting ground, the cost merit is reduced, but it is equivalent to the case where the continuous underground wall is formed to the supporting ground. The amount of displacement can be kept small.

本発明においては、前記軟弱地盤は剪断波速度150m/s以下で、かつ、初期の一次固有周期が0.6秒より長い地盤であっても、建物の軸力荷重を充分に支持でき、上部構造への入力低減も図ることができる。   In the present invention, the soft ground can sufficiently support the axial load of the building even if the ground has a shear wave velocity of 150 m / s or less and an initial primary natural period longer than 0.6 seconds. The input to the structure can also be reduced.

本発明においては、地震時の地盤の一次固有周期と前記建物の一次固有周期との比が0.6〜1.0である場合に、建物最大応答変位及び建物最大応答加速度を効果的に小さくすることができる。   In the present invention, when the ratio between the primary natural period of the ground at the time of the earthquake and the primary natural period of the building is 0.6 to 1.0, the building maximum response displacement and the building maximum response acceleration are effectively reduced. can do.

本発明においては、前記軟弱地盤は、前記支持地盤よりは剛性が低くその上層よりは剛性の高い中間層を含み、
前記中間層は、地表より所定の深さで前記支持地盤まで達する層厚を有し、
前記連続地中壁は、前記中間層までの深さに形成されるようにすることができる。
In the present invention, the soft ground includes an intermediate layer that is lower in rigidity than the support ground and higher in rigidity than the upper layer,
The intermediate layer has a layer thickness that reaches the support ground at a predetermined depth from the ground surface,
The continuous underground wall may be formed to a depth up to the intermediate layer.

このような構成とすることにより、軟弱地盤において支持地盤よりは剛性が低くその上層よりは剛性の高い中間層が地表より所定の深さで支持地盤まで達する層厚を有している場合、連続地中壁を中間層までの深さに形成することで、連続地中壁にある程度の軸力荷重を支持させることで、杭に対する軸力荷重の負担を軽減させて、杭の太さを細くすることができ、コストの削減が可能となる。   By adopting such a configuration, in the soft ground, when the intermediate layer having lower rigidity than the supporting ground and higher rigidity than the upper layer has a layer thickness that reaches the supporting ground at a predetermined depth from the ground surface, it is continuous. By forming the underground wall to a depth up to the middle layer, the axial load on the pile is reduced by supporting a certain amount of axial load on the continuous underground wall, and the thickness of the pile is reduced. This can reduce the cost.

また、連続地中壁によって建物の下部を剛性の高い状態で囲い、かつ中間層で支持し、変形しにくい状態とすることで、地震時の応答変位を低減して居住性を向上させることができる。   Also, by enclosing the lower part of the building with high rigidity with a continuous underground wall and supporting it with an intermediate layer to make it difficult to deform, the response displacement at the time of earthquake can be reduced and the comfortability can be improved. it can.

さらには、地震動の建物への入力を抑えることができ、上部構造の設計上有効である。   Furthermore, the input of seismic motion to the building can be suppressed, which is effective in designing the superstructure.

本発明においては、軟弱地盤において支持地盤よりは剛性が低くその上層よりは剛性の高い中間層が地表より所定の深さで支持地盤まで達しない層厚を有している場合、連続地中壁をコーナー部のみ支持地盤まで達する深さに形成し、他の部分は中間層までの深さに形成することで、中間層の下側に軟弱層が続く場合でも、連続地中壁のコーナー部を支持地盤まで延長させることにより、コーナー部での高い剛性により水平荷重に対する剛性を大きくし、かつ、軸力荷重を支持することができ、外周コーナー杭は省略でき、連続地中壁に囲まれた杭は軸力のみ負担させるので、杭の太さを細くして、コストを削減することが可能となる。   In the present invention, in the soft ground, when the intermediate layer having lower rigidity than the supporting ground and higher rigidity than the upper layer has a layer thickness that does not reach the supporting ground at a predetermined depth from the ground surface, the continuous underground wall Is formed at a depth that reaches the support ground only at the corner, and other portions are formed at a depth up to the intermediate layer, so that even if a soft layer continues below the intermediate layer, the corner of the continuous underground wall By extending to the supporting ground, the rigidity against the horizontal load can be increased by the high rigidity at the corner, and the axial load can be supported, and the peripheral corner pile can be omitted, and it is surrounded by the continuous underground wall. Since the pile only bears the axial force, it is possible to reduce the cost by reducing the thickness of the pile.

また、建物の下部は中間層まで連続地中壁によって囲われ、かつ中間層で支持されているため、地震時の応答変位を低減して居住性を向上させることができる。   Moreover, since the lower part of the building is surrounded by the continuous underground wall up to the intermediate layer and supported by the intermediate layer, the response displacement at the time of an earthquake can be reduced and the habitability can be improved.

このような支持地盤よりは剛性が低くその上層よりは剛性の高い中間層が、N値10以上の粘性土またはN値20以上の砂質土で、剪断波速度が250m/s以上の地盤とすることができる。   An intermediate layer having a rigidity lower than that of the supporting ground and higher than that of the upper layer is a viscous soil having an N value of 10 or more or a sandy soil having an N value of 20 or more, and a ground having a shear wave velocity of 250 m / s or more. can do.

このような構成とすることにより、中間層によって連続地中壁の水平変位を小さくできるとともにある程度の軸力荷重を負担できることとなる。   By setting it as such a structure, a horizontal displacement of a continuous underground wall can be made small by an intermediate | middle layer, and a certain amount of axial load can be borne.

また、これらの場合においては、中間層までの深さは10m以上とすることができる。   In these cases, the depth to the intermediate layer can be 10 m or more.

このような構成とすることにより、連続地中壁を所定の深さに形成して、水平力の十分な負担をすることが可能となる。   By adopting such a configuration, it is possible to form a continuous underground wall at a predetermined depth and to apply a sufficient load of horizontal force.

さらに、中間層の層厚は、5m以上とすることができる。   Furthermore, the layer thickness of the intermediate layer can be 5 m or more.

このような構成とすることにより、中間層によって連続地中壁の水平変位を小さくできるとともにある程度の軸力荷重を支持することが可能となる。   With such a configuration, the horizontal displacement of the continuous underground wall can be reduced by the intermediate layer, and a certain axial force load can be supported.

この場合、中間層に前記連続地中壁の下端を根入れすることができる。   In this case, the lower end of the continuous underground wall can be embedded in the intermediate layer.

このような構成とすることにより、連続地中壁の下部を剛性の高い中間層に拘束させることができ、確実に水平荷重を負担することが可能となる。   By setting it as such a structure, the lower part of a continuous underground wall can be restrained to a rigid intermediate | middle layer, and it becomes possible to bear a horizontal load reliably.

以下、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図5は、本発明の一実施の形態にかかる杭と連続地中壁の複合基礎を示す図である。   FIGS. 1-5 is a figure which shows the composite foundation of the pile concerning one embodiment of this invention, and a continuous underground wall.

図1は、この実施の形態にかかる杭と連続地中壁の複合基礎上に建物を構築した状態を示す断面図で、図2は、図1における建物の平面図である。   FIG. 1 is a cross-sectional view showing a state in which a building is constructed on a composite foundation of piles and continuous underground walls according to this embodiment, and FIG. 2 is a plan view of the building in FIG.

この建物10は、軟弱地盤12、例えば、剪断波速度150m/s以下の地盤が前記支持地盤から30m以上堆積し、かつ、初期の一次固有周期が0.6秒より長い軟弱地盤上に構築されるもので、平面視がほぼ正方形とされた超高層建物とされている。   The building 10 is constructed on a soft ground 12, for example, a soft ground having a shear wave velocity of 150 m / s or less deposited from the support ground by 30 m or more and an initial primary natural period longer than 0.6 seconds. It is a high-rise building with a plan view that is almost square.

具体的には、図2に示すように、平面視の一辺の長さL1が36m、他辺の長さL2が36mの正方形とされている。   Specifically, as shown in FIG. 2, the length L1 of one side in a plan view is 36 m and the length L2 of the other side is 36 m.

このL1,L2は、30m〜50mの範囲で、任意に設定することができる。   L1 and L2 can be arbitrarily set within a range of 30 m to 50 m.

また、建物10の高さH(図1参照)は、150mとされている。   The height H (see FIG. 1) of the building 10 is 150 m.

この建物10は、軟弱地盤12上に構築されるため、複合基礎14によって支持されるようになっている。   Since the building 10 is constructed on the soft ground 12, it is supported by the composite foundation 14.

この複合基礎14は、複数本の杭16と、連続地中壁18との複合となっている。   The composite foundation 14 is a composite of a plurality of piles 16 and a continuous underground wall 18.

杭16は、建物10の柱対応位置で基礎底20から支持地盤22まで到達して根入れされた拡底杭となっている。   The pile 16 is a bottomed pile that reaches from the foundation bottom 20 to the support ground 22 at the column corresponding position of the building 10 and is embedded.

なお、この基礎底20までの基礎は、地下室を有する場合が含まれているのはもちろんである。   Of course, the foundation up to the foundation bottom 20 includes a case having a basement.

連続地中壁18は、平面視ほぼ正方形の建物10の外周に沿って外周杭16a、内部杭16bを囲って配設され、地下躯体及びフーチング24を介して外周杭16a、内部杭16bと一体にされている。   The continuous underground wall 18 is disposed so as to surround the outer peripheral pile 16a and the inner pile 16b along the outer periphery of the substantially square building 10 in plan view, and is integrated with the outer peripheral pile 16a and the inner pile 16b via the underground frame and the footing 24. Has been.

このように、平面視ほぼ正方形の建物10の外周に沿って連続地中壁18を配設することで建物10を安定して支持することができ、建物10の平面視の一辺の長さが長くなるほど安定した状態が得られる。   Thus, the building 10 can be stably supported by arranging the continuous underground wall 18 along the outer periphery of the building 10 that is substantially square in plan view, and the length of one side of the building 10 in plan view is The longer it is, the more stable it is.

また、この連続地中壁18は、基礎底20から支持地盤22までの深さLtよりも浅い深さLaに設定されている。   The continuous underground wall 18 is set to a depth La that is shallower than the depth Lt from the foundation bottom 20 to the support ground 22.

このように連続地中壁18の深さLaを浅くすることにより、基礎底20から支持地盤22までの深さLtまでとする場合に比し、大幅なコストの削減だけでなく工期の短縮を図ることも可能となる。   By reducing the depth La of the continuous underground wall 18 in this way, not only the depth Lt from the foundation bottom 20 to the support ground 22 is reduced, but also the construction period can be shortened. It is also possible to plan.

そして、連続地中壁18内の最外周位置にも外周杭16aが配設され、建物10の軸力荷重を外周杭16a、内部杭16bにて支持させるようにし、連続地中壁18には主として地震時の水平荷重のみを支持させるようにしている。   And the outer periphery pile 16a is arrange | positioned also in the outermost periphery position in the continuous underground wall 18, and it is made to support the axial force load of the building 10 with the outer periphery pile 16a and the internal pile 16b, Only the horizontal load at the time of an earthquake is supported.

このように建物10の軸力荷重を外周杭16a、内部杭16bに、地震時の水平荷重を連続地中壁18に支持させるようにすることで、連続地中壁18は軸力荷重を負担する必要がないので、連続地中壁18の厚さを薄くすることができ、さらなるコストの削減及び工期の短縮を図ることができる。   In this way, the continuous underground wall 18 bears the axial load by causing the outer pile 16a and the internal pile 16b to support the axial load of the building 10 and the continuous underground wall 18 to support the horizontal load during the earthquake. Therefore, the thickness of the continuous underground wall 18 can be reduced, and the cost and construction period can be further reduced.

また、外周杭16a、内部杭16bは、軸力荷重を負担し、地震時の水平荷重をほとんど負担することがないため、杭頭を補強する必要もなく、杭径も小さくてすみ、さらなるコストの削減及び工期の短縮を図ることができる。   Moreover, since the outer peripheral pile 16a and the inner pile 16b bear an axial load and hardly bear a horizontal load at the time of an earthquake, there is no need to reinforce the pile head, the pile diameter can be reduced, and further cost is increased. Can be reduced and the construction period can be shortened.

さらに、連続地中壁18は、水平剛性が大きいため、地震時の応答変位を低減して居住性を向上させることができ、しかも、上部構造である建物10への入力を低減させることで、建物10の構造を、例えば躯体断面を小さくできたり、耐力の高いSRC構造やCFT構造からRC構造に変更することが可能となり、コストの高い連続地中壁18を用いるにもかかわらず建物を含めたトータルコストを削減することができる。   Furthermore, since the continuous underground wall 18 has high horizontal rigidity, it is possible to reduce the response displacement at the time of an earthquake and improve the habitability, and further, by reducing the input to the building 10 that is the superstructure, The structure of the building 10 can be changed, for example, from the SRC structure or CFT structure, which has a high yield strength, to the RC structure, including the building even though the high-cost continuous underground wall 18 is used. Total cost can be reduced.

また、連続地中壁18にて囲われた地盤の地震時における液状化防止も可能となる。   In addition, it is possible to prevent liquefaction of the ground surrounded by the continuous underground wall 18 during an earthquake.

ここで、連続地中壁18の深さLaは、基礎底20から支持地盤22の深さLtに対して30〜70%とされている。   Here, the depth La of the continuous underground wall 18 is 30 to 70% with respect to the depth Lt of the support ground 22 from the foundation bottom 20.

この地表面12aから支持地盤22までの深さは、30m〜70m、より好ましくは40m〜70mであるとコストメリットが大きくなる。   When the depth from the ground surface 12a to the supporting ground 22 is 30 m to 70 m, and more preferably 40 m to 70 m, cost merit increases.

ここで、連続地中壁18の深さ(長さ)と、コスト比及び水平変位量との関係を図3に示す。   Here, the relationship between the depth (length) of the continuous underground wall 18, the cost ratio, and the horizontal displacement is shown in FIG.

これらの算定は、連続地中壁の厚さを1.5m、内部杭25本、外周杭24本として、図1の基礎部分を3次元でモデル化し、地震時慣性力を基礎に載荷した。   In these calculations, the thickness of the continuous underground wall was 1.5 m, 25 internal piles, 24 outer peripheral piles, and the foundation part of FIG. 1 was modeled in three dimensions and loaded based on the inertial force during earthquakes.

図3において、コスト比は、支持地盤22の深さLtまで連続地中壁を形成した場合と、それよりも浅い深さLaで連続地中壁を形成した場合との比を示しており、図3は、基礎底20から支持層22までの深さLtが60mの場合を示している。   In FIG. 3, the cost ratio indicates the ratio between the case where the continuous underground wall is formed up to the depth Lt of the support ground 22 and the case where the continuous underground wall is formed at a depth La smaller than that. FIG. 3 shows a case where the depth Lt from the base bottom 20 to the support layer 22 is 60 m.

図3から、基礎底20から連続地中壁18までの深さLaが45mであれば、外周杭16aが増えたとしても、支持地盤22までの深さLtで連続地中壁18を形成した場合とコスト比が同等になり、それよりも短ければコスト比が小さくなりコストダウンになることがわかる。   From FIG. 3, if the depth La from the foundation bottom 20 to the continuous underground wall 18 is 45 m, the continuous underground wall 18 was formed with the depth Lt to the support ground 22 even if the outer peripheral pile 16a increased. It can be seen that the cost ratio is equivalent to the case, and if it is shorter than that, the cost ratio becomes smaller and the cost is reduced.

したがって、La/Ltは、70%程度以下であればよい。   Therefore, La / Lt may be about 70% or less.

また、連続地中壁18の深さLaが15m以上であれば、水平変位量の変化が小さくなることがわかる。   Moreover, if the depth La of the continuous underground wall 18 is 15 m or more, it turns out that the change of a horizontal displacement amount becomes small.

さらに、地盤の種類に応じて水平変位置が変化するので、多少の余裕をみて、La/Ltは、30%以上とする。   Furthermore, since the horizontal shift position changes according to the type of ground, La / Lt is set to 30% or more with some allowance.

次に、連続地中壁18の深さLaと、コストとの関係を試算した一例を図4に示す。   Next, FIG. 4 shows an example of a trial calculation of the relationship between the depth La of the continuous underground wall 18 and the cost.

図4は、基礎底20から支持地盤22までの深さLtが50mの条件で、厚さ1.5mの連続地中壁を基礎として、複合基礎を形成した状態を示している。   FIG. 4 shows a state in which a composite foundation is formed on the basis of a continuous underground wall having a thickness of 1.5 m under the condition that the depth Lt from the foundation bottom 20 to the supporting ground 22 is 50 m.

(1)は連続地中壁18の深さLaを20m(La/Lt=40%)に設定した場合、(2)は連続地中壁18の深さLaを20m(La/Lt=40%)とし、連続地中壁18の壁厚を1.2mと薄くした場合をそれぞれ示している。   When (1) sets the depth La of the continuous underground wall 18 to 20 m (La / Lt = 40%), (2) sets the depth La of the continuous underground wall 18 to 20 m (La / Lt = 40%). ) And the case where the wall thickness of the continuous underground wall 18 is reduced to 1.2 m.

(1)の場合では81%、(2)の場合では75%にコスト低減が可能となる。   In the case of (1), the cost can be reduced to 81%, and in the case of (2), the cost can be reduced to 75%.

さらに、図5に、遠心載荷模型実験による周期比と応答比との関係を示す。   Further, FIG. 5 shows the relationship between the cycle ratio and the response ratio by the centrifugal loading model experiment.

この実験では、遠心加速度50Gとして、軟弱地盤を想定し、地震力のレベルを3段階に変化させている。   In this experiment, a soft ground is assumed as the centrifugal acceleration 50G, and the level of seismic force is changed in three stages.

また、直径10mmの外周杭12本と直径12mmの内部杭4本をフーチングで剛接合した杭基礎模型と、直径12mmの内部杭4本と2.5mm、長さ250mmの支持地盤に達する連続地中壁とをフーチングで剛接合した複合基礎模型とを用いた。   In addition, a pile foundation model in which 12 outer diameter piles with a diameter of 10 mm and 4 inner piles with a diameter of 12 mm are rigidly joined by footing, and a continuous ground reaching 4 mm of inner piles with a diameter of 12 mm and a supporting ground of 2.5 mm in length and 250 mm in length. A composite foundation model in which the middle wall was rigidly joined by footing was used.

図5(1)では周期比と建物最大応答加速度比との関係を示しており、図5(2)では周期比と建物最大応答変位比との関係を示している。   FIG. 5 (1) shows the relationship between the cycle ratio and the building maximum response acceleration ratio, and FIG. 5 (2) shows the relationship between the cycle ratio and the building maximum response displacement ratio.

周期比は、地盤一次固有周期/建物一次固有周期とし、建物最大応答加速度比は、複合基礎の建物最大応答加速度/杭基礎の建物最大応答加速度とし、建物最大応答変位比は、複合基礎の建物最大応答変位/杭基礎の建物最大応答変位として示している。   The periodic ratio is the ground primary natural period / the primary natural period of the building, the building maximum response acceleration ratio is the composite building maximum response acceleration / pile foundation building maximum response acceleration, and the building maximum response displacement ratio is the composite foundation building. The maximum response displacement / pile foundation building maximum response displacement is shown.

実験の結果、周期比が0.6〜1.0になると建物最大応答加速度比及び建物最大応答変位比のいずれも急激に下がることが判明した。   As a result of the experiment, it was found that both the maximum response acceleration ratio of the building and the maximum response displacement ratio of the building rapidly decrease when the cycle ratio becomes 0.6 to 1.0.

したがって、周期比が0.6〜1.0の場合に連続地中壁が有効に機能し、地震時水平荷重処理に効果的であることがわかる。   Therefore, it can be seen that the continuous underground wall functions effectively when the cycle ratio is 0.6 to 1.0, and is effective for horizontal load processing during an earthquake.

このことから、本実施の形態のように連続地中壁が支持地盤よりも浅い場合にも同様の結果が得られるものと考えられる。   From this, it is considered that the same result can be obtained even when the continuous underground wall is shallower than the supporting ground as in the present embodiment.

図6には、本発明の他の実施の形態にかかる杭と連続地中壁の複合基礎を示す。   FIG. 6 shows a composite foundation of piles and continuous underground walls according to another embodiment of the present invention.

この実施の形態では、支持地盤22から30m以上軟弱地盤12が堆積した状態となっており、この軟弱地盤12には、支持地盤22よりは剛性が低くその上層30よりは剛性の高い中間層32が存在している。   In this embodiment, the soft ground 12 is accumulated 30 m or more from the support ground 22, and the soft ground 12 has an intermediate layer 32 that is lower in rigidity than the support ground 22 and higher in rigidity than the upper layer 30. Is present.

この中間層32は、図7に示すような性質で、地表面12aより所定の深さ、例えば10m以上で、支持地盤22まで達する層厚を有している。   The intermediate layer 32 has a property as shown in FIG. 7 and has a layer thickness reaching the support ground 22 at a predetermined depth, for example, 10 m or more from the ground surface 12a.

この中間層32は、N値10以上の粘性土またはN値20以上の砂質土で、剪断波速度が250m/s以上の地盤である。   The intermediate layer 32 is a clay soil having an N value of 10 or more or sandy soil having an N value of 20 or more, and has a shear wave velocity of 250 m / s or more.

また、中間層32の層厚は5m以上となっている。   The layer thickness of the intermediate layer 32 is 5 m or more.

このような中間層32を有する軟弱地盤12における複合基礎14は、拡底杭である複数本の杭16を建物10の基礎底から支持地盤22まで到達して根入れさせるとともに、建物10の外周に沿って連続地中壁18を中間層32までの深さに形成している。   The composite foundation 14 in the soft ground 12 having such an intermediate layer 32 allows a plurality of piles 16 that are bottom-pile piles to reach the support ground 22 from the foundation bottom of the building 10 and to be embedded, and on the outer periphery of the building 10. A continuous underground wall 18 is formed along the intermediate layer 32 along the depth.

この連続地中壁18の下端は、中間層32の上部に根入れした状態となっている。   The lower end of the continuous underground wall 18 is in a state of being rooted in the upper part of the intermediate layer 32.

このように、連続地中壁18の下端を中間層32に支持させることで、連続地中壁18にある程度の軸力荷重を支持させ、杭16に対する軸力荷重の負担を軽減させて、杭16の太さを細くすることができ、コストの削減が可能となる。   In this way, by supporting the lower end of the continuous underground wall 18 on the intermediate layer 32, a certain axial force load is supported on the continuous underground wall 18 and the load of the axial load on the pile 16 is reduced. The thickness of 16 can be reduced, and the cost can be reduced.

また、建物10の下部は、中間層32まで連続地中壁18によって囲われ、かつ、中間層32で支持されているため、地震時の応答変位を低減して居住性を向上させることができる。   Moreover, since the lower part of the building 10 is surrounded by the continuous underground wall 18 up to the intermediate layer 32 and is supported by the intermediate layer 32, the response displacement at the time of an earthquake can be reduced and the habitability can be improved. .

他の構成及び作用は、前記実施の形態と同様につき説明を省略する。   Other configurations and operations are the same as those in the above embodiment, and a description thereof will be omitted.

次に図6に示す中間層が地表から所定の深さで、支持地盤まで達する場合の複合基礎と、中間層がない場合の同じ長さの地中連続壁を形成した場合とを、支持地盤まで連続地中壁を形成した場合と比較した変位の比を図8に示す。   Next, a composite foundation when the intermediate layer shown in FIG. 6 reaches the support ground at a predetermined depth from the ground surface, and a case where an underground continuous wall of the same length when the intermediate layer is not formed are formed. FIG. 8 shows the displacement ratio compared to the case where the continuous underground wall is formed.

計算は基礎部分を3次元でモデル化し、地震時慣性力を基礎に載荷した。   In the calculation, the foundation was modeled in three dimensions and loaded based on the inertial force during the earthquake.

この試算では、支持層までの深さが60mの場合を想定し、ケース1では、深さ0〜14mでは剪断波速度が120m/s、14m〜25mでは350m/s、25m〜40mでは250m/s、40m〜60mでは350m/sで、中間層が深さ14mから支持地盤まで達している状態となっている。   In this trial calculation, it is assumed that the depth to the support layer is 60 m. In case 1, the shear wave velocity is 120 m / s at a depth of 0 to 14 m, 350 m / s at 14 m to 25 m, and 250 m / s at 25 m to 40 m. In s, 40 m to 60 m, 350 m / s, and the intermediate layer reaches the supporting ground from a depth of 14 m.

ケース2では、深さ0〜19mでは剪断波速度が120m/s、19〜30mでは350m/s、30〜45mでは250m/s、45m〜60mでは350m/sで、中間層が深さ19mから支持地盤まで達している状態となっている。   In case 2, the shear wave velocity is 120 m / s at a depth of 0 to 19 m, 350 m / s at 19 to 30 m, 250 m / s at 30 to 45 m, 350 m / s at 45 to 60 m, and the intermediate layer from a depth of 19 m. It has reached the support ground.

比較対照となる中間層がない場合は、0〜60mに至るまで剪断波速度が120m/sの地盤条件となっている。   When there is no intermediate layer as a comparative reference, the ground condition is that the shear wave velocity is 120 m / s up to 0 to 60 m.

なお、複合基礎の試算条件は、連続地中壁の厚さが1.5m、内部杭25本、外部杭24本の条件とした。   In addition, the trial calculation conditions of the composite foundation were as follows: the thickness of the continuous underground wall was 1.5 m, 25 internal piles, and 24 external piles.

その条件での試算結果は、同図(2)に示すように、ケース1の場合、支持層まで連続地中壁を形成した60mの連続地中壁の場合との変位の比が、中間層がない場合は1.6、中間層がある場合は1.5となり、またケース2の場合は、中間層がない場合は1.3、中間層がある場合は1.2となり、中間層上で連続地中壁を止めることにより、中間層がない軟弱地盤での連続地中壁が同じ長さの場合に比し、60mの連続地中壁とした場合との割合で10%程度変形量が小さくなることが判明した。   As shown in FIG. 2 (2), the trial calculation result under the conditions shows that in the case 1, the displacement ratio with the case of the 60m continuous underground wall in which the continuous underground wall is formed up to the support layer is 1.6 if there is no intermediate layer, 1.5 if there is an intermediate layer, and in case 2 it is 1.3 if there is no intermediate layer, and 1.2 if there is an intermediate layer. The amount of deformation is about 10% by stopping the continuous underground wall at a ratio of 60m continuous underground wall compared to the case where the continuous underground wall is the same length in soft ground with no intermediate layer. Turned out to be smaller.

図3からも明らかなように、このような変位の比が1.5以下では、比を0.1下げるために連続地中壁をおよそ2m長くしなければならないことから、中間層を利用する効果は大きい。   As is clear from FIG. 3, when the displacement ratio is 1.5 or less, the continuous underground wall has to be lengthened by about 2 m in order to lower the ratio by 0.1, so the intermediate layer is used. The effect is great.

この場合、連続地中壁は下端が中間層に1m根入れされた状態でケース1の場合は地中連続壁が15m、ケース2の場合は連続地中壁が20mとして算定した。   In this case, the continuous underground wall was calculated assuming that the lower end of the continuous underground wall was 1 m in the middle layer, the case of Case 1 was the underground continuous wall of 15 m, and the case 2 was the continuous underground wall of 20 m.

なお、連続地中壁の下端を5m程度中間層に根入れした場合は、例えば20mに中間層がある場合、25/60=42%の長さで変位量は60mの連続地中壁の場合と同じとなり、同様の耐震性が得られることになる。   In addition, when the lower end of the continuous underground wall is embedded in the intermediate layer about 5 m, for example, when there is an intermediate layer at 20 m, the length of 25/60 = 42% and the displacement amount is 60 m The same earthquake resistance will be obtained.

次に、地震時の性質について図9に示す中間層について検討した結果を示す。   Next, the result of having examined the intermediate layer shown in FIG. 9 about the property at the time of an earthquake is shown.

地盤構成は、同図(1)に示すように、0〜20mでは剪断波速度120m/s、20m〜40mでは250m/s、40m〜50mでは300m/s、50m〜60mでは350m/s、60m以深は450m/s(支持地盤相当)となっている。   As shown in FIG. 1 (1), the ground structure is a shear wave velocity of 120 m / s at 0 to 20 m, 250 m / s at 20 m to 40 m, 300 m / s at 40 m to 50 m, 350 m / s at 60 m to 60 m, and 60 m. The depth is 450 m / s (equivalent to supporting ground).

ここでは、同図(2)に示すように、地震波を告示波と臨界波の2種類設定し、超高層建物をイメージし、1次固有周期0.27Hz(3.8秒)の1質点モデルにより動的応答計算を行った。   Here, as shown in Fig. 2 (2), two types of seismic waves, a notification wave and a critical wave, are set, and a one-mass model with a primary natural period of 0.27 Hz (3.8 seconds) is imagined. The dynamic response was calculated by

基礎は、支持地盤までの60mを連続地中壁としたもの、支持用の外周杭を設置し、中間層上までの20mまでを連続地中壁としたもの、杭のみの基礎の3種類を検討した。   There are three types of foundations: one with a continuous underground wall of 60m up to the supporting ground, one with a supporting outer periphery pile, one with a continuous underground wall up to 20m up to the middle layer, and a foundation with only a pile. investigated.

耐震設計上重要となる、建物の最大応答加速度及び最大応答変位、基礎の最大応答加速度及び最大応答変位について比較検討したところ、20m連続地中壁にすることにより、60m連続地中壁より基礎最大応答加速度以外はすべて小さくなっており、地盤周期特性、建物特性を考慮すると、地震波によっては、中間層が現れる20mまでを連続地中壁としたほうが60mまで伸ばした場合と同等か優れた性能を発揮する場合もあり、今回の試算では短い連続地中壁とした時、基礎の変位減少の効果のみでなく、建物への入力減少の効果も生じている。   Comparing and examining the maximum response acceleration and maximum response displacement of buildings, the maximum response acceleration and maximum response displacement of foundations, which are important for seismic design, it was found that by using 20m continuous underground wall, the foundation maximum was higher than 60m continuous underground wall. Everything except the response acceleration is small, and considering the ground period characteristics and building characteristics, depending on the seismic wave, using the continuous underground wall up to 20m where the middle layer appears is equivalent to or superior to the case of extending to 60m. In this trial calculation, when the short continuous underground wall is used, not only the effect of reducing the displacement of the foundation but also the effect of reducing the input to the building has occurred.

また、連続地中壁を用いない杭基礎との比較では、応答値によっては50%の軽減になっており、杭基礎よりもすべての項目で大いに優れている。   Moreover, in the comparison with the pile foundation which does not use a continuous underground wall, depending on the response value, it is reduced by 50%, which is much superior in all items than the pile foundation.

図10には、本発明のさらに他の実施の形態にかかる杭と連続地中壁の複合基礎を示す。   FIG. 10 shows a composite foundation of piles and continuous underground walls according to still another embodiment of the present invention.

この実施の形態では、軟弱地盤12には、支持地盤22よりは剛性が低く、その上層30よりは剛性の高い中間層34が存在し、地表面12aより所定の深さ、例えば10m以上で、支持地盤22まで達しない層厚、例えば5m以上を有している。   In this embodiment, the soft ground 12 has an intermediate layer 34 that is lower in rigidity than the support ground 22 and higher in rigidity than the upper layer 30, and has a predetermined depth from the ground surface 12 a, for example, 10 m or more. It has a layer thickness that does not reach the supporting ground 22, for example, 5 m or more.

また、この中間層34は、N値10以上の粘性土またはN値20以上の砂質土で、剪断波速度が250m/s以上の地盤となっている。   The intermediate layer 34 is a clay soil having an N value of 10 or more or a sandy soil having an N value of 20 or more, and has a ground having a shear wave velocity of 250 m / s or more.

このような中間層34を有する軟弱地盤12に設けられる複合基礎14は、拡底杭である複数の杭16を建物10の基礎底から支持地盤22まで到達して根入れするとともに、連続地中壁18のコーナー部36のみ支持地盤22まで達する深さに形成し、他の部分、コーナー部36間の壁部38を中間層34までの深さに形成している。   The composite foundation 14 provided on the soft ground 12 having such an intermediate layer 34 reaches and roots the plurality of piles 16 that are bottom-up piles from the foundation bottom of the building 10 to the support ground 22 and has a continuous underground wall. Only 18 corner portions 36 are formed to a depth reaching the support ground 22, and other portions, wall portions 38 between the corner portions 36 are formed to a depth to the intermediate layer 34.

この連続地中壁18の壁部38の下端は、中間層34の上部に根入れした状態となっている。   The lower end of the wall portion 38 of the continuous underground wall 18 is in a state of being embedded in the upper portion of the intermediate layer 34.

このように、連続地中壁18をコーナー部36に支持地盤22まで達する深さに形成し、他の部分は中間層34までの深さに形成することで、中間層34の下側に軟弱な下層40が続く場合でも、連続地中壁18のコーナー部36を支持地盤22まで延長させることにより、コーナー部での水平加重に対する十分な剛性を確保するとともに、コーナー外杭に代わり軸力荷重を支持することができ、コーナー外杭を省略できるとともに、連続地中壁で囲まれた杭は軸力のみ負担させるので杭の太さを細くして、コストを削減することが可能となる。   In this way, the continuous underground wall 18 is formed to a depth reaching the support ground 22 at the corner portion 36, and the other portion is formed to a depth to the intermediate layer 34, so that the lower side of the intermediate layer 34 is soft. Even when the lower layer 40 continues, the corner portion 36 of the continuous underground wall 18 is extended to the supporting ground 22 to ensure sufficient rigidity against the horizontal load at the corner portion, and the axial force load is substituted for the outer corner pile. The pile outside the corner can be omitted, and the pile surrounded by the continuous underground wall only bears the axial force. Therefore, the thickness of the pile can be reduced and the cost can be reduced.

また、建物10の下部は中間層34まで連続地中壁18によって囲われ、かつ、連続地中壁18が中間層34によって支持されているため、地震時の応答変位を低減して居住性を向上させることができる。   In addition, the lower part of the building 10 is surrounded by the continuous underground wall 18 up to the intermediate layer 34, and the continuous underground wall 18 is supported by the intermediate layer 34. Can be improved.

他の構成及び作用は、前記実施の形態と同様につき説明を省略する。   Other configurations and operations are the same as those in the above embodiment, and a description thereof will be omitted.

本発明は、前記実施の形態に限定されるものではなく、本発明の要旨の範囲内において種々の形態に変形可能である。   The present invention is not limited to the above-described embodiment, and can be modified into various forms within the scope of the gist of the present invention.

前記実施の形態では、建物の高さが150mとされているが、この例に限定されるものではなく、建物の高さは任意に変更可能である。   In the said embodiment, although the height of a building is 150 m, it is not limited to this example, The height of a building can be changed arbitrarily.

本発明の一実施の形態に係る杭と連続地中壁の複合基礎上に建物を構築した状態を示す断面図である。It is sectional drawing which shows the state which built the building on the composite foundation of the pile which concerns on one embodiment of this invention, and a continuous underground wall. 図1における建物の平面図である。It is a top view of the building in FIG. 連続地中壁の深さとコスト比及び応答変位量との関係を示す特性図である。It is a characteristic view which shows the relationship between the depth of a continuous underground wall, a cost ratio, and a response displacement amount. 連続地中壁の深さとコストとの関係を試算した一例を示す図である。It is a figure which shows an example which calculated the relationship between the depth of a continuous underground wall, and cost. 遠心載荷模型実験による周期比と応答比との関係を示すもので、(1)は周期比と建物最大応答加速度比との関係を示す特性図、(2)は周期比と建物最大応答変位比との関係を示す特性図である。This figure shows the relationship between the cycle ratio and the response ratio in the centrifugal loading model experiment. (1) is a characteristic diagram showing the relationship between the cycle ratio and the maximum response acceleration ratio of the building, and (2) is the cycle ratio and the maximum response displacement ratio of the building. It is a characteristic view which shows the relationship. 本発明の他の実施の形態に係る杭と連続地中壁との複合基礎を示す断面図である。It is sectional drawing which shows the composite foundation of the pile and continuous underground wall which concern on other embodiment of this invention. 中間層の一例を示す図である。It is a figure which shows an example of an intermediate | middle layer. 図6の中間層を有する場合の複合基礎と中間層を有しない場合の複合基礎とを支持地盤まで連続地中壁を形成した場合との変位の比を示すもので、(1)は比較する地盤条件を示す図で、(2)は各地盤条件における変位の比を示す図である。FIG. 6 shows the displacement ratio between the composite foundation with the intermediate layer shown in FIG. 6 and the composite foundation without the intermediate layer when the continuous underground wall is formed up to the supporting ground. It is a figure which shows ground conditions, (2) is a figure which shows the ratio of the displacement in local ground conditions. 図6の中間層を有する場合の地震時の応答計算結果を示すもので、(1)は対象とする地盤条件を示す図で、(2)は各部位の60mの長さの連続地中壁、杭基礎の比を示す図である。FIG. 6 shows the response calculation result at the time of an earthquake when the intermediate layer of FIG. 6 is provided, (1) is a diagram showing the target ground conditions, and (2) is a continuous underground wall of 60 m length of each part. It is a figure which shows the ratio of a pile foundation. 本発明のさらに他の実施の形態に係る杭と連続地中壁の複合基礎を示す断面図である。It is sectional drawing which shows the composite foundation of the pile and continuous underground wall which concern on other embodiment of this invention.

符号の説明Explanation of symbols

10 建物
12a 地表面
14 複合基礎
16a 外周杭
16b 内部杭
18 連続地中壁
20 基礎底
22 支持地盤
24 フーチング
30 上層
32、34 中間層
36 コーナー部
38 壁部
40 下層
H 建物の高さ
Lt 支持地盤までの深さ
La 連続地中壁の深さ
L1 建物の一辺の長さ
L2 建物の他辺の長さ
DESCRIPTION OF SYMBOLS 10 Building 12a Ground surface 14 Composite foundation 16a Perimeter pile 16b Inner pile 18 Continuous underground wall 20 Foundation bottom 22 Support ground 24 Footing 30 Upper layer 32, 34 Middle layer 36 Corner part 38 Wall part 40 Lower layer H Building height Lt Support ground Depth La La Continuous underground wall depth L1 Length of one side of the building L2 Length of the other side of the building

Claims (11)

支持地盤まで到達して設けられる複数本の杭と、この杭を囲って前記杭と一体に設けられる連続地中壁とを有し、軟弱な地盤が30m以上堆積した場所に構築される杭と連続地中壁の複合基礎であって、
前記連続地中壁は、平面視ほぼ正方形または多角形の建物の外周に沿って配設され、かつ、前記支持地盤よりも浅く形成され、
前記杭は、前記連続地中壁内の最外周位置にも配設されて、前記杭に建物の軸力荷重を負担させ、
前記連続地中壁には、主として地震時の水平荷重のみを負担させることを特徴とする杭と連続地中壁の複合基礎。
A plurality of piles that are provided to reach the supporting ground, and a continuous underground wall that is provided integrally with the piles surrounding the pile, and is constructed in a place where the soft ground is accumulated at 30 m or more; A composite foundation of continuous underground walls,
The continuous underground wall is disposed along the outer periphery of a substantially square or polygonal building in plan view, and is formed shallower than the supporting ground,
The pile is also disposed at the outermost peripheral position in the continuous underground wall, and the pile bears the axial load of the building,
A composite foundation of a pile and a continuous underground wall, wherein the continuous underground wall mainly bears only a horizontal load during an earthquake.
請求項1において、
前記支持地盤までの深さが40m〜70mの地盤に用いられることを特徴とする杭と連続地中壁の複合基礎。
In claim 1,
A composite foundation of a pile and a continuous underground wall, characterized in that it is used for a ground having a depth of 40 m to 70 m to the support ground.
請求項1または2において、
前記連続地中壁の深さは、基礎底から支持地盤までの深さに対して30〜70%とされていることを特徴とする杭と連続地中壁の複合基礎。
In claim 1 or 2,
The depth of the said continuous underground wall is 30-70% with respect to the depth from a foundation bottom to a support ground, The composite foundation of the pile and continuous underground wall characterized by the above-mentioned.
請求項1〜3のいずれかにおいて、
前記軟弱地盤は剪断波速度150m/s以下で、かつ、初期の一次固有周期が0.6秒より長い地盤であることを特徴とする杭と連続地中壁の複合基礎。
In any one of Claims 1-3,
The composite foundation of a pile and a continuous underground wall, wherein the soft ground is a ground having a shear wave velocity of 150 m / s or less and an initial primary natural period longer than 0.6 seconds.
請求項1〜4のいずれかにおいて、
地震時の前記地盤の一次固有周期と建物の一次固有周期との比が0.6〜1.0であることを特徴とする杭と連続地中壁の複合基礎。
In any one of Claims 1-4,
A composite foundation of a pile and a continuous underground wall, wherein a ratio of a primary natural period of the ground during an earthquake and a primary natural period of a building is 0.6 to 1.0.
請求項1または2において、
前記軟弱地盤は、前記支持地盤よりは剛性が低くその上層よりは剛性の高い中間層を含み、
前記中間層は、地表より所定の深さで前記支持地盤まで達する層厚を有し、
前記連続地中壁は、前記中間層までの深さに形成されることを特徴とする杭と連続地中壁の複合基礎。
In claim 1 or 2,
The soft ground includes an intermediate layer that is lower in rigidity than the support ground and higher in rigidity than the upper layer,
The intermediate layer has a layer thickness that reaches the support ground at a predetermined depth from the ground surface,
The composite foundation of a pile and a continuous underground wall, wherein the continuous underground wall is formed to a depth to the intermediate layer.
請求項1または2において、
前記軟弱地盤は、前記支持地盤よりは剛性が低くその上層よりは剛性の高い中間層を含み、
前記中間層は、地表より所定の深さで前記支持地盤まで達しない層厚を有し、
前記連続地中壁は、コーナー部のみ前記支持地盤まで達する深さに形成し、他の部分は前記中間層までの深さに形成されることを特徴とする杭と連続地中壁の複合基礎。
In claim 1 or 2,
The soft ground includes an intermediate layer that is lower in rigidity than the support ground and higher in rigidity than the upper layer,
The intermediate layer has a layer thickness that does not reach the support ground at a predetermined depth from the ground surface,
The continuous foundation wall is formed at a depth reaching only the corner to the support ground, and the other part is formed at a depth up to the intermediate layer. .
請求項6または7において、
前記中間層は、N値10以上の粘性土またはN値20以上の砂質土で、剪断波速度が250m/s以上の地盤であることを特徴とする杭と連続地中壁の複合基礎。
In claim 6 or 7,
The intermediate layer is a viscous foundation having an N value of 10 or more or a sandy soil having an N value of 20 or more, and is a ground having a shear wave velocity of 250 m / s or more.
請求項6〜8のいずれかにおいて、
前記中間層までの深さは、10m以上であることを特徴とする杭と連続地中壁との複合基礎。
In any one of Claims 6-8,
The composite foundation of a pile and a continuous underground wall, characterized in that the depth to the intermediate layer is 10 m or more.
請求項6〜9において、
前記中間層の層厚は、5m以上であることを特徴とする杭と連続地中壁との複合基礎。
In claims 6-9,
A composite foundation of a pile and a continuous underground wall, wherein the intermediate layer has a thickness of 5 m or more.
請求項6〜10のいずれかにおいて、
前記中間層に前記連続地中壁の下端を根入れしたことを特徴とする杭と連続地中壁との複合基礎。
In any one of Claims 6-10,
A composite foundation of a pile and a continuous underground wall, wherein the lower end of the continuous underground wall is embedded in the intermediate layer.
JP2004159086A 2003-05-30 2004-05-28 Combined footing of pile and diaphragm wall Pending JP2005016292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004159086A JP2005016292A (en) 2003-05-30 2004-05-28 Combined footing of pile and diaphragm wall

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003155123 2003-05-30
JP2004159086A JP2005016292A (en) 2003-05-30 2004-05-28 Combined footing of pile and diaphragm wall

Publications (1)

Publication Number Publication Date
JP2005016292A true JP2005016292A (en) 2005-01-20

Family

ID=34196613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004159086A Pending JP2005016292A (en) 2003-05-30 2004-05-28 Combined footing of pile and diaphragm wall

Country Status (1)

Country Link
JP (1) JP2005016292A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214201A (en) * 2005-02-04 2006-08-17 Toda Constr Co Ltd Composite foundation of piles and continuous underground wall
JP2007315136A (en) * 2006-05-29 2007-12-06 Taisei Corp Foundation structure using existing pile and new pile
JP2019073886A (en) * 2017-10-16 2019-05-16 東日本旅客鉄道株式会社 Vibration displacement suppressing structure of structure group

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160321A (en) * 1986-01-06 1987-07-16 Taisei Corp Earthquake proofing and reinforcing work for pile foundation structure
JPH07279479A (en) * 1994-04-08 1995-10-27 Fujita Corp Damping structure of building
JPH09209372A (en) * 1996-02-07 1997-08-12 Tatsuji Ishimaru Base-isolation foundation and structure
JP2003261948A (en) * 2002-03-07 2003-09-19 Tatsuji Ishimaru Vibration isolation structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160321A (en) * 1986-01-06 1987-07-16 Taisei Corp Earthquake proofing and reinforcing work for pile foundation structure
JPH07279479A (en) * 1994-04-08 1995-10-27 Fujita Corp Damping structure of building
JPH09209372A (en) * 1996-02-07 1997-08-12 Tatsuji Ishimaru Base-isolation foundation and structure
JP2003261948A (en) * 2002-03-07 2003-09-19 Tatsuji Ishimaru Vibration isolation structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214201A (en) * 2005-02-04 2006-08-17 Toda Constr Co Ltd Composite foundation of piles and continuous underground wall
JP2007315136A (en) * 2006-05-29 2007-12-06 Taisei Corp Foundation structure using existing pile and new pile
JP2019073886A (en) * 2017-10-16 2019-05-16 東日本旅客鉄道株式会社 Vibration displacement suppressing structure of structure group

Similar Documents

Publication Publication Date Title
JP2015025292A (en) Building construction method and building
JP6642977B2 (en) Pile foundation structure
JP6021993B1 (en) Rigid connection structure of lower end of support and concrete pile
JP2007321402A (en) Stress reducing structure for foundation pile, and stress reducing method
JP2008038420A (en) Base-isolation structure having artificial ground
JP4558522B2 (en) Building basic structure
JP5077857B1 (en) Seismic reinforcement structure of existing structure foundation by composite ground pile foundation technology
JP2006257710A (en) Joint structure of cast-in-situ concrete pile to foundation
JP2005016292A (en) Combined footing of pile and diaphragm wall
JP4589849B2 (en) Liquefaction prevention method for existing building foundations
JP2006214201A (en) Composite foundation of piles and continuous underground wall
JP2006257749A (en) Pile foundation structure
JP4678675B2 (en) Basic structure and construction method
JP2008069511A (en) Aseismatic structure of building
JP2013155559A (en) Liquefaction damage reducing structure for construction
JP4706302B2 (en) Triple tube structure and damping system for triple tube structure
JP2003041602A (en) Structure of foundation
JP2009150075A (en) Structure for preventing subsidence of structure
JP3381066B2 (en) Existing building seismic isolation method and seismic isolation building
RU2457292C2 (en) Earthquake-proof pile
JP2017186760A (en) Pile foundation structure
KR101253051B1 (en) Arching pile
JP2001288758A (en) Footing earthquake resistant construction and footing earthquake resistance reinforcing method
JP4129663B2 (en) Building using ground improvement body
JP2020204235A (en) Underground support structure and building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100519

A02 Decision of refusal

Effective date: 20100929

Free format text: JAPANESE INTERMEDIATE CODE: A02