JP2005016127A - Method of injecting injection liquid into ground - Google Patents

Method of injecting injection liquid into ground Download PDF

Info

Publication number
JP2005016127A
JP2005016127A JP2003181455A JP2003181455A JP2005016127A JP 2005016127 A JP2005016127 A JP 2005016127A JP 2003181455 A JP2003181455 A JP 2003181455A JP 2003181455 A JP2003181455 A JP 2003181455A JP 2005016127 A JP2005016127 A JP 2005016127A
Authority
JP
Japan
Prior art keywords
injection
ground
chemical solution
pressure
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003181455A
Other languages
Japanese (ja)
Inventor
Takeshi Miyamoto
武司 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2003181455A priority Critical patent/JP2005016127A/en
Publication of JP2005016127A publication Critical patent/JP2005016127A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of injecting an injection liquid into the ground while rationally and efficiently setting injection conditions according to the injected state of the injection liquid. <P>SOLUTION: Solidification characteristics when injecting a chemical solution into the ground are evaluated to determine the mixing of the chemical solution suitable for the object ground 1. A plurality of injection holes 2 for injecting the chemical solution are bored in an object region of the ground 1. While monitoring the injection speed, the chemical solution is injected into the ground 1 from the injection holes 2 at constant injection pressure within a range not to form a cleavage in the ground 1. When the injection speed is lowered to a prescribed value in the state of holding the injection pressure within the range not to form the cleavage in the ground 1, the injection of the chemical solution is terminated, and the executed chemical solution 5 infiltrating into the ground 1 is cured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、地盤改良工法において、対象となる地盤に緩結性の薬液を適用する際などに好適な、地盤への注入液の注入方法に関する。
【0002】
【従来の技術】
従来より、地盤改良に際し、改良の対象となる地盤に薬液を注入する方法が一般に知られているが、中でも、ゲルタイムの長い緩結性の薬液を地盤に浸透注入する方法の重要性が認識され、特許文献1及び特許文献2には、ゲルタイムの長い緩結性の薬液を用いることを念頭においた低注入速度での地盤注入工法が考案されている。これらの地盤注入工法において、目標とする改良範囲に薬液を確実に浸透させるためには、注入期間中における薬液の流動性保持が不可欠であり、また、適切なゲルタイムの薬液を適切な圧力及び時間で注入することが重要となる。
【0003】
また、特許文献3に示すように、大口径改良体の造成をも念頭において極めてゲルタイムの長い薬液を用いる地盤注入工法では、より綿密なゲルタイムの設定、つまり適切な薬液の配合が重要となる。
そこで、適切な薬液の配合を助けるべく、特許文献4に示すような、薬液の固化特性を測定するための方法を適用することが考えられる。
【0004】
【特許文献1】
特開2000−045259号公報
【特許文献2】
特開2002−363967号公報
【特許文献3】
特開2003−317436号公報
【特許文献4】
特開平11−37997号公報
【0005】
【発明が解決しようとする課題】
しかし、薬液の固化特性を測定するには、実大規模の試験装置で実注入時の状況をモデル化することから、試験実施に膨大な現地試料と薬液が必要となり、何通りもの試験条件について試験を実施することは困難である。
また、地盤条件や注入圧力等施行条件が未確定な場合には、予想した条件で試験を実施しても、試験結果の信頼性は低い。
このように、現実には注入計画の最も基本となる薬液におけるゲルタイムの評価さえも困難であり、施行条件に応じて適切なゲルタイムの薬液を、適切な圧力及び時間で注入できるよう設定するには課題が多い。
【0006】
上記事情に鑑み、本発明は、注入液の注入状況に応じて合理的かつ効率的に注入条件を設定しながら地盤に注入液を注入する地盤への注入液の注入方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
請求項1記載の地盤への注入液の注入方法は、地盤改良に好適な注入液を地盤に注入する地盤への注入液の注入方法であって、地盤に前記注入液を注入した際の固化特性を評価し、対象とする地盤に適した注入液の配合を決定する第1の工程と、前記注入液を地盤に注入した際の浸透範囲の一部が重なるような離間間隔をもって、浸透範囲が地盤の対象領域を網羅するように、複数の注入孔を鉛直に削孔する第2の工程と、注入速度をモニタリングしながら、前記注入孔から地盤に注入液を、地盤に割裂を生じさせることのない範囲の一定注入圧力で注入する第3の工程と、注入速度が所定値まで低下した時点で注入を終了し、地盤に浸透した注入液を養生するとともに、これと浸透範囲が重ならない他の注入孔から地盤に、第3の工程と同様の手順で注入液を注入する第4の工程と、第3の工程及び第4の工程を繰り返し、すべての注入孔より地盤に対して注入液を注入する第5の工程により構成されることを特徴としている。
【0008】
請求項2記載の地盤への注入液の注入方法は、第3の工程で、注入圧力をモニタリングしながら、地盤への前記注入液の注入を実施し、注入液の注入流量を増減させて、経時変化から算定されるを注入時の圧力の変化率の絶対値を所定値内に収めることにより、一定注入圧力を保持することを特徴としている。
【0009】
請求項3記載の地盤への注入液の注入方法は、第4の工程で、注入液の注入が終了した注入孔において、液圧を一定に作用させながら、地盤に浸透した注入液を養生固化することを特徴としている。
【0010】
【発明の実施の形態】
以下、本発明に係る地盤への注入液の注入方法を図1から図5を用いて詳述する。本発明の地盤への注入液の注入方法は、固化特性を評価した上で配合を決定した注入液を、地盤に割裂を生じさせることのない範囲の一定圧力で、注入速度をモニタリングしながら地盤に注入するものであり、注入速度が所定値まで低下した時点で注入を終了し、注入液が浸透していない地盤領域に同様の手順で注入を繰り返すことにより、地盤に割裂を生じさせることなく、効果的に注入を実施するものである。
なお、本実施の形態では、ゲルタイム、すなわち流動性を失い、粘性が急激に増加するまでの時間が長い緩結性の薬液を、地盤に注入する注入液として用いているが、必ずしもこれにこだわるものではなく、地盤改良に好適な液剤であれば何れの注入液を用いても良い。
【0011】
地盤1への薬液4の注入は、地盤改良に好適な配合を施した薬液4を、対象とする地盤1に加圧注入することのできる注入装置6を用いるものであり、本実施の形態では、注入圧力を制御することの可能な、注入圧力制御機構9を備えた注入装置6を用いている。
【0012】
図1に示すように、該注入装置6は、薬液4を加圧した状態で貯留している加圧槽7、該加圧槽7内を加圧するためのコンプレッサ8、前記加圧槽7の内圧を制御することで、薬液4の注入圧力量を制御する注入圧力制御機構9、前記加圧槽7に薬液4を補給するための補給装置10、及び薬液4を地盤1に注入する注入ホース14を備えている。また、前記補給装置10には、補給制御機構12、液量検出器13、及び補給用の薬液4を貯留する貯液槽11が備えられている。
【0013】
前記加圧槽7に付設されている注入圧力制御機構9は、加圧槽7内の液位を所望の圧力に維持するように、補給装置10を制御して薬液4の補給を行うとともに、加圧槽7内の液位が下がることに伴う圧力低下や、薬液4の補給に伴う加圧槽7内の圧力上昇を検知して、コンプレッサ8を制御して加圧槽7内の圧力を常に一定に保持するように制御するものである。
【0014】
つまり、注入装置6は、上記のように加圧槽7の圧力を注入圧力制御機構9により一定に保持しつつ、加圧槽7内の薬液4を、注入ホース14を介して地盤1に連続的に加圧注入することにより、一定流量の薬液4を一定速度で注入するものである。
また、地盤1への注入圧力量は、注入圧力制御機構9により制御される加圧槽7内の圧力により決定される。したがって、薬液4の注入圧力量は、注入圧力制御機構9により容易に調整でき、該加圧槽7内の圧力を維持することで、所望の注入圧力量を維持した状態で、薬液4を地盤1へ安定にかつ連続的に注入することができるものである。
【0015】
なお、該注入装置6は、必ずしも上述するような注入圧力制御機構9を備える構成にこだわるものではなく、一定流量の薬液4を一定速度で地盤1に連続的に加圧注入することが可能であれば、何れを用いても良い。なお、この場合の、薬液4注入加圧量の調整方法については、以下に示す地盤への薬液の注入方法で詳述する。
【0016】
上述する注入装置6を用いて、対象とする地盤1に前記薬液4を注入する地盤への薬液の注入方法を以下に示す。
【0017】
(第1の工程)
第1の工程では、地盤1に前記薬液4を注入した際の固化特性を評価し、対象とする地盤1に適した薬液4の配合を決定する。以下に、固化特性の評価方法の一例を詳述するが、その評価方法は必ずしもこれにこだわるものではない。
【0018】
前記薬液4に係る固化特性の評価に際し、まず、薬液4の注入対象となる地盤1をモデル化した図示しない浸透試験装置を製作する。該浸透試験装置は、実際の浸透距離と同一規模(同一長)で、かつ室内試験を行える程度の大きさに製作する。
次に、対象とする地盤1の地盤構成から、薬液4の浸透形状、透水性状(主に透水係数や透水層の層厚)を予測し、それら浸透形状、透水性状、並びに地盤1に薬液4を注入する際の注入ホース14の構造・寸法等から、実施工での注入速度qを予測する。
そして、上記の浸透試験装置に対して、その予測した注入速度qで薬液4を注入する。この場合の注入速度qは、例えば円筒容器を用いた一次元浸透試験で薬液4が層状に浸透する場合には、試験中に次式に従って変化させる。
【0019】
q=q/(L+r
q :試験期間中の任意時間における注入速度
:実施工での注入速度に対応する試験開始時の注入速度
L :薬液の浸透長
:注入孔の等価空洞半径
【0020】
上記の速度で薬液4を注入し、目標とする浸透距離まで薬液4が浸透した時点で、薬液4の注入を停止する。次いで、浸透試験装置の流出口側の薬液4の充填部分の供試体(土と薬液の混合物)について、薬液4のゲルタイムや固結土の強度変形特性等を測定する。また、土中を所定長さ浸透させた後の薬液4と未浸透薬液4とにより、薬液4の性状(pH)変化を測定するとともに、固結土の性状変化を測定する。
上述する試験方法により評価した薬液4の固化特性に基づいて、薬液4の配合やゲルタイムを決定する。
【0021】
(第2の工程)
第2の工程では、地盤1の対象領域に、薬液4を注入するための注入孔2を複数削孔する。
【0022】
該注入孔2は、図2に示すように、地盤1に薬液4を注入した際に浸透範囲1aの一部が重なるような離間間隔Lを設けて、直交するx方向及びy方向の2方向に、複数を並列配置している。なお、該注入孔2は、必ずしも上述するような並列配置とする必要はなく、隣り合う注入孔2各々より薬液4を注入した際の浸透範囲1aの一部が重なり合うような離間間隔Lをもって、かつ浸透範囲1aが、地盤1の対象領域全体を網羅できるように配置されれば、その配置形状や数量は何れでも良い。
なお、薬液4の浸透範囲1aは、適宜目標とする範囲を設定しても良いが、第1の工程で実施した薬液4の固化特性の評価結果を基に、1回の注入作業で最も効率的な浸透範囲1を推定し、該浸透範囲1aに応じて注入孔2の離間間隔Lや数量を決定しても良い。
【0023】
(第3の工程)
第3の工程では、注入速度をモニタリングしながら、地盤1に割裂を生じさせることのない範囲の一定注入圧力で、前記注入孔2から対象とする地盤1に薬液4を注入する。
【0024】
このとき、対象とする地盤1への薬液4の一定注入圧力量は、第1の工程で評価した薬液4の固化特性に係る評価結果をもとに、最適な注入圧力を決定しておくこととする。本実施の形態では、注入装置6に、注入圧力制御機構9を備えているため、注入圧力が決定量から逸脱しないよう、随時注入圧力量を自動調整しながら薬液4の注入を実施するものである。
しかし、注入圧力制御機構9が備えられていない注入装置20を用いる場合には、薬液4の注入圧力をモニタリングし、一定に保持するよう調整しながら、薬液4の注入を実施する必要がある。
【0025】
以下に、薬液4の注入圧力をモニタリングすることのできる注入圧力測定装置15を示すとともに、該注入圧力測定装置15を用いた注入圧力の調整方法を詳述する。
なお、図3に示すように、前記注入装置20は、薬液4を貯留する貯液槽11と、薬液4を注入孔2に供給する注入ホース14と、貯液槽11内の薬液4を注入ホース14に送り出すポンプ21を備えている。
【0026】
図3に示すように、注入圧力測定装置15は、注入圧力検知部16と圧力計測装置18を備えている。該注入圧力検知部16は、注入孔2の内方に配置されるものであり、その先端には圧力変換器17が備えられている。該圧力変換器17は、箔歪みゲージを変換素子として、前記注入孔2の内方で注入ホース14より射出される薬液4の注入圧力を検知するものである。これら圧力変換器17を備えた注入圧力検知部16は、地上に配置されている圧力計測装置18に電気接続されており、該圧力計測装置18において、注入圧力検知部16からの電気信号に基づいて圧力変換器17近傍における注入圧力の経時変化を計測するものである。
なお、注入圧力測定装置15は、必ずしも上述する構成にこだわるものではなく、前記注入孔2の内方における薬液4の注入圧力量、及び注入圧力量の経時的な変化率を把握できる構成であれば、何れを用いても良い。
【0027】
これら注入圧力測定装置15は、圧力計測装置18が地上に配置され、注入孔2の内方に注入圧力検知部16が挿入される。このとき、該注入孔2にはシールグラウト3が充填されており、注入圧力検知部16は、注入装置20の注入ホース14とともに、該シールグラウト3中に埋設されている。また、前記注入ホース14には、側面に複数の薬液注入バルブ22が備えられて、該薬液注入バルブ22から薬液4が注入孔2の内方へ射出する構成となっており、注入圧力検知部16の圧力変換器17は、該薬液注入バルブ22と近接する高さ位置に配置されている。
【0028】
このように配置された注入圧力測定装置15を用いた注入圧力の測定方法は、注入ホース14より薬液4が地盤1に注入されると、各薬液注入バルブ22から注入された薬液4が、シールグラウト3及び地盤1中に浸透し、注入圧力検知部16に、薬液4が到達する。注入圧力検知部16は、注入ホース14の薬液注入バルブ22から射出される薬液4の注入圧力をその薬液注入バルブ22附近で直接測定し、圧力計測装置18に入力する。すると、圧力計測装置18は、注入圧力の測定値に対応する電気信号に基づいて、注入圧力検知部16での注入圧力の経時変化を計測する。
【0029】
したがって、薬液4の注入圧力量の調整方法は、上述する方法により測定された注入孔2における薬液4の注入圧力の経時変化を用いて、変化率の絶対値が所定の変動範囲を逸脱した場合に、薬液4の注入流量を調整することにより、一定注入圧力量を保持するものである。
ところで、薬液4の注入圧力に係る経時変化率の絶対値を用いる構成は、例えば、薬液4の注入作業中の地盤1に割裂が生じると、割裂が生じる直前で注入圧力が上昇した後、生じた該割裂に瞬間的に多量の薬液4が流れ込むため、注入圧力が瞬時に低下し、注入時間に対する注入圧力の変化(経時変化)の割合(変化率)が、割裂が生じる以前の浸透注入の範疇での変化率を大きく下回る。また、その割裂脈が進展しなくなると、注入圧力は再び安定するという現象が生じる。
したがって、注入時間に対する注入圧力の変化(経時変化)の割合(変化率)の絶対値が、割裂が生じる以前の浸透注入の範疇での変化率の最大値を越えなければ、割裂の発生や生じた割裂の拡大を抑制することができるものである。
【0030】
ここで、対象とする地盤1で割裂が生じるないような注入圧力の変化率の絶対値は、第1の工程で薬液4の固化特性を評価する際に、上記注入圧力測定装置15を用いて、割裂が生じるまでの注入時間と注入圧力の関係を測定しておき、割裂が生じる以前の注入圧力の経時変化の変化率の最大値を把握しておくことにより決定する。
【0031】
なお、これら薬液4の注入流量を調整することにより、一定注入圧力量を保持する方法は、薬液4の注入流量の調整を、例えば、図3に示すように、該圧力計測装置18及び注入装置20の両者に連動した薬液4の注入流量を制御する制御装置19を用いればよい。
該制御装置19は、圧力計測装置18及び注入装置20のポンプ21の両者に通信接続されており、圧力計測装置18から入力された注入圧力の経時変化に基づいて、注入圧力量が所定の変動範囲を逸脱した際には、ポンプ21の薬液4の圧送流量を調整し、薬液4の注入流量を調整するものである。
【0032】
(第4の工程)
第4の工程では、注入圧力が地盤1に割裂を生じさせることのない範囲内に保持された状態において、注入速度が所定値まで低下した時点で薬液4の注入を終了し、地盤1に浸透した施工済み薬液5を養生する。
これと並行して、施工済み薬液5と、浸透範囲が重ならない他の注入孔2から対象とする地盤1に、第3の工程と同様の手順で薬液4を注入する。
【0033】
ここで、地盤1への薬液4の注入を終了する際の基準となる注入速度は、対象となる地盤1に懸念される導水勾配(地下水流等)が存在する場合やその数値等の施工条件、及び薬液4の注入目的によって異なるが、その数値が薬液4の初期注入速度の1/4〜1/10の範囲内まで低下した時点を目安として決定する。
これは、図4に示すように、地盤1に浸透した施工済み薬液5の粘度がある程度上昇し始めると、時間を追うごとに、粘度の上昇が急速化するため、地盤1内での浸透性及び流動性も低下し、注入速度も急速に低下しやすいことを考慮したものである。
【0034】
ところで、上述する方法により薬液4の注入を終了した注入孔2は、所定の強度に固化するまで養生することとなるが、該注入孔2には、図5に示すように、液位保持装置23が配置されている。
該液位保持装置23は、薬液4が貯留されている貯液槽24と、該貯液槽24と注入孔2の両者に連通する注入管25により構成されている。これらは、養生中の注入孔2から施工済み薬液5に対して、常時一定の液圧を作用させることを目的に設置されるものであり、施工済み薬液5の液圧が減少した場合には、注入管25を介して貯液槽24から新たに薬液4を供給するものである。
【0035】
このような構成は、施工済み薬液5の流動性がなくなるまで、注入孔2に薬液4を補給し続けて一定の液圧を作用させることにより、図5に示すように、対象となる地盤1の一部に施工済み薬液5の漏出部位Aが生じている場合でも、隙間のない一体化した改良体を造成することができるものである。
なお、該液位保持装置23は、必ずしも上述する構成にこだわるものではなく、施工済み薬液5に対して、常時一定の液圧を作用させることの可能な構成であれば、何れの構成を用いても良い。
【0036】
一方、所定の注入孔2への薬液4の注入作業が終了した後、新たに他の注入孔2へ薬液4の注入作業を実施するが、浸透範囲1aが互いに重なることのない注入孔2を選定した上で作業を実施する。これは、前記薬液4注入後の間もない浸透範囲1aでは、施工済み薬液5のゲル化が進行中の過程であるため、施工済み薬液5の強度、粘度が徐々に増加している段階にある。この段階で、浸透範囲1aの一部が重なり合う隣接する注入孔2に対して薬液4を注入すると、施工済み薬液5に注入圧力を加えることとなるため、この注入圧力により粘度増加途上にある施工済み薬液5が、流動するおそれが生じるためである。
したがって、新たに薬液4の注入作業を実施する他の注入孔2は、浸透範囲1aが互いに重なる隣り合う注入孔2に対して、連続して注入作業を実施することがなければ、何れの位置の注入孔2に対して注入作業を実施しても良い。
【0037】
(第5の工程)
第3の工程及び第4の工程を繰り返し、削孔したすべての注入孔2より対象となる地盤1に対して薬液4を注入する。
本実施の形態では、図2に示すように、前記注入孔2に対する薬液4の注入作業を、1’→2’→・・・→23’→24’という具合に、1箇所おきに位置する注入孔2に対して順を追って実施している。しかし、薬液4の注入作業を実施する順序は、必ずしもこれにこだわるものではなく、第4の工程で詳述したように、浸透範囲1aが互いに重なる注入孔2に対して連続して注入作業を実施することがなければ、何れの順序で注入孔2に対して注入作業を実施しても良い。
【0038】
ここで、前記浸透範囲1aに浸透している施工済み薬液5の養生期間は、注入終了後から少なくとも1回の注入孔2への薬液4の注入時間分を、確実に確保できれば十分である。したがって、既に薬液4の注入が終了している注入孔2と隣り合う注入孔2への注入作業は、1回以上注入作業の順番を遅らせて実施することとする。
【0039】
なお、本実施の形態では、1回の注入作業を1箇所の注入孔2で実施したが、必ずしもこれにこだわるものではなく、例えば、図2に示すように、対角線上の両隅に位置する2箇所の注入孔2a、2bに対して注入作業を同時に実施する等、地盤1中に薬液4を注入したことにより生じる、地下水位の変動等の地盤1の変状の影響を受けることのない、十分な離間距離を確保した場所に位置する複数の注入孔2に対して、同時に注入作業を実施しても良い。
【0040】
上述する構成によれば、あらかじめ薬液4の固化特性を実大モデルの浸透試験装置を用いて評価することから、注入作業時における固化特性との相違が小さいため、実注入作業時の計画変更を減少することが可能となる。
また、注入圧力が地盤1に割裂を生じさせることのない範囲内に保持された状態において、前記薬液4のゲル化で粘度が実際に上昇したことを示す注入速度に低下するまで薬液4の注入を実施するため、薬液4の浸透性能を最大限に発揮でき、注入孔2各々で効果な注入作業を実施することが可能となる。
【0041】
注入作業時には、一定の注入圧力下において、もしくは注入圧力を一定の範囲内に収めるよう調整しながら注入速度をモニタリングすることから、注入時間、注入速度、及び注入圧力の測定データに基づいて、実注入作業時の薬液4の固化特性を把握することができ、薬液4の配合や、ゲルタイムや注入時間、注入孔2の間隔等を含めた注入作業に係る諸条件を、注入目的や施工条件に応じて適宜効率的な数値に設定することが可能となる。
【0042】
所定の注入孔2への薬液4の注入作業が終了した後、新たに他の注入孔2へ薬液4の注入作業を実施する場合には、浸透範囲1aが互いに重ならない注入孔2に対して注入作業を実施することから、ゲル化の進行過程にある浸透範囲1aに浸透している施工済み薬液5に対して、注入圧力が加わることがないため、粘度増加途上にある施工済み薬液5の流動を抑制し、十分な強度や粘度を発現することが可能となる。
【0043】
薬液4の注入を終了した注入孔2において、施工済み薬液4に常時一定の液圧を作用させることから、浸透範囲1aに浸透している施工済み薬液5の流動性がなくなるまで、注入孔2に薬液4を補給し続けることにより、対象となる地盤1の一部に施工済み薬液5の漏出部位が生じている場合でも、隙間のない一体化した改良体を造成することが可能となる。
【0044】
【発明の効果】
請求項1記載の地盤への注入液の注入方法によれば、地盤改良に好適な注入液を地盤に注入する地盤への注入液の注入方法であって、地盤に前記注入液を注入した際の固化特性を評価し、対象とする地盤に適した注入液の配合を決定する第1の工程と、前記注入液を地盤に注入した際の浸透範囲の一部が重なるような離間間隔をもって、浸透範囲が地盤の対象領域を網羅するように、複数の注入孔を鉛直に削孔する第2の工程と、注入速度をモニタリングしながら、前記注入孔から地盤に注入液を、地盤に割裂を生じさせることのない範囲の一定注入圧力で注入する第3の工程と、注入速度が所定値まで低下した時点で注入を終了し、地盤に浸透した注入液を養生するとともに、これと浸透範囲が重ならない他の注入孔から地盤に、第3の工程と同様の手順で注入液を注入する第4の工程と、第3の工程及び第4の工程を繰り返し、すべての注入孔より地盤に対して注入液を注入する第5の工程によりなる。
【0045】
これにより、あらかじめ薬液の固化特性を実大モデルの浸透試験装置を用いて評価することから、注入作業時における固化特性との相違が小さいため、実注入作業時の計画変更を減少することが可能となる。
また、注入圧力が地盤に割裂を生じさせることのない範囲内に保持された状態において、前記薬液のゲル化で粘度が実際に上昇したことを示す注入速度に低下するまで薬液の注入を実施するため、薬液4の浸透性能を最大限に発揮でき、注入孔各々で効果な注入作業を実施することが可能となる。
【0046】
注入作業時には、一定の注入圧力下において、もしくは注入圧力を一定の範囲内に収めるよう調整しながら注入速度をモニタリングすることから、注入時間、注入速度、及び注入圧力の測定データに基づいて、実注入作業時の薬液の固化特性を把握することができ、薬液の配合や、ゲルタイムや注入時間、注入孔間隔等を含めた注入作業に係る諸条件を、注入目的や施工条件に応じて適宜効率的な数値に設定することが可能となる。
【0047】
所定の注入孔への薬液の注入作業が終了した後、新たに他の注入孔へ薬液の注入作業を実施する場合には、浸透範囲が互いに重ならない注入孔に対して注入作業を実施することから、ゲル化の進行過程にある浸透範囲に浸透している施工済み薬液に対して、注入圧力が加わることがないため、粘度増加途上にある施工済み薬液の流動を抑制し、十分な強度や粘度を発現することが可能となる。
【0048】
請求項2記載の地盤への注入液の注入方法によれば、第3の工程で、注入圧力をモニタリングしながら、地盤への前記注入液の注入を実施し、注入液の注入流量を増減させて、経時変化から算定されるを注入時の圧力の変化率の絶対値を所定値内に収めることにより、一定注入圧力を保持する。
【0049】
これにより、所定の注入孔への薬液の注入作業が終了した後、新たに他の注入孔へ薬液の注入作業を実施する場合には、浸透範囲が互いに重ならない注入孔に対して注入作業を実施することから、ゲル化の進行過程にある浸透範囲に浸透している施工済み薬液に対して、注入圧力が加わることがないため、粘度増加途上にある施工済み薬液の流動を抑制し、十分な強度や粘度を発現することが可能となる。
【0050】
請求項3記載の地盤への注入液の注入方法によれば、第4の工程で、注入液の注入が終了した注入孔に、液圧を一定に作用させながら、地盤に浸透した注入液を養生固化する。
【0051】
これにより、薬液の注入を終了した注入孔において、施工済み薬液に常時一定の液圧を作用させることから、浸透範囲に浸透している施工済み薬液の流動性がなくなるまで、注入孔に薬液を補給し続けることにより、対象となる地盤の一部に施工済み薬液の漏出部位が生じている場合でも、隙間のない一体化した改良体を造成することが可能となる。
【図面の簡単な説明】
【図1】本発明に係る地盤への注入液の注入方法に用いる注入装置を示す図である。
【図2】本発明に係る地盤への注入液の注入方法に用いる注入孔の配置状況を示す図である。
【図3】本発明に係る地盤への注入液の注入方法に用いる注入圧力測定装置を示す図である。
【図4】本発明に係る注入液のゲルタイムと粘度の関係を示すグラフである。
【図5】本発明に係る地盤への注入液の注入方法に用いる液位保持装置を示す図である。
【符号の説明】
1 地盤
2 注入孔
3 シールグラウト
4 薬液
5 施工済み薬液
6 注入装置
7 加圧槽
8 コンプレッサ
9 注入圧力制御機構
10 補給装置
11 貯液槽
12 補給制御機構
13 液量検出器
14 注入ホース
15 注入圧力測定装置
16 注入圧力検知部
17 圧力変換器
18 圧力計測装置
19 制御装置
20 注入装置
21 ポンプ
22 薬液注入バルブ
23 液位保持装置
24 貯液槽
25 注入管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for injecting an injection solution into the ground, which is suitable when applying a slow-binding chemical solution to a target ground in the ground improvement method.
[0002]
[Prior art]
Conventionally, a method of injecting a chemical solution into the ground to be improved has been generally known for ground improvement.In particular, the importance of a method of penetrating and injecting a slow-setting chemical solution with a long gel time into the ground has been recognized. Patent Document 1 and Patent Document 2 devise a ground injection method at a low injection speed in consideration of using a slow-release chemical solution having a long gel time. In these ground injection methods, in order to ensure that the chemical solution penetrates into the target improvement range, it is essential to maintain the fluidity of the chemical solution during the injection period, and to apply the appropriate gel time chemical solution to the appropriate pressure and time. It is important to inject with.
[0003]
In addition, as shown in Patent Document 3, in the ground injection method using a chemical solution having an extremely long gel time in consideration of the creation of a large-diameter improved body, it is important to set a more precise gel time, that is, to properly mix the chemical solution.
Therefore, in order to assist in the proper formulation of the chemical solution, it is conceivable to apply a method for measuring the solidification characteristics of the chemical solution as shown in Patent Document 4.
[0004]
[Patent Document 1]
JP 2000-045259 A
[Patent Document 2]
JP 2002-363967 A
[Patent Document 3]
JP 2003-317436 A
[Patent Document 4]
JP 11-37997 A
[0005]
[Problems to be solved by the invention]
However, in order to measure the solidification characteristics of chemicals, the actual injection conditions are modeled using a large-scale test device, so a huge amount of on-site samples and chemicals are required to conduct the test. It is difficult to carry out the test.
In addition, when the ground conditions and the execution conditions such as the injection pressure are uncertain, the reliability of the test results is low even if the test is performed under the predicted conditions.
In this way, in reality, it is difficult to even evaluate the gel time in the chemical solution, which is the most basic of the injection plan, and in order to set so that a chemical solution with an appropriate gel time can be injected at an appropriate pressure and time according to the enforcement conditions There are many challenges.
[0006]
In view of the above circumstances, an object of the present invention is to provide a method for injecting an injection solution into the ground, which injects the injection solution into the ground while setting injection conditions reasonably and efficiently according to the injection state of the injection solution. It is said.
[0007]
[Means for Solving the Problems]
The method for injecting an injection solution into the ground according to claim 1 is a method for injecting an injection solution into the ground for injecting an injection solution suitable for improving the ground, and solidifying when the injection solution is injected into the ground. The first step of evaluating the characteristics and determining the composition of the infusion solution suitable for the target ground, and the infiltration range with a spacing interval that overlaps a part of the infiltration range when the infusion solution is injected into the ground The second step of drilling a plurality of injection holes vertically so as to cover the target area of the ground, and the injection rate from the injection hole to the ground and splitting the ground while monitoring the injection speed The third step of injecting at a constant injection pressure in a non-existing range, and the injection is terminated when the injection rate drops to a predetermined value, curing the infusion solution that has penetrated the ground, and the infiltration range does not overlap From the other injection hole to the ground, the same as the third step The fourth step of injecting the injection solution according to the above procedure, the third step and the fourth step are repeated, and the fifth step of injecting the injection solution into the ground from all the injection holes is configured. It is a feature.
[0008]
The method for injecting the injection liquid into the ground according to claim 2 is the third step, injecting the injection liquid into the ground while monitoring the injection pressure, increasing or decreasing the injection flow rate of the injection liquid, A constant injection pressure is maintained by keeping the absolute value of the rate of change in pressure at the time of injection within a predetermined value calculated from the change over time.
[0009]
The method of injecting the injection liquid into the ground according to claim 3 is a fourth step in which the injection liquid that has penetrated the ground is cured and solidified while the liquid pressure is kept constant in the injection hole where the injection of the injection liquid has been completed. It is characterized by doing.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method for injecting an injection solution into the ground according to the present invention will be described in detail with reference to FIGS. The method of injecting the injection liquid into the ground according to the present invention is performed by monitoring the injection speed of the injection liquid whose composition has been determined after evaluating the solidification characteristics at a constant pressure within a range that does not cause splitting of the ground. The injection is terminated when the injection rate drops to a predetermined value, and the injection is repeated in the same procedure in the ground area where the injection solution has not penetrated, so that the ground is not split. Effective injection is performed.
In this embodiment, a slow-setting chemical solution that loses gel time, that is, fluidity and takes a long time until the viscosity rapidly increases is used as an injection solution to be injected into the ground. Any injection solution may be used as long as it is suitable for ground improvement.
[0011]
The injection of the chemical solution 4 to the ground 1 uses an injection device 6 that can inject the chemical solution 4 having a composition suitable for ground improvement into the target ground 1 under pressure, and in this embodiment, The injection device 6 having an injection pressure control mechanism 9 capable of controlling the injection pressure is used.
[0012]
As shown in FIG. 1, the injection device 6 includes a pressurizing tank 7 that stores a pressurized chemical solution 4, a compressor 8 that pressurizes the inside of the pressurizing tank 7, and the pressurizing tank 7. An injection pressure control mechanism 9 that controls the amount of injection pressure of the chemical solution 4 by controlling the internal pressure, a supply device 10 for supplying the chemical solution 4 to the pressurizing tank 7, and an injection hose that injects the chemical solution 4 into the ground 1. 14 is provided. The replenishing device 10 includes a replenishment control mechanism 12, a liquid amount detector 13, and a liquid storage tank 11 that stores the chemical liquid 4 for replenishment.
[0013]
The injection pressure control mechanism 9 attached to the pressurizing tank 7 controls the replenishing device 10 so as to maintain the liquid level in the pressurizing tank 7 at a desired pressure, and replenishes the chemical liquid 4. The pressure drop in the pressurization tank 7 and the pressure increase in the pressurization tank 7 accompanying the replenishment of the chemical solution 4 are detected, and the compressor 8 is controlled to control the pressure in the pressurization tank 7. It is controlled so as to be kept constant at all times.
[0014]
That is, the injection device 6 continues the chemical solution 4 in the pressurization tank 7 to the ground 1 via the injection hose 14 while keeping the pressure of the pressurization tank 7 constant by the injection pressure control mechanism 9 as described above. The chemical solution 4 having a constant flow rate is injected at a constant rate by injecting under pressure.
The amount of injection pressure to the ground 1 is determined by the pressure in the pressurizing tank 7 controlled by the injection pressure control mechanism 9. Therefore, the injection pressure amount of the chemical solution 4 can be easily adjusted by the injection pressure control mechanism 9, and the chemical solution 4 is grounded while maintaining a desired injection pressure amount by maintaining the pressure in the pressurizing tank 7. 1 can be stably and continuously injected.
[0015]
Note that the injection device 6 is not necessarily limited to the configuration including the injection pressure control mechanism 9 as described above, and it is possible to continuously pressurize and inject the chemical solution 4 at a constant flow rate to the ground 1 at a constant speed. Any of these may be used. In addition, the adjustment method of the chemical | medical solution 4 injection | pouring pressurization amount in this case is explained in full detail by the injection | pouring method of the chemical | medical solution to the ground shown below.
[0016]
A method of injecting the chemical solution into the ground for injecting the chemical solution 4 into the target ground 1 using the injection device 6 described above will be described below.
[0017]
(First step)
In a 1st process, the solidification characteristic at the time of inject | pouring the said chemical | medical solution 4 to the ground 1 is evaluated, and the mixing | blending of the chemical | medical solution 4 suitable for the ground 1 made into object is determined. Hereinafter, an example of a method for evaluating solidification characteristics will be described in detail, but the evaluation method is not necessarily limited to this.
[0018]
In evaluating the solidification characteristics of the chemical solution 4, first, a penetration test apparatus (not shown) that models the ground 1 into which the chemical solution 4 is to be injected is manufactured. The permeation test apparatus is manufactured to the same scale (same length) as the actual permeation distance and large enough to perform the laboratory test.
Next, from the ground configuration of the target ground 1, the infiltration shape and water permeability of the chemical solution 4 (mainly the water permeability coefficient and the layer thickness of the water permeable layer) are predicted. The injection rate q in the working process is predicted from the structure, dimensions, etc. of the injection hose 14 at the time of injection.
And the chemical | medical solution 4 is inject | poured with said injection | pouring speed | rate q with respect to said penetration test apparatus. In this case, the injection rate q is changed according to the following equation during the test when the chemical solution 4 penetrates in a layered manner in a one-dimensional penetration test using a cylindrical container, for example.
[0019]
q = q 0 r 0 / (L + r 0 )
q: Injection rate at an arbitrary time during the test period
q 0 : Injection rate at the start of the test corresponding to the injection rate at the working site
L: Length of penetration of chemical
r 0 : Equivalent cavity radius of injection hole
[0020]
The chemical solution 4 is injected at the above speed, and the injection of the chemical solution 4 is stopped when the chemical solution 4 penetrates to the target penetration distance. Subsequently, the gel time of the chemical | medical solution 4, the strength deformation characteristic of the solidified soil, etc. are measured about the specimen (mixture of soil and chemical | medical solution) of the filling part of the chemical | medical solution 4 of the outflow side of an osmosis | permeation test apparatus. Moreover, the chemical | medical solution 4 and the non-penetrating chemical | medical solution 4 after making the soil penetrate | infiltrate a predetermined length measure the property (pH) change of the chemical | medical solution 4, and measure the property change of solidified soil.
Based on the solidification characteristics of the chemical solution 4 evaluated by the test method described above, the composition and gel time of the chemical solution 4 are determined.
[0021]
(Second step)
In the second step, a plurality of injection holes 2 for injecting the chemical solution 4 are drilled in the target area of the ground 1.
[0022]
As shown in FIG. 2, the injection hole 2 is provided with a spacing L so that a part of the permeation range 1 a overlaps when the chemical solution 4 is injected into the ground 1, so that two orthogonal x and y directions are provided. A plurality are arranged in parallel. The injection holes 2 are not necessarily arranged in parallel as described above, and have a separation interval L such that a part of the permeation range 1a overlaps when the chemical solution 4 is injected from each of the adjacent injection holes 2. And if the penetration | infiltration range 1a is arrange | positioned so that the whole object area | region of the ground 1 can be covered, the arrangement | positioning shape and quantity may be any.
The permeation range 1a of the chemical solution 4 may be appropriately set as a target range, but the most efficient in one injection operation based on the evaluation result of the solidification characteristics of the chemical solution 4 performed in the first step. A typical permeation range 1 may be estimated, and the separation interval L and quantity of the injection holes 2 may be determined according to the permeation range 1a.
[0023]
(Third step)
In the third step, while monitoring the injection rate, the chemical solution 4 is injected from the injection hole 2 into the target ground 1 at a constant injection pressure in a range that does not cause the ground 1 to split.
[0024]
At this time, the constant injection pressure amount of the chemical solution 4 to the target ground 1 is determined based on the evaluation result relating to the solidification characteristics of the chemical solution 4 evaluated in the first step. And In this embodiment, since the injection device 6 includes the injection pressure control mechanism 9, the injection of the chemical solution 4 is performed while automatically adjusting the injection pressure amount as needed so that the injection pressure does not deviate from the determined amount. is there.
However, when using the injection device 20 that is not provided with the injection pressure control mechanism 9, it is necessary to monitor the injection pressure of the chemical solution 4 and perform the injection of the chemical solution 4 while adjusting the pressure so as to keep it constant.
[0025]
Below, while showing the injection pressure measuring device 15 which can monitor the injection pressure of the chemical | medical solution 4, the adjustment method of the injection pressure using this injection pressure measuring device 15 is explained in full detail.
As shown in FIG. 3, the injection device 20 injects the liquid storage tank 11 that stores the chemical liquid 4, the injection hose 14 that supplies the chemical liquid 4 to the injection hole 2, and the chemical liquid 4 in the liquid storage tank 11. A pump 21 for feeding to the hose 14 is provided.
[0026]
As shown in FIG. 3, the injection pressure measurement device 15 includes an injection pressure detection unit 16 and a pressure measurement device 18. The injection pressure detector 16 is disposed inside the injection hole 2, and a pressure transducer 17 is provided at the tip thereof. The pressure converter 17 detects the injection pressure of the chemical solution 4 injected from the injection hose 14 inside the injection hole 2 using a foil strain gauge as a conversion element. The injection pressure detection unit 16 including these pressure transducers 17 is electrically connected to a pressure measurement device 18 disposed on the ground, and the pressure measurement device 18 is based on an electrical signal from the injection pressure detection unit 16. Thus, the change over time in the injection pressure in the vicinity of the pressure transducer 17 is measured.
Note that the injection pressure measuring device 15 is not necessarily limited to the above-described configuration, and may be capable of grasping the injection pressure amount of the chemical solution 4 inside the injection hole 2 and the change rate of the injection pressure amount over time. Any of them may be used.
[0027]
In these injection pressure measurement devices 15, the pressure measurement device 18 is disposed on the ground, and the injection pressure detection unit 16 is inserted inside the injection hole 2. At this time, the injection hole 2 is filled with the seal grout 3, and the injection pressure detection unit 16 is embedded in the seal grout 3 together with the injection hose 14 of the injection device 20. The injection hose 14 is provided with a plurality of chemical solution injection valves 22 on its side surface, and the chemical solution 4 is injected from the chemical solution injection valve 22 into the injection hole 2. Sixteen pressure transducers 17 are arranged at a height position close to the chemical liquid injection valve 22.
[0028]
The method of measuring the injection pressure using the injection pressure measuring device 15 arranged in this way is that when the chemical solution 4 is injected into the ground 1 from the injection hose 14, the chemical solution 4 injected from each chemical injection valve 22 is sealed. It penetrates into the grout 3 and the ground 1, and the chemical solution 4 reaches the injection pressure detector 16. The injection pressure detection unit 16 directly measures the injection pressure of the chemical liquid 4 injected from the chemical liquid injection valve 22 of the injection hose 14 near the chemical liquid injection valve 22 and inputs it to the pressure measuring device 18. Then, the pressure measuring device 18 measures the change over time of the injection pressure in the injection pressure detection unit 16 based on the electrical signal corresponding to the measured value of the injection pressure.
[0029]
Therefore, the method for adjusting the injection pressure amount of the chemical solution 4 is based on the case where the absolute value of the rate of change deviates from the predetermined fluctuation range using the change over time of the injection pressure of the chemical solution 4 in the injection hole 2 measured by the above-described method. In addition, a constant injection pressure amount is maintained by adjusting the injection flow rate of the chemical solution 4.
By the way, the configuration using the absolute value of the rate of change over time related to the injection pressure of the chemical solution 4 occurs, for example, when splitting occurs in the ground 1 during the injection operation of the chemical solution 4, after the injection pressure increases immediately before the splitting occurs. In addition, since a large amount of the chemical solution 4 flows instantaneously into the split, the injection pressure is instantaneously reduced, and the ratio (change rate) of the injection pressure to the injection time (change over time) is the same as that of the osmotic injection before the split occurs. It is well below the rate of change in the category. In addition, when the split pulse does not progress, a phenomenon occurs in which the injection pressure is stabilized again.
Therefore, if the absolute value of the ratio (change rate) of the change in injection pressure with respect to the injection time (rate of change) does not exceed the maximum value of the rate of change in the osmotic injection category before the split occurs, the occurrence or occurrence of splitting occurs. The expansion of cracks can be suppressed.
[0030]
Here, the absolute value of the change rate of the injection pressure that does not cause splitting in the target ground 1 is determined using the injection pressure measuring device 15 when evaluating the solidification characteristics of the chemical solution 4 in the first step. It is determined by measuring the relationship between the injection time until the splitting occurs and the injection pressure, and grasping the maximum value of the change rate of the injection pressure over time before the splitting occurs.
[0031]
The method of maintaining a constant injection pressure amount by adjusting the injection flow rate of these chemical solutions 4 is adjusted by adjusting the injection flow rate of the chemical solution 4, for example, as shown in FIG. The control device 19 that controls the injection flow rate of the chemical solution 4 that is linked to both of them may be used.
The control device 19 is communicatively connected to both the pressure measuring device 18 and the pump 21 of the injecting device 20, and the injecting pressure amount fluctuates by a predetermined amount based on the change over time of the injecting pressure input from the pressure measuring device 18. When deviating from the range, the pumping flow rate of the chemical solution 4 of the pump 21 is adjusted, and the injection flow rate of the chemical solution 4 is adjusted.
[0032]
(Fourth process)
In the fourth step, the injection of the chemical solution 4 is terminated when the injection speed is reduced to a predetermined value in a state where the injection pressure is maintained within a range that does not cause the ground 1 to split, and penetrates the ground 1 The finished chemical solution 5 is cured.
In parallel with this, the chemical solution 4 is injected into the target ground 1 from the other injection hole 2 that does not overlap the infiltration range with the applied chemical solution 5 in the same procedure as the third step.
[0033]
Here, the injection speed as a reference when the injection of the chemical solution 4 to the ground 1 is terminated is the construction condition such as the case where there is a water conveyance gradient (groundwater flow or the like) that is concerned about the target ground 1 or its numerical value. Although it depends on the purpose of injection of the chemical solution 4, it is determined with reference to the time when the numerical value falls within the range of ¼ to 1/10 of the initial injection rate of the chemical solution 4.
As shown in FIG. 4, when the viscosity of the applied chemical solution 5 that has penetrated into the ground 1 starts to rise to some extent, the viscosity increases rapidly with time, so that the permeability in the ground 1 is increased. Further, it is considered that the fluidity is also lowered and the injection rate is easily lowered.
[0034]
By the way, the injection hole 2 which has finished the injection of the chemical solution 4 by the above-described method is cured until it is solidified to a predetermined strength. As shown in FIG. 23 is arranged.
The liquid level holding device 23 includes a liquid storage tank 24 in which the chemical liquid 4 is stored, and an injection pipe 25 communicating with both the liquid storage tank 24 and the injection hole 2. These are installed for the purpose of constantly applying a constant fluid pressure to the chemical solution 5 that has been applied from the injection hole 2 during curing, and when the hydraulic pressure of the chemical solution 5 that has been applied has decreased. The chemical solution 4 is newly supplied from the liquid storage tank 24 through the injection tube 25.
[0035]
Such a configuration continues to replenish the injection hole 2 with the chemical solution 4 until a fluidity of the applied chemical solution 5 disappears, and a constant fluid pressure is applied, as shown in FIG. Even if the leaked site A of the applied chemical solution 5 is generated in a part of this, an integrated improved body without a gap can be created.
The liquid level holding device 23 is not necessarily limited to the above-described configuration, and any configuration may be used as long as a constant fluid pressure can be applied to the applied chemical solution 5 at all times. May be.
[0036]
On the other hand, after the operation of injecting the chemical solution 4 into the predetermined injection hole 2 is completed, the injection operation of the chemical solution 4 is newly performed to the other injection hole 2, but the injection hole 2 in which the permeation range 1a does not overlap each other Work after selecting. This is a process in which gelation of the applied chemical solution 5 is in progress in the infiltration range 1a shortly after the injection of the chemical solution 4, so that the strength and viscosity of the applied chemical solution 5 are gradually increasing. is there. At this stage, when the chemical solution 4 is injected into the adjacent injection hole 2 where a part of the permeation range 1a overlaps, an injection pressure is applied to the applied chemical solution 5, so that the viscosity is increasing due to this injection pressure. This is because the spent chemical solution 5 may flow.
Accordingly, the other injection holes 2 for newly injecting the chemical solution 4 can be placed at any position as long as the injection operation is not continuously performed on the adjacent injection holes 2 in which the permeation ranges 1a overlap each other. An injection operation may be performed on the injection hole 2.
[0037]
(Fifth step)
The third step and the fourth step are repeated, and the chemical solution 4 is injected into the target ground 1 from all of the drilled injection holes 2.
In the present embodiment, as shown in FIG. 2, the operation of injecting the chemical solution 4 into the injection hole 2 is located every other place, such as 1 ′ → 2 ′ →... → 23 ′ → 24 ′. The injection hole 2 is carried out in order. However, the order of performing the injection operation of the chemical solution 4 is not necessarily limited to this, and as described in detail in the fourth step, the injection operation is continuously performed on the injection holes 2 where the permeation ranges 1a overlap each other. If not performed, the injection operation may be performed on the injection hole 2 in any order.
[0038]
Here, it is sufficient for the curing period of the applied chemical solution 5 that has penetrated into the infiltration range 1a to ensure at least one injection time of the chemical solution 4 into the injection hole 2 after the completion of the injection. Therefore, the injection operation into the injection hole 2 adjacent to the injection hole 2 in which the injection of the chemical solution 4 has already been completed is performed by delaying the order of the injection operations one or more times.
[0039]
In the present embodiment, one injection operation is performed at one injection hole 2, but this is not necessarily the case. For example, as shown in FIG. 2, the injection operation is located at both corners on a diagonal line. It is not affected by the deformation of the ground 1 such as the fluctuation of the groundwater level caused by injecting the chemical solution 4 into the ground 1 such as simultaneously performing the injection work on the two injection holes 2a and 2b. The injection operation may be simultaneously performed on the plurality of injection holes 2 located at a place where a sufficient separation distance is secured.
[0040]
According to the above-described configuration, since the solidification characteristics of the chemical solution 4 are evaluated in advance using a full-scale model penetration test apparatus, the plan change during the actual injection work can be changed because the difference between the solidification characteristics during the injection work is small. It becomes possible to decrease.
Further, in a state where the injection pressure is maintained within a range that does not cause splitting of the ground 1, the injection of the chemical solution 4 is continued until the injection rate is reduced to indicate that the viscosity has actually increased due to the gelation of the chemical solution 4. Therefore, the permeation performance of the chemical solution 4 can be maximized, and an effective injection operation can be performed in each of the injection holes 2.
[0041]
During the injection operation, the injection rate is monitored under a constant injection pressure or while adjusting the injection pressure to be within a certain range. Therefore, based on the measurement data of the injection time, injection rate, and injection pressure, The solidification characteristics of the chemical solution 4 at the time of the injection operation can be grasped, and various conditions relating to the injection operation including the composition of the chemical solution 4, the gel time, the injection time, the interval between the injection holes 2, etc. Accordingly, it is possible to appropriately set an efficient numerical value.
[0042]
When the injection operation of the chemical solution 4 to another injection hole 2 is newly performed after the injection operation of the chemical solution 4 to the predetermined injection hole 2 is completed, the infiltration range 1a is applied to the injection holes 2 that do not overlap each other. Since the injection operation is performed, the injection pressure is not applied to the applied chemical solution 5 penetrating into the infiltration range 1a in the process of gelation. It is possible to suppress the flow and develop sufficient strength and viscosity.
[0043]
In the injection hole 2 where the injection of the chemical liquid 4 is completed, a constant fluid pressure is always applied to the applied chemical liquid 4, so that the injected chemical liquid 5 penetrating into the infiltration range 1 a disappears until the fluidity of the applied chemical liquid 5 disappears. By continuing to replenish the chemical solution 4, it is possible to create an integrated improved body without a gap even when a leaked portion of the applied chemical solution 5 occurs in a part of the target ground 1.
[0044]
【The invention's effect】
According to the method for injecting an injection solution into the ground according to claim 1, the injection method for injecting the injection solution into the ground for injecting an injection solution suitable for improving the ground, wherein the injection solution is injected into the ground The first step of evaluating the solidification characteristics of the first and determining the composition of the injection solution suitable for the target ground, and a separation interval such that a part of the permeation range when the injection solution is injected into the ground overlap, The second step of drilling a plurality of injection holes vertically so that the infiltration range covers the target area of the ground, and the injection solution from the injection hole to the ground and the ground splitting while monitoring the injection speed The third step of injecting at a constant injection pressure in a range that does not occur, the injection is terminated when the injection speed is reduced to a predetermined value, and the infusion solution that has penetrated the ground is cured, and this and the infiltration range are From the other non-overlapping injection hole to the ground, the third work A fourth step of injecting the injection liquid in the same manner as, repeatedly third step and the fourth step, the fifth step of injecting the injection liquid to the ground than all of the injection holes.
[0045]
As a result, the solidification characteristics of the chemical solution are evaluated in advance using a full-scale model penetration test device, so there is little difference from the solidification characteristics during the injection operation, so it is possible to reduce plan changes during the actual injection operation. It becomes.
In addition, in the state where the injection pressure is maintained within a range that does not cause splitting of the ground, the injection of the chemical solution is performed until the injection rate is reduced to indicate that the viscosity has actually increased due to gelation of the chemical solution. Therefore, the penetration performance of the chemical solution 4 can be maximized, and an effective injection operation can be performed at each injection hole.
[0046]
During the injection operation, the injection rate is monitored under a constant injection pressure or while adjusting the injection pressure to be within a certain range. Therefore, based on the measurement data of the injection time, injection rate, and injection pressure, The solidification characteristics of the chemical solution during the injection work can be grasped, and various conditions relating to the injection work including the chemical composition, gel time, injection time, injection hole interval, etc. can be efficiently performed according to the injection purpose and construction conditions. It is possible to set to a numerical value.
[0047]
After completing the operation of injecting a chemical solution into a predetermined injection hole, when performing a new operation of injecting a chemical solution into another injection hole, perform the injection operation on the injection holes whose permeation ranges do not overlap each other. Therefore, since the injection pressure is not applied to the applied chemical solution that has penetrated into the penetration range in the process of gelation, the flow of the applied chemical solution that is in the process of increasing viscosity is suppressed, and sufficient strength and It becomes possible to develop the viscosity.
[0048]
According to the method for injecting an injection solution into the ground according to claim 2, in the third step, the injection solution is injected into the ground while monitoring the injection pressure, and the injection flow rate of the injection solution is increased or decreased. Thus, the constant injection pressure is maintained by keeping the absolute value of the rate of change in pressure at the time of injection within a predetermined value calculated from the change over time.
[0049]
As a result, when the injection of the chemical solution into the other injection hole is newly performed after the injection operation of the chemical solution into the predetermined injection hole is completed, the injection operation is performed on the injection holes whose permeation ranges do not overlap each other. Since the injection pressure is not applied to the applied chemical solution that has penetrated the infiltration range in the process of gelation, the flow of the applied chemical solution that is in the process of increasing viscosity is sufficiently suppressed. It becomes possible to express a sufficient strength and viscosity.
[0050]
According to the method for injecting the injection liquid into the ground according to claim 3, in the fourth step, the injection liquid that has permeated the ground is applied to the injection hole where the injection of the injection liquid has been completed while applying a constant hydraulic pressure. Curing is solidified.
[0051]
As a result, since a constant fluid pressure is always applied to the applied chemical solution in the injection hole where the injection of the chemical solution has been completed, the chemical solution is applied to the injection hole until the fluidity of the applied chemical solution penetrating the infiltration range is lost. By continuing the replenishment, it is possible to create an integrated improved body without a gap even when a leaked portion of the applied chemical liquid is generated in a part of the target ground.
[Brief description of the drawings]
FIG. 1 is a view showing an injection apparatus used in a method for injecting an injection liquid into the ground according to the present invention.
FIG. 2 is a view showing the arrangement of injection holes used in the injection method for injecting liquid into the ground according to the present invention.
FIG. 3 is a view showing an injection pressure measuring device used in the injection method for injecting liquid into the ground according to the present invention.
FIG. 4 is a graph showing the relationship between the gel time and the viscosity of the injection liquid according to the present invention.
FIG. 5 is a view showing a liquid level holding device used in the method for injecting an injection liquid into the ground according to the present invention.
[Explanation of symbols]
1 ground
2 injection hole
3 Seal grout
4 chemicals
5 Completed chemicals
6 Injection device
7 Pressurized tank
8 Compressor
9 Injection pressure control mechanism
10 Replenisher
11 Liquid storage tank
12 Supply control mechanism
13 Liquid level detector
14 Injection hose
15 Injection pressure measuring device
16 Injection pressure detector
17 Pressure transducer
18 Pressure measuring device
19 Control device
20 Injection device
21 Pump
22 Chemical injection valve
23 Liquid level holding device
24 Liquid storage tank
25 Injection tube

Claims (3)

地盤改良に好適な注入液を地盤に注入する地盤への注入液の注入方法であって、
地盤に前記注入液を注入した際の固化特性を評価し、対象とする地盤に適した注入液の配合を決定する第1の工程と、
前記注入液を地盤に注入した際の浸透範囲の一部が重なるような離間間隔をもって、浸透範囲が地盤の対象領域を網羅するように、複数の注入孔を鉛直に削孔する第2の工程と、
注入速度をモニタリングしながら、前記注入孔から地盤に注入液を、地盤に割裂を生じさせることのない範囲の一定注入圧力で注入する第3の工程と、
注入速度が所定値まで低下した時点で注入を終了し、地盤に浸透した注入液を養生するとともに、これと浸透範囲が重ならない他の注入孔から地盤に、第3の工程と同様の手順で注入液を注入する第4の工程と、
第3の工程及び第4の工程を繰り返し、すべての注入孔より地盤に対して注入液を注入する第5の工程により構成されることを特徴とする地盤への注入液の注入方法。
A method of injecting an injection solution into the ground, injecting an injection solution suitable for ground improvement into the ground,
A first step of evaluating solidification characteristics when the injection solution is injected into the ground, and determining a composition of the injection solution suitable for the target ground;
A second step of vertically drilling a plurality of injection holes so that the infiltration range covers the target area of the ground with a spacing interval such that a part of the infiltration range overlaps when the injection solution is injected into the ground. When,
A third step of injecting an injection solution from the injection hole to the ground at a constant injection pressure in a range that does not cause splitting of the ground while monitoring the injection speed;
When the injection speed drops to a predetermined value, the injection is terminated, and the injection solution that has penetrated the ground is cured, and the same procedure as in the third step is performed from another injection hole where the penetration range does not overlap with the ground. A fourth step of injecting an injection solution;
A method for injecting an injection liquid into the ground, characterized by comprising a fifth step of repeating the third step and the fourth step and injecting the injection liquid into the ground from all the injection holes.
請求項1に記載の地盤への注入液の注入方法において、
第3の工程で、注入圧力をモニタリングしながら、地盤への前記注入液の注入を実施し、注入液の注入流量を増減させて、経時変化から算定されるを注入時の圧力の変化率の絶対値を所定値内に収めることにより、一定注入圧力を保持することを特徴とする地盤への注入液の注入方法。
In the injection method of the injection liquid to the ground according to claim 1,
In the third step, the injection solution is injected into the ground while monitoring the injection pressure, the injection flow rate of the injection solution is increased or decreased, and the rate of change in pressure at the time of injection is calculated from the change over time. A method for injecting an injection solution into the ground, wherein a constant injection pressure is maintained by keeping an absolute value within a predetermined value.
請求項1または2に記載の地盤への注入液の注入方法において、
第4の工程で、注入液の注入が終了した注入孔において、液圧を一定に作用させながら、地盤に浸透した注入液を養生固化することを特徴とする地盤への注入液の注入方法。
In the injection method of the injection liquid to the ground according to claim 1 or 2,
A method for injecting an injection solution into the ground, comprising curing and solidifying the injection solution that has permeated the ground while maintaining a constant hydraulic pressure in an injection hole in which the injection of the injection solution has been completed in the fourth step.
JP2003181455A 2003-06-25 2003-06-25 Method of injecting injection liquid into ground Pending JP2005016127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003181455A JP2005016127A (en) 2003-06-25 2003-06-25 Method of injecting injection liquid into ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003181455A JP2005016127A (en) 2003-06-25 2003-06-25 Method of injecting injection liquid into ground

Publications (1)

Publication Number Publication Date
JP2005016127A true JP2005016127A (en) 2005-01-20

Family

ID=34182165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003181455A Pending JP2005016127A (en) 2003-06-25 2003-06-25 Method of injecting injection liquid into ground

Country Status (1)

Country Link
JP (1) JP2005016127A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015525314A (en) * 2012-05-23 2015-09-03 リボーガン ピーティワイ リミテッドRelborgn Pty Ltd Method for limiting the permeability of a matrix to limit the inflow of liquids and gases
JP2020133327A (en) * 2019-02-22 2020-08-31 株式会社竹中工務店 Water-shielding wall

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015525314A (en) * 2012-05-23 2015-09-03 リボーガン ピーティワイ リミテッドRelborgn Pty Ltd Method for limiting the permeability of a matrix to limit the inflow of liquids and gases
JP2020133327A (en) * 2019-02-22 2020-08-31 株式会社竹中工務店 Water-shielding wall
JP7206544B2 (en) 2019-02-22 2023-01-18 株式会社竹中工務店 impermeable wall

Similar Documents

Publication Publication Date Title
CN108519308B (en) A kind of perforation Grouting Seepage in Rockmass slurries diffusion test method
JP4756213B2 (en) A water-impervious test method at the in-situ location of the borehole plugging material, a water-imperviousness test system at the location of the borehole plugging material, a method of analyzing the hydraulic conductivity of the top of the borehole plugging material, a strength analysis method of the top of the borehole plugging material, and boring Experimental equipment for water blocking chamber for hole blocking material
JP6244280B2 (en) Unsaturated seepage characteristics analysis method by VG model
KR102210275B1 (en) Grouting method using grouting injection pattern analysis and taking action method
KR101773868B1 (en) Trace test system and method in an unsaturated zone aquifer
KR101210838B1 (en) Apparatus and method for measuring permeability of core samples using water
US9322142B2 (en) In-situ scour testing device
CN111006951A (en) Indoor grouting test device and simulated grouting test method
US5520248A (en) Method and apparatus for determining the hydraulic conductivity of earthen material
CN106018239A (en) Method and device for measuring permeability coefficients of stratums at different depths in field
JP5062574B2 (en) In-situ gel time estimation method for ground injection chemical
JP2002294685A (en) Chemical grouting construction method
JP2005016127A (en) Method of injecting injection liquid into ground
JP6556485B2 (en) Ground injection method
KR101215468B1 (en) Apparatus and method for measuring permeability of sample using carbon dioxide
JP4500231B2 (en) Method for determining strength and thickness of improved layer of backfill sand by chemical injection and experimental apparatus used therefor
CN113982552B (en) Experimental device and method for representing energy increase from crack to matrix depth
CN114577679B (en) In-situ stratum grouting test device and method based on tunnel settlement efficient treatment
JP6431194B2 (en) C. for seismic reinforcement and quality control G. S injection control chart acquisition device
JP2019015126A (en) Estimation method of strength of improved soil
CN110455693A (en) A kind of plastic concrete permeability coefficient in situ detection device
CN114136877A (en) Device and method for monitoring cementing strength of cement paste for anchor cable
JPH1137997A (en) Method for evaluating chemical grouting-solidification characteristics
JP4511400B2 (en) Determination method of strength and thickness of improved layer of backfill sand by cement-type solidifying material injection mixing
CN216765894U (en) Grouting device capable of accurately controlling pressure and pressure regulating valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Effective date: 20071106

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A02 Decision of refusal

Effective date: 20080520

Free format text: JAPANESE INTERMEDIATE CODE: A02