JP2005015442A - Aromatic carboxylic acid, its acid chloride and synthetic process - Google Patents

Aromatic carboxylic acid, its acid chloride and synthetic process Download PDF

Info

Publication number
JP2005015442A
JP2005015442A JP2003186297A JP2003186297A JP2005015442A JP 2005015442 A JP2005015442 A JP 2005015442A JP 2003186297 A JP2003186297 A JP 2003186297A JP 2003186297 A JP2003186297 A JP 2003186297A JP 2005015442 A JP2005015442 A JP 2005015442A
Authority
JP
Japan
Prior art keywords
formula
group
general formula
acid
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003186297A
Other languages
Japanese (ja)
Other versions
JP4251024B2 (en
Inventor
Hisafumi Enoki
尚史 榎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003186297A priority Critical patent/JP4251024B2/en
Publication of JP2005015442A publication Critical patent/JP2005015442A/en
Application granted granted Critical
Publication of JP4251024B2 publication Critical patent/JP4251024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new aromatic carboxylic acid and its acid chloride useful as a raw material for a condensation polymer having high heat-resistance. <P>SOLUTION: The aromatic carboxylic acid is expressed by general formula (1) (Z is a group of formula (2) or formula (3); and X is H, an alkyl or an aromatic group). The acid chloride is an acid chloride derivative of the aromatic carboxylic acid. The aromatic carboxylic acid is synthesized by coupling an eliminable group of an aromatic carboxylic acid ester having the eliminable group to a compound having an acetylene group, demethylating the carboxyl terminal of the obtained compound in the presence of an alkali metal hydroxide and treating the carboxyl terminal with an acid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、芳香族カルボン酸およびその酸塩化物誘導体、並びにそれらの合成法に関する。さらに詳しくは、高分子の原料として有用であり、中でも、耐熱性、誘電特性など電気特性および弾性率など機械的特性に優れた縮合系高分子の原料として有用な芳香族カルボン酸およびその酸塩化物誘導体並びにそれらの合成法に関する。
【0002】
【従来の技術】
一分子に2つのカルボキシル基を有する芳香族カルボン酸およびその酸塩化物は、芳香族ポリアミド樹脂、ポリアリレート樹脂、ポリベンゾオキサゾール樹脂およびポリベンゾチアゾール樹脂などの原料として用いられている。これらの樹脂は、その用途に応じて、様々な構造の樹脂が合成されており、芳香族カルボン酸およびその酸塩化物も樹脂構造に対応する様々な構造が選択され使用されている。
一方、これらの樹脂は一般的に熱可塑性の高分子であり、高い耐熱性を有していることから、高温の環境にさらされる用途に多く用いられている。また、これらの樹脂において、より耐熱性を高める手段として、熱硬化可能な置換基を導入する試みがなされており、熱硬化可能な置換基を導入した一分子に2つのカルボキシル基を有する芳香族カルボン酸およびその酸塩化物の技術例が開示されている(例えば、特許文献1、特許文献2および非特許文献1参照。)が、低誘電性、機械的強度における改善が、さらに望まれている。
【0003】
【特許文献1】
特開2002−201158公報
【特許文献2】
特開2002−265414公報
【非特許文献1】
B.J.Jensen and P.M.Hergenrother, Journal of Polymer Science: Polymer Chemistry Edition, Vol. 23, 2233−2246 (1985).
【0004】
【発明が解決しようとする課題】
本発明は、上記用途に適した芳香族カルボン酸およびその酸塩化物誘導体並びにそれらの合成法を提供することを目的とする。
【0005】
【課題を解決するための手段】
すなわち、本発明は、
1. 一般式(1)で表される芳香族カルボン酸、
【0006】
【化15】

Figure 2005015442
[式(1)中、Zは式(2)または式(3)を示す。]
【0007】
【化16】
Figure 2005015442
[式(2)および式(3)中、Xは、水素、アルキル基又は芳香族基を示す。]
【0008】
2. 一般式(4)で表される芳香族カルボン酸の酸塩化物誘導体、
【0009】
【化17】
Figure 2005015442
[式(4)中、Zは式(2)または式(3)を示す。]
【0010】
【化18】
Figure 2005015442
[式(2)および式(3)中、Xは、水素、アルキル基又は芳香族基を示す。]
【0011】
3. 一般式(5)で表される芳香族カルボン酸エステル、
【0012】
【化19】
Figure 2005015442
[式(5)中、Zは式(6)または式(7)を示す。]
【0013】
【化20】
Figure 2005015442
[式(6)および式(7)中、Yは、ハロゲン原子を示す。]
【0014】
4. 一般式(5)で表される化合物の脱離基Yを、一般式(8)で表される化合物とカップリング反応させて得られた化合物を、アルカリ金属水酸化物存在下で処理してカルボキシル基末端を脱メチル化し、更に、カルボキシル基末端を酸処理することにより得られることを特徴とする一般式(1)で表される芳香族カルボン酸の合成法、
【0015】
【化21】
Figure 2005015442
[式(1)中、Zは式(2)または式(3)を示す。]
【0016】
【化22】
Figure 2005015442
[式(2)および式(3)中、Xは、水素、アルキル基又は芳香族基を示す。]
【0017】
【化23】
Figure 2005015442
[式(5)中、Zは式(6)または式(7)を示す。]
【0018】
【化24】
Figure 2005015442
[式(6)および式(7)中、Yは脱離基を示す。]
【0019】
【化25】
Figure 2005015442
[式(8)中、Xはトリメチルシリル基、ヒドロキシプロピル基、アルキル基又は芳香族基を示す。]
【0020】
5. 一般式(5)で表される化合物と、一般式(8)で表される化合物との反応において、遷移金属触媒を用いることを特徴とする第4項に記載の芳香族カルボン酸の合成法、
【0021】
6. 第4項又は第5項に記載の合成法により得られる一般式(1)で表される化合物または前記合成工程中でカルボキシル基末端を脱メチル化して得られる化合物を、塩素化剤で処理することにより得られることを特徴とする一般式(4)で表される芳香族カルボン酸の酸塩化物誘導体の合成法。
【0022】
【化26】
Figure 2005015442
[式(1)中、Zは式(2)または式(3)を示す。]
【0023】
【化27】
Figure 2005015442
[式(4)中、Zは式(2)または式(3)を示す。]
【0024】
【化28】
Figure 2005015442
[式(2)および式(3)中、Xは、水素、アルキル基又は芳香族基を示す。]
【0025】
【発明の実施の形態】
本発明は、一般式(1)で表される芳香族カルボン酸および一般式(4)で表される芳香族カルボン酸の酸塩化物誘導体であり、それぞれの式中において置換基Xとして、水素、アルキル基または芳香族基を有するものである。前記アルキル基としては、例えば、メチル基、エチル基、プロピル基およびブチル基などのC1〜C20のアルキル基などが挙げられ、前記芳香族基としては、例えば、フェニル基、ナフチル基、アントリル基、フェナントレン基、キノリル基およびキノキサリル基などが挙げられるが、これらに限定されるものではない。
【0026】
本発明の一般式(1)で表される芳香族カルボン酸においてZが式(2)で表される2価の基を有する芳香族カルボン酸および一般式(4)で表される芳香族カルボン酸においてZが式(2)で表される2価の基を有する芳香族カルボン酸の酸塩化物誘導体は、例えば、以下のルートによって合成することが出来る。
【0027】
【化29】
Figure 2005015442
一般式(9)中のYは脱離基を、一般式(8)及び一般式(10)中のXはトリメチルシリル基、ヒドロキシプロピル基、アルキル基又は芳香族基を、一般式(11)、一般式(12)及び一般式(13)中のXは水素、アルキル基又は芳香族基を示し、また、一般式(11)中のMはアルカリ金属を示す。
【0028】
まず、出発原料として、一般式(9)で表され、ベンゼン環上の第5位の水素が脱離基Yで置換されたフルオレン骨格を有するジカルボン酸のメチルエステル化合物を、アセチレンの片側がX基で置換された化合物(一般式(8))でカップリング反応させることによって、一般式(10)で表される化合物が得られる。前記カップリング反応において、触媒を用いると好ましく、例えば、パラジウムなどの遷移金属触媒を用いる。ただし、この時、前記脱離基Yとしては、触媒下のカップリング反応で容易に、保護基、アルキル基や芳香族基により脱離する基が好ましく、フッ素、塩素、臭素およびヨウ素などのハロゲン原子や、トリフロオロメタンスルホニロキシ基等が好ましく挙げられる。また、置換基Xとしては、一般式(11)における置換基Xを水素とする場合、保護基として働く基が挙げられ、前記保護基としては、トリメチルシリル基およびヒドロキシプロピル基等が選ばれる。また、前記置換基Xをアルキル基または芳香族基とする場合、置換基Xとしては芳香族基またはアルキル基が挙げられ、前記芳香族基としては、例えば、フェニル基、ナフチル基、アントリル基、キノキル基およびキノキサリル基等が挙げられ、前記アルキル基としては、例えば、メチル基、エチル基、プロピル基およびブチル基などのC1〜C20のアルキル基などが挙げられる。
【0029】
次に、この化合物を、塩基性アルカリ金属水酸化物を用いてアセチル基から脱メチル反応を行い、また、一般式(10)で表される化合物においてX基が保護基である場合は脱保護を同時に行い、一般式(11)で表されるフルオレン骨格を有するジカルボン酸誘導体のアルカリ金属塩が得られる。
【0030】
更に、一般式(11)で表されるジカルボン酸誘導体のアルカリ金属塩を酸処理することによって一般式(12)で表される芳香族カルボン酸を、また、一般式(11)で表されるジカルボン酸誘導体のアルカリ金属塩または一般式(12)で表される芳香族カルボン酸を塩素化剤で処理することによって一般式(13)で表される酸塩化物誘導体を得ることが出来る。
【0031】
また、本発明の一般式(1)で表される芳香族カルボン酸においてZが式(3)で表される2価の基を有する芳香族カルボン酸および一般式(4)で表される芳香族カルボン酸においてZが式(3)で表される2価の基を有する芳香族カルボン酸の酸塩化物誘導体は、例えば、以下のルートによって合成することが出来る。
【0032】
【化30】
Figure 2005015442
一般式(14)中のYは脱離基を、一般式(8)及び一般式(15)中のXはトリメチルシリル基、ヒドロキシプロピル基、アルキル基又は芳香族基を、一般式(16)、一般式(17)及び一般式(18)中のXは水素、アルキル基又は芳香族基を、また、一般式(16)中のMはアルカリ金属を表す。
【0033】
まず、出発原料として、一般式(14)で表される化合物である、ベンゼン環上の第5位脱離基Yで置換されたフルオレン骨格を有するジカルボン酸のメチルエステル化合物を用い、前記脱離基Yを、アセチレンの片側がX基で置換された化合物(一般式(8))でカップリング反応させることによって一般式(15)で表される化合物が得られる。前記カップリング反応において、触媒を用いると好ましく、前記触媒としては、例えば、パラジウムなどの遷移金属触媒が挙げられる。ただし、この時、前記脱離基Yとしては、触媒下のカップリング反応で容易にアルキル基や芳香族基により脱離する基が好ましく、フッ素、塩素、臭素およびヨウ素などのハロゲン等が好ましく挙げられる。また、置換基Xとしては一般式(16)における置換基Xを水素とする場合、保護基として働く基が挙げられ、前記保護基としては、トリメチルシリル基またはヒドロキシプロピル基等が選ばれる。また、前記置換基Xをアルキル基または芳香族基とする場合、置換基Xとしては芳香族基またはアルキル基が挙げられ、前記芳香族基としてはフェニル基、ナフチル基、アントリル基、キノキル基およびキノキサリル基等が挙げられる。
【0034】
次に、この化合物を、塩基性アルカリ金属水酸化物を用いてアセチル基から脱メチル反応を行い、また、一般式(15)で表される化合物においてX基が保護基である場合は脱保護を同時に行い、一般式(16)で表されるフルオレン骨格を有するジカルボン酸誘導体のアルカリ金属塩が得られる。
【0035】
更に、一般式(16)で表されるフルオレン骨格を有するジカルボン酸誘導体のアルカリ金属塩を酸処理することによって一般式(17)で表される芳香族カルボン酸を、また一般式(16)で表される化合物または一般式(17)で表される化合物を塩素化剤で処理することによって一般式(18)で表される酸塩化物誘導体を得ることが出来る。
【0036】
以下、製造法の例について、さらに詳細に説明する。
第一の製造例における一般式(9)で表される化合物として、4,4’−(2,7−ジブロモ−9−フルオレニリデン)ビス安息香酸ジメチル(一般式(9)においてY=Br))を用いた例としては、まず、4,4’−(2,7−ジブロモ−9−フルオレニリデン)ビス安息香酸ジメチルは、窒素、アルゴンおよびヘリウム等の不活性ガス雰囲気下において、硫酸等の酸性触媒を用いて、メタノールを加えて還流させ、メタノールと、カルボン酸として4,4’−(2,7−ジブロモ−9−フルオレニリデン)ビス安息香酸とを、エステル化反応せることにより得ることができる。前記カルボン酸としては、例えば、4,4’−(2,7−ジヨード−9−フルオレニリデン)ビス安息香酸など、脱離基Yとして、フッ素、塩素、臭素およびヨウ素などのハロゲンを有するものを用いることができる。このとき、メタノールの量は反応の平衡を生成物側に移動させるために大過剰で用いる方が望ましい。また、反応系中の水分量を少なくするために、あらかじめメタノールは蒸留しておいたほうが良い。
【0037】
次に、一般式(10)で表される化合物を得る方法としては、上記で得た4,4’−(2,7−ジブロモ−9−フルオレニリデン)ビス安息香酸ジメチルと一般式(8)で表される化合物とを、触媒存在下で、窒素、アルゴンおよびヘリウム等の不活性ガス雰囲気中で、20〜150℃の温度範囲でカップリング反応することによって反応生成物が得る。前記一般式(8)化合物は、一般式(11)における置換基Xを水素とする場合、アセチレンの片側が保護基Xで置換された化合物を用い、一般式(11)における置換基Xをアルキル基または芳香族基とする場合、アセチレンの片側が置換基Xに対応するアルキル基または芳香族基Xで置換された化合物を用いる。なお、前記カップリング反応における反応時間は特に制限されない。さらに、前記カップリング反応により得られた反応生成物に対して、濃縮および再沈殿等の方法により分離操作を施して、一般式(10)で表される化合物を得ることができる。ここで得られる化合物は、必要に応じてカラムクロマトグラフィーおよび再結晶等の方法により、精製することができる。
【0038】
一般式(8)で表されるアセチレンの片側が保護基Xで保護された化合物としては、保護基Xがアルカリ金属の水酸化物で脱保護できる化合物であれば制限はないが、保護基Xとしてトリメチルシリル基を有するトリメチルシリルアセチレンや、ヒドロキシプロピル基を有する3−メチル−1−ブチン−3−オールが好適である。一般式(8)で表されるアセチレンの片側がアルキル基または芳香族基Xである化合物としては、エチニルベンゼン、エチニルナフタレン、エチニルアントラセン、エチニルキノリン、エチニルキノキサリン、1−ブチン、1−ペンチン、3,3−ジメチル−1−ブチンおよび1−ヘキシン等が挙げられる。一般式(8)で表される化合物は、一般式(9)で表される化合物に対して計算上は1当量倍で十分であるが、反応を完全に進行させるために1から2当量倍の範囲で添加量を調節すると良い。
【0039】
前記カップリング反応に用いる触媒としては、通常、炭素−炭素結合を形成しうる触媒系であれば特に制限無く用いることができるが、例えば、ジクロロビス(トリフェニルホスフィン)パラジウムとヨウ化銅およびトリフェニルホスフィンからなる触媒系を用いることが望ましい。ジクロロビス(トリフェニルホスフィン)パラジウムの添加量としては、特に限定されないが、一般式(10)で表される化合物に対して、0.1から1mol%、トリフェニルホスフィンは、ジクロロビス(トリフェニルホスフィン)パラジウムに対して1から20当量倍、ヨウ化銅は1から5当量倍の間である。
【0040】
前記カップリング反応において用いる溶媒としては、反応時に発生する酸を捕捉して触媒反応を促進するためにアミン系の溶媒が挙げられる。かかる溶媒としては、例えば、ジエチルアミン、トリエチルアミン、ブチルアミンおよびトリブチルアミン等の3級アミン類、ピリジンおよびピペリジン等の環状アミン類が挙げられる。これらの溶媒は単独、又は2種以上を組み合わせて用いることができる。前記溶媒の使用量としては、特に特定されないが、原料に対して2から50重量倍を用いる。また、これらの溶媒は、副反応や触媒の失活等を防ぐために、あらかじめ蒸留しておくことが望ましい。
【0041】
次に、一般式(11)で表されるフルオレン骨格を有するジカルボン酸誘導体のアルカリ金属塩を得る方法としては、一般式(10)で表される化合物を、溶媒中、アルカリ金属水酸化物存在下で処理することによって、アセチル基の脱メチル反応を行い、また、一般式(10)で表される化合物において、X基が、トリメチルシリル基およびヒドロキシプロピル基等の保護基の場合、エチニル基の脱保護も同時に行うことにより、反応生成物を得る。この時、反応温度および反応時間は、特に制限されないが、反応温度については、室温ないし溶媒の還流温度の範囲で行うと良い。得られた反応生成物を、冷却により析出した結晶を分離し、メタノール、エタノール、ブタノールおよびイソプロパノール等のアルコール系溶媒で洗浄し、その後、乾燥することで、一般式(11)で表されるフルオレン骨格を有するジカルボン酸のアルカリ金属塩を得ることができる。
【0042】
前記脱メチル反応におけるアルカリ金属水酸化物としては、水酸化カリウムおよび水酸化ナトリウムが好ましく、その添加量としては、一般式(10)で表される化合物に対して3当量倍以上であり、これより多くても差し支えない。
【0043】
前記脱メチル反応における反応溶媒としては、アルカリ金属水酸化物と反応しうるエステル類以外であれば、特に制限はないが、アルカリ金属水酸化物の溶解性が高い、メタノール、エタノール、ブタノールおよびイソプロパノール等のアルコール系溶媒が好ましい。溶媒量としては、特に制限されないが、操作性の問題から、フルオレン骨格を有するジカルボン酸ジメチルエステルに対して5から50重量倍を用いるのが良い。
【0044】
一般式(12)で表される芳香族カルボン酸は、上記で得られたフルオレン骨格を有するジカルボン酸誘導体のアルカリ金属塩(一般式(11))を、水に溶解し、塩酸、硫酸および硝酸等の酸を用いて、好ましくはpH1まで酸性化処理することによって、析出物を得て、これを濾取し、洗浄し、乾燥することにより得ることができる。この場合、強酸性下に長時間曝しておくと、エチニル部位が付加反応や重合等の副反応を受ける場合があるので、短時間で処理することが望ましい。
【0045】
一般式(13)で表される前記カルボン酸の酸塩化物誘導体は、上記で得られたフルオレン骨格を有するジカルボン酸誘導体のアルカリ金属塩(一般式(11))を、溶媒中または、過剰量の塩素化剤を溶媒として用い、0〜70℃の温度範囲で反応させた後、溶媒を留去し、得られた固形物を溶媒で洗浄し、更に再結晶させることで、得ることができる。また、一般式(11)で表されるフルオレン骨格を有するジカルボン酸誘導体アルカリ金属塩の代わりに、一般式(12)で表される芳香族カルボン酸を用いても良い。
【0046】
前記塩素化剤としては、塩化チオニル等が好ましく、塩素化剤の使用量としては、一般式(11)で表されるフルオレン骨格を有するジカルボン酸誘導体のアルカリ金属塩に対して、2当量倍以上であり、特に上限はない。また、溶媒を用いない場合には、10当量倍以上の大過剰で用いても差し支えない。
【0047】
前記酸塩化物誘導体を得る反応における溶媒は、特に限定されるものではないが、例えば、ベンゼン、トルエンおよびキシレン等の芳香族炭化水素、ペンタン、ヘキサン、シクロヘキサンおよび石油エーテル等の炭化水素、ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタンおよびクロロベンゼン等の塩素化溶媒が挙げられる。これらは、一般式(11)で表されるフルオレン骨格を有するジカルボン酸誘導体のアルカリ金属塩に対して、任意の量を使用できる。
【0048】
前記酸塩化物誘導体を得る反応を促進するために、N,N−ジメチルホルムアミドおよびピリジン等の塩基を添加しても良い。
また、エチニル部位での重合を抑制するために、ヒドロキノンおよびヒドロキノンモノメチルエーテル等の重合禁止剤を添加しても良い。
【0049】
第二の製造例における一般式(17)で表されるフルオレン構造を有するジカルボン酸及び一般式(18)で表されるフルオレン構造を有するジカルボン酸ジクロリドは、例えば、一般式(14)で表される4,4’−[2,7−ジブロモ−9−フルオレニリデンビス(4,1−フェニレンオキシ)]ビス安息香酸ジメチル出発物質として、上記第一の製造例に示した一般式(12)で表される芳香族カルボン酸及び一般式(13)で表される芳香族カルボン酸の酸塩化物誘導体を合成するのと同様の方法で合成することができる。
【0050】
【実施例】
以下に本発明を説明するために実施例を示すが、これによって本発明を限定するものではない。
【0051】
得られた化合物は特性評価のため、融点測定、H−NMR、13C(H)−NMR、MSの各種スペクトルの測定および元素分析を行った。各特性の測定条件は次のとおりとした。
【0052】
試験方法
(1)赤外分光分析(IR):日本電子(株)製JIR−5500型を用いて、KBr錠剤法により測定した。
(2)質量分析(MS):日本電子(株)製JMS−700型を用いてフィールド脱着(FD)法で測定した。
(3)元素分析:炭素及び水素はPERKIN ELMER社製2400型を用いて、塩素はフラスコ燃焼滴定法で測定した。
【0053】
(実施例1)
4,4’−(2,7−ジエチニル−9−フルオレニリデン)−ビス安息香酸ジクロリドの合成
(1.1)[4,4’−(2,7−ジブロモ−9−フルオレニリデン)−ビス安息香酸より4,4’−(2,7−ジブロモ−9−フルオレニリデン)−ビス安息香酸メチルの合成]
攪拌機およびジムロート冷却管を備えた500mLフラスコに、4,4’−(2,7−ジブロモ−9−フルオレニリデン)−ビス安息香酸248g(0.44mol)、メタノール500mLおよび濃硫酸10gを入れ、6時間還流させた。放冷後、蒸留水1Lに滴下し、これを5%炭酸水素ナトリウム水溶液で中和した。析出物を濾別し、蒸留水2Lで2回洗浄した後、得られた白色固体を50℃で2日間減圧乾燥し、4,4’−(2,7−ジブロモ−9−フルオレニリデン)−ビス安息香酸メチル237g(0.4mol)を得た(収率89%)。得られた生成物について、IR分析により確認のところ、メチルエステルの吸収が1730〜1715cm−1付近にあること、また、質量分析により、分子量が592であることより、目的物であることを支持していた。
【0054】
(1.2)[4,4’−(2,7−ジブロモ−9−フルオレニリデン)−ビス安息香酸メチルより4,4’−(2,7−ジ(3−ヒドロキシ−3−メチル−1−ブチニル)−9−フルオレニリデン)−ビス安息香酸メチルの合成]
温度計、ジムロート冷却管、窒素導入管および攪拌機を備えた4つ口の1リットルフラスコに、上記で得られた4,4’−(2,7−ジブロモ−9−フルオレニリデン)−ビス安息香酸メチル216g(0.365mol)、トリフェニルホスフィン2.2g(0.00838mol)、ヨウ化銅0.55g(0.00288mol)および3−メチル−1−ブチン−3−オール67.46g(0.802mol)を仕込み、窒素をフラスコ内に流した。さらに、脱水トリエチルアミン375mlおよび脱水ピリジン200mlを加え、撹拌して溶解した。1時間窒素を流し続けた後、ジクロロビス(トリフェニルホスフィン)パラジウム0.6g(0.000854mol)を素早く添加し、オイルバスで1時間加熱還流した。その後、トリエチルアミンおよびピリジンを減圧留去し、粘稠な褐色溶液を得た。これを水500mlに注ぎ、析出した固形物を濾取し、さらに水500ml、5N塩酸500ml、水500mlで各2回洗浄した。この固形物を、50℃で減圧乾燥することにより、214gの4,4’−(2,7−ジ(3−ヒドロキシ−3−メチル−1−ブチニル)−9−フルオレニリデン)−ビス安息香酸メチルを得た(収率98%)。得られた生成物について、IR分析により確認のところ、エチニル基の吸収が2260〜2190cm−1付近にあること、HO基の吸収が3550〜3200cm−1付近にあること、また、質量分析により、分子量が599であることより、目的物であることを支持していた。
【0055】
(1.3)[4,4’−(2,7−ジ(3−ヒドロキシ−3−メチル−1−ブチニル)−9−フルオレニリデン)−ビス安息香酸メチルより4,4’−(2,7−ジエチニル−9−フルオレニリデン)ビス安息香酸二カリウム塩の合成]
温度計、ジムロート冷却管および攪拌機を備えた5Lの4つ口フラスコに、n−ブタノール3Lおよび、水酸化カリウム(85%)182g(2.763mol)を仕込み、加熱還流して溶解した。これに上記で合成した4,4’−(2,7−ジ(3−ヒドロキシ−3−メチル−1−ブチニル)−9−フルオレニリデン)−ビス安息香酸メチル206g(0.344mol)を加えて、30分間加熱還流した。これを氷浴にて冷却し、析出した結晶を濾取した。この結晶を、エタノール1Lで2回洗浄し、60℃で減圧乾燥することによって、177gの4,4’−(2,7−ジエチニル−9−フルオレニリデン)ビス安息香酸二カリウムを得た(97%)。得られた生成物について、IR分析により確認のところ、HO基の吸収である3550〜3200cm−1が消失し、1置換アルキンであるエチニル基の吸収が2100〜2140cm−1付近にあること、カルボン酸アニオンの吸収が1650〜1550cm−1にあること、また、質量分析により分子量が531であること、さらに、元素分析よりKが14.5wt%(理論値14.74wt%)より、目的物であることを支持していた。
【0056】
(1.4)[4,4’−(2,7−ジエチニル−9−フルオレニリデン)ビス安息香酸二カリウム塩より4,4’−(2,7−ジエチニル−9−フルオレニリデン)ビス安息香酸の合成]
上記で得た4,4’−(2,7−ジエチニル−9−フルオレニリデン)ビス安息香酸二カリウム10.1g(0.019mol)を20mlのイオン交換水に溶解し、5C濾紙にて濾過する事によって不溶物を除去した。この濾液に5(mol/L)塩酸をpHが1になるまで撹拌しながら加えた。析出した固形物を濾取し、更にイオン交換水での洗浄、濾過を2回繰り返した。得られた固形物を50℃で減圧乾燥する事により4,4’−(2,7−ジエチニル−9−フルオレニリデン)ビス安息香酸8.6gを得た(収率99.5%)。
得られた生成物を、IR分析により確認のところ、カルボン酸の吸収が1710〜1680cm−1にあること、1置換アルキンであるエチニル基の吸収が2100〜2140cm−1付近にあること、また、質量分析により分子量が454であることより、目的物であることを支持していた。
【0057】
(1.5)[4,4’−(2,7−ジエチニル−9−フルオレニリデン)ビス安息香酸二カリウム塩より4,4’−(2,7−ジエチニル−9−フルオレニリデン)ビス安息香酸二塩化物の合成]
温度計、ジムロート冷却管および攪拌機を備えた2Lの4つ口フラスコに、4,4’−(2,7−ジエチニル−9−フルオレニリデン)ビス安息香酸二カリウム159g(0.3mol)およびクロロホルム400リットルを仕込み、0℃に冷却した。これに、塩化チオニル391g(4.5mol)を、5℃以下で1時間にかけて滴下した。その後、ジメチルホルムアミド4mlおよびヒドロキノン4gを加え、45〜50℃で3時間撹拌した。冷却後濾過して結晶を除き、結晶をクロロホルム150mlで洗浄した。濾液と洗浄液をあわせて40℃以下で減圧濃縮し、得られた残渣をジエチルエーテル200mで2回抽出濾過した。抽出液からジエチルエーテルを減圧留去することで、半固体の粗生成物を得た。これを乾燥したn−ヘキサンで洗浄し、続いてジエチルエーテルで再結晶することで28gの4,4’−(2,7−ジエチニル−9−フルオレニリデン)ビス安息香酸二塩化物を得た(収率19%)。
得られた生成物について、IR分析により確認のところ、カルボン酸塩化物の吸収が1800〜1770cm−1にあること、1置換アルキンであるエチニル基の吸収が2100〜2140cm−1付近にあること、また、質量分析により分子量が491、さらに、元素分析によるCl量が14.3(理論値14.4%)であることより、目的物であることを支持していた。
【0058】
(実施例2)
(2.1)[4,4’−(2,7−ジブロモ−9−フルオレニリデン)−ビス安息香酸メチルより4,4’−(2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン)−ビス安息香酸メチルの合成]
温度計、ジムロート冷却管、窒素導入管および攪拌機を備えた4つ口の1リットルフラスコに、実施例1と同様にして得られた4,4’−(2,7−ジブロモ−9−フルオレニリデン)−ビス安息香酸メチル216g(0.365mol)、トリフェニルホスフィン2.2g(0.00838mol)、ヨウ化銅0.55g(0.00288mol)およびエチニルベンゼン81.8g(0.802mol)を仕込み、フラスコ内に窒素を流した。さらに、脱水トリエチルアミン375mlおよび脱水ピリジン200mlを加え、撹拌溶解した。1時間窒素を流し続けた後、ジクロロビス(トリフェニルホスフィン)パラジウム0.6g(0.000854mol)を素早く添加し、オイルバスで1時間加熱して還流した。その後、トリエチルアミンおよびピリジンを減圧留去し、粘稠な褐色溶液を得た。これを水500mlに注ぎ析出した固形物を濾取し、さらに水500ml、5mol/L塩酸500mlおよび水500mlで各2回洗浄した。この固形物を、50℃で減圧乾燥することにより、227gの4,4’−[2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン]ビス安息香酸メチルを得た(収率98%)
得られた生成物について、IR分析により確認のところ、エチニル基の吸収が2260〜2190cm−1付近にあること、また、質量分析により、分子量が635であることより、目的物であることを支持していた。
【0059】
(2.2)[4,4’−(2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン)−ビス安息香酸メチルより4,4’−[2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン]ビス安息香酸二カリウム塩の合成]
温度計、ジムロート冷却管および攪拌機を備えた5Lの4つ口フラスコに、n−ブタノール3Lおよび水酸化カリウム(85%)182g(2.763mol)を仕込み、加熱還流して溶解した。これに上記で合成した4,4’−(2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン)−ビス安息香酸メチル218g(0.344mol)を加えて30分間加熱還流した。これを氷浴にて冷却し、析出した結晶を濾取した。この結晶をエタノール1リットルで2回洗浄し、60℃で減圧乾燥することによって、228gの4,4’−[2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン]ビス安息香酸二カリウム塩を得た(97%)。
得られた生成物について、IR分析により確認のところ、2置換アルキンであるエチニル基の吸収が2260〜2190cm−1付近にあること、カルボン酸アニオンの吸収が1650〜1550cm−1にあること、また、質量分析により分子量が683であること、さらに、元素分析よりKが11.6wt%(理論値11.5wt%)より、目的物であることを支持していた。
【0060】
(2.3)[4,4’−(2,7−ジ−(2−フェニルエチニル)−9−フルオレニリデン)ビス安息香酸二カリウム塩より4,4’−(2,7−ジ−(2−フェニルエチニル)−9−フルオレニリデン)ビス安息香酸の合成]
上記で得た4,4’−(2,7−ジ−(2−フェニルエチニル)−9−フルオレニリデン)ビス安息香酸二カリウム13.0g(0.019mol)を20mlのイオン交換水に溶解し、5C濾紙にて濾過することによって不溶物を除去した。この濾液に、5(mol/L)塩酸をpHが1になるまで撹拌しながら加えた。析出した固形物を濾取し、更に、イオン交換水での洗浄、濾過を2回繰り返した。得られた固形物を50℃で減圧乾燥することにより4,4’−(2,7−ジ−(2−フェニルエチニル)−9−フルオレニリデン)ビス安息香酸11.5gを得た(収率99.5%)。
得られた生成物について、IR分析により確認のところ、カルボン酸の吸収が1710〜1680cm−1にあること、2置換アルキンであるエチニル基の吸収が2260〜2190cm−1付近にあること、また、質量分析により分子量が607であることより、目的物であることを支持していた。
【0061】
(2.4)[4,4’−(2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン)ビス安息香酸二カリウム塩より4,4’−(2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン)ビス安息香酸二塩化物の合成]
温度計、ジムロート冷却管および攪拌機を備えた2Lの4つ口フラスコに、上記で得た4,4’−(2,7−ジ−(2−フェニルエチニル)−9−フルオレニリデン)ビス安息香酸二カリウム205g(0.3mol)およびクロロホルム400ミリリットルを仕込み、0℃まで冷却した。これに、塩化チオニル391g(4.5mol)を、5℃以下で1時間かけて滴下した。その後、ジメチルホルムアミド4mlおよびヒドロキノン4gを加え、45〜50℃で3時間撹拌した。冷却後濾過して結晶を除き、結晶をクロロホルム150mlで洗浄した。濾液と洗浄液をあわせて40℃以下で減圧濃縮し、得られた残渣をジエチルエーテル200mで2回抽出濾過した。抽出液からジエチルエーテルを減圧留去することで、半固体の粗生成物を得た。これを乾燥したn−ヘキサンで洗浄し、続いてジエチルエーテルで再結晶することで、7gの4,4’−(2,7−ジ−(2−フェニルエチニル)−9−フルオレニリデン)ビス安息香酸二塩化物を得た(収率19%)。
得られた生成物について、IR分析により確認のところ、カルボン酸塩化物の吸収が1800〜1770cm−1にあること、2置換アルキンであるエチニル基の吸収が2260〜2190cm−1付近にあること、また、質量分析により分子量が644、さらに、元素分析によるCl量が10.9%(理論値11.0%)であることより、目的物であることを支持していた。
【0062】
(実施例3)
4,4’−[2,7−ジブロモ−9−フルオレニリデンビス(4,1−フェニレンオキシ)]ビス安息香酸ジメチルの合成
(3.1){4,4’−[2,7−ジブロモ−9−フルオレニリデンビス(4,1−フェニレンオキシ)]ビス安息香酸より4,4’−[2,7−ジブロモ−9−フルオレニリデンビス(4,1−フェニレンオキシ)]ビス安息香酸メチルの合成}
攪拌機およびジムロート冷却管を備えた500mLフラスコに、4,4’−[2,7−ジブロモ−9−フルオレニリデンビス(4,1−フェニレンオキシ)]ビス安息香酸329g(0.44mol)、メタノール500mLおよび濃硫酸10gを入れ、6時間還流させた。放冷後、蒸留水1Lに滴下し、これを5%炭酸水素ナトリウム水溶液で中和した。析出物を濾別し、蒸留水2Lで2回洗浄した後、得られた白色固体を50℃で2日間減圧乾燥し、4,4’−[2,7−ジブロモ−9−フルオレニリデンビス(4,1−フェニレンオキシ)]ビス安息香酸メチル311g(0.4mol)を得た(収率89%)。
得られた生成物について、IR分析により確認のところ、メチルエステルの吸収が1730〜1715cm−1付近にあること、また、質量分析により、分子量が777であることより、目的物であることを支持していた。
【0063】
(3.2){4,4’−[2,7−ジブロモ−9−フルオレニリデンビス(4,1−フェニレンオキシ)]ビス安息香酸メチルより4,4’−[(2,7−ジ(3−ヒドロキシ−3−メチル−1−ブチニル)−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸メチルの合成}
温度計、ジムロート冷却管、窒素導入管および攪拌機を備えた4つ口の1リットルフラスコに、上記で得られた4,4’−[2,7−ジブロモ−9−フルオレニリデンビス(4,1−フェニレンオキシ)]ビス安息香酸メチル283g(0.365mol)、トリフェニルホスフィン2.2g(0.00838mol)、ヨウ化銅0.55g(0.00288mol)および3−メチル−1−ブチン−3−オール67.46g(0.802mol)を仕込み、フラスコ内に窒素を流した。さらに、脱水トリエチルアミン375mlおよび脱水ピリジン200mlを加え、撹拌溶解した。1時間窒素を流し続けた後、ジクロロビス(トリフェニルホスフィン)パラジウム0.6g(0.000854mol)を素早く添加し、オイルバスで1時間加熱して還流した。その後、トリエチルアミンおよびピリジンを減圧留去し、粘稠な褐色溶液を得た。これを、水500mlに注ぎ析出した固形物を濾取し、さらに、水500ml、5mol/L塩酸500mlおよび水500mlで各2回洗浄した。この固形物を、50℃で減圧乾燥することにより、280gの4,4’−[(2,7−ジ(3−ヒドロキシ−3−メチル−1−ブチニル)−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸メチルを得た(収率98%)。
得られた生成物について、IR分析により確認のところ、エチニル基の吸収が2260〜2190cm−1付近にあること、HO基の吸収が3550〜3200cm−1付近にあること、また、質量分析により、分子量が783であることより、目的物であることを支持していた。
【0064】
(3.3){4,4’−[(2,7−ジ(3−ヒドロキシ−3−メチル−1−ブチニル)−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸メチルより4,4’−[(2,7−ジエチニル−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸二カリウム塩の合成}
温度計、ジムロート冷却管および攪拌機を備えた5Lの4つ口フラスコに、n−ブタノール3リットルおよび水酸化カリウム(85%)182g(2.763mol)を仕込み、加熱還流して溶解した。これに、上記で合成した4,4’−[(2,7−ジ(3−ヒドロキシ−3−メチル−1−ブチニル)−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸メチル269g(0.344mol)を加えて、30分間加熱還流した。これを氷浴にて冷却し、析出した結晶を濾取した。この結晶を、エタノール1Lで2回洗浄し、60℃で減圧乾燥することによって、239gの4,4’−[(2,7−ジエチニル−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸二カリウム塩を得た(97%)。
得られた生成物について、IR分析により確認のところ、HO基の吸収である3550〜3200cm−1が消失し、1置換アルキンであるエチニル基の吸収が2100〜2140cm−1付近にあること、カルボン酸アニオンの吸収が1650〜1550cm−1にあること、また、質量分析により分子量が531であること、さらに、元素分析よりKが9.2wt%(理論値9.0wt%)より、目的物であることを支持していた。
【0065】
(3.4){4,4’−[(2,6−ジエチニル−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸二カリウム塩より4,4’−[(2,6−ジエチニル−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸の合成}
上記で得た4,4’−[(2,6−ジエチニル−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸二カリウム塩13.6g(0.019mol)を20mlのイオン交換水に溶解し、5C濾紙にて濾過することによって不溶物を除去した。この濾液に、5(mol/L)塩酸をpHが1になるまで撹拌しながら加えた。析出した固形物を濾取し、更にイオン交換水での洗浄、濾過を2回繰り返した。得られた固形物を50℃で減圧乾燥することにより、4,4’−[(2,6−ジエチニル−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸の合成12.1gを得た(収率99.5%)。
得られた生成物について、IR分析により確認のところ、カルボン酸の吸収が1710〜1680cm−1にあること、1置換アルキンであるエチニル基の吸収が2100〜2140cm−1付近にあること、また、質量分析により分子量が791であることより、目的物であることを支持していた。
【0066】
(3.5){4,4’−[(2,6−ジエチニル−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸二カリウム塩より4,4’−[(2,6−ジエチニル−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸二塩化物の合成}
温度計、ジムロート冷却管および攪拌機を備えた2Lの4つ口フラスコに、上記で得た4,4’−[(2,6−ジエチニル−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸二カリウム塩214g(0.3mol)およびクロロホルム400ミリリットルを仕込み、0℃に冷却した。これに塩化チオニル391g(4.5mol)を、5℃以下で1時間にかけて滴下した。その後、ジメチルホルムアミド4mlおよびヒドロキノン4gを加え、45〜50℃で3時間撹拌した。冷却後濾過して結晶を除き、結晶をクロロホルム150mlで洗浄した。濾液と洗浄液をあわせて40℃以下で減圧濃縮し、得られた残渣をジエチルエーテル200mで2回抽出濾過した。抽出液からジエチルエーテルを減圧留去することで、半固体の粗生成物を得た。これを、乾燥したn−ヘキサンで洗浄し、続いてジエチルエーテルで再結晶することで、38.5gの4,4’−[(2,6−ジエチニル−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸二塩化物を得た(収率19%)。
得られた生成物について、IR分析により確認のところ、カルボン酸塩化物の吸収が1800〜1770cm−1にあること、1置換アルキンであるエチニル基の吸収が2100〜2140cm−1付近にあること、また、質量分析により分子量が828、さらに、元素分析によるCl量が8.5(理論値8.6%)であることより、目的物であることを支持していた。
【0067】
(実施例4)
4,4’−[2,7−ジブロモ−9−フルオレニリデンビス(4,1−フェニレンオキシ)]ビス安息香酸ジメチルの合成
(4.1){4,4’−[2,7−ジブロモ−9−フルオレニリデンビス(4,1−フェニレンオキシ)]ビス安息香酸メチルより4,4’−[(2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸メチルの合成}
温度計、ジムロート冷却管、窒素導入管および攪拌機を備えた4つ口の1リットルフラスコに、実施例3と同様にして得た4,4’−[2,7−ジブロモ−9−フルオレニリデンビス(4,1−フェニレンオキシ)]ビス安息香酸メチル283g(0.365mol)、トリフェニルホスフィン2.2g(0.00838mol)、ヨウ化銅0.55g(0.00288mol)およびエチニルベンゼン81.8g(0.802mol)を仕込み、フラスコ内に窒素を流した。さらに、脱水トリエチルアミン375mlおよび脱水ピリジン200mlを加え、撹拌溶解した。1時間窒素を流し続けた後、ジクロロビス(トリフェニルホスフィン)パラジウム0.6g(0.000854mol)を素早く添加し、オイルバスで1時間加熱還流した。その後、トリエチルアミンおよびピリジンを減圧留去し、粘稠な褐色溶液を得た。これを、水500mlに注ぎ析出した固形物を濾取し、さらに水500ml、5mol/L塩酸500mlおよび水500mlで各2回洗浄した。この固形物を、50℃で減圧乾燥することにより、293gの4,4’−[(2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸メチルを得た(収率98%)。
得られた生成物について、IR分析により確認のところ、2置換アルキンであるエチニル基の吸収が2260〜2190cm−1付近にあること、また、質量分析により、分子量が819であることより、目的物であることを支持していた。
【0068】
(4.2){4,4’−[(2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸メチルより4,4’−[(2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸二カリウム塩の合成}
温度計、ジムロート冷却管および攪拌機を備えた5Lの4つ口フラスコに、n−ブタノール3Lおよび水酸化カリウム(85%)182g(2.763mol)を仕込み、加熱還流して溶解した。これに、上記で合成した4,4’−[(2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸メチル282g(0.344mol)を加えて30分間加熱還流した。これを氷浴にて冷却し、析出した結晶を濾取した。この結晶を、エタノール1Lで2回洗浄し、60℃で減圧乾燥することによって、289gの4,4’−[(2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸二カリウム塩を得た(97%)。
得られた生成物について、IR分析により確認のところ、2置換アルキンであるエチニル基の吸収が2260〜2190cm−1付近にあること、カルボン酸アニオンの吸収が1650〜1550cm−1にあること、また、質量分析により分子量が867であること、さらに、元素分析よりKが9.1wt%(理論値9.0wt%)より、目的物であることを支持していた。
【0069】
(4.3){4,4’−[(2,7−ジ(2−フェニルエチニル−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ))ビス安息香酸二カリウム塩より4,4’−[(2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸の合成]
上記で得た4,4’−[(2,7−ジ(2−フェニルエチニル−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ))ビス安息香酸二カリウム塩16.5g(0.019mol)を20mlのイオン交換水に溶解し、5C濾紙にて濾過する事によって不溶物を除去した。この濾液に、5(mol/L)塩酸をpHが1になるまで撹拌しながら加えた。析出した固形物を濾取し、更にイオン交換水での洗浄、濾過を2回繰り返した。得られた固形物を50℃で減圧乾燥することにより、4,4’−[(2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸15.0gを得た(収率99.5%)。
得られた生成物について、IR分析により確認のところ、カルボン酸の吸収が1710〜1680cm−1にあること、2置換アルキンであるエチニル基の吸収が2260〜2190cm−1付近にあること、また、質量分析により分子量が791であることより、目的物であることを支持していた。
【0070】
(4.5){4,4’−[(2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸二カリウム塩より4,4’−[(2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸二塩化物の合成}
温度計、ジムロート冷却管および攪拌機を備えた2Lの4つ口フラスコに、上記で得た4,4’−[(2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸二カリウム塩260g(0.3mol)およびクロロホルム400mlを仕込み、0℃まで冷却した。これに、塩化チオニル391g(4.5mol)を、5℃以下で1時間かけて滴下した。その後、ジメチルホルムアミド4mlおよびヒドロキノン4gを加え、45〜50℃で3時間撹拌した。冷却後濾過して結晶を除き、結晶をクロロホルム150mlで洗浄した。濾液と洗浄液をあわせて40℃以下で減圧濃縮し、得られた残渣をジエチルエーテル200mlで2回抽出濾過した。抽出液からジエチルエーテルを減圧留去することで、半固体の粗生成物を得た。これを、乾燥したn−ヘキサンで洗浄し、続いてジエチルエーテルで再結晶することで、47.2gの4,4’−[(2,7−ジ(2−フェニルエチニル)−9−フルオレニリデン)−ビス(4,1−フェニレンオキシ)]ビス安息香酸二塩化物を得た(収率19%)。
得られた生成物について、IR分析により確認のところ、カルボン酸塩化物の吸収が1800〜1770cm−1にあること、2置換アルキンであるエチニル基の吸収が2260〜2190cm−1付近にあること、また、質量分析により分子量が828、さらに、元素分析によるCl量が8.7%(理論値8.6%)であることより、目的物であることを支持していた。
【0071】
【発明の効果】
本発明により架橋基を有する芳香族カルボン酸およびその酸塩化物を得ることができ、これらは、高分子、特に縮合系高分子の原料として有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to aromatic carboxylic acids and acid chloride derivatives thereof, and methods for their synthesis. More specifically, it is useful as a raw material for polymers, and among them, aromatic carboxylic acids useful as raw materials for condensation polymers that have excellent electrical properties such as heat resistance and dielectric properties and mechanical properties such as elastic modulus and their acidification The present invention relates to compound derivatives and methods for their synthesis.
[0002]
[Prior art]
Aromatic carboxylic acids having two carboxyl groups per molecule and acid chlorides thereof are used as raw materials for aromatic polyamide resins, polyarylate resins, polybenzoxazole resins and polybenzothiazole resins. As for these resins, resins having various structures are synthesized according to their uses, and various structures corresponding to the resin structure are selected and used for aromatic carboxylic acids and acid chlorides thereof.
On the other hand, since these resins are generally thermoplastic polymers and have high heat resistance, they are often used for applications exposed to high-temperature environments. In addition, in these resins, as a means for increasing heat resistance, attempts have been made to introduce thermosetting substituents, and aromatics having two carboxyl groups in one molecule into which thermosetting substituents are introduced. Although technical examples of carboxylic acids and acid chlorides thereof are disclosed (see, for example, Patent Document 1, Patent Document 2, and Non-Patent Document 1), further improvements in low dielectric properties and mechanical strength are desired. Yes.
[0003]
[Patent Document 1]
JP 2002-201158 A
[Patent Document 2]
JP 2002-265414 A
[Non-Patent Document 1]
B. J. et al. Jensen and P.M. M.M. Hergenroter, Journal of Polymer Science: Polymer Chemistry Edition, Vol. 23, 2233-2246 (1985).
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide an aromatic carboxylic acid and an acid chloride derivative thereof suitable for the above-mentioned use and a synthesis method thereof.
[0005]
[Means for Solving the Problems]
That is, the present invention
1. An aromatic carboxylic acid represented by the general formula (1),
[0006]
Embedded image
Figure 2005015442
[In Formula (1), Z shows Formula (2) or Formula (3). ]
[0007]
Embedded image
Figure 2005015442
[In Formula (2) and Formula (3), X represents hydrogen, an alkyl group, or an aromatic group. ]
[0008]
2. An acid chloride derivative of an aromatic carboxylic acid represented by the general formula (4);
[0009]
Embedded image
Figure 2005015442
[In Formula (4), Z shows Formula (2) or Formula (3). ]
[0010]
Embedded image
Figure 2005015442
[In Formula (2) and Formula (3), X represents hydrogen, an alkyl group, or an aromatic group. ]
[0011]
3. An aromatic carboxylic acid ester represented by the general formula (5),
[0012]
Embedded image
Figure 2005015442
[In Formula (5), Z shows Formula (6) or Formula (7). ]
[0013]
Embedded image
Figure 2005015442
[In Formula (6) and Formula (7), Y represents a halogen atom. ]
[0014]
4). A compound obtained by coupling the leaving group Y of the compound represented by the general formula (5) with the compound represented by the general formula (8) is treated in the presence of an alkali metal hydroxide. A method for synthesizing an aromatic carboxylic acid represented by the general formula (1), which is obtained by demethylating a carboxyl group end and further acid-treating the carboxyl group end;
[0015]
Embedded image
Figure 2005015442
[In Formula (1), Z shows Formula (2) or Formula (3). ]
[0016]
Embedded image
Figure 2005015442
[In Formula (2) and Formula (3), X represents hydrogen, an alkyl group, or an aromatic group. ]
[0017]
Embedded image
Figure 2005015442
[In Formula (5), Z shows Formula (6) or Formula (7). ]
[0018]
Embedded image
Figure 2005015442
[In Formula (6) and Formula (7), Y represents a leaving group. ]
[0019]
Embedded image
Figure 2005015442
[In formula (8), X 1 Represents a trimethylsilyl group, a hydroxypropyl group, an alkyl group or an aromatic group. ]
[0020]
5. The method for synthesizing an aromatic carboxylic acid according to item 4, wherein a transition metal catalyst is used in the reaction between the compound represented by the general formula (5) and the compound represented by the general formula (8). ,
[0021]
6). The compound represented by the general formula (1) obtained by the synthesis method according to item 4 or 5 or the compound obtained by demethylating the carboxyl group terminal in the synthesis step is treated with a chlorinating agent. A method for synthesizing an acid chloride derivative of an aromatic carboxylic acid represented by the general formula (4).
[0022]
Embedded image
Figure 2005015442
[In Formula (1), Z shows Formula (2) or Formula (3). ]
[0023]
Embedded image
Figure 2005015442
[In Formula (4), Z shows Formula (2) or Formula (3). ]
[0024]
Embedded image
Figure 2005015442
[In Formula (2) and Formula (3), X represents hydrogen, an alkyl group, or an aromatic group. ]
[0025]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is an aromatic carboxylic acid represented by the general formula (1) and an acid chloride derivative of the aromatic carboxylic acid represented by the general formula (4). And having an alkyl group or an aromatic group. Examples of the alkyl group include C1-C20 alkyl groups such as a methyl group, an ethyl group, a propyl group, and a butyl group. Examples of the aromatic group include a phenyl group, a naphthyl group, an anthryl group, Examples thereof include, but are not limited to, a phenanthrene group, a quinolyl group, and a quinoxalyl group.
[0026]
In the aromatic carboxylic acid represented by the general formula (1) of the present invention, Z is an aromatic carboxylic acid having a divalent group represented by the formula (2) and the aromatic carboxylic acid represented by the general formula (4). An acid chloride derivative of an aromatic carboxylic acid having a divalent group in which Z is represented by formula (2) in the acid can be synthesized, for example, by the following route.
[0027]
Embedded image
Figure 2005015442
Y in general formula (9) represents a leaving group, X in general formula (8) and general formula (10). 1 Represents a trimethylsilyl group, a hydroxypropyl group, an alkyl group or an aromatic group, X in the general formula (11), the general formula (12) and the general formula (13) represents hydrogen, an alkyl group or an aromatic group, M in the general formula (11) represents an alkali metal.
[0028]
First, as a starting material, a methyl ester compound of a dicarboxylic acid represented by the general formula (9) and having a fluorene skeleton in which the hydrogen at the 5th position on the benzene ring is substituted with a leaving group Y, one side of acetylene is X 1 A compound represented by the general formula (10) is obtained by a coupling reaction with a compound substituted with a group (the general formula (8)). In the coupling reaction, a catalyst is preferably used. For example, a transition metal catalyst such as palladium is used. However, at this time, the leaving group Y is preferably a group that is easily eliminated by a protective coupling group, an alkyl group or an aromatic group by a coupling reaction under a catalyst, and halogen such as fluorine, chlorine, bromine and iodine. Atoms, trifluoromethanesulfonoxy group and the like are preferable. In addition, the substituent X 1 In the general formula (11), when the substituent X is hydrogen, a group that acts as a protective group is exemplified, and as the protective group, a trimethylsilyl group, a hydroxypropyl group, and the like are selected. When the substituent X is an alkyl group or an aromatic group, the substituent X 1 Examples of the aromatic group include an aromatic group or an alkyl group. Examples of the aromatic group include a phenyl group, a naphthyl group, an anthryl group, a quinolyl group, and a quinoxalyl group. Examples of the alkyl group include a methyl group. And C1-C20 alkyl groups such as ethyl group, propyl group and butyl group.
[0029]
Next, this compound is demethylated from an acetyl group using a basic alkali metal hydroxide, and in the compound represented by the general formula (10), X 1 When the group is a protecting group, deprotection is simultaneously performed to obtain an alkali metal salt of a dicarboxylic acid derivative having a fluorene skeleton represented by the general formula (11).
[0030]
Furthermore, the aromatic carboxylic acid represented by general formula (12) is also represented by general formula (11) by acid-treating the alkali metal salt of the dicarboxylic acid derivative represented by general formula (11). The acid chloride derivative represented by the general formula (13) can be obtained by treating the alkali metal salt of the dicarboxylic acid derivative or the aromatic carboxylic acid represented by the general formula (12) with a chlorinating agent.
[0031]
Further, in the aromatic carboxylic acid represented by the general formula (1) of the present invention, Z is an aromatic carboxylic acid having a divalent group represented by the formula (3), and an aromatic represented by the general formula (4). In the aromatic carboxylic acid, an acid chloride derivative of an aromatic carboxylic acid having a divalent group in which Z is represented by the formula (3) can be synthesized, for example, by the following route.
[0032]
Embedded image
Figure 2005015442
Y in the general formula (14) represents a leaving group, and X in the general formula (8) and the general formula (15). 1 Is a trimethylsilyl group, a hydroxypropyl group, an alkyl group or an aromatic group, X in the general formula (16), the general formula (17) and the general formula (18) is a hydrogen, an alkyl group or an aromatic group, M in the formula (16) represents an alkali metal.
[0033]
First, using the methyl ester compound of a dicarboxylic acid having a fluorene skeleton substituted with a 5-position leaving group Y on the benzene ring, which is a compound represented by the general formula (14), as the starting material, the above elimination The group Y is X on one side of the acetylene 1 A compound represented by the general formula (15) is obtained by a coupling reaction with a compound substituted with a group (general formula (8)). In the coupling reaction, it is preferable to use a catalyst. Examples of the catalyst include transition metal catalysts such as palladium. However, at this time, the leaving group Y is preferably a group that can be easily eliminated by an alkyl group or an aromatic group by a coupling reaction under a catalyst, and preferably includes halogen such as fluorine, chlorine, bromine and iodine. It is done. In addition, the substituent X 1 In the general formula (16), when the substituent X is hydrogen, a group that acts as a protective group is exemplified, and as the protective group, a trimethylsilyl group, a hydroxypropyl group, or the like is selected. When the substituent X is an alkyl group or an aromatic group, the substituent X 1 Examples of the aromatic group include an aromatic group and an alkyl group, and examples of the aromatic group include a phenyl group, a naphthyl group, an anthryl group, a quinolyl group, and a quinoxalyl group.
[0034]
Next, this compound is demethylated from an acetyl group using a basic alkali metal hydroxide, and in the compound represented by the general formula (15), X 1 When the group is a protecting group, deprotection is simultaneously performed to obtain an alkali metal salt of a dicarboxylic acid derivative having a fluorene skeleton represented by the general formula (16).
[0035]
Furthermore, the aromatic carboxylic acid represented by the general formula (17) can be obtained by treating the alkali metal salt of the dicarboxylic acid derivative having a fluorene skeleton represented by the general formula (16) with the general formula (16). The acid chloride derivative represented by the general formula (18) can be obtained by treating the compound represented by the formula or the compound represented by the general formula (17) with a chlorinating agent.
[0036]
Hereinafter, the example of a manufacturing method is demonstrated in detail.
As a compound represented by the general formula (9) in the first production example, dimethyl 4,4 ′-(2,7-dibromo-9-fluorenylidene) bisbenzoate (Y = Br in the general formula (9))) First, dimethyl 4,4 ′-(2,7-dibromo-9-fluorenylidene) bisbenzoate is an acidic catalyst such as sulfuric acid under an inert gas atmosphere such as nitrogen, argon and helium. And methanol is refluxed, and methanol and 4,4 ′-(2,7-dibromo-9-fluorenylidene) bisbenzoic acid as the carboxylic acid can be obtained by an esterification reaction. Examples of the carboxylic acid include 4,4 ′-(2,7-diiodo-9-fluorenylidene) bisbenzoic acid and the like having a halogen such as fluorine, chlorine, bromine and iodine as the leaving group Y. be able to. At this time, the amount of methanol is preferably used in a large excess in order to move the equilibrium of the reaction to the product side. In order to reduce the amount of water in the reaction system, it is better to distill methanol in advance.
[0037]
Next, as a method of obtaining the compound represented by the general formula (10), dimethyl 4,4 ′-(2,7-dibromo-9-fluorenylidene) bisbenzoate obtained above and the general formula (8) A reaction product is obtained by performing a coupling reaction between the represented compound and an inert gas atmosphere such as nitrogen, argon and helium in the temperature range of 20 to 150 ° C. in the presence of a catalyst. In the compound of the general formula (8), when the substituent X in the general formula (11) is hydrogen, one side of acetylene is a protecting group X 1 And when the substituent X in the general formula (11) is an alkyl group or an aromatic group, the alkyl group or aromatic group X corresponding to the substituent X on one side of the acetylene 1 The compound substituted with is used. The reaction time in the coupling reaction is not particularly limited. Furthermore, the compound represented by the general formula (10) can be obtained by subjecting the reaction product obtained by the coupling reaction to a separation operation by a method such as concentration and reprecipitation. The compound obtained here can be purified by methods such as column chromatography and recrystallization as necessary.
[0038]
One side of the acetylene represented by the general formula (8) is a protecting group X 1 Examples of the compound protected with a protecting group X 1 Is a compound that can be deprotected with an alkali metal hydroxide, but the protecting group X 1 As trimethylsilylacetylene having a trimethylsilyl group and 3-methyl-1-butyn-3-ol having a hydroxypropyl group are preferable. One side of the acetylene represented by the general formula (8) is an alkyl group or an aromatic group X 1 Examples of the compound include ethynylbenzene, ethynylnaphthalene, ethynylanthracene, ethynylquinoline, ethynylquinoxaline, 1-butyne, 1-pentyne, 3,3-dimethyl-1-butyne and 1-hexyne. For the compound represented by the general formula (8), 1 equivalent time is sufficient for calculation with respect to the compound represented by the general formula (9), but 1 to 2 equivalent times is sufficient for the reaction to proceed completely. It is good to adjust the amount of addition within the range.
[0039]
The catalyst used in the coupling reaction can be used without particular limitation as long as it is a catalyst system capable of forming a carbon-carbon bond. For example, dichlorobis (triphenylphosphine) palladium, copper iodide and triphenyl are usable. It is desirable to use a catalyst system comprising phosphine. The addition amount of dichlorobis (triphenylphosphine) palladium is not particularly limited, but is 0.1 to 1 mol% with respect to the compound represented by the general formula (10). Triphenylphosphine is dichlorobis (triphenylphosphine). It is 1 to 20 equivalent times with respect to palladium, and 1 to 5 equivalent times with copper iodide.
[0040]
Examples of the solvent used in the coupling reaction include amine-based solvents for capturing an acid generated during the reaction and promoting a catalytic reaction. Examples of the solvent include tertiary amines such as diethylamine, triethylamine, butylamine and tributylamine, and cyclic amines such as pyridine and piperidine. These solvents can be used alone or in combination of two or more. The amount of the solvent used is not particularly specified, but is 2 to 50 times by weight based on the raw material. These solvents are preferably distilled in advance in order to prevent side reactions and catalyst deactivation.
[0041]
Next, as a method for obtaining an alkali metal salt of a dicarboxylic acid derivative having a fluorene skeleton represented by the general formula (11), the compound represented by the general formula (10) is present in a solvent in the presence of an alkali metal hydroxide. In the compound represented by the general formula (10), the demethylation reaction of the acetyl group is performed by 1 When the group is a protective group such as a trimethylsilyl group and a hydroxypropyl group, a reaction product is obtained by simultaneously performing deprotection of the ethynyl group. At this time, the reaction temperature and reaction time are not particularly limited, but the reaction temperature may be in the range of room temperature to the reflux temperature of the solvent. The resulting reaction product is separated from the crystals precipitated by cooling, washed with an alcohol solvent such as methanol, ethanol, butanol, and isopropanol, and then dried to obtain a fluorene represented by the general formula (11). An alkali metal salt of a dicarboxylic acid having a skeleton can be obtained.
[0042]
As the alkali metal hydroxide in the demethylation reaction, potassium hydroxide and sodium hydroxide are preferable, and the addition amount is 3 equivalents or more with respect to the compound represented by the general formula (10). More can be used.
[0043]
The reaction solvent in the demethylation reaction is not particularly limited as long as it is an ester other than an ester that can react with an alkali metal hydroxide, but methanol, ethanol, butanol and isopropanol having high alkali metal hydroxide solubility. Alcohol solvents such as are preferred. The amount of the solvent is not particularly limited, but it is preferable to use 5 to 50 times the weight of the dicarboxylic acid dimethyl ester having a fluorene skeleton from the viewpoint of operability.
[0044]
The aromatic carboxylic acid represented by the general formula (12) is obtained by dissolving the alkali metal salt (general formula (11)) of the dicarboxylic acid derivative having the fluorene skeleton obtained above in water, and adding hydrochloric acid, sulfuric acid and nitric acid. By using an acid such as acidification, preferably to pH 1, a precipitate is obtained, which can be obtained by filtration, washing and drying. In this case, if exposed to strong acid for a long time, the ethynyl moiety may undergo a side reaction such as addition reaction or polymerization.
[0045]
The acid chloride derivative of the carboxylic acid represented by the general formula (13) is obtained by adding an alkali metal salt (general formula (11)) of the dicarboxylic acid derivative having a fluorene skeleton obtained above in a solvent or in an excess amount. It can be obtained by reacting in the temperature range of 0 to 70 ° C. using the chlorinating agent in the solvent, distilling off the solvent, washing the resulting solid with a solvent, and further recrystallization. . Moreover, you may use the aromatic carboxylic acid represented by General formula (12) instead of the dicarboxylic acid derivative alkali metal salt which has a fluorene skeleton represented by General formula (11).
[0046]
The chlorinating agent is preferably thionyl chloride or the like, and the amount of the chlorinating agent used is 2 equivalents or more with respect to the alkali metal salt of the dicarboxylic acid derivative having a fluorene skeleton represented by the general formula (11). There is no upper limit. When no solvent is used, it may be used in a large excess of 10 equivalents or more.
[0047]
The solvent in the reaction for obtaining the acid chloride derivative is not particularly limited, and examples thereof include aromatic hydrocarbons such as benzene, toluene and xylene, hydrocarbons such as pentane, hexane, cyclohexane and petroleum ether, dichloromethane, Chlorinated solvents such as chloroform, carbon tetrachloride, 1,2-dichloroethane and chlorobenzene can be mentioned. These can use arbitrary quantity with respect to the alkali metal salt of the dicarboxylic acid derivative which has a fluorene skeleton represented by General formula (11).
[0048]
In order to accelerate the reaction for obtaining the acid chloride derivative, a base such as N, N-dimethylformamide and pyridine may be added.
In addition, a polymerization inhibitor such as hydroquinone and hydroquinone monomethyl ether may be added to suppress polymerization at the ethynyl moiety.
[0049]
The dicarboxylic acid having a fluorene structure represented by the general formula (17) and the dicarboxylic acid dichloride having a fluorene structure represented by the general formula (18) in the second production example are represented by, for example, the general formula (14). 4,4 ′-[2,7-dibromo-9-fluorenylidenebis (4,1-phenyleneoxy)] bisdimethyl benzoate as a starting material, represented by the general formula (12) shown in the above first production example And an acid chloride derivative of the aromatic carboxylic acid represented by the general formula (13) can be synthesized by the same method.
[0050]
【Example】
Examples are given below to illustrate the present invention, but the present invention is not limited thereby.
[0051]
The resulting compound was measured for melting point for characterization, 1 H-NMR, 13 C ( 1 H) -NMR, measurement of various spectra of MS and elemental analysis were performed. The measurement conditions for each characteristic were as follows.
[0052]
Test method
(1) Infrared spectroscopic analysis (IR): Measured by KBr tablet method using JIR-5500 type manufactured by JEOL Ltd.
(2) Mass spectrometry (MS): Measured by a field desorption (FD) method using a JMS-700 type manufactured by JEOL Ltd.
(3) Elemental analysis: Carbon and hydrogen were measured using a model 2400 manufactured by PERKIN ELMER, and chlorine was measured by a flask combustion titration method.
[0053]
(Example 1)
Synthesis of 4,4 '-(2,7-diethynyl-9-fluorenylidene) -bisbenzoic acid dichloride
(1.1) Synthesis of methyl 4,4 ′-(2,7-dibromo-9-fluorenylidene) -bisbenzoate from [4,4 ′-(2,7-dibromo-9-fluorenylidene) -bisbenzoic acid ]
A 500 mL flask equipped with a stirrer and a Dimroth condenser was charged with 248 g (0.44 mol) of 4,4 ′-(2,7-dibromo-9-fluorenylidene) -bisbenzoic acid, 500 mL of methanol and 10 g of concentrated sulfuric acid for 6 hours. Refluxed. After standing to cool, it was added dropwise to 1 L of distilled water and neutralized with a 5% aqueous sodium hydrogen carbonate solution. The precipitate was filtered off and washed twice with 2 L of distilled water, and the resulting white solid was dried under reduced pressure at 50 ° C. for 2 days to give 4,4 ′-(2,7-dibromo-9-fluorenylidene) -bis. 237 g (0.4 mol) of methyl benzoate was obtained (yield 89%). When the obtained product was confirmed by IR analysis, the absorption of methyl ester was 1730-1715 cm. -1 Since the molecular weight was 592 by mass spectrometry, it was supported that it was the target product.
[0054]
(1.2) From [4,4 ′-(2,7-dibromo-9-fluorenylidene) -bisbenzoate methyl 4,4 ′-(2,7-di (3-hydroxy-3-methyl-1- Synthesis of methyl butynyl) -9-fluorenylidene) -bisbenzoate]
Into a 4-neck 1 liter flask equipped with a thermometer, a Dimroth condenser, a nitrogen inlet tube and a stirrer, methyl 4,4 ′-(2,7-dibromo-9-fluorenylidene) -bisbenzoate obtained above 216 g (0.365 mol), triphenylphosphine 2.2 g (0.00838 mol), copper iodide 0.55 g (0.00288 mol) and 3-methyl-1-butyn-3-ol 67.46 g (0.802 mol) And nitrogen was passed through the flask. Further, 375 ml of dehydrated triethylamine and 200 ml of dehydrated pyridine were added and dissolved by stirring. After continuously flowing nitrogen for 1 hour, 0.6 g (0.000854 mol) of dichlorobis (triphenylphosphine) palladium was quickly added and heated to reflux for 1 hour in an oil bath. Thereafter, triethylamine and pyridine were distilled off under reduced pressure to obtain a viscous brown solution. This was poured into 500 ml of water, and the precipitated solid was collected by filtration and further washed twice with 500 ml of water, 500 ml of 5N hydrochloric acid and 500 ml of water. This solid was dried under reduced pressure at 50 ° C. to give 214 g of 4,4 ′-(2,7-di (3-hydroxy-3-methyl-1-butynyl) -9-fluorenylidene) -bisbenzoic acid methyl ester. (Yield 98%) was obtained. When the obtained product was confirmed by IR analysis, the absorption of the ethynyl group was 2260-2190 cm. -1 In the vicinity, HO group absorption 3550-3200cm -1 Since the molecular weight was 599 by mass spectrometry, it was supported that it was the target product.
[0055]
(1.3) From 4,4 ′-(2,7- (2,7-di (3-hydroxy-3-methyl-1-butynyl) -9-fluorenylidene) -bisbenzoic acid methyl ester -Synthesis of diethynyl-9-fluorenylidene) bisbenzoic acid dipotassium salt]
In a 5 L four-necked flask equipped with a thermometer, a Dimroth condenser and a stirrer, 3 L of n-butanol and 182 g (2.763 mol) of potassium hydroxide (85%) were charged and dissolved by heating under reflux. To this was added 206 g (0.344 mol) of methyl 4,4 ′-(2,7-di (3-hydroxy-3-methyl-1-butynyl) -9-fluorenylidene) -bisbenzoate synthesized above. Heated to reflux for 30 minutes. This was cooled in an ice bath, and the precipitated crystals were collected by filtration. The crystals were washed twice with 1 L of ethanol and dried under reduced pressure at 60 ° C. to obtain 177 g of dipotassium 4,4 ′-(2,7-diethynyl-9-fluorenylidene) bisbenzoate (97% ). About the obtained product, when confirmed by IR analysis, it is 3550-3200cm which is absorption of HO group. -1 Disappears and the absorption of the ethynyl group which is a monosubstituted alkyne is 2100-2140 cm -1 Be in the vicinity, absorption of carboxylate anion is 1650-1550cm -1 In addition, the molecular weight was 531 by mass spectrometry, and K was 14.5 wt% (theoretical value: 14.74 wt%) by elemental analysis.
[0056]
(1.4) Synthesis of 4,4 ′-(2,7-diethynyl-9-fluorenylidene) bisbenzoic acid from [4,4 ′-(2,7-diethynyl-9-fluorenylidene) bisbenzoic acid dipotassium salt ]
Dissolve 10.1 g (0.019 mol) of 4,4 ′-(2,7-diethynyl-9-fluorenylidene) bisbenzoate obtained above in 20 ml of ion-exchanged water, and filter with 5C filter paper. To remove insolubles. To this filtrate, 5 (mol / L) hydrochloric acid was added with stirring until the pH reached 1. The precipitated solid was collected by filtration, and further washed with ion-exchanged water and filtered twice. The obtained solid was dried under reduced pressure at 50 ° C. to obtain 8.6 g of 4,4 ′-(2,7-diethynyl-9-fluorenylidene) bisbenzoic acid (yield 99.5%).
When the obtained product was confirmed by IR analysis, the absorption of carboxylic acid was 1710 to 1680 cm. -1 The absorption of the ethynyl group which is a monosubstituted alkyne is 2100-2140 cm -1 Since it was in the vicinity and the molecular weight was 454 by mass spectrometry, it was supported as the target product.
[0057]
(1.5) 4,4 ′-(2,7-diethynyl-9-fluorenylidene) bisbenzoic acid dichloride from [4,4 ′-(2,7-diethynyl-9-fluorenylidene) bisbenzoic acid dipotassium salt Synthesis]
Into a 2 L four-necked flask equipped with a thermometer, Dimroth condenser and stirrer was added 159 g (0.3 mol) of dipotassium 4,4 ′-(2,7-diethynyl-9-fluorenylidene) bisbenzoate and 400 liters of chloroform. Was cooled to 0 ° C. To this, 391 g (4.5 mol) of thionyl chloride was added dropwise at 5 ° C. or less over 1 hour. Thereafter, 4 ml of dimethylformamide and 4 g of hydroquinone were added, and the mixture was stirred at 45 to 50 ° C. for 3 hours. After cooling, the crystals were removed by filtration, and the crystals were washed with 150 ml of chloroform. The filtrate and the washing solution were combined and concentrated under reduced pressure at 40 ° C. or lower, and the resulting residue was extracted and filtered twice with 200 m of diethyl ether. Diethyl ether was distilled off from the extract under reduced pressure to obtain a semisolid crude product. This was washed with dry n-hexane, and then recrystallized with diethyl ether to obtain 28 g of 4,4 ′-(2,7-diethynyl-9-fluorenylidene) bisbenzoic acid dichloride. (Rate 19%).
When the obtained product was confirmed by IR analysis, the absorption of carboxylic acid chloride was 1800 to 1770 cm. -1 The absorption of the ethynyl group which is a monosubstituted alkyne is 2100-2140 cm -1 Since it was in the vicinity, the molecular weight was 491 by mass spectrometry, and the Cl amount by elemental analysis was 14.3 (theoretical value: 14.4%), it supported the target product.
[0058]
(Example 2)
(2.1) [4,4 ′-(2,7-dibromo-9-fluorenylidene) -methyl 4,4 ′-(2,7-di (2-phenylethynyl) -9-fluorenylidene) from methyl bisbenzoate] -Synthesis of methyl bisbenzoate]
4,4 ′-(2,7-dibromo-9-fluorenylidene) obtained in the same manner as in Example 1 in a four-necked 1 liter flask equipped with a thermometer, a Dimroth condenser, a nitrogen inlet tube and a stirrer -216 g (0.365 mol) of methyl bisbenzoate, 2.2 g (0.00838 mol) of triphenylphosphine, 0.55 g (0.00288 mol) of copper iodide and 81.8 g (0.802 mol) of ethynylbenzene were added to the flask. Nitrogen was flowed into the inside. Further, 375 ml of dehydrated triethylamine and 200 ml of dehydrated pyridine were added and dissolved by stirring. After continuously flowing nitrogen for 1 hour, 0.6 g (0.000854 mol) of dichlorobis (triphenylphosphine) palladium was quickly added, and the mixture was heated to reflux for 1 hour in an oil bath. Thereafter, triethylamine and pyridine were distilled off under reduced pressure to obtain a viscous brown solution. This was poured into 500 ml of water, and the precipitated solid was collected by filtration and further washed twice with 500 ml of water, 500 ml of 5 mol / L hydrochloric acid and 500 ml of water. This solid was dried under reduced pressure at 50 ° C. to obtain 227 g of methyl 4,4 ′-[2,7-di (2-phenylethynyl) -9-fluorenylidene] bisbenzoate (yield 98%). )
When the obtained product was confirmed by IR analysis, the absorption of the ethynyl group was 2260-2190 cm. -1 Since the molecular weight was 635 by mass spectrometry, it was supported that it was the target product.
[0059]
(2.2) From methyl 4,4 ′-[2,7-di (2-phenylethynyl) -9-fluorenylidene) -bisbenzoate, 4,4 ′-[2,7-di (2-phenylethynyl) ) -9-Fluorenylidene] Synthesis of bisbenzoic acid dipotassium salt]
In a 5 L four-necked flask equipped with a thermometer, a Dimroth condenser and a stirrer, 3 L of n-butanol and 182 g (2.763 mol) of potassium hydroxide (85%) were charged and dissolved by heating under reflux. To this was added 218 g (0.344 mol) of methyl 4,4 ′-(2,7-di (2-phenylethynyl) -9-fluorenylidene) -bisbenzoate synthesized above, and the mixture was heated to reflux for 30 minutes. This was cooled in an ice bath, and the precipitated crystals were collected by filtration. The crystals were washed twice with 1 liter of ethanol and dried under reduced pressure at 60 ° C., whereby 228 g of 4,4 ′-[2,7-di (2-phenylethynyl) -9-fluorenylidene] bispotassium benzoate. Salt was obtained (97%).
When the obtained product was confirmed by IR analysis, the absorption of the ethynyl group, which is a disubstituted alkyne, was 2260-2190 cm. -1 Be in the vicinity, absorption of carboxylate anion is 1650-1550cm -1 In addition, the molecular weight was 683 by mass spectrometry, and K was 11.6 wt% (theoretical value: 11.5 wt%) by elemental analysis, which supported the target product.
[0060]
(2.3) [4,4 ′-(2,7-di- (2-phenylethynyl) -9-fluorenylidene) bisbenzoic acid dipotassium salt, 4,4 ′-(2,7-di- (2 -Phenylethynyl) -9-fluorenylidene) bisbenzoic acid synthesis]
Dissolve 13.0 g (0.019 mol) of 4,4 ′-(2,7-di- (2-phenylethynyl) -9-fluorenylidene) bisbenzoic acid obtained above in 20 ml of ion-exchanged water, Insoluble matter was removed by filtering with 5C filter paper. To this filtrate, 5 (mol / L) hydrochloric acid was added with stirring until the pH reached 1. The precipitated solid was collected by filtration, and further washed with ion-exchanged water and filtered twice. The obtained solid was dried under reduced pressure at 50 ° C. to obtain 11.5 g of 4,4 ′-(2,7-di- (2-phenylethynyl) -9-fluorenylidene) bisbenzoic acid (yield 99). .5%).
When the obtained product was confirmed by IR analysis, the absorption of carboxylic acid was 1710 to 1680 cm. -1 The absorption of the ethynyl group which is a disubstituted alkyne is 2260-2190 cm -1 Since it was in the vicinity and the molecular weight was 607 by mass spectrometry, it was supported as the target product.
[0061]
(2.4) 4,4 ′-(2,7-di (2-phenyl) from [4,4 ′-(2,7-di (2-phenylethynyl) -9-fluorenylidene) bisbenzoic acid dipotassium salt Synthesis of Ethynyl) -9-Fluorenylidene) bisbenzoic acid dichloride]
To a 2 L four-necked flask equipped with a thermometer, a Dimroth condenser, and a stirrer was added 4,4 ′-(2,7-di- (2-phenylethynyl) -9-fluorenylidene) bisbenzoic acid obtained above. 205 g (0.3 mol) of potassium and 400 ml of chloroform were charged and cooled to 0 ° C. To this, 391 g (4.5 mol) of thionyl chloride was added dropwise at 5 ° C. or less over 1 hour. Thereafter, 4 ml of dimethylformamide and 4 g of hydroquinone were added, and the mixture was stirred at 45 to 50 ° C. for 3 hours. After cooling, the crystals were removed by filtration, and the crystals were washed with 150 ml of chloroform. The filtrate and the washing solution were combined and concentrated under reduced pressure at 40 ° C. or lower, and the resulting residue was extracted and filtered twice with 200 m of diethyl ether. Diethyl ether was distilled off from the extract under reduced pressure to obtain a semisolid crude product. This was washed with dry n-hexane and subsequently recrystallized with diethyl ether, whereby 7 g of 4,4 ′-(2,7-di- (2-phenylethynyl) -9-fluorenylidene) bisbenzoic acid. Dichloride was obtained (yield 19%).
When the obtained product was confirmed by IR analysis, the absorption of carboxylic acid chloride was 1800 to 1770 cm. -1 The absorption of the ethynyl group which is a disubstituted alkyne is 2260-2190 cm -1 In addition, the molecular weight was 644 by mass spectrometry, and the Cl content by elemental analysis was 10.9% (theoretical value: 11.0%).
[0062]
Example 3
Synthesis of dimethyl 4,4 ′-[2,7-dibromo-9-fluorenylidenebis (4,1-phenyleneoxy)] bisbenzoate
(3.1) {4,4 ′-[2,7-dibromo-9-fluorenylidenebis (4,1-phenyleneoxy)] bisbenzoic acid to 4,4 ′-[2,7-dibromo-9 -Synthesis of methyl fluorenylidenebis (4,1-phenyleneoxy)] bisbenzoate}
In a 500 mL flask equipped with a stirrer and a Dimroth condenser, 329 g (0.44 mol) of 4,4 ′-[2,7-dibromo-9-fluorenylidenebis (4,1-phenyleneoxy)] bisbenzoic acid, methanol 500 mL and 10 g of concentrated sulfuric acid were added and refluxed for 6 hours. After standing to cool, it was added dropwise to 1 L of distilled water and neutralized with a 5% aqueous sodium hydrogen carbonate solution. The precipitate was filtered off and washed twice with 2 L of distilled water, and then the resulting white solid was dried under reduced pressure at 50 ° C. for 2 days to give 4,4 ′-[2,7-dibromo-9-fluorenylidenebis. 311 g (0.4 mol) of methyl (4,1-phenyleneoxy)] bisbenzoate was obtained (yield 89%).
When the obtained product was confirmed by IR analysis, the absorption of methyl ester was 1730-1715 cm. -1 Since it was in the vicinity, and the molecular weight was 777, it was supported by the mass spectrometry.
[0063]
(3.2) {4,4 ′-[2,7-dibromo-9-fluorenylidenebis (4,1-phenyleneoxy)] bismethylbenzoate from 4,4 ′-[(2,7-di Synthesis of (3-hydroxy-3-methyl-1-butynyl) -9-fluorenylidene) -bis (4,1-phenyleneoxy)] bisbenzoate}
To a four-necked 1 liter flask equipped with a thermometer, a Dimroth condenser, a nitrogen inlet, and a stirrer, the 4,4 ′-[2,7-dibromo-9-fluorenylidenebis (4,4) obtained above was added. 1-phenyleneoxy)] methyl bisbenzoate 283 g (0.365 mol), triphenylphosphine 2.2 g (0.00838 mol), copper iodide 0.55 g (0.00288 mol) and 3-methyl-1-butyne-3 -A total of 67.46 g (0.802 mol) was charged and nitrogen was allowed to flow into the flask. Further, 375 ml of dehydrated triethylamine and 200 ml of dehydrated pyridine were added and dissolved by stirring. After continuously flowing nitrogen for 1 hour, 0.6 g (0.000854 mol) of dichlorobis (triphenylphosphine) palladium was quickly added, and the mixture was heated to reflux for 1 hour in an oil bath. Thereafter, triethylamine and pyridine were distilled off under reduced pressure to obtain a viscous brown solution. This was poured into 500 ml of water, and the precipitated solid was collected by filtration, and further washed twice with 500 ml of water, 500 ml of 5 mol / L hydrochloric acid and 500 ml of water. The solid was dried at 50 ° C. under reduced pressure to give 280 g of 4,4 ′-[(2,7-di (3-hydroxy-3-methyl-1-butynyl) -9-fluorenylidene) -bis (4 , 1-phenyleneoxy)] bisbenzoic acid methyl ester was obtained (yield 98%).
When the obtained product was confirmed by IR analysis, the absorption of the ethynyl group was 2260-2190 cm. -1 In the vicinity, HO group absorption 3550-3200cm -1 Since the molecular weight was 783 by mass spectrometry, it was supported that it was the target product.
[0064]
(3.3) {4,4 ′-[(2,7-di (3-hydroxy-3-methyl-1-butynyl) -9-fluorenylidene) -bis (4,1-phenyleneoxy)] bisbenzoic acid Synthesis of 4,4 ′-[(2,7-diethynyl-9-fluorenylidene) -bis (4,1-phenyleneoxy)] bisbenzoic acid dipotassium salt from methyl}
In a 5 L four-necked flask equipped with a thermometer, a Dimroth condenser and a stirrer, 3 liters of n-butanol and 182 g (2.763 mol) of potassium hydroxide (85%) were charged and dissolved by heating under reflux. To this, 4,4 ′-[(2,7-di (3-hydroxy-3-methyl-1-butynyl) -9-fluorenylidene) -bis (4,1-phenyleneoxy)] bisbenzoic acid synthesized above. 269 g (0.344 mol) of methyl acid was added and heated to reflux for 30 minutes. This was cooled in an ice bath, and the precipitated crystals were collected by filtration. The crystals were washed twice with 1 L of ethanol and dried under reduced pressure at 60 ° C. to obtain 239 g of 4,4 ′-[(2,7-diethynyl-9-fluorenylidene) -bis (4,1-phenyleneoxy) Bis-benzoic acid dipotassium salt was obtained (97%).
About the obtained product, when confirmed by IR analysis, it is 3550-3200cm which is absorption of HO group. -1 Disappears and the absorption of the ethynyl group which is a monosubstituted alkyne is 2100-2140 cm -1 Be in the vicinity, absorption of carboxylate anion is 1650-1550cm -1 In addition, the molecular weight was 531 by mass spectrometry, and K was 9.2 wt% (theoretical value: 9.0 wt%) by elemental analysis, which supported the target product.
[0065]
(3.4) {4,4 ′-[(2,6-diethynyl-9-fluorenylidene) -bis (4,1-phenyleneoxy)] bisbenzoic acid dipotassium salt 4,4 ′-[(2, Synthesis of 6-diethynyl-9-fluorenylidene) -bis (4,1-phenyleneoxy)] bisbenzoic acid}
13.6 g (0.019 mol) of the 4,4 ′-[(2,6-diethynyl-9-fluorenylidene) -bis (4,1-phenyleneoxy)] bisbenzoic acid dipotassium salt obtained above was added to 20 ml of ions. Insoluble matter was removed by dissolving in exchanged water and filtering with 5C filter paper. To this filtrate, 5 (mol / L) hydrochloric acid was added with stirring until the pH reached 1. The precipitated solid was collected by filtration, and further washed with ion-exchanged water and filtered twice. The obtained solid was dried under reduced pressure at 50 ° C. to synthesize 4,4 ′-[(2,6-diethynyl-9-fluorenylidene) -bis (4,1-phenyleneoxy)] bisbenzoic acid. 1 g was obtained (yield 99.5%).
When the obtained product was confirmed by IR analysis, the absorption of carboxylic acid was 1710 to 1680 cm. -1 The absorption of the ethynyl group which is a monosubstituted alkyne is 2100-2140 cm -1 Since it was in the vicinity and the molecular weight was 791 by mass spectrometry, it was supported as the target product.
[0066]
(3.5) {4,4 ′-[(2,6-diethynyl-9-fluorenylidene) -bis (4,1-phenyleneoxy)] bisbenzoic acid dipotassium salt 4,4 ′-[(2, Synthesis of 6-diethynyl-9-fluorenylidene) -bis (4,1-phenyleneoxy)] bisbenzoic acid dichloride}
To a 2 L four-necked flask equipped with a thermometer, a Dimroth condenser and a stirrer, 4,4 ′-[(2,6-diethynyl-9-fluorenylidene) -bis (4,1-phenyleneoxy) obtained above was added. The reaction mixture was charged with 214 g (0.3 mol) of bisbenzoic acid dipotassium salt and 400 ml of chloroform, and cooled to 0 ° C. To this, 391 g (4.5 mol) of thionyl chloride was added dropwise at 5 ° C. or less over 1 hour. Thereafter, 4 ml of dimethylformamide and 4 g of hydroquinone were added, and the mixture was stirred at 45 to 50 ° C. for 3 hours. After cooling, the crystals were removed by filtration, and the crystals were washed with 150 ml of chloroform. The filtrate and the washing solution were combined and concentrated under reduced pressure at 40 ° C. or lower, and the resulting residue was extracted and filtered twice with 200 m of diethyl ether. Diethyl ether was distilled off from the extract under reduced pressure to obtain a semisolid crude product. This was washed with dry n-hexane and subsequently recrystallized with diethyl ether, whereby 38.5 g of 4,4 ′-[(2,6-diethynyl-9-fluorenylidene) -bis (4,1 -Phenyleneoxy)] bisbenzoic acid dichloride was obtained (19% yield).
When the obtained product was confirmed by IR analysis, the absorption of carboxylic acid chloride was 1800 to 1770 cm. -1 The absorption of the ethynyl group which is a monosubstituted alkyne is 2100-2140 cm -1 Since it was in the vicinity, the molecular weight was 828 by mass analysis, and the Cl amount by elemental analysis was 8.5 (theoretical value: 8.6%), it supported the target product.
[0067]
(Example 4)
Synthesis of dimethyl 4,4 ′-[2,7-dibromo-9-fluorenylidenebis (4,1-phenyleneoxy)] bisbenzoate
(4.1) {4,4 ′-[2,7-dibromo-9-fluorenylidenebis (4,1-phenyleneoxy)] bismethylbenzoate from 4,4 ′-[(2,7-di Synthesis of (2-Phenylethynyl) -9-fluorenylidene) -bis (4,1-phenyleneoxy)] bisbenzoate}
4,4 ′-[2,7-Dibromo-9-fluorenylidene obtained in the same manner as in Example 3 was added to a four-necked 1 liter flask equipped with a thermometer, a Dimroth condenser, a nitrogen inlet tube and a stirrer. Bis (4,1-phenyleneoxy)] bisbenzoic acid methyl 283 g (0.365 mol), triphenylphosphine 2.2 g (0.00838 mol), copper iodide 0.55 g (0.00288 mol) and ethynylbenzene 81.8 g (0.802 mol) was charged and nitrogen was allowed to flow into the flask. Further, 375 ml of dehydrated triethylamine and 200 ml of dehydrated pyridine were added and dissolved by stirring. After continuously flowing nitrogen for 1 hour, 0.6 g (0.000854 mol) of dichlorobis (triphenylphosphine) palladium was quickly added and heated to reflux for 1 hour in an oil bath. Thereafter, triethylamine and pyridine were distilled off under reduced pressure to obtain a viscous brown solution. This was poured into 500 ml of water and the precipitated solid was collected by filtration and further washed twice with 500 ml of water, 500 ml of 5 mol / L hydrochloric acid and 500 ml of water. This solid was dried at 50 ° C. under reduced pressure to give 293 g of 4,4 ′-[(2,7-di (2-phenylethynyl) -9-fluorenylidene) -bis (4,1-phenyleneoxy)]. Methyl bisbenzoate was obtained (yield 98%).
When the obtained product was confirmed by IR analysis, the absorption of the ethynyl group, which is a disubstituted alkyne, was 2260-2190 cm. -1 Since the molecular weight was 819, it was supported that it was the target product by mass spectrometry.
[0068]
(4.2) {4,4 ′-[(2,7-di (2-phenylethynyl) -9-fluorenylidene) -bis (4,1-phenyleneoxy)] bisbisbenzoate methyl 4,4′- [Synthesis of (2,7-di (2-phenylethynyl) -9-fluorenylidene) -bis (4,1-phenyleneoxy)] bisbenzoic acid dipotassium salt}
In a 5 L four-necked flask equipped with a thermometer, a Dimroth condenser and a stirrer, 3 L of n-butanol and 182 g (2.763 mol) of potassium hydroxide (85%) were charged and dissolved by heating under reflux. To this, 282 g (0.344 mol) of methyl 4,4 ′-[(2,7-di (2-phenylethynyl) -9-fluorenylidene) -bis (4,1-phenyleneoxy)] bisbenzoate synthesized above. ) And heated to reflux for 30 minutes. This was cooled in an ice bath, and the precipitated crystals were collected by filtration. The crystals were washed twice with 1 L of ethanol and dried under reduced pressure at 60 ° C., whereby 289 g of 4,4 ′-[(2,7-di (2-phenylethynyl) -9-fluorenylidene) -bis (4 , 1-phenyleneoxy)] bisbenzoic acid dipotassium salt was obtained (97%).
When the obtained product was confirmed by IR analysis, the absorption of the ethynyl group, which is a disubstituted alkyne, was 2260-2190 cm. -1 Be in the vicinity, absorption of carboxylate anion is 1650-1550cm -1 In addition, the molecular weight was 867 by mass analysis, and K was 9.1 wt% (theoretical value: 9.0 wt%) by elemental analysis, which supported the target product.
[0069]
(4.3) {4,4 ′-[(2,7-di (2-phenylethynyl-9-fluorenylidene) -bis (4,1-phenyleneoxy)) bisbisbenzoic acid dipotassium salt 4,4 ′ -[Synthesis of (2,7-di (2-phenylethynyl) -9-fluorenylidene) -bis (4,1-phenyleneoxy)] bisbenzoic acid]
16.5 g (0.019 mol) of 4,4 ′-[(2,7-di (2-phenylethynyl-9-fluorenylidene) -bis (4,1-phenyleneoxy)) bisbenzoic acid obtained above. ) Was dissolved in 20 ml of ion exchange water and filtered through 5C filter paper to remove insoluble matter. To this filtrate, 5 (mol / L) hydrochloric acid was added with stirring until the pH reached 1. The precipitated solid was collected by filtration, and further washed with ion-exchanged water and filtered twice. The obtained solid was dried under reduced pressure at 50 ° C. to give 4,4 ′-[(2,7-di (2-phenylethynyl) -9-fluorenylidene) -bis (4,1-phenyleneoxy)] bis. 15.0 g of benzoic acid was obtained (yield 99.5%).
When the obtained product was confirmed by IR analysis, the absorption of carboxylic acid was 1710 to 1680 cm. -1 The absorption of the ethynyl group which is a disubstituted alkyne is 2260-2190 cm -1 Since it was in the vicinity and the molecular weight was 791 by mass spectrometry, it was supported as the target product.
[0070]
(4.5) 4,4 '-[(2,7-di (2-phenylethynyl) -9-fluorenylidene) -bis (4,1-phenyleneoxy)] bisbenzoic acid dipotassium salt 4,4 '-[(2,7-di (2-phenylethynyl) -9-fluorenylidene) -bis (4,1-phenyleneoxy)] bisbenzoic acid dichloride synthesis}
To a 2 L four-necked flask equipped with a thermometer, a Dimroth condenser and a stirrer, 4,4 ′-[(2,7-di (2-phenylethynyl) -9-fluorenylidene) -bis (4 , 1-phenyleneoxy)] bisbenzoic acid dipotassium salt 260 g (0.3 mol) and chloroform 400 ml were charged and cooled to 0 ° C. To this, 391 g (4.5 mol) of thionyl chloride was added dropwise at 5 ° C. or less over 1 hour. Thereafter, 4 ml of dimethylformamide and 4 g of hydroquinone were added, and the mixture was stirred at 45 to 50 ° C. for 3 hours. After cooling, the crystals were removed by filtration, and the crystals were washed with 150 ml of chloroform. The filtrate and the washing solution were combined and concentrated under reduced pressure at 40 ° C. or lower, and the obtained residue was extracted and filtered twice with 200 ml of diethyl ether. Diethyl ether was distilled off from the extract under reduced pressure to obtain a semisolid crude product. This was washed with dry n-hexane and subsequently recrystallized with diethyl ether to give 47.2 g of 4,4 ′-[(2,7-di (2-phenylethynyl) -9-fluorenylidene). -Bis (4,1-phenyleneoxy)] bisbenzoic acid dichloride was obtained (yield 19%).
When the obtained product was confirmed by IR analysis, the absorption of carboxylic acid chloride was 1800 to 1770 cm. -1 The absorption of the ethynyl group which is a disubstituted alkyne is 2260-2190 cm -1 Since the molecular weight was 828 by mass spectrometry and the Cl content by elemental analysis was 8.7% (theoretical value 8.6%), it was supported as a target product.
[0071]
【The invention's effect】
According to the present invention, an aromatic carboxylic acid having a crosslinking group and an acid chloride thereof can be obtained, and these are useful as raw materials for polymers, particularly condensed polymers.

Claims (6)

一般式(1)で表される芳香族カルボン酸。
Figure 2005015442
[式(1)中、Zは式(2)または式(3)を示す。]
Figure 2005015442
[式(2)および式(3)中、Xは、水素、アルキル基又は芳香族基を示す。]
An aromatic carboxylic acid represented by the general formula (1).
Figure 2005015442
[In Formula (1), Z shows Formula (2) or Formula (3). ]
Figure 2005015442
[In Formula (2) and Formula (3), X represents hydrogen, an alkyl group, or an aromatic group. ]
一般式(4)で表される芳香族カルボン酸の酸塩化物誘導体。
Figure 2005015442
[式(4)中、Zは式(2)または式(3)を示す。]
Figure 2005015442
[式(2)および式(3)中、Xは、水素、アルキル基又は芳香族基を示す。]
An acid chloride derivative of an aromatic carboxylic acid represented by the general formula (4).
Figure 2005015442
[In Formula (4), Z shows Formula (2) or Formula (3). ]
Figure 2005015442
[In Formula (2) and Formula (3), X represents hydrogen, an alkyl group, or an aromatic group. ]
一般式(5)で表される芳香族カルボン酸エステル。
Figure 2005015442
[式(5)中、Zは式(6)または式(7)を示す。]
Figure 2005015442
[式(6)および式(7)中、Yは、ハロゲン原子を示す。]
An aromatic carboxylic acid ester represented by the general formula (5).
Figure 2005015442
[In Formula (5), Z shows Formula (6) or Formula (7). ]
Figure 2005015442
[In Formula (6) and Formula (7), Y represents a halogen atom. ]
一般式(5)で表される化合物の脱離基Yを、一般式(8)で表される化合物とカップリング反応させて得られた化合物を、アルカリ金属水酸化物存在下で処理してカルボキシル基末端を脱メチル化し、更に、カルボキシル基末端を酸処理することにより得られることを特徴とする一般式(1)で表される芳香族カルボン酸の合成法。
Figure 2005015442
[式(1)中、Zは式(2)または式(3)を示す。]
Figure 2005015442
[式(2)および式(3)中、Xは、水素、アルキル基又は芳香族基を示す。]
Figure 2005015442
[式(5)中、Zは式(6)または式(7)を示す。]
Figure 2005015442
[式(6)および式(7)中、Yは脱離基を示す。]
Figure 2005015442
[式(8)中、Xはトリメチルシリル基、ヒドロキシプロピル基、アルキル基又は芳香族基を示す。]
A compound obtained by coupling the leaving group Y of the compound represented by the general formula (5) with the compound represented by the general formula (8) is treated in the presence of an alkali metal hydroxide. A method for synthesizing an aromatic carboxylic acid represented by the general formula (1), which is obtained by demethylating a carboxyl group end and further acid-treating the carboxyl group end.
Figure 2005015442
[In Formula (1), Z shows Formula (2) or Formula (3). ]
Figure 2005015442
[In Formula (2) and Formula (3), X represents hydrogen, an alkyl group, or an aromatic group. ]
Figure 2005015442
[In Formula (5), Z shows Formula (6) or Formula (7). ]
Figure 2005015442
[In Formula (6) and Formula (7), Y represents a leaving group. ]
Figure 2005015442
[In the formula (8), X 1 represents a trimethylsilyl group, a hydroxypropyl group, an alkyl group or an aromatic group. ]
一般式(5)で表される化合物と、一般式(8)で表される化合物との反応において、遷移金属触媒を用いることを特徴とする請求項4に記載の芳香族カルボン酸の合成法。The method for synthesizing an aromatic carboxylic acid according to claim 4, wherein a transition metal catalyst is used in the reaction of the compound represented by the general formula (5) and the compound represented by the general formula (8). . 請求項4又は5に記載の合成法により得られる一般式(1)で表される化合物または前記合成工程中でカルボキシル基末端を脱メチル化して得られる化合物を、塩素化剤で処理することにより得られることを特徴とする一般式(4)で表される芳香族カルボン酸の酸塩化物誘導体の合成法。
Figure 2005015442
[式(1)中、Zは式(2)または式(3)を示す。]
Figure 2005015442
[式(4)中、Zは式(2)または式(3)を示す。]
Figure 2005015442
[式(2)および式(3)中、Xは、水素、アルキル基又は芳香族基を示す。]
By treating the compound represented by the general formula (1) obtained by the synthesis method according to claim 4 or 5 or the compound obtained by demethylating a carboxyl group terminal in the synthesis step with a chlorinating agent. A method for synthesizing an acid chloride derivative of an aromatic carboxylic acid represented by the general formula (4).
Figure 2005015442
[In Formula (1), Z shows Formula (2) or Formula (3). ]
Figure 2005015442
[In Formula (4), Z shows Formula (2) or Formula (3). ]
Figure 2005015442
[In Formula (2) and Formula (3), X represents hydrogen, an alkyl group, or an aromatic group. ]
JP2003186297A 2003-06-30 2003-06-30 Aromatic carboxylic acid and its acid chloride, and synthesis method Expired - Fee Related JP4251024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186297A JP4251024B2 (en) 2003-06-30 2003-06-30 Aromatic carboxylic acid and its acid chloride, and synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186297A JP4251024B2 (en) 2003-06-30 2003-06-30 Aromatic carboxylic acid and its acid chloride, and synthesis method

Publications (2)

Publication Number Publication Date
JP2005015442A true JP2005015442A (en) 2005-01-20
JP4251024B2 JP4251024B2 (en) 2009-04-08

Family

ID=34185465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186297A Expired - Fee Related JP4251024B2 (en) 2003-06-30 2003-06-30 Aromatic carboxylic acid and its acid chloride, and synthesis method

Country Status (1)

Country Link
JP (1) JP4251024B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041510A1 (en) * 2006-10-02 2008-04-10 Nitto Denko Corporation Optical film, image display, diethynyl fluorene and polymer of the diethynyl fluorene
WO2008132951A1 (en) * 2007-04-17 2008-11-06 Nitto Denko Corporation Optical film and image display device
JP2009001769A (en) * 2007-05-24 2009-01-08 Nitto Denko Corp Optical film, image display device, diethynyl fluorene and its polymer
JP2016533394A (en) * 2013-09-30 2016-10-27 エルジー・ケム・リミテッド Polymerizable liquid crystal compound, liquid crystal composition containing the same, and optical film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154250A (en) * 1974-05-31 1975-12-12
JPH05194338A (en) * 1992-01-21 1993-08-03 Nippon Steel Corp 9,9-bis@(3754/24)4-aminophenyl)fluorenecarboxylic acid
JP2003176343A (en) * 2001-12-11 2003-06-24 Nagase Chemtex Corp Photopolymerizable unsaturated resin, method for producing the same and alkali-soluble radiation- sensitive resin composition produced by using the resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154250A (en) * 1974-05-31 1975-12-12
JPH05194338A (en) * 1992-01-21 1993-08-03 Nippon Steel Corp 9,9-bis@(3754/24)4-aminophenyl)fluorenecarboxylic acid
JP2003176343A (en) * 2001-12-11 2003-06-24 Nagase Chemtex Corp Photopolymerizable unsaturated resin, method for producing the same and alkali-soluble radiation- sensitive resin composition produced by using the resin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 123, no. 29, JPN6008049097, 2001, US, pages 6965 - 6972, ISSN: 0001210994 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100990563B1 (en) 2006-10-02 2010-10-29 닛토덴코 가부시키가이샤 Optical film, image display, diethynyl fluorene and polymer of the diethynyl fluorene
JP2008112124A (en) * 2006-10-02 2008-05-15 Nitto Denko Corp Optical film, image display, diethynyl fluorene and polymer of the diethynyl fluorene
US8218937B2 (en) 2006-10-02 2012-07-10 Nitto Denko Corporation Optical film, image display device, diethynylfluorene, and polymer thereof
WO2008041510A1 (en) * 2006-10-02 2008-04-10 Nitto Denko Corporation Optical film, image display, diethynyl fluorene and polymer of the diethynyl fluorene
JP2008268336A (en) * 2007-04-17 2008-11-06 Nitto Denko Corp Optical film and image display device
KR101155832B1 (en) * 2007-04-17 2012-06-12 닛토덴코 가부시키가이샤 Optical film and image display device
WO2008132951A1 (en) * 2007-04-17 2008-11-06 Nitto Denko Corporation Optical film and image display device
US8722842B2 (en) 2007-04-17 2014-05-13 Nitto Denko Corporation Optical film and image display device
US20100182693A1 (en) * 2007-05-24 2010-07-22 Nitto Denko Corporation Optical film, image display device, diethynylfluorene, and polymer thereof
JP2009001769A (en) * 2007-05-24 2009-01-08 Nitto Denko Corp Optical film, image display device, diethynyl fluorene and its polymer
US8445079B2 (en) * 2007-05-24 2013-05-21 Nitto Denko Corporation Optical film, image display device, diethynylfluorene, and polymer thereof
TWI411809B (en) * 2007-05-24 2013-10-11 Nitto Denko Corp An optical film, an image display device, diacetylene oxide and a polymer
JP2016533394A (en) * 2013-09-30 2016-10-27 エルジー・ケム・リミテッド Polymerizable liquid crystal compound, liquid crystal composition containing the same, and optical film

Also Published As

Publication number Publication date
JP4251024B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP4251024B2 (en) Aromatic carboxylic acid and its acid chloride, and synthesis method
US10988437B1 (en) Bis(aniline) compounds containing multiple substituents with carbon-carbon triple-bonded groups
JP5283494B2 (en) Method for producing fluorene derivative
JP4356446B2 (en) Bisaminophenol derivatives
JP3824483B2 (en) Aromatic carboxylic acid and its acid chloride, and synthesis method
JP4345298B2 (en) Aromatic carboxylic acid derivatives and acid chloride derivatives thereof
JP4736463B2 (en) Condensed polymer raw materials and their synthesis
JP5023683B2 (en) Process for producing benzofluorene derivative and intermediate thereof
JP2004292393A (en) Method for synthesizing aromatic carboxylic acid and its acid chloride derivative
JP4961773B2 (en) Aromatic carboxylic acids and acid halides thereof
JP4644957B2 (en) Aromatic carboxylic acids and acid chloride derivatives thereof, and methods for their synthesis
JP6906983B2 (en) Acetylene-containing benzoxazine compound, polyacetylene compound obtained by polymerizing the ethynyl group of the acetylene-containing benzoxazine compound, and a thermocured product thereof.
JP4251046B2 (en) Aromatic carboxylic acids and their synthesis
Dumont et al. New aromatic diamines containing a multiring flexible skeleton for the synthesis of thermally stable polyimides
JP4569173B2 (en) Bisaminophenol compounds
JP2007084524A (en) Aminophenol compound
JP2007063202A (en) Bisaminophenol compound
JP4118645B2 (en) Method for producing calix [4] arene derivative mixture
JP2004010509A (en) Method for synthesizing aromatic carboxylic acid and its acid chloride derivative
KR100807454B1 (en) Aromatic carboxylic acids, acid halides thereof and processes for preparing both
CN110698651B (en) Aggregation-induced red-shift luminescent polymer and preparation method and application thereof
CN108003085A (en) A kind of synthetic method of pharmaceutical intermediate sweet-smelling formacyl indole derivatives
JPH11269145A (en) Bis(n-substituted) phthalimide, its production and production of biphenyltetracarboxylic acid
JP6917612B2 (en) A method for producing and purifying a bromine monosubstituted product of perylenetetracarboxylic dianhydride.
JP3132784B2 (en) Method for producing 3,3&#39;-dinitro-5,5&#39;-bis (trifluoromethyl) diphenyl ether

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees