JP2005015246A - Porous silicon carbide-based sintered compact for sliding member and its manufacturing method - Google Patents

Porous silicon carbide-based sintered compact for sliding member and its manufacturing method Download PDF

Info

Publication number
JP2005015246A
JP2005015246A JP2003178676A JP2003178676A JP2005015246A JP 2005015246 A JP2005015246 A JP 2005015246A JP 2003178676 A JP2003178676 A JP 2003178676A JP 2003178676 A JP2003178676 A JP 2003178676A JP 2005015246 A JP2005015246 A JP 2005015246A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered body
sliding member
weight
porous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003178676A
Other languages
Japanese (ja)
Inventor
Shinichiro Masuyama
伸一郎 益山
Kazuyoshi Oshima
和喜 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003178676A priority Critical patent/JP2005015246A/en
Publication of JP2005015246A publication Critical patent/JP2005015246A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Mechanical Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily provide various kinds of products for a high quality sliding member keeping strength required as the sliding member of a seal ring or the like and having excellent sliding characteristic and free from crack or chipping. <P>SOLUTION: The porous silicon carbide-based sintered compact for the sliding member having silicon carbide as a main component, contains ≤11 wt.% aluminum compound, ≤15 wt.% rare earth element compound and ≤8 wt.% silicon oxide and has 20-40 μm average pore diameter and 13-18 vol.% porosity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はポンプ、冷凍機等の軸封装置として用いられるメカニカルシールにおけるシールリング等の摺動部材用多孔質炭化珪素質焼結体に関するものである。
【0002】
【従来の技術】
摺動部材用多孔質炭化珪素質焼結体の一例として、メカニカルシールに用いられるシールリングが用いられている。
【0003】
メカニカルシールとは、各種機械の回転部の流体完全密封を目的とした流体機器の軸封装置の一つであり、密封端面の摩耗に従い軸方向に動くことができる従動リングと動かないシートリングからなり、振動を緩衝する機構を有し、相対敵意回転する軸にほぼ垂直な密封端面において、流体の漏れを制限する働きをするものである。
【0004】
図1にその基本構造を示すように、回転軸1とケーシング2との間に取り付けられ、シール作用のおよぶ密封端面3は静止部材であるシートリング5と回転部材である従動リング6との対接面で軸に対して垂直面を形成してシール作用をしている。従動リング6はパッキング7によって緩衝的に支持されており、回転軸1には接触していない。
【0005】
カラー9は回転軸1にはめ、セットスクリュー10によって回転軸1に固定してある。このカラー9とパッキング7との間にはコイルスプリング8が介在している。従動リング6とカラー9とはかみ合うようにしてこれらの間の相対回転は防止し、従動リング6の軸方向の動きが可能になる。
【0006】
シートリング5の側端面と従動リングの側端面とはいずれも回転軸1の軸線に対して、ほぼ垂直なものとし、これらの面はラッピングによって表面粗さを小さくし、平面度を高度に保たせて密封端面3を構成している。
【0007】
密封流体はこの密封端面3の外周に、大気は内周に接している。この密封端面はコイルスプリング8の弾発力によって接触圧力の強さを強められている。緩衝ゴム4はシートリング5を緩衝的に支持するとともに、この従動リング6と回転軸1との間の漏れを防止する。密封端面3はシートリング5と従動リング6との各端面の漏れを防止する。回転軸1が回転すると、カラー9はこれとともに回転する。このカラー9は従動リング6を回転させる。パッキング7、コイルスプリング8もともに回転する。
【0008】
シートリング5は回転しないので、密封端面3は相対的に回転する面の会合面となって回転軸1の回転中も密封流体の漏れを防止する。密封端面3が摩擦によって摩耗するに従い、従動リング6はシートリング5の方へ押し進められ密封端面3の密着は保たれる。密封端面3に対する回転軸1の振動の伝達の緩和は緩衝ゴム4とパッキング5とが行う。
【0009】
以上の構造によりメカニカルシールが成り立っているが、一般的に前述のシートリング5と従動リング6がシールリングと呼ばれている。
【0010】
ここで使用されているシールリング用部材としては、カーボン材、超硬合金、炭化珪素質焼結体、アルミナ質焼結体が主として用いられ、近年では高硬度で高耐食性を有し、摺動時の摩擦係数が小さく平滑性も優れた炭化珪素質焼結体を用いるケースが増加している。
【0011】
また、この炭化珪素質焼結体の中でも更に摺動特性を向上させる為に緻密質炭化珪素質焼結体の製造工程中で平均気孔径10〜40μmないし、50〜500μmの独立気孔を気孔率として13体積%以下の範囲とする多孔質炭化珪素質焼結体をシールリング用部材として用いることが開示されているが、それらは炭化珪素質焼結体を得るための焼結助剤として、炭化硼素及びカーボンを使用した主として固相焼結によるものである。
【0012】
また、この多孔質炭化珪素質焼結体の製造方法としては、球状をしたポリスチレンビーズ等の高分子有機化合物を原料中に添加し、これらが焼成段階で分解することにより、気孔を生成させること等が開示されている(特許文献1及び特許文献2参照)。
【0013】
【特許文献1】
米国特許第5834387号明細書
【0014】
【特許文献2】
特公平05−69066号公報
【0015】
【発明が解決しようとする課題】
従来の技術として知られている前述の多孔質炭化珪素質焼結体は、メカニカルシールにおけるシールリング用部材としての必要強度を確保する意味で、実製品としては炭化珪素質焼結体中の気孔率が13体積%以下に設定されているものが殆どであるが、シールリング用部材として更に摺動特性を向上させるには、炭化珪素質焼結体中の気孔率を高く設定すること等が望まれる。
【0016】
しかしながら、固相焼結を主体とする炭化珪素質焼結体において気孔率を高く設定した場合、強度低下が顕著に確認されるため、結果として気孔率13体積%を超える炭化珪素質焼結体は、実用的でないと考えられている。従って、炭化珪素質焼結体中の気孔率が13体積%を超えるシールリング用部材を実質的に製造する方法は見出されていない。
【0017】
また、多孔質炭化珪素質焼結体の製造方法としては、球状をしたポリスチレンビーズ等の高分子有機化合物を原料中に添加し、これらが焼成段階で分解することにより、気孔を生成させること等が知られているが、炭化珪素質焼結体中に気孔率13体積%を超える気孔を生成させるためには、相当の高分子有機化合物を添加する必要があり、これらが焼成時に分解する際、製品にクラックが生じ、実質的に製品価値がなくなるという問題があった。
【0018】
本発明は、上述した課題に鑑みなされたものであってその目的は、シールリング等の摺動部材としての必要強度を維持し、且つ摺動特性に優れ、クラックやカケの無い高品位の摺動部材用炭化珪素質焼結体を容易に提供することにある。
【0019】
【課題を解決するための手段】
本発明は、炭化珪素を主成分とし、11重量%以下のアルミニウム化合物と、15重量%以下の希土類元素化合物と、8重量%以下の珪素酸化物とを含有し、平均気孔径20〜40μm、気孔率が13〜18体積%として摺動部材用多孔質炭化珪素質焼結体を構成したことを特徴とする。
【0020】
又、上記摺動部材用多孔質炭化珪素質焼結体の製造方法として、上記各成分と、気孔を形成するための有機物と、成形助剤を添加混合した原料を所定形状に成形し、脱脂工程により残炭率を0.5〜3.0%の範囲に調整した後、焼成することを特徴とする。
【0021】
以上のことにより、メカニカルシールにおけるシールリング等の摺動部材として必要な強度を保持しつつ、摺動特性に優れたものであり、且つ、製品ハンドリング時のカケや焼成クラックの無い高品位の多孔質炭化珪素質焼結体を供給することができる。
【0022】
【発明の実施の形態】
以下、本発明の実施形態を、図面を参照して説明する。
【0023】
図1は各種機械の回転部の流体完全密封を目的とした流体機器の軸封装置の一つであるメカニカルシールの基本構造を示したものであり、このメカニカルシールの心臓部は、従来技術で説明したシートリング5と従動リング6で構成され、両者を併せてシールリングと呼んでいる。
【0024】
本発明では、このシールリングにおける前述の課題を解決すべく種々検討を行った結果、シールリングをなす炭化珪素質焼結体として炭化珪素を主成分とし、アルミニウム化合物11重量%以下、希土類元素化合物15重量%以下、珪素酸化物8重量%以下を含有させ、気孔の平均気孔径が20〜40μmの範囲と設定することで、気孔率13体積%を超える炭化珪素質焼結体においても、シールリングとしての必要強度目安である200MPaを維持できることが判った。
【0025】
これは、炭化珪素の焼結助剤として前述のものを用いることにより、主として液相焼結となり、焼結温度の低下が図れ、強度向上の効果が生じることを利用したものである。
【0026】
この強度向上効果と平均気孔径を20〜40μmの範囲とすることにより、気孔率13体積%を越える高い気孔率を設定することが可能となり、同時にシールリング摺動時の摩擦力低減と潤滑液の潤滑効果が促進され、摺動特性の向上につながることになる。
【0027】
例えば、炭化珪素質焼結体を得るための焼結助剤として用いるアルミニウム化合物、希土類元素化合物、珪素酸化物が前述の範囲を越えた場合は、焼結段階で液相の生成が多く、分解蒸発が激しくなるため、微細気孔の発生による強度低下や、成形された形状を保つことができなくなるという問題が発生する。
【0028】
逆に前述の成分が非常に少ないと、液相の生成が十分でなく、緻密化が損なわれるため、強度低下へつながることになる。
【0029】
従って、焼結助剤としては、アルミニウム化合物1〜6重量%、希土類元素化合物1〜10重量%、珪素酸化物0.1〜5.0重量%の範囲とすることが好ましい。
【0030】
そして、これら成分以外の不純物としては、鉄、チタン等の金属又はその化合物やカーボン等が上げられるが、これらの不純物は緻密化の阻害と強度低下を招くため、2重量%以下とするのが好ましい。
【0031】
気孔については、その平均気孔径が20μm未満となると、潤滑液の潤滑効果が小さくなってしまい、40μmを超えると、必要強度を保持できなくなる。
【0032】
また、気孔率においては、13体積%以下となると、その摺動特性は劣っていく方向となり、18体積%以上では強度低下を招く恐れがあり、14〜17体積%の範囲であることが好ましい。
【0033】
ここで説明した平均気孔径は、焼結体鏡面加工面の金属顕微鏡写真又はSEM写真を撮影後、その写真上で有機物分解による気孔を特定後、各気孔の直径を測定し平均値を算出したものであり、気孔率は前述の焼結体組成における理論密度と得られた焼結体の嵩密度の割合を算出することにより求めたものである。
【0034】
一方、気孔率が13体積%を超える炭化珪素質焼結体を得るためには、ポア材やバインダー等の有機物を添加した炭化珪素粉末を作る必要があり、この粉末を単純に成形、焼成すると、製品にクラックやカケが生じ、実質的に製品価値が無くなるという問題があった。
【0035】
この問題の解決には、ポア材やバインダー等の有機物を添加した炭化珪素粉末を成形後、脱脂工程を追加し、その脱脂工程で得られた粉末成形体の残炭率を0.5〜3.0重量%の範囲に調整してから焼成することにより、気孔率13体積%を超えつつも摺動部材としての必要強度を保持し、摺動特性に優れた焼結体で、且つ、製品ハンドリング時のカケや焼成クラックの無い多孔質炭化珪素質焼結体が得られることを見出した。
【0036】
よって、粉末成形体を焼成する工程の前に脱脂工程を追加し、その脱脂工程を経た粉末成形体の残炭率を0.5〜3.0重量%の範囲に調整して焼成することも重要な特徴であり、残炭率を上記範囲に設定すると、粉末成形体の形状を維持する最低の強度を保持しつつも、脱脂工程で分解される有機物のガス化による急激な体積膨張を防ぐ効果が得られ、クラックやカケの無い高品位の摺動部材を容易に提供できることになる。
【0037】
残炭率を前述の範囲に調整するための手段としては、粉末成形体の脱脂条件として、最高保持温度と最高保持温度までの昇温時間及び炉内雰囲気を規定することが有効である。
【0038】
例えば、脱脂工程を得た粉末成形体の残炭率が0.5重量%未満であった場合、粉末成形体の強度が低くなることで製品形状を保持できなかったり、ハンドリング時にカケを生じたりする可能性が高い。
【0039】
また、残炭率が3.0重量%を超えた場合は、その後の焼成工程で、添加された有機物が分解される際に、ガス化による急激な体積膨張によるクラックが生じ、前述同様、製品歩留りを大きく下げることにつながる。
【0040】
ここで説明した残炭率は前述の多孔質炭化珪素質焼結体を得るために作製した粉末成形体の重量から脱脂後の重量を差し引いた重量減比率を算出し、これを粉末成形体中に含まれるバインダー及び気孔形成のための有機化合物の添加比率から差し引いた値である。
【0041】
以下、本発明の摺動部材用多孔質炭化珪素質焼結体の製造方法について説明する。
【0042】
まず、出発原料として微量のシリカを含んだ炭化珪素粉末にアルミナ粉末及びイットリア粉末と水とを混合してスラリー化し、このスラリーにバインダーとポア材として微小アクリルビーズを添加、混合後、噴霧乾燥することで造粒粉を作製する。
【0043】
この造粒粉を所定形状に成形し、真空脱脂炉に入炉後、窒素雰囲気下で450〜650℃までを10〜40時間で昇温し、450〜650℃で2〜10時間保持後、自然冷却する。
【0044】
ここで残炭率0.5〜3.0重量%の範囲に調整された粉末成形体を更に真空炉内アルゴン雰囲気にて1800〜1900℃の温度で焼成し、得られた焼結体を所定形状に加工することで、シールリング等の摺動部材を作製する。
【0045】
以上の製造方法にて作製された摺動部材は、気孔率13体積%を超え、必要強度目安である200MPaを保持し、且つ、製品にクラックやカケも無く摺動特性に優れた高品位のものとなり得る。
【0046】
【実施例】
(実験例1)
1重量%のシリカを含んだ炭化珪素粉末100重量%に対し、表1に示す割合のアルミナ粉末、イットリア粉末と、122重量%の水、分散剤として0.3重量%のアンモニア水及び84重量%のウレタンボールとをボールミルに投入後、48時間混合してスラリー化した。このスラリーにアクリル樹脂を主成分とするバインダー8重量%と、ポア材として平均粒径23μmと38μmと69μmのアクリルビーズを表1に示す割合で添加、混合後、噴霧乾燥することにより造粒粉を作製した。この造粒粉を1ton/cmの圧力で所定形状に成形し、真空脱脂炉内窒素雰囲気下にて450〜650℃までを5〜60時間で昇温後、450〜650℃で2〜10時間保持し、その後、自然冷却とする条件で脱脂後、重量減少量を測定することにより残炭率を算出した。次に脱脂された粉末成形体を真空炉内アルゴン雰囲気にて1800〜1900℃の温度で焼成することにより得られた焼結体の気孔率、平均気孔径、抗折強度及びクラックやカケ、変形等の外観を評価した。結果は表1に示し、焼結助剤として炭化硼素とカーボンを用いた固相焼結体の比較例も同時に表1へ示す。
【0047】
表1より、まず、13体積%を越える気孔率を得るためには、ポア材として用いたアクリルビーズを8重量%以上添加する必要があるのと同時に、添加量が10重量%以下の範囲ではシールリング用部材としての必要強度である200MPaを超えていることが判る。
【0048】
逆にアクリルビーズの添加量が12重量%を超えてくると気孔率の増加とともに強度低下が顕著に確認され、比較例で示している試料No.19の固相焼結体同様に、シールリング製品としての必要強度を保持できなくなることが判る。
【0049】
平均気孔径においても上記同様、40μmを超える範囲では強度低下が確認される。
【0050】
また、焼結助剤成分であるアルミニウム化合物及び希土類元素化合物が本発明の範囲外となっている試料No.17及び18では微細気孔の発生に伴う強度低下と液相成分の分解蒸発に伴う変形が発生し、シールリング製品としての実用価値が無くなっていることが判る。
【0051】
一方、試料No.1〜16において、残炭率と外観との関係を見た場合、残炭率0.5%を下回る範囲では、粉末成形体として形状を保持できる最低強度が確保できないため、カケ等の外観異常が確認される。また、残炭率3.0%を超える範囲では、有機物分解時のガス化による急激な体積膨張に伴うクラック等の外観異常が確認される。
【0052】
以上の通り、焼結助剤としてアルミニウム化合物11重量%以下、希土類元素化合物15重量%以下、珪素酸化物8重量%以下を含有した炭化珪素原料に、平均粒径38μmのアクリルビーズを8〜10重量%添加した粉末成形体を作製し、その粉末成形体を脱脂して、残炭率0.5〜3.0%に調整後、焼成することにより、平均気孔径が20〜40μmの範囲で、気孔率が13体積%を超えつつも200MPa以上の強度を保持し、且つ、摺動特性に優れ、クラックやカケ等の無い高品位の多孔質炭化珪素質焼結体が得られることが確認できた。
【0053】
【表1】

Figure 2005015246
【0054】
【発明の効果】
以上のように、本発明によれば、炭化珪素を主成分とし、11重量%以下のアルミニウム化合物と、15重量%以下の希土類元素化合物と、8重量%以下の珪素酸化物とを含有し、平均気孔径20〜40μm、気孔率が13〜18体積%である多孔質炭化珪素質焼結体とすることにより、シールリング等の摺動部材としての必要強度を保持し、且つ、摺動特性に優れた摺動部材用各種製品を提供することができる。
【0055】
又、上記製品の製造工程において、粉末成形体を焼成する工程の前に脱脂工程を追加し、その脱脂工程を経た粉末成形体の残炭率を0.5%〜3.0%の範囲に調整して焼成することにより、上記の特性を確保しつつも、クラックやカケの無い高品位の摺動部材用各種製品を容易に提供できる。
【図面の簡単な説明】
【図1】本発明の摺動部材用多孔質炭化珪素質焼結体を用いたメカニカルシールの基本構造を示した断面図である。
【符号の説明】
1:回転軸
2:ケーシング
3:密封端面
4:緩衝ゴム
5:シートリング
6:従動リング
7:パッキング
8:コイルスプリング
9:カラー
10:セットスクリュー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous silicon carbide based sintered body for a sliding member such as a seal ring in a mechanical seal used as a shaft seal device such as a pump or a refrigerator.
[0002]
[Prior art]
As an example of a porous silicon carbide sintered body for a sliding member, a seal ring used for a mechanical seal is used.
[0003]
A mechanical seal is one of the shaft sealing devices of fluid equipment for the purpose of completely sealing the fluid of rotating parts of various machines. It consists of a driven ring that can move in the axial direction according to wear of the sealing end surface and a seat ring that does not move. Thus, it has a mechanism for buffering vibrations, and functions to limit fluid leakage at the sealed end surface substantially perpendicular to the axis of relative hostile rotation.
[0004]
As shown in FIG. 1, the basic structure is attached between a rotating shaft 1 and a casing 2, and a sealing end surface 3 having a sealing action is a pair of a seat ring 5 as a stationary member and a driven ring 6 as a rotating member. The contact surface forms a surface perpendicular to the shaft to provide a sealing action. The driven ring 6 is supported in a cushioning manner by the packing 7 and does not contact the rotating shaft 1.
[0005]
The collar 9 is fitted to the rotary shaft 1 and fixed to the rotary shaft 1 by a set screw 10. A coil spring 8 is interposed between the collar 9 and the packing 7. The driven ring 6 and the collar 9 are engaged with each other to prevent relative rotation therebetween, and the driven ring 6 can be moved in the axial direction.
[0006]
The side end surface of the seat ring 5 and the side end surface of the driven ring are both substantially perpendicular to the axis of the rotary shaft 1, and these surfaces are reduced in surface roughness by lapping to maintain a high degree of flatness. The sealed end face 3 is configured.
[0007]
The sealing fluid is in contact with the outer periphery of the sealed end surface 3 and the atmosphere is in contact with the inner periphery. The strength of the contact pressure of the sealed end surface is increased by the elastic force of the coil spring 8. The shock absorbing rubber 4 supports the seat ring 5 in a shock absorbing manner and prevents leakage between the driven ring 6 and the rotating shaft 1. The sealing end face 3 prevents leakage of the end faces of the seat ring 5 and the driven ring 6. When the rotary shaft 1 rotates, the collar 9 rotates with it. This collar 9 rotates the driven ring 6. Both the packing 7 and the coil spring 8 also rotate.
[0008]
Since the seat ring 5 does not rotate, the sealing end surface 3 becomes a meeting surface of the relatively rotating surfaces and prevents leakage of the sealing fluid while the rotating shaft 1 is rotating. As the sealed end face 3 is worn due to friction, the driven ring 6 is pushed toward the seat ring 5 and the tight contact of the sealed end face 3 is maintained. The buffer rubber 4 and the packing 5 reduce the transmission of vibration of the rotary shaft 1 to the sealed end surface 3.
[0009]
Although the mechanical seal is formed by the above structure, the above-described seat ring 5 and driven ring 6 are generally called a seal ring.
[0010]
The seal ring members used here are mainly carbon materials, cemented carbides, silicon carbide sintered bodies, and alumina sintered bodies. In recent years, they have high hardness, high corrosion resistance, and sliding. The number of cases using a silicon carbide sintered body having a small friction coefficient and excellent smoothness is increasing.
[0011]
Moreover, in order to further improve the sliding characteristics among the silicon carbide based sintered bodies, in the manufacturing process of the dense silicon carbide based sintered body, independent pores having an average pore diameter of 10 to 40 μm or 50 to 500 μm are formed. As a sintering aid for obtaining a silicon carbide sintered body, it is disclosed that a porous silicon carbide sintered body having a volume of 13% by volume or less is used as a seal ring member. This is mainly by solid phase sintering using boron carbide and carbon.
[0012]
In addition, as a method for producing this porous silicon carbide sintered body, pores are generated by adding high molecular organic compounds such as spherical polystyrene beads into the raw material and decomposing them in the firing stage. Etc. are disclosed (see Patent Document 1 and Patent Document 2).
[0013]
[Patent Document 1]
US Pat. No. 5,834,387 specification
[Patent Document 2]
Japanese Patent Publication No. 05-69066 [0015]
[Problems to be solved by the invention]
The above-mentioned porous silicon carbide sintered body known as the prior art means that the necessary strength as a seal ring member in a mechanical seal is ensured. In most cases, the rate is set to 13% by volume or less, but in order to further improve the sliding characteristics as a seal ring member, it is necessary to set the porosity in the silicon carbide sintered body to be high. desired.
[0016]
However, when the porosity is set high in the silicon carbide sintered body mainly composed of solid phase sintering, the strength reduction is remarkably confirmed. As a result, the silicon carbide sintered body exceeding the porosity of 13 volume% is obtained. Is considered impractical. Therefore, a method for substantially producing a seal ring member having a porosity in the silicon carbide based sintered body exceeding 13% by volume has not been found.
[0017]
In addition, as a method for producing a porous silicon carbide sintered body, a macromolecular organic compound such as a spherical polystyrene bead is added to a raw material, and these are decomposed in a firing stage to generate pores. However, in order to generate pores with a porosity exceeding 13% by volume in the silicon carbide sintered body, it is necessary to add a considerable amount of a high molecular organic compound. There was a problem that the product cracked and the product value was substantially lost.
[0018]
The present invention has been made in view of the above-described problems, and its purpose is to maintain the necessary strength as a sliding member such as a seal ring, to have excellent sliding characteristics and to be free from cracks and chips. An object is to easily provide a silicon carbide sintered body for a moving member.
[0019]
[Means for Solving the Problems]
The present invention contains silicon carbide as a main component, contains 11 wt% or less of an aluminum compound, 15 wt% or less of a rare earth element compound, and 8 wt% or less of a silicon oxide, and has an average pore diameter of 20 to 40 µm, A porous silicon carbide sintered body for a sliding member is configured with a porosity of 13 to 18% by volume.
[0020]
Further, as a method for producing the porous silicon carbide sintered body for the sliding member, a raw material obtained by adding and mixing each of the above components, an organic substance for forming pores, and a molding aid is formed into a predetermined shape and degreased. The residual charcoal rate is adjusted to a range of 0.5 to 3.0% by the process and then fired.
[0021]
As described above, while maintaining the strength required as a sliding member such as a seal ring in a mechanical seal, it has excellent sliding characteristics, and has a high-quality porous structure free from chipping and firing cracks during product handling. A silicon carbide sintered body can be supplied.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0023]
FIG. 1 shows the basic structure of a mechanical seal, which is one of the shaft seal devices of fluid equipment for the purpose of completely sealing the fluid of rotating parts of various machines. The seat ring 5 and the driven ring 6 are described, and both are collectively called a seal ring.
[0024]
In the present invention, as a result of various studies to solve the above-described problems in the seal ring, silicon carbide is a main component as a silicon carbide sintered body forming the seal ring, the aluminum compound is 11% by weight or less, a rare earth element compound Even in a silicon carbide sintered body having a porosity of more than 13% by volume by containing 15% by weight or less and silicon oxide by 8% by weight or less, and setting the average pore diameter of the pores within a range of 20 to 40 μm It was found that 200 MPa, which is a necessary strength standard for the ring, can be maintained.
[0025]
This utilizes the fact that by using the above-mentioned sintering aid for silicon carbide, liquid phase sintering mainly results in a reduction in the sintering temperature and the effect of improving the strength.
[0026]
By setting the strength improvement effect and the average pore diameter in the range of 20 to 40 μm, it becomes possible to set a high porosity exceeding 13 volume%, and at the same time, reducing frictional force when sliding the seal ring and lubricating liquid This promotes the lubrication effect and improves the sliding characteristics.
[0027]
For example, if the aluminum compound, rare earth element compound, or silicon oxide used as a sintering aid for obtaining a silicon carbide-based sintered body exceeds the above range, a liquid phase is often generated in the sintering stage and decomposed. Since the evaporation becomes intense, there arises a problem that the strength is reduced due to the generation of fine pores and the molded shape cannot be maintained.
[0028]
On the other hand, if the aforementioned components are very small, the liquid phase is not sufficiently generated and the densification is impaired, leading to a decrease in strength.
[0029]
Accordingly, the sintering aid is preferably in the range of 1 to 6% by weight of aluminum compound, 1 to 10% by weight of rare earth element compound, and 0.1 to 5.0% by weight of silicon oxide.
[0030]
As impurities other than these components, metals such as iron and titanium or compounds thereof, carbon, and the like can be raised. However, these impurities cause densification inhibition and strength reduction, so the content should be 2% by weight or less. preferable.
[0031]
As for the pores, if the average pore diameter is less than 20 μm, the lubricating effect of the lubricating liquid is reduced, and if it exceeds 40 μm, the required strength cannot be maintained.
[0032]
Further, when the porosity is 13% by volume or less, the sliding property tends to be inferior, and when it is 18% by volume or more, the strength may be lowered, and it is preferably in the range of 14 to 17% by volume. .
[0033]
The average pore diameter explained here was obtained by taking a metal micrograph or SEM photograph of the mirror-finished surface of the sintered body, and after determining pores due to organic matter decomposition on the photograph, measuring the diameter of each pore and calculating the average value. The porosity is obtained by calculating the ratio of the theoretical density in the above-mentioned sintered body composition and the bulk density of the obtained sintered body.
[0034]
On the other hand, in order to obtain a silicon carbide sintered body having a porosity exceeding 13% by volume, it is necessary to make a silicon carbide powder to which an organic substance such as a pore material or a binder is added. When this powder is simply molded and fired, There was a problem that the product was cracked and chipped, and the product value was substantially lost.
[0035]
In order to solve this problem, a silicon carbide powder to which an organic substance such as a pore material and a binder is added is molded, and then a degreasing step is added, and the residual carbon ratio of the powder molded body obtained in the degreasing step is set to 0.5 to 3 By sintering after adjusting to the range of 0.0% by weight, the sintered body has excellent sliding properties while maintaining the required strength as a sliding member while exceeding the porosity of 13% by volume, and the product. It has been found that a porous silicon carbide sintered body free from burrs and firing cracks during handling can be obtained.
[0036]
Therefore, a degreasing step is added before the step of firing the powder compact, and the residual carbon ratio of the powder compact after the degreasing step is adjusted to a range of 0.5 to 3.0% by weight and fired. It is an important feature, and if the residual carbon ratio is set in the above range, it prevents the rapid volume expansion due to gasification of organic substances decomposed in the degreasing process while maintaining the minimum strength that maintains the shape of the powder compact. The effect is obtained, and a high-quality sliding member free from cracks and chips can be easily provided.
[0037]
As a means for adjusting the residual carbon ratio to the above-mentioned range, it is effective to define the maximum holding temperature, the temperature rising time to the maximum holding temperature, and the furnace atmosphere as the degreasing conditions of the powder compact.
[0038]
For example, when the residual carbon ratio of the powder molded body obtained through the degreasing process is less than 0.5% by weight, the strength of the powder molded body becomes low, so that the product shape cannot be maintained, or chipping occurs during handling. There is a high possibility of doing.
[0039]
In addition, when the residual carbon ratio exceeds 3.0% by weight, when the added organic matter is decomposed in the subsequent firing step, cracks due to rapid volume expansion due to gasification occur, This leads to a significant reduction in yield.
[0040]
The residual carbon ratio described here is calculated by calculating the weight loss ratio obtained by subtracting the weight after degreasing from the weight of the powder molded body produced to obtain the porous silicon carbide sintered body described above. It is a value subtracted from the addition ratio of the organic compound for forming binders and pores.
[0041]
Hereinafter, the manufacturing method of the porous silicon carbide sintered body for sliding members of the present invention will be described.
[0042]
First, alumina carbide, yttria powder and water are mixed into a silicon carbide powder containing a small amount of silica as a starting material to form a slurry, and then fine acrylic beads are added to the slurry as a binder and a pore material, mixed and then spray-dried. This produces granulated powder.
[0043]
After forming this granulated powder into a predetermined shape and entering a vacuum degreasing furnace, the temperature is raised from 450 to 650 ° C. in a nitrogen atmosphere in 10 to 40 hours, and holding at 450 to 650 ° C. for 2 to 10 hours. Cool naturally.
[0044]
Here, the powder compact adjusted to a residual carbon ratio in the range of 0.5 to 3.0 wt% was further fired at a temperature of 1800 to 1900 ° C. in an argon atmosphere in a vacuum furnace, and the obtained sintered body was predetermined. A sliding member such as a seal ring is produced by processing into a shape.
[0045]
The sliding member produced by the above manufacturing method has a porosity of more than 13% by volume, maintains a required strength standard of 200 MPa, and has a high quality with excellent sliding characteristics without cracks and chips. Can be a thing.
[0046]
【Example】
(Experimental example 1)
The proportion of alumina powder, yttria powder, 122% water, 0.3% by weight ammonia water and 84% by weight as a dispersing agent with respect to 100% by weight of silicon carbide powder containing 1% by weight silica. % Urethane balls were put into a ball mill and then mixed for 48 hours to form a slurry. A granulated powder is obtained by adding 8% by weight of a binder mainly composed of an acrylic resin and acrylic beads having an average particle diameter of 23 μm, 38 μm and 69 μm as pore materials to the slurry in the proportions shown in Table 1, followed by spray drying. Was made. This granulated powder is molded into a predetermined shape at a pressure of 1 ton / cm 2 , heated to 450 to 650 ° C. in a nitrogen atmosphere in a vacuum degreasing furnace in 5 to 60 hours, and then 2 to 10 at 450 to 650 ° C. The remaining carbon ratio was calculated by measuring the weight loss after degreasing under the condition of holding for a time and then naturally cooling. Next, the porosity, average pore diameter, bending strength, cracks, chips and deformation of the sintered body obtained by firing the degreased powder compact in a vacuum furnace at 1800 to 1900 ° C. in an argon atmosphere And the like were evaluated. The results are shown in Table 1, and comparative examples of solid-phase sintered bodies using boron carbide and carbon as sintering aids are also shown in Table 1.
[0047]
From Table 1, first, in order to obtain a porosity exceeding 13% by volume, it is necessary to add 8% by weight or more of the acrylic beads used as the pore material, and at the same time, when the addition amount is in the range of 10% by weight or less. It can be seen that the required strength for the seal ring member exceeds 200 MPa.
[0048]
On the contrary, when the amount of the acrylic beads added exceeds 12% by weight, a decrease in strength is remarkably confirmed as the porosity increases. It can be seen that the required strength as a seal ring product cannot be maintained as in the case of 19 solid-phase sintered body.
[0049]
Similarly to the above, the average pore diameter is confirmed to decrease in strength in the range exceeding 40 μm.
[0050]
In addition, Sample No. 2 in which the aluminum compound and rare earth element compound which are sintering aid components are out of the scope of the present invention. 17 and 18, it can be seen that the strength decreases due to the generation of fine pores and the deformation accompanying the decomposition and evaporation of the liquid phase component occurs, and the practical value as a seal ring product is lost.
[0051]
On the other hand, sample No. 1-16, when looking at the relationship between the remaining charcoal rate and appearance, in the range below the remaining charcoal rate of 0.5%, it is not possible to secure the minimum strength that can maintain the shape as a powder molded body, so abnormal appearance such as cracks Is confirmed. Moreover, in the range exceeding 3.0% of residual charcoal, the appearance abnormality, such as a crack accompanying rapid volume expansion by the gasification at the time of organic substance decomposition | disassembly, is confirmed.
[0052]
As described above, acrylic beads having an average particle size of 38 μm are added to a silicon carbide raw material containing 11% by weight or less of an aluminum compound, 15% by weight or less of a rare earth element compound, and 8% by weight or less of a silicon oxide as a sintering aid. A powder molded body added by weight% is prepared, the powder molded body is degreased, adjusted to a residual carbon ratio of 0.5 to 3.0%, and then fired, so that the average pore diameter is in the range of 20 to 40 μm. It is confirmed that a high-quality porous silicon carbide sintered body that retains a strength of 200 MPa or more while having a porosity exceeding 13% by volume, is excellent in sliding characteristics, and has no cracks or chips is obtained. did it.
[0053]
[Table 1]
Figure 2005015246
[0054]
【The invention's effect】
As described above, according to the present invention, silicon carbide is the main component, containing 11 wt% or less of an aluminum compound, 15 wt% or less of a rare earth element compound, and 8 wt% or less of a silicon oxide, By using a porous silicon carbide sintered body having an average pore diameter of 20 to 40 μm and a porosity of 13 to 18% by volume, the required strength as a sliding member such as a seal ring is maintained, and sliding characteristics are maintained. It is possible to provide various products for sliding members which are excellent in the above.
[0055]
Moreover, in the manufacturing process of the above product, a degreasing step is added before the step of firing the powder compact, and the residual carbon ratio of the powder compact after the degreasing step is in the range of 0.5% to 3.0%. By adjusting and firing, various products for high-quality sliding members free from cracks and chips can be easily provided while ensuring the above characteristics.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a basic structure of a mechanical seal using a porous silicon carbide sintered body for a sliding member according to the present invention.
[Explanation of symbols]
1: Rotating shaft 2: Casing 3: Sealing end surface 4: Buffer rubber 5: Seat ring 6: Driven ring 7: Packing 8: Coil spring 9: Collar 10: Set screw

Claims (2)

炭化珪素を主成分とし、11重量%以下のアルミニウム化合物と、15重量%以下の希土類元素化合物と、8重量%以下の珪素酸化物とを含有し、平均気孔径20〜40μm、気孔率が13〜18体積%であることを特徴とする摺動部材用多孔質炭化珪素質焼結体。Containing silicon carbide as a main component, containing 11% by weight or less of an aluminum compound, 15% by weight or less of a rare earth element compound, and 8% by weight or less of silicon oxide, having an average pore diameter of 20 to 40 μm and a porosity of 13 A porous silicon carbide sintered body for a sliding member, characterized in that it is -18% by volume. 請求項1記載の摺動部材用多孔質炭化珪素質焼結体の製造方法であって、上記各成分と、気孔を形成するための有機物と、成形助剤を添加混合した原料を所定形状に成形し、脱脂工程により残炭率を0.5〜3.0%の範囲に調整した後、焼成することを特徴とする摺動部材用多孔質炭化珪素質焼結体の製造方法。It is a manufacturing method of the porous silicon carbide sintered body for sliding members of Claim 1, Comprising: The said each component, the organic substance for forming a pore, and the raw material which added and mixed the shaping | molding adjuvant in the predetermined shape A method for producing a porous silicon carbide sintered body for a sliding member, comprising molding and adjusting a residual carbon ratio in a range of 0.5 to 3.0% by a degreasing step and then firing.
JP2003178676A 2003-06-23 2003-06-23 Porous silicon carbide-based sintered compact for sliding member and its manufacturing method Pending JP2005015246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003178676A JP2005015246A (en) 2003-06-23 2003-06-23 Porous silicon carbide-based sintered compact for sliding member and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178676A JP2005015246A (en) 2003-06-23 2003-06-23 Porous silicon carbide-based sintered compact for sliding member and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005015246A true JP2005015246A (en) 2005-01-20

Family

ID=34180220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178676A Pending JP2005015246A (en) 2003-06-23 2003-06-23 Porous silicon carbide-based sintered compact for sliding member and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005015246A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117897A1 (en) * 2005-04-27 2006-11-09 Kyocera Corporation Porous ceramic for sliding members, method for producing the same and mechanical seal ring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117897A1 (en) * 2005-04-27 2006-11-09 Kyocera Corporation Porous ceramic for sliding members, method for producing the same and mechanical seal ring
US8158248B2 (en) 2005-04-27 2012-04-17 Kyocera Corporation Porous ceramic for slide member, method for preparing the same, and mechanical seal ring

Similar Documents

Publication Publication Date Title
JP2722182B2 (en) Porous SiC bearing material having three types of pore structure and method of manufacturing the same
US7166550B2 (en) Ceramic composite body of silicon carbide/boron nitride/carbon
US20020160902A1 (en) Composite material based on silicon carbide and carbon, process for its production and its use
EP0864549B1 (en) Sintered silicon carbide with graphite added thereto, sintered composite containing the same, and mechanical seal
JP5597693B2 (en) Silicon carbide sintered body, sliding part using the same, and protective body for flying object
JP2006036624A (en) Porous ceramic for use in slide member and its manufacturing method and mechanical seal ring using it
JP4429004B2 (en) Manufacturing method of porous ceramic sintered body for sliding member, porous ceramic sintered body for sliding member obtained thereby, and seal ring using the same
JP3122074B2 (en) Slide material made of silicon carbide
JPH02145484A (en) Sintered silicon nitride
JP4998458B2 (en) Ceramic sintered body, sliding component using the same, and method for producing ceramic sintered body
JP4642956B2 (en) Bearing ball, bearing, and method of manufacturing bearing ball
US7163650B2 (en) Process for producing ceramic bearing components
JPWO2008053903A1 (en) Sliding member, manufacturing method thereof, mechanical seal ring and mechanical seal using the same
JP5362758B2 (en) Wear resistant parts
JP2005015246A (en) Porous silicon carbide-based sintered compact for sliding member and its manufacturing method
JP4741421B2 (en) Sliding member and mechanical seal ring using the same
JP5148523B2 (en) SiC sintered body ring for mechanical seal device, manufacturing method of SiC sintered body ring for mechanical seal device, mechanical seal device and light water reactor plant
JP2007223890A (en) Silicon carbide sintered compact, sliding member and mechanical seal ring each using the same, and mechanical seal
JP2004026513A (en) Aluminum oxide wear resistant member and its production process
JPH04293998A (en) Sliding member
JP3339645B2 (en) Method for producing silicon carbide-carbon composite material
JP2009215091A (en) Dense boron carbide sintered body and method for producing the same
JP2543093B2 (en) Sliding parts for seals
JP4651330B2 (en) Method for producing ceramic sintered body and ceramic sintered body
JP2010024103A (en) Method for producing high-purity boron nitride sintered compact having high hardness and high toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512