JP2005015170A - Sheet winding shaft device - Google Patents

Sheet winding shaft device Download PDF

Info

Publication number
JP2005015170A
JP2005015170A JP2003182925A JP2003182925A JP2005015170A JP 2005015170 A JP2005015170 A JP 2005015170A JP 2003182925 A JP2003182925 A JP 2003182925A JP 2003182925 A JP2003182925 A JP 2003182925A JP 2005015170 A JP2005015170 A JP 2005015170A
Authority
JP
Japan
Prior art keywords
winding
rotary shaft
shaft member
air
take
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003182925A
Other languages
Japanese (ja)
Inventor
Azuma Kawamura
東 河村
Toshifumi Kanemitsu
利文 金光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hagiwara Industries Inc
Original Assignee
Hagiwara Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hagiwara Industries Inc filed Critical Hagiwara Industries Inc
Priority to JP2003182925A priority Critical patent/JP2005015170A/en
Publication of JP2005015170A publication Critical patent/JP2005015170A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sheet winding shaft device capable of independently actuating a winding core locking means and a rotation force transmitting means without using a rubber tube. <P>SOLUTION: The sheet winding shaft comprises a winding rotation transmitting means 12 equipped with a pneumalically pressed pressure receiving member 14, and transmitting rotation force related to displacement force of the receiving member 14 from a winding rotation shaft member 2 driven to rotate to a winding portion 3 externally fitted thereto; and a winding core locking means 13 locking the winding core A externally fitted with the winding portion 3 to the winding portion 3 or releasing the locking state. An air passage 8 not related to the winding core locking means 13 is formed on a thick wall portion of the winding rotation shaft member 2. The air passage 8 makes compressed air generated outside of the winding rotation shaft member 2 directly contact with the pressure receiving member 14, thereby adding the air pressure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、巻芯を装着してシートを巻取るシート巻取軸装置に関するものである。
【0002】
【従来の技術】
従来、紙やプラスチックフィルム等の広幅シートを縦にスリットしてなる細幅シートをその細幅シート毎に巻き取る巻取軸装置では、多数の巻芯(通常は紙管)を巻取回転軸部材の周面に形成された巻取部にそれぞれ装着してその巻芯の上に細幅シートを巻き取っており、その巻取りが終了した後には巻芯ごと抜き取り、新たな巻芯を巻取部に装着するようにしている。したがって、巻芯を装着したり、抜き取ったりするときは巻芯は巻取回転軸部材に対してフリーであり、巻取中では巻芯は巻取部に固定されている必要がある。
【0003】
このように必要時に巻芯を開放したり固定したりするシート巻取軸装置として、本出願人は、特許文献1に示すように、空気圧で押圧される受圧部材を具備したもので該受圧部材の変位力に関連した大きさの回転力を、駆動回転される巻取回転軸部材からこれに外嵌された巻取部に伝達するものとした巻取回転伝達手段と、前記巻取部とこれに外嵌された巻芯とを係止状態となすと共に該係止状態を空気圧の付与により解除させるものとした巻芯係止手段とを備えたものを既に提案している。
【0004】
該提案に係るシート巻取軸装置では、巻取回転軸部材に形成された独立の空気路を通じて供給された圧縮空気がゴムチューブを膨張変形させ、該ゴムチューブの膨張変形個所が前記受圧部材に圧接して該ゴムチューブ内の空気圧に対応した押圧力を前記受圧部材に付与するのであり、これにより上記回転力伝達手段は該ゴムチューブ内の空気圧に対応した回転力を巻取回転軸部材から巻取部に伝達する。
【0005】
【特許文献1】
特開2000−327182号公報
【0006】
【発明が解決しようとする課題】
上記した特許文献1に示す従来のシート巻取軸装置では、次のような問題がある。
即ち、前記回転力伝達手段により伝達される回転力の大きさは前記ゴムチューブ内に圧縮空気を供給した際の該ゴムチューブの膨縮変形力により決定されるが、該ゴムチューブはこれの外周面にワイヤを巻き付けることにより特定個所に止着されるため、その止着個所から該ゴムチューブ内の圧縮空気が漏れ出ることがあり、この場合に前記ゴムチューブは予定された押圧力を発揮することができず、シートの巻取り処理が的確に行えないことがある。
そして、前記ゴムチューブ内から漏れ出た圧縮空気が前記巻取部への巻芯の固定状態を弛緩させたり或いは予定しない有害な部品接触を生じさせるなどしてシートの巻取り処理を不可能となすこともある。
【0007】
また前記ゴムチューブと接触する部材の製作時に生じた鋭利なエッジが前記ゴムチューブに繰り返し圧接してこれを破損させることが生じて既述と同様な弊害を生じさせるのであり、これに対処するには該エッジを除去することが必要となるが、実際上その完全な除去は極めて難しいのである。
【0008】
さらには前記ゴムチューブが前記受圧部材の熱を伝達されて比較的早く劣化することが生じるのであり、このようにゴムチューブが劣化したときは、それがひび割れた状態となってその内方の圧縮空気が漏れ出ることが生じて、やはり既述と同様な弊害を生じさせるのである。
【0009】
本発明は、斯かる実情に対処するため、前記巻芯係止手段と、前記回転力伝達手段とをゴムチューブを使用することなく、それぞれ独立して作動させることができるシート巻取軸装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明は、請求項1に記載したように、空気圧により押圧される受圧部材を具備し、該受圧部材の変位力に関連した大きさの回転力を、駆動回転される巻取回転軸部材からこれに外嵌された巻取部に伝達するものとした巻取回転伝達手段と、前記巻取部にこれに外嵌された巻芯を必要に応じて係止状態としたり該係止状態を解除させるものとした巻芯係止手段とを備えたシート巻取軸において、前記巻取回転軸部材の肉厚部に前記巻芯係止手段とは関連しない空気路を形成し、該空気路は前記巻取回転軸部材の外方で生成された圧縮空気を前記受圧部材に直接に接触させて空気圧を付与する構成としている。
【0011】
さらに詳細には、請求項2に記載したように、空気圧により押圧される受圧部材を具備し、該受圧部材の変位力に関連した大きさの回転力を、駆動回転される巻取回転軸部材からこれに外嵌された巻取部に伝達するものとした巻取回転伝達手段と、前記巻取部とこれに外嵌された巻芯とを係止状態となしたり該係止状態を空気圧の付与により解除させるものとした巻芯係止手段とを備えたシート巻取軸において、前記巻取回転軸部材の肉厚部に第一空気路と第二空気路をそれぞれ独立した状態に形成し、該第一空気路は前記巻取回転軸部材の外方で生成された圧縮空気を前記受圧部材に直接に接触させて空気圧を付与し、第二空気路は前記巻取回転軸部材の外方で生成された圧縮空気を前記巻芯係止手段に流入させる構成としている。
【0012】
この発明によれば、前記受圧部材は従来のゴムチューブを介することなく圧縮空気で直接に押圧されるため、圧縮空気の圧力変化に対応してその変位力が正確に変化されるようになり、したがって前記巻取回転軸部材から前記巻取部へ伝達される回転力も、圧縮空気の圧力変化に対応して正確に変化されるものとなる。
【0013】
この際、次のように具体化するのがよいのであって、即ち、請求項3に記載したように、前記巻取部が複数形成してあり、第一空気路は前記巻取回転軸部材の中心線個所に形成した第一直状孔と該第一直状案孔から前記中心線回りの半径方向へ向かう第一半径孔を具備し、前記第二空気路は前記巻取回転軸部材の肉厚部のうち前記第一空気路の存在個所を除いた範囲内で且つ前記中心線回りの複数の略等角配置個所のそれぞれに形成された前記中心線方向へ向かう第二直状孔と、該第二直状孔から前記中心線回りの半径方向へ向かう第二半径孔とを具備した構成となす。
これによれば、前記巻取回転伝達手段と、前記巻芯係止手段とに空気圧を付与するための空気路が簡易に形成されると共に前記巻取回転軸部材の回転時の釣合性を良好となすのである。
【0014】
【発明の実施の形態】
次に本発明を図1から図9に示す実施の形態について詳細に説明する。図1及び図2中、1はシート巻取軸装置で、該シート巻取軸装置1は図示しない駆動源からの動力を受けて回転する巻取回転軸部材2と、該巻取回転軸部材2の外周面にこれの中心線X方向に配列されて外嵌装着された複数の巻取部3とを備えていると共に、その巻取回転軸部材2の各端部側には巻取回転軸部材2を回転自在に支持する軸受部4a、4bが形成されている。この際、一方の軸受部4aは巻取回転軸部材2を片持ち支持するに足りる支持能力を有し、また他方の軸受部4bは巻取回転軸部材2から必要に応じて簡便に離脱させ得るものとなされる。そして巻取回転軸部材2の一方の端部には、巻取回転軸部材2の回転中でも外方の空気供給源から任意に昇圧された圧縮空気を空気供給管を経て該巻取回転軸部材2の内方に送り込むことを可能となす2つの空気供給接続体5a、5bが取り付けられている。5cは図示しないモータなどの回転駆動力を巻取回転軸部材2に入力するためのプーリである。なお図1中、巻取部3はその内部構造を省略した状態で表現されている。
上記空気供給接続体5a、5bを通じて空気が送り込まれるようになされた巻取回転軸部材2においては、図3に示すように、その肉厚部に第一空気路8と第二空気路9がそれぞれ独立した状態に形成されており、第一空気路8は巻取回転軸部材2の中心線x個所に形成した第一直状孔8aと該第一直状孔8aから前記中心線x回りの半径方向へ向かう第一半径孔8bを具備し、第二空気路9は巻取回転軸部材2の肉厚部のうち第一空気路8の存在個所を除いた範囲内で且つ中心線x回りの複数の等角配置個所pのそれぞれに中心線x方向へ向かうように形成された第二直状孔9aと、該第二直状孔9aから中心線x回りの半径方向へ向かう第二半径孔9bを具備している。
【0015】
そして一方の空気供給接続体5aは図示しない制御装置により適当圧に制御された圧縮空気を第一空気路8内に送り込むものとなされており、他方の空気供給接続体5bは特定圧力に昇圧された部品駆動用の圧縮空気を第二空気路9内に送り込むものとなされている。
【0016】
図1、図2及び図4に示すように、上記一方の軸受部4aは、巻取回転軸部材2に固定されたフランジ体6、巻取回転軸部材2に外嵌されてフランジ体6に固定されたスリーブ部材7、固定状態の筒状保持部材10、該筒状保持部材10とスリーブ部材7との間に装着されて巻取回転軸部材2を回転自在に支持するためのベアリング21、21などからなっている。
【0017】
また本例のシート巻取軸装置1は、巻取回転軸部材2に多数の巻取部3を並列状態で備えていて、各巻取部3にて一つの巻芯Aを保持し得るようになされているものである。巻取部3のそれぞれは図4〜図8に示すように、巻取回転伝達手段12と巻芯係止手段13と有している。そして巻取回転伝達手段12は、巻取回転軸部材2の第一半径孔8bとしての第一シリンダ、径方向Yへ移動可能なように該シリンダ孔8b内に嵌挿されている受圧部材としての第一のピストン14、巻取回転軸部材2の周りに回転可能に設けられている支持環15、該支持環15の周りに位置して中心線x方向に移動可能に設けられたスライド環16、巻取部3の外周部を構成していて巻取回転軸部材2の周りに回転可能に設けられた外周環17、該外周環17から出没可能に設けられて突出時に巻芯Aを固定状に係止することができるようにした係止爪18(図8参照)、該係止爪18を巻取回転軸部材2の中心へ向けて付勢する係止爪付勢手段19から構成されている。
【0018】
第一のピストン14は、第一直状孔8aから巻取回転軸部材2の外方に貫通され且つ巻取回転軸部材2の周方向に等間隔を取って配置された複数の第一シリンダ8bのそれぞれの内部に挿入され、該第一シリンダ8bに案内されることで巻取回転軸部材2の径方向Yに移動できるようになされている。そして、第一のピストン14は第一空気路8を通じて供給される制御用の圧縮空気の圧力によって巻取回転軸部材2の径方向Yにおける外方に向けて押し出されるもので、第一シリンダ8bを覆う形で配置されている上記支持環15の内周面に当接可能となされている。巻取部3のそれぞれは巻取回転軸部材2の周りに取り付けられた一対のベアリング21を有しており、支持環15は一方のベアリング21が支持することで巻取回転軸部材2の周りに回転可能に設けられているもので、図示されているように第一シリンダ8bのそれぞれの外方側の開口を覆うようにして配置されている。そして、支持環15の内周面15aは上記第一のピストン14と対応するように位置されていて、上述したように径方向Yへ押し出されてきた第一のピストン14の外方端面14aが当接できるようになされている。上記第一のピストン14は第一直状孔8aに送り込まれた圧縮空気の圧力が加えられることにより該支持環15の内周面15aに摺接し得る状態で当接するもので、第一のピストン14が支持環15に当接した状態で巻取回転軸部材2が回転しているときにはその当接により支持環15自体の自由回転(巻取回転軸部材2に対する相対的な回転)は抑制されることになるのであり、支持環15に外部から所要以上の回転抑制力が加わることで巻取回転軸部材2に対して相対的に回転できるように設けられている。
【0019】
また巻芯係止手段13は次のようになされている。即ち、巻取回転軸部材2と同心とした筒体状周面15bと、該筒体状周面15bに連続して巻取回転軸部材2の径方向Yに立ち上がる縦壁面15cとからなる取付段部22が支持環15の外周に形成されていて、この取付段部22に上記スライド環16が中心線x方向に移動可能に外挿されており、また支持環15を支持している一方(図4中の右側)のベアリング21の存在する側に位置する前記縦壁面15cを中心線x方向の一側における終端となし、スライド環16がこの縦壁面15cの位置で停止されるようになしている。該スライド環16には図5に示されているように、上記縦壁面15c側を開口としたスプリング装着穴23が周方向の適当間隔位置ごとに設けられており、スプリング装着穴23のそれぞれに配置された付勢手段24であるスプリングによってスライド環16が縦壁面15c側の反対へ向けて付勢されるようになされている。また、スライド環16の外周には周方向に等間隔を取って傾斜部25が複数(図示の例では三つ)設けられており、それぞれの傾斜部25の上面は前記スプリング24の付勢方向に向けて下り傾斜状となされている。
【0020】
上記外周環17はこれに対応した上記一対のベアリング21、21により巻取回転軸部材2に対して回転可能に設けられた略筒状のものであって、図5中右側の一つのベアリング21の外周に位置する支持環15の取付部分にこの外周環17の一方の周縁部が重なるようにして取付固定されると共に、外周環17の他方の周縁部が図5中左側の一つのベアリング21に支持されたものとなされている。このように外周環17は支持環15に連結されて一体化されていることから、上記第一のピストン14が支持環15に当接して巻取回転軸部材2と一体となって回転するときに、外周環17も、第一のピストン14と支持環15との当接による摩擦力を介して第一のピストン14と支持環15とがスリップする状態の下で巻取回転軸部材2よりも少し遅い速度で回転するものとなる。
【0021】
そして、該外周環17は上記スライド環16の傾斜部25と対応する位置に貫通孔となされた径方向Yの案内孔26を有したものとなされている。案内孔26には上記係止爪18が巻取回転軸部材2内にて径方向Yへの移動可能に内挿されており、該係止爪18はその下端面を、図示されているようにスライド環16における傾斜部25と同じく上記スプリング24の付勢方向に下り傾斜させて、前記傾斜部25上に乗せ置き、該傾斜部25に対して相対移動可能なように配置されている。即ち、スライド環16が中心線x方向へ移動することで係止爪18が案内孔26に案内された状態で巻取回転軸部材2の径方向Yに移動するようになされており、スライド環16がスプリング24の付勢方向に押し出されることで係止爪18が外周環17から外方に突出して、巻取部3に巻芯Aが外嵌装着されているとき、その巻芯Aをスプリング24の付勢力で固定状に係止した状態となり、また前記スライド環16が後述するように係止解除部13の働きにより前記縦壁面15c側に移動すると係止爪18は巻取回転軸部材2の中心方向に移動できるようになされている。
【0022】
上記係止爪付勢手段19は上述したようにスライド環16が縦壁面15c側に移動するときに係止爪18を巻取回転軸部材2の中心方向に移動させるもので、常時係止爪18を巻取回転軸部材2の中心側に付勢するスプリングリングとなされている。該スプリングリング19を上記外周環17の周りに配置させることができるようにその外周環17と前記係止爪18とには取付溝27が周方向に連続するように形成されていて、この取付溝27に前記スプリングリング19を位置させておくことで係止爪18に対して常時付勢力が付与されている。図7及び図8においては、前記取付溝27が外周環17と係止爪18とに周方向に連続する状態で設けられている状態を示しており、また、図5は係止爪18が没しているときの状態を示している。なお、スプリングリング19の付勢力はスライド環16により押し上げられるときの係止爪18の位置を変えない強さに調整されている。
【0023】
上記係止解除部13は、図4、図5及び図9に示すように、上記スライド環16に関連して形成されており、該係止解除部13は、上記スライド環16と対向するように図5中左側である他方のベアリング21側に位置され巻取回転軸部材2の周りに取り付けられているシリンダブロック28と、該シリンダブロック28において周方向に等間隔を取って配置されて(図9参照)中心線を前記中心線x方向と平行となされた複数の第二シリンダ29のそれぞれに装着されていて前記中心線x方向へ移動可能となされた第二ピストン30とからなるものである。図9中には第二シリンダ29は6個示されてるが、8個〜10個など任意の数となしてもよい。
【0024】
前記シリンダブロック28は、巻取回転軸部材2の第二空気路9から第二シリンダ29に空気を送り込むことができるように第二直状孔9aから外方に向けて貫通している第二半径孔9bに対応しており、該第二半径孔9bの外方端の開口部分の外方側に位置するように取り付けられている。そして、シリンダブロック28の内周面に周回して設けられた凹溝と各第二シリンダ29との接点において各第二シリンダ29に通じる透孔32を形成していて、第二直状孔9aから第二半径孔9bを経て送られてきた圧縮空気の圧力が透孔32を通って第二シリンダ29に入るようになり、その第二シリンダ29に送り込まれた圧縮空気の圧力によって第二ピストン30が上記スライド環16側へ向けて突出するようにしている。
図9はシリンダブロック28における第二シリンダ29の配置を示しており、この図中28aは、前記第二ピストン30が移動できる状態を確保して各第二シリンダ29の開口を閉じるカバー28bを取り付けるためのビス孔を示している。
【0025】
上記第二ピストン30は突出してスライド環16側に進むことで該スライド環16と当接するようになり、圧縮空気の圧力を受けてこの第二ピストン30がスライド環16をスプリング24の付勢力に抗してスプリング24の付勢方向とは逆方向に押し込むように設けられており、スライド環16がスプリング24の付勢方向とは逆方向に押し込まれて移動すると、傾斜部25も移動することから、係止爪付勢手段19によって付勢されている係止爪18が傾斜部25に対して相対移動する状態で巻取回転軸部材2の中心側に向けて没するように降り、係止爪18が巻芯Aと係止状態であった場合にはその係止状態を解除するようにしている。
【0026】
さらに上記第二ピストン30に関連してスプリング33が装着されていて、第二空気路9側から送り込まれる圧縮空気の圧力が人為操作などにより低下したときに第二ピストン30を第二シリンダ29の奥側(図5中左側)に押し戻して待機位置に定置するようにしている。この時、後述するようにスライド環16がスプリング24の付勢方向に進み出ることになって、係止爪18が巻取回転軸部材2の径方向Yに向けて押し上げられることになる。なお、上記スプリング33は設けなくてもよいものであり、この場合、第二空気路9側からの空気の圧力が低下したとき、スライド環16を移動させるスプリング24の付勢力により第二ピストン30は待機位置に押し戻される。
【0027】
次に上記構造のシート巻取軸装置1の使用例及び作動について説明する。
巻取部3に巻芯Aを装着するときには、所要の圧力(例えば0.1〜0.3MPa程度)に昇圧された圧縮空気が第二空気路9に送り込まれる。そして該圧縮空気が第二空気路9から第二半径孔9bを経て係止解除部13の第二シリンダ29内に送り込まれ、第二ピストン30が押し出される。このように押し出された状態の第二ピストン30がスライド環16を支持環15の縦壁面15cに押さえ付ける。これにより、スライド環16が縦壁面15cに突き当てられて位置決めされることから、係止爪18は外周環17の外周面の高さ位置から外方に突出する状態とはならず、案内孔26において没した状態となって、巻芯Aを外嵌装着し易い状態となる。
【0028】
巻芯Aを装着した後には第二空気路9に送り込まれる圧縮空気の圧力を下げるように操作されて、係止解除部13における第二シリンダ29内の空気圧が下がることから第二ピストン30とスライド環16とがスプリング24の付勢方向に移動し、その付勢方向に移動する傾斜部25により係止爪18が巻取回転軸部材2の径方向Yの外方へ向けて押し上げられて案内孔26内から外方へ突出し、巻芯Aの内周面に当接して巻芯Aを固定状に係止するようになる。
【0029】
巻取回転軸部材2の第一空気路8における第一直状孔8a内には図示しない制御装置により圧力を制御された圧縮空気(例えば圧力が0.5〜1.5MPa程度のもの)が送り込まれるのであり、この第一直状孔8a内に送り込まれた圧縮空気の圧力は第一半径孔8bを通じて第一ピストン14まで到達してこれの受圧面14bを押圧するため、第一ピストン14は巻取回転軸部材2の径方向Yにおける外方へ向けて押し上げられ、支持環15に摺接可能な状態で圧接される。該圧接状態の下で巻取回転軸部材2がプーリ5cを経て外部から回転駆動力Tを付与されて回転されるのであり、これに関連して支持環15及び外周環17が巻取回転伝達手段12を介することにより、巻取回転軸部材2の回転速度に対し適当なスリップの生じる回転速度(例えば巻取回転軸部材2の回転速度よりも毎分50回転程度遅い速度)で回転するようになり、シートの巻取りが開始される。なお係止解除部13は巻取回転軸部材2と一体となって回転する。
【0030】
そして、シートの巻き取り中に巻取りの張力が所定以上に大きくなろうとすると、これを図示しないセンサが検出し、これの検出情報に基づいて図示しない制御装置が第一空気路8内に供給している圧縮空気の圧力を低下させるように制御するのであり、これにより第一ピストン14が支持環15を押圧する力が減少してこれらの間の摩擦力が減少するため、巻取回転伝達手段12による伝達回転力が小さくなり、シートは必要以上の張力が加わった状態の下で巻き取られる状態を防止される。逆に、シートの巻き取り中にその巻取り張力が所定以上に小さくなろうとすると、これを前記のセンサが検出し、これの検出情報に基づいて図示しない制御装置が第一空気路8内に供給している圧縮空気の圧力を上昇させるように制御するのであり、これにより第一ピストン14が支持環15を押圧する力が増大してこれらの間の摩擦力が増大するため、巻取回転伝達手段12による伝達回転力が大きくなり、シートは必要以上に小さい張力で巻き取られる状態を防止される。このように、第一空気路8内に供給された圧縮空気の圧力が直接に第一ピストン14の受圧面14bを押圧して第一ピストン14を支持環15に相対的な摺接変位の生じるように圧接させるため、第一空気路8に送り込まれる圧縮空気の圧力を制御することでシートの巻取り中の張力を任意大きさに調整することができる。なお、シート巻取り中のシートの張力は常に一定に保持させることも差し支えないのであるが、実際には、巻付け終了後の巻芯Aに過大なシート巻付け圧力が作用しないようにするため、巻芯Aへの取り径が増大するに伴って漸次に減少させるのであり、例えば巻き終わり時のシートの張力は巻き始め時のそれの凡そ50%程度となされる。
【0031】
シートの巻取りを終了するときは巻取回転軸部材2への回転駆動力の付与を停止させると共に第一空気路8内の空気圧を低下させ、さらに第二空気路9に圧縮空気を送り込む。第二空気路9内に送り込まれた圧縮空気の圧力は第二シリンダ29内に伝達されて第二ピストン30を押し変位させ、該変位がスライド環16をスプリング24の付勢方向とは逆方向へ移動させる。これにより、係止爪18は巻取回転軸部材2の中心側に向けて下がり、巻芯Aの係止状態を解除する。この後、シートを巻取った巻芯Aを巻取部3に対し横方へずらし、シート巻取軸装置1から取り外す。
【0032】
【発明の効果】
以上説明した本発明によれば、次のような効果が得られる。
即ち、請求項1のものによれば、従来のゴムチューブを使用しない構成としたため、ゴムチューブに起因した従来の不都合を全て解消させることができるのであり、したがって巻取回転軸部材2から巻取部3へ任意な大きさの回転力をコンパクト且つ簡易な構造により環境温度による影響などを受けることなく安定的に伝達させることができる。
【0033】
また請求項2のものによれば、請求項1記載の発明の場合と同一の効果が得られる上に次のような効果が得られるのであって、即ち、第一空気路8や第二空気路9が巻取回転軸部材2の肉厚部に一体状に形成されるため、第一空気路8や第二空気路9を巻取回転軸部材2の内部構造を複雑化させないで形成できるほか関連部品の交換が容易に行えるものとなすことができる。
【0034】
さらに請求項3記載のものによれば、巻取回転伝達手段12と巻芯係止手段13とにそれぞれ独立して空気圧を付与するための空気路8、9が巻取回転軸部材2の回転時の釣合性を損なうことなく簡易に形成されるものとなる。
【図面の簡単な説明】
【図1】本発明に係るシート巻取軸の主要部を示す側面視断面図である。
【図2】前記シート巻取軸に係りAは一部を省略した右側面図でBは左側面図である。
【図3】前記シート巻取軸の巻取回転軸部材に係りAはx1−x1部を示す断面図でBはx2−x2部を示す断面図である。
【図4】前記シート巻取軸の巻取部を示す断面図である。
【図5】前記巻取部の拡大断面図である。
【図6】前記シート巻取軸の巻取回転伝達手段個所の断面図である。
【図7】前記シート巻取軸の外環部と係止爪を示す説明図である。
【図8】前記シート巻取軸の係止爪とスライド環の傾斜部を示す説明図である。
【図9】前記シート巻取軸の第二シリンダ個所を示す断面図である。
【符号の説明】
2 巻取回転軸部材
3 巻取部
8 第一空気路
8a 第一直状孔
8b 第一半径孔(第一シリンダ)
9 第二空気路
9a 第二直状孔
9b 第二半径孔
12 巻取回転伝達手段
13 巻芯係止手段
14 受圧部材(第一ピストン)
A 巻芯
p 特定角度範囲個所
x 中心線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sheet take-up shaft device that winds a sheet by mounting a winding core.
[0002]
[Prior art]
Conventionally, in a take-up shaft device that winds a narrow sheet obtained by vertically slitting a wide sheet such as paper or plastic film for each narrow sheet, a large number of cores (usually paper tubes) are wound around a take-up rotary shaft. Each is mounted on a winding part formed on the peripheral surface of the member, and the narrow sheet is wound on the winding core. After the winding is completed, the whole winding core is taken out and a new winding core is wound. It is intended to be attached to the handle. Therefore, when the winding core is attached or removed, the winding core is free with respect to the winding rotary shaft member, and the winding core needs to be fixed to the winding portion during winding.
[0003]
As described above, as disclosed in Patent Document 1, the present applicant has a pressure receiving member that is pressed by air pressure as a sheet winding shaft device that opens and fixes the winding core when necessary. A winding rotation transmitting means for transmitting a rotational force having a magnitude related to the displacement force of the winding from a winding rotary shaft member that is driven and rotated to a winding portion that is externally fitted thereto, and the winding portion; There has already been proposed one provided with a core locking means for setting the outer core fitted on the outer core to a locked state and releasing the locked state by applying air pressure.
[0004]
In the sheet take-up shaft device according to the proposal, compressed air supplied through an independent air passage formed in the take-up rotary shaft member causes the rubber tube to expand and deform, and the expansion and deformation portion of the rubber tube serves as the pressure receiving member. The pressure receiving member is pressed to apply a pressing force corresponding to the air pressure in the rubber tube to the pressure receiving member, whereby the rotational force transmitting means applies a rotational force corresponding to the air pressure in the rubber tube from the winding rotary shaft member. Transmit to the winding unit.
[0005]
[Patent Document 1]
JP 2000-327182 A
[0006]
[Problems to be solved by the invention]
The conventional sheet take-up shaft device shown in Patent Document 1 has the following problems.
That is, the magnitude of the rotational force transmitted by the rotational force transmitting means is determined by the expansion / contraction deformation force of the rubber tube when compressed air is supplied into the rubber tube. Since the wire is wound around the surface and fixed at a specific location, the compressed air in the rubber tube may leak from the fixed location, and in this case, the rubber tube exhibits a predetermined pressing force. In some cases, the sheet winding process cannot be performed accurately.
And the compressed air leaking out from the rubber tube makes the winding of the sheet impossible by loosening the fixed state of the core to the winding unit or causing unintended harmful component contact. Sometimes it does.
[0007]
In addition, the sharp edge generated when the member that contacts the rubber tube is repeatedly pressed against the rubber tube to cause damage to the rubber tube, causing the same adverse effects as described above. Need to remove the edge, but in practice its complete removal is extremely difficult.
[0008]
Furthermore, the rubber tube is deteriorated relatively quickly when the heat of the pressure receiving member is transmitted. When the rubber tube deteriorates in this way, it is cracked and compressed inward. Air leaks out and causes the same harmful effects as described above.
[0009]
In order to cope with such a situation, the present invention provides a sheet take-up shaft device capable of independently operating the winding core locking means and the rotational force transmitting means without using a rubber tube. The purpose is to provide.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a pressure receiving member pressed by air pressure is provided, and a rotational force having a magnitude related to the displacement force of the pressure receiving member is driven and rotated. A winding rotation transmitting means for transmitting from the winding rotary shaft member to the winding portion fitted to the winding rotary shaft member, and a winding state fitted to the winding portion to the winding portion, if necessary. An air passage that is not related to the core locking means in the thick portion of the winding rotary shaft member. , And the air passage is configured to apply compressed air generated outside the winding rotary shaft member directly to the pressure receiving member to apply air pressure.
[0011]
More specifically, as described in claim 2, a take-up rotating shaft member that includes a pressure-receiving member that is pressed by air pressure, and that is driven and rotated by a rotational force having a magnitude related to the displacement force of the pressure-receiving member. The winding rotation transmitting means for transmitting to the winding part fitted to the winding part, and the winding part and the winding core fitted to the winding part are brought into a locked state, or the locked state is pneumatically changed. In the sheet take-up shaft provided with the winding core locking means that is to be released by applying the first air passage and the second air passage to the thick portion of the take-up rotary shaft member, respectively, in an independent state The first air passage applies compressed air generated by contacting the pressure receiving member directly with the compressed air generated outside the winding rotary shaft member, and the second air passage is provided with the winding rotary shaft member. The configuration is such that compressed air generated outside flows into the core locking means.
[0012]
According to this invention, since the pressure receiving member is directly pressed by compressed air without using a conventional rubber tube, the displacement force is accurately changed in response to the pressure change of the compressed air, Accordingly, the rotational force transmitted from the take-up rotating shaft member to the take-up portion is also accurately changed corresponding to the pressure change of the compressed air.
[0013]
At this time, it is better to embody as follows, that is, as described in claim 3, a plurality of the winding portions are formed, and the first air passage is the winding rotary shaft member. A first straight hole formed at a center line portion of the first radial hole and a first radial hole extending from the first straight plan hole in a radial direction around the center line, and the second air passage is the winding rotary shaft member The second straight hole formed in each of a plurality of substantially equiangularly arranged locations around the center line within a range excluding the location where the first air passage exists in the thick portion of And a second radial hole that extends from the second straight hole in the radial direction around the center line.
According to this, an air path for applying air pressure to the winding rotation transmission means and the core locking means is simply formed, and the balance of the winding rotary shaft member during rotation is improved. It will be good.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, the embodiment of the present invention shown in FIGS. 1 to 9 will be described in detail. 1 and 2, reference numeral 1 denotes a sheet take-up shaft device. The sheet take-up shaft device 1 receives a power from a drive source (not shown) and rotates, and the take-up rotary shaft member. 2 is provided with a plurality of winding portions 3 that are arranged in the direction of the center line X and fitted on the outer peripheral surface thereof, and each end of the winding rotary shaft member 2 is wound and rotated. Bearing portions 4a and 4b for rotatably supporting the shaft member 2 are formed. At this time, one bearing portion 4a has a supporting capability sufficient to support the winding rotary shaft member 2 in a cantilever manner, and the other bearing portion 4b can be easily detached from the winding rotary shaft member 2 as required. To be gained. Then, at one end of the take-up rotary shaft member 2, compressed air, which is arbitrarily pressurized from an external air supply source, is supplied to the take-up rotary shaft member 2 through an air supply pipe even while the take-up rotary shaft member 2 is rotating. Two air supply connectors 5a and 5b that can be fed inward are attached. Reference numeral 5 c denotes a pulley for inputting a rotational driving force such as a motor (not shown) to the winding rotary shaft member 2. In FIG. 1, the winding unit 3 is expressed with its internal structure omitted.
In the winding rotary shaft member 2 in which air is sent through the air supply connectors 5a and 5b, as shown in FIG. 3, the first air passage 8 and the second air passage 9 are formed in the thick portion. The first air passage 8 is formed in an independent state, and the first air passage 8 is formed around the center line x from the first straight hole 8a formed in the center line x of the winding rotary shaft member 2 and the first straight hole 8a. And the second air passage 9 is within the range excluding the existence of the first air passage 8 in the thick portion of the winding rotary shaft member 2 and the center line x. A second straight hole 9a formed in each of a plurality of surrounding equiangular locations p so as to extend in the direction of the center line x, and a second direction extending from the second straight hole 9a in the radial direction around the center line x. A radial hole 9b is provided.
[0015]
One air supply connector 5a is configured to send compressed air controlled to an appropriate pressure by a control device (not shown) into the first air passage 8, and the other air supply connector 5b is boosted to a specific pressure. Compressed air for driving the components is sent into the second air passage 9.
[0016]
As shown in FIGS. 1, 2, and 4, the one bearing portion 4 a has a flange body 6 fixed to the winding rotary shaft member 2, and is externally fitted to the winding rotary shaft member 2 to be attached to the flange body 6. A fixed sleeve member 7, a fixed cylindrical holding member 10, a bearing 21 that is mounted between the cylindrical holding member 10 and the sleeve member 7 and rotatably supports the winding rotary shaft member 2; It consists of 21 etc.
[0017]
Further, the sheet winding shaft device 1 of this example includes a large number of winding portions 3 arranged in parallel on the winding rotary shaft member 2 so that one winding core A can be held by each winding portion 3. It has been made. As shown in FIGS. 4 to 8, each of the winding sections 3 has a winding rotation transmission means 12 and a core locking means 13. The winding rotation transmission means 12 is a first cylinder as the first radial hole 8b of the winding rotary shaft member 2, and a pressure receiving member fitted into the cylinder hole 8b so as to be movable in the radial direction Y. The first piston 14, the support ring 15 provided rotatably around the winding rotary shaft member 2, and the slide ring provided around the support ring 15 and movable in the center line x direction 16, an outer peripheral ring 17 that constitutes an outer peripheral portion of the winding unit 3 and is rotatably provided around the winding rotary shaft member 2; A locking claw 18 (see FIG. 8) that can be locked in a fixed manner, and a locking claw biasing means 19 that biases the locking claw 18 toward the center of the winding rotary shaft member 2. It is configured.
[0018]
The first piston 14 passes through the first straight hole 8 a to the outside of the winding rotary shaft member 2 and is arranged at equal intervals in the circumferential direction of the winding rotary shaft member 2. The rotary shaft member 2 is inserted into each of the 8b and is guided by the first cylinder 8b so that it can move in the radial direction Y of the winding rotary shaft member 2. The first piston 14 is pushed outward in the radial direction Y of the winding rotary shaft member 2 by the pressure of compressed air for control supplied through the first air passage 8, and the first cylinder 8b Can be brought into contact with the inner peripheral surface of the support ring 15 arranged so as to cover the inner surface of the support ring 15. Each of the winding units 3 has a pair of bearings 21 attached around the winding rotary shaft member 2, and the support ring 15 is supported by one bearing 21 so that the winding ring 3 is surrounded around the winding rotary shaft member 2. As shown in the drawing, each of the first cylinders 8b is disposed so as to cover the opening on the outer side. The inner peripheral surface 15a of the support ring 15 is positioned so as to correspond to the first piston 14, and the outer end surface 14a of the first piston 14 pushed out in the radial direction Y as described above is formed. It is made to come into contact. The first piston 14 comes into contact with the inner peripheral surface 15a of the support ring 15 in a state where it can come into sliding contact with the pressure of the compressed air fed into the first straight hole 8a. When the take-up rotary shaft member 2 is rotating with 14 in contact with the support ring 15, free rotation of the support ring 15 itself (relative rotation with respect to the take-up rotary shaft member 2) is suppressed by the contact. In other words, the support ring 15 is provided so as to be able to rotate relative to the take-up rotary shaft member 2 by applying an excessive rotation suppression force to the support ring 15 from the outside.
[0019]
Moreover, the core locking means 13 is made as follows. That is, an attachment comprising a cylindrical peripheral surface 15b concentric with the winding rotary shaft member 2 and a vertical wall surface 15c rising in the radial direction Y of the winding rotary shaft member 2 continuously to the cylindrical peripheral surface 15b. A step portion 22 is formed on the outer periphery of the support ring 15, and the slide ring 16 is extrapolated to the mounting step portion 22 so as to be movable in the direction of the center line x, and also supports the support ring 15. The vertical wall surface 15c located on the side where the bearing 21 is present (on the right side in FIG. 4) is formed as a terminal end on one side in the center line x direction so that the slide ring 16 is stopped at the position of the vertical wall surface 15c. There is no. As shown in FIG. 5, the slide ring 16 is provided with spring mounting holes 23 each having an opening on the side of the vertical wall surface 15 c at appropriate intervals in the circumferential direction. The slide ring 16 is urged toward the opposite side of the vertical wall surface 15c by a spring which is the urging means 24 arranged. In addition, a plurality of inclined portions 25 (three in the illustrated example) are provided on the outer periphery of the slide ring 16 at equal intervals in the circumferential direction, and the upper surface of each inclined portion 25 is the biasing direction of the spring 24. It is inclined downward toward.
[0020]
The outer peripheral ring 17 has a substantially cylindrical shape rotatably provided to the take-up rotary shaft member 2 by the pair of bearings 21 and 21 corresponding thereto, and is one bearing 21 on the right side in FIG. Is attached and fixed so that one peripheral edge portion of the outer peripheral ring 17 overlaps with an attachment portion of the support ring 15 located on the outer periphery of the outer peripheral ring 17 and the other peripheral edge portion of the outer peripheral ring 17 is one bearing 21 on the left side in FIG. It has been supported by. Since the outer ring 17 is connected to and integrated with the support ring 15 in this way, when the first piston 14 contacts the support ring 15 and rotates integrally with the winding rotary shaft member 2. In addition, the outer peripheral ring 17 is also removed from the winding rotary shaft member 2 under a state in which the first piston 14 and the support ring 15 slip through frictional force caused by contact between the first piston 14 and the support ring 15. Will rotate at a slightly slower speed.
[0021]
The outer peripheral ring 17 has a guide hole 26 in the radial direction Y formed as a through hole at a position corresponding to the inclined portion 25 of the slide ring 16. The locking claw 18 is inserted into the guide hole 26 so as to be movable in the radial direction Y within the take-up rotary shaft member 2, and the lower end surface of the locking claw 18 is shown in the drawing. Similarly to the inclined portion 25 in the slide ring 16, it is inclined downward in the urging direction of the spring 24 and placed on the inclined portion 25 so as to be movable relative to the inclined portion 25. That is, as the slide ring 16 moves in the center line x direction, the locking claw 18 is moved in the radial direction Y of the take-up rotary shaft member 2 while being guided by the guide hole 26. When 16 is pushed out in the biasing direction of the spring 24, the locking claw 18 protrudes outward from the outer peripheral ring 17, and when the core A is fitted on the winding portion 3, the core A is When the slide ring 16 is moved to the side of the vertical wall surface 15c by the action of the lock release portion 13 as will be described later, the lock claw 18 becomes the take-up rotating shaft. It can be moved in the center direction of the member 2.
[0022]
The locking claw urging means 19 moves the locking claw 18 toward the center of the take-up rotary shaft member 2 when the slide ring 16 moves toward the vertical wall surface 15c as described above. It is a spring ring that urges 18 to the center side of the winding rotary shaft member 2. A mounting groove 27 is formed in the outer ring 17 and the locking claw 18 so as to be continuous in the circumferential direction so that the spring ring 19 can be arranged around the outer ring 17. By locating the spring ring 19 in the groove 27, an urging force is always applied to the locking claw 18. 7 and 8 show a state in which the mounting groove 27 is provided on the outer peripheral ring 17 and the locking claw 18 in a circumferentially continuous state, and FIG. It shows the state when it is dead. The urging force of the spring ring 19 is adjusted so as not to change the position of the locking claw 18 when pushed up by the slide ring 16.
[0023]
As shown in FIGS. 4, 5, and 9, the lock release portion 13 is formed in association with the slide ring 16, and the lock release portion 13 faces the slide ring 16. 5 is located on the other bearing 21 side on the left side in FIG. 5 and is mounted around the take-up rotary shaft member 2, and is arranged at equal intervals in the circumferential direction in the cylinder block 28 ( 9) The second piston 30 is mounted on each of the plurality of second cylinders 29 whose center line is parallel to the center line x direction and is movable in the center line x direction. is there. Although six second cylinders 29 are shown in FIG. 9, any number such as eight to ten may be used.
[0024]
The cylinder block 28 penetrates outward from the second straight hole 9a so that air can be fed from the second air passage 9 of the winding rotary shaft member 2 to the second cylinder 29. It corresponds to the radial hole 9b, and is attached so as to be located on the outer side of the opening portion at the outer end of the second radial hole 9b. And the through-hole 32 which leads to each 2nd cylinder 29 in the contact of the ditch | groove provided around the inner peripheral surface of the cylinder block 28 and each 2nd cylinder 29 is formed, The 2nd straight hole 9a The pressure of the compressed air sent through the second radial hole 9b enters the second cylinder 29 through the through hole 32, and the pressure of the compressed air sent to the second cylinder 29 causes the second piston 30 protrudes toward the slide ring 16 side.
FIG. 9 shows the arrangement of the second cylinder 29 in the cylinder block 28. In this figure, 28a is attached with a cover 28b that secures a state in which the second piston 30 can move and closes the opening of each second cylinder 29. The screw hole for this is shown.
[0025]
The second piston 30 protrudes toward the slide ring 16 and comes into contact with the slide ring 16. The second piston 30 receives the pressure of the compressed air, and the second piston 30 makes the slide ring 16 an urging force of the spring 24. On the contrary, it is provided so as to be pushed in the direction opposite to the urging direction of the spring 24, and when the slide ring 16 is pushed and moved in the direction opposite to the urging direction of the spring 24, the inclined portion 25 also moves. Then, the locking claw 18 biased by the locking claw biasing means 19 descends so as to sink toward the center side of the take-up rotary shaft member 2 in a state of moving relative to the inclined portion 25. When the pawl 18 is in the locked state with the core A, the locked state is released.
[0026]
Further, a spring 33 is attached in relation to the second piston 30, and when the pressure of the compressed air fed from the second air passage 9 side is lowered by an artificial operation or the like, the second piston 30 is moved to the second cylinder 29. It is pushed back to the back side (left side in FIG. 5) and placed at the standby position. At this time, as will be described later, the slide ring 16 advances in the urging direction of the spring 24, and the locking claw 18 is pushed up in the radial direction Y of the winding rotary shaft member 2. The spring 33 does not have to be provided. In this case, when the pressure of the air from the second air passage 9 is reduced, the second piston 30 is urged by the urging force of the spring 24 that moves the slide ring 16. Is pushed back to the standby position.
[0027]
Next, a usage example and operation of the sheet take-up shaft device 1 having the above structure will be described.
When the winding core 3 is attached to the winding unit 3, compressed air whose pressure has been increased to a required pressure (for example, about 0.1 to 0.3 MPa) is sent into the second air passage 9. And this compressed air is sent into the 2nd cylinder 29 of the latch release part 13 via the 2nd radial hole 9b from the 2nd air path 9, and the 2nd piston 30 is extruded. The second piston 30 thus pushed out presses the slide ring 16 against the vertical wall surface 15 c of the support ring 15. As a result, the slide ring 16 is positioned against the vertical wall surface 15c, so that the locking claw 18 does not protrude outward from the height position of the outer peripheral surface of the outer peripheral ring 17, and the guide hole It will be in the state which fell in 26, and will be in the state which is easy to carry out external fitting mounting | wearing of the core A.
[0028]
After the winding core A is mounted, the pressure of the compressed air sent into the second air passage 9 is operated so that the air pressure in the second cylinder 29 at the unlocking portion 13 is lowered. The slide ring 16 moves in the biasing direction of the spring 24, and the locking claw 18 is pushed up outward in the radial direction Y of the winding rotary shaft member 2 by the inclined portion 25 that moves in the biasing direction. It protrudes outward from the inside of the guide hole 26 and comes into contact with the inner peripheral surface of the core A to lock the core A in a fixed manner.
[0029]
Compressed air (for example, having a pressure of about 0.5 to 1.5 MPa) whose pressure is controlled by a control device (not shown) in the first straight hole 8a in the first air passage 8 of the winding rotary shaft member 2. Since the pressure of the compressed air sent into the first straight hole 8a reaches the first piston 14 through the first radial hole 8b and presses the pressure receiving surface 14b thereof, the first piston 14 Is pushed upward in the radial direction Y of the winding rotary shaft member 2 and is pressed against the support ring 15 in a slidable state. Under this pressure contact state, the take-up rotary shaft member 2 is rotated by applying a rotational driving force T from the outside through the pulley 5c, and the support ring 15 and the outer ring 17 are related to the take-up rotation transmission. By means of the means 12, it rotates at a rotational speed at which an appropriate slip occurs with respect to the rotational speed of the winding rotary shaft member 2 (for example, a speed slower than the rotational speed of the winding rotary shaft member 2 by about 50 revolutions per minute). Then, the winding of the sheet is started. Note that the locking release portion 13 rotates integrally with the winding rotary shaft member 2.
[0030]
If the take-up tension becomes greater than a predetermined value during the take-up of the sheet, this is detected by a sensor (not shown) and a control device (not shown) supplies the first air passage 8 based on the detected information. The pressure is controlled so as to reduce the pressure of the compressed air, so that the force with which the first piston 14 presses the support ring 15 is reduced, and the frictional force between them is reduced. The rotational force transmitted by the means 12 is reduced, and the sheet is prevented from being wound under a state where an excessive tension is applied. On the contrary, if the take-up tension is reduced to a predetermined value or more during the take-up of the sheet, the sensor detects this, and a control device (not shown) enters the first air passage 8 based on the detected information. The pressure is controlled so as to increase the pressure of the compressed air being supplied. As a result, the force with which the first piston 14 presses the support ring 15 increases, and the frictional force between them increases. The transmission rotational force by the transmission means 12 is increased, and the sheet is prevented from being wound with a tension smaller than necessary. In this way, the pressure of the compressed air supplied into the first air passage 8 directly presses the pressure receiving surface 14b of the first piston 14 and the first piston 14 is displaced relative to the support ring 15 in a sliding contact. Therefore, the tension during the winding of the sheet can be adjusted to an arbitrary magnitude by controlling the pressure of the compressed air sent into the first air passage 8. Note that the tension of the sheet during winding of the sheet may be kept constant at all times, but actually, in order to prevent an excessive sheet winding pressure from acting on the core A after the winding is finished. As the take-up diameter to the winding core A increases, the sheet tension is gradually reduced. For example, the tension of the sheet at the end of winding is about 50% of that at the start of winding.
[0031]
When finishing the winding of the sheet, the application of the rotational driving force to the winding rotary shaft member 2 is stopped, the air pressure in the first air passage 8 is lowered, and the compressed air is further fed into the second air passage 9. The pressure of the compressed air sent into the second air passage 9 is transmitted into the second cylinder 29 to push and displace the second piston 30, and the displacement reverses the direction in which the slide ring 16 is biased by the spring 24. Move to. Thereby, the latching claw 18 is lowered toward the center side of the winding rotary shaft member 2, and the latching state of the winding core A is released. Thereafter, the core A around which the sheet is wound is shifted laterally with respect to the winding unit 3 and is removed from the sheet winding shaft device 1.
[0032]
【The invention's effect】
According to the present invention described above, the following effects can be obtained.
That is, according to the first aspect of the present invention, since the conventional rubber tube is not used, all the conventional disadvantages caused by the rubber tube can be eliminated. A rotational force of an arbitrary size can be stably transmitted to the unit 3 without being affected by the environmental temperature by a compact and simple structure.
[0033]
Further, according to the second aspect, the same effect as in the case of the first aspect of the invention can be obtained and the following effect can be obtained, that is, the first air passage 8 and the second air. Since the passage 9 is formed integrally with the thick portion of the winding rotary shaft member 2, the first air passage 8 and the second air passage 9 can be formed without complicating the internal structure of the winding rotary shaft member 2. Other related parts can be easily exchanged.
[0034]
Further, according to the third aspect of the present invention, the air passages 8 and 9 for independently applying air pressure to the winding rotation transmitting means 12 and the core locking means 13 are provided to rotate the winding rotary shaft member 2. It is easily formed without impairing the balance of time.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing a main part of a sheet take-up shaft according to the present invention.
FIG. 2 is a right side view of the sheet winding shaft with part A omitted and B is a left side view.
FIGS. 3A and 3B are cross-sectional views showing a x1-x1 portion and B is a cross-sectional view showing a x2-x2 portion of the take-up rotation shaft member of the sheet take-up shaft.
FIG. 4 is a cross-sectional view showing a winding portion of the sheet winding shaft.
FIG. 5 is an enlarged cross-sectional view of the winding unit.
FIG. 6 is a cross-sectional view of a winding rotation transmission means portion of the sheet winding shaft.
FIG. 7 is an explanatory view showing an outer ring portion and a locking claw of the sheet winding shaft.
FIG. 8 is an explanatory view showing a locking claw of the sheet take-up shaft and an inclined portion of the slide ring.
FIG. 9 is a cross-sectional view showing a second cylinder portion of the sheet take-up shaft.
[Explanation of symbols]
2 Winding rotary shaft member
3 Winding part
8 First air passage
8a 1st straight hole
8b 1st radius hole (1st cylinder)
9 Second air passage
9a Second straight hole
9b Second radius hole
12 Winding rotation transmission means
13 winding core locking means
14 Pressure receiving member (first piston)
A winding core
p Specific angle range
x Center line

Claims (3)

空気圧により押圧される受圧部材を具備し、該受圧部材の変位力に関連した大きさの回転力を、駆動回転される巻取回転軸部材からこれに外嵌された巻取部に伝達するものとした巻取回転伝達手段と、前記巻取部にこれに外嵌された巻芯を必要に応じて係止状態としたり該係止状態を解除させるものとした巻芯係止手段とを備えたシート巻取軸装置において、前記巻取回転軸部材の肉厚部に前記巻芯係止手段とは関連しない空気路を形成し、該空気路は前記巻取回転軸部材の外方で生成された圧縮空気を前記受圧部材に直接に接触させて空気圧を付与することを特徴とするシート巻取軸装置。A pressure receiving member that is pressed by air pressure, and transmitting a rotational force having a magnitude related to a displacement force of the pressure receiving member from a winding rotary shaft member that is driven to rotate to a winding portion that is externally fitted to the winding rotary shaft member A winding rotation transmitting means, and a winding core locking means for setting the winding core fitted to the winding portion to a locked state or releasing the locked state as necessary. In the sheet take-up shaft device, an air path that is not related to the core locking means is formed in the thick portion of the take-up rotary shaft member, and the air path is generated outside the take-up rotary shaft member. A sheet take-up shaft device, wherein the compressed air is directly brought into contact with the pressure receiving member to apply air pressure. 空気圧により押圧される受圧部材を具備し、該受圧部材の変位力に関連した大きさの回転力を、駆動回転される巻取回転軸部材からこれに外嵌された巻取部に伝達するものとした巻取回転伝達手段と、前記巻取部とこれに外嵌された巻芯とを係止状態となしたり該係止状態を空気圧の付与により解除させるものとした巻芯係止手段とを備えたシート巻取軸装置において、前記巻取回転軸部材の肉厚部に第一空気路と第二空気路をそれぞれ独立した状態に形成し、該第一空気路は前記巻取回転軸部材の外方で生成された圧縮空気を前記受圧部材に直接に接触させて空気圧を付与し、第二空気路は前記巻取回転軸部材の外方で生成された圧縮空気を前記巻芯係止手段に流入させることを特徴とするシート巻取軸装置。A pressure receiving member that is pressed by air pressure, and transmitting a rotational force having a magnitude related to a displacement force of the pressure receiving member from a winding rotary shaft member that is driven to rotate to a winding portion that is externally fitted to the winding rotary shaft member A winding rotation transmitting means, and a winding core locking means that locks the winding portion and the core fitted around the winding portion and releases the locking state by applying air pressure; In the sheet take-up shaft device, the first air path and the second air path are formed in the thick portion of the take-up rotary shaft member in an independent state, and the first air path is formed by the take-up rotary shaft. Compressed air generated outside the member is brought into direct contact with the pressure receiving member to apply air pressure, and the second air path sends compressed air generated outside the winding rotary shaft member to the winding core member. A sheet winding shaft device, wherein the sheet winding shaft device is caused to flow into a stopping means. 前記巻取部が複数形成してあり、第一空気路は前記巻取回転軸部材の中心線個所に形成した第一直状孔と該第一直状案孔から前記中心線回りの半径方向へ向かう第一半径孔を具備し、前記第二空気路は前記巻取回転軸部材の肉厚部のうち前記第一空気路の存在個所を除いた範囲内で且つ前記中心線回りの複数の略等角配置個所のそれぞれに形成された前記中心線方向へ向かう第二直状孔と、該第二直状孔から前記中心線回りの半径方向へ向かう第二半径孔とを具備していることを特徴とする請求項2記載のシート巻取軸装置。A plurality of the winding portions are formed, and the first air path is a first straight hole formed at a center line portion of the winding rotary shaft member and a radial direction around the center line from the first straight plan hole The second air passage is within a range excluding the presence of the first air passage in the thick portion of the winding rotary shaft member, and a plurality of around the center line A second straight hole formed in each of the substantially equiangular locations and extending in the center line direction; and a second radial hole extending from the second straight hole in the radial direction around the center line. The sheet take-up shaft device according to claim 2.
JP2003182925A 2003-06-26 2003-06-26 Sheet winding shaft device Pending JP2005015170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003182925A JP2005015170A (en) 2003-06-26 2003-06-26 Sheet winding shaft device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003182925A JP2005015170A (en) 2003-06-26 2003-06-26 Sheet winding shaft device

Publications (1)

Publication Number Publication Date
JP2005015170A true JP2005015170A (en) 2005-01-20

Family

ID=34183173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003182925A Pending JP2005015170A (en) 2003-06-26 2003-06-26 Sheet winding shaft device

Country Status (1)

Country Link
JP (1) JP2005015170A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015003822A (en) * 2013-06-24 2015-01-08 株式会社不二鉄工所 Winding shaft
JP2015137160A (en) * 2014-01-22 2015-07-30 株式会社東伸 Sheet winding shaft
JP2015178414A (en) * 2014-03-20 2015-10-08 株式会社東伸 sheet take-up shaft
JP2015199553A (en) * 2014-04-04 2015-11-12 株式会社東伸 Low tension sheet winding method, and airtight structure of piston used in execution of method
JP6286099B1 (en) * 2017-09-15 2018-02-28 萩原工業株式会社 Sheet take-up shaft
JP6286095B1 (en) * 2017-07-12 2018-02-28 萩原工業株式会社 Sheet take-up shaft
TWI642613B (en) * 2014-01-22 2018-12-01 日商東伸股份有限公司 Sheet pick-up reel, low tension sheet pick-up method, and airtight structure of piston for executing the low tension sheet pick-up method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105242U (en) * 1982-12-28 1984-07-16 株式会社不二鉄工所 Winding shaft
JP2000063009A (en) * 1998-08-26 2000-02-29 Koshin Seisakusho:Kk Winding shaft for film or the like
JP2000327182A (en) * 1999-05-19 2000-11-28 Hagihara Industries Inc Sheet winding shaft
WO2002055418A1 (en) * 2001-01-04 2002-07-18 Nishimura Seisakusho Co., Ltd. Winding device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105242U (en) * 1982-12-28 1984-07-16 株式会社不二鉄工所 Winding shaft
JP2000063009A (en) * 1998-08-26 2000-02-29 Koshin Seisakusho:Kk Winding shaft for film or the like
JP2000327182A (en) * 1999-05-19 2000-11-28 Hagihara Industries Inc Sheet winding shaft
WO2002055418A1 (en) * 2001-01-04 2002-07-18 Nishimura Seisakusho Co., Ltd. Winding device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015003822A (en) * 2013-06-24 2015-01-08 株式会社不二鉄工所 Winding shaft
JP2015137160A (en) * 2014-01-22 2015-07-30 株式会社東伸 Sheet winding shaft
TWI642613B (en) * 2014-01-22 2018-12-01 日商東伸股份有限公司 Sheet pick-up reel, low tension sheet pick-up method, and airtight structure of piston for executing the low tension sheet pick-up method
JP2015178414A (en) * 2014-03-20 2015-10-08 株式会社東伸 sheet take-up shaft
JP2015199553A (en) * 2014-04-04 2015-11-12 株式会社東伸 Low tension sheet winding method, and airtight structure of piston used in execution of method
JP6286095B1 (en) * 2017-07-12 2018-02-28 萩原工業株式会社 Sheet take-up shaft
JP2019018939A (en) * 2017-07-12 2019-02-07 萩原工業株式会社 Sheet winding shaft
JP6286099B1 (en) * 2017-09-15 2018-02-28 萩原工業株式会社 Sheet take-up shaft
JP2019052024A (en) * 2017-09-15 2019-04-04 萩原工業株式会社 Sheet winding shaft

Similar Documents

Publication Publication Date Title
JP2005015170A (en) Sheet winding shaft device
KR100658498B1 (en) Winding device
KR102052730B1 (en) Precision etching apparatus for film winding core using laser
JP6480069B1 (en) Winding device for sheet-like products on a winding tube
CN210435727U (en) Gas static pressure revolving stage
US6405970B1 (en) Alignin core shaft
JP4299915B2 (en) Sheet take-up shaft
JP2795401B2 (en) Film winding device
JP2008273720A (en) Tape reel device
JP4210919B2 (en) Sheet take-up shaft device
JPS6337020B2 (en)
JP4403526B2 (en) Core support shaft
JP3632175B2 (en) Clamp mechanism and winding shaft using this clamp mechanism
KR940006661A (en) Method for manufacturing dynamic groove bearings, dies suitable for use in the method, housings and bearing components manufactured by the method, data storage units with groove bearings installed, methods for manufacturing rotary scanning units, and magnets with scanning units Tape device
JP5614862B1 (en) Winding shaft
KR102166695B1 (en) Tail stock transfer system
JP2002316750A (en) Friction winding shaft
JP2939698B2 (en) Mobile body guidance mechanism
JP2002194683A (en) Apparatus and system for wire rope lubrication
JP4232067B2 (en) Mounting method and mounting device for sealing material
WO2002088570A1 (en) Gas spring
JP3360272B2 (en) Circular workpiece holder
JP2000130456A (en) Fluid shaft for cylindrical body
JPH07243459A (en) Fluid pressure brake device
JPH11180604A (en) Sheet winding shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070530

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819