JP4403526B2 - Core support shaft - Google Patents

Core support shaft Download PDF

Info

Publication number
JP4403526B2
JP4403526B2 JP2000024206A JP2000024206A JP4403526B2 JP 4403526 B2 JP4403526 B2 JP 4403526B2 JP 2000024206 A JP2000024206 A JP 2000024206A JP 2000024206 A JP2000024206 A JP 2000024206A JP 4403526 B2 JP4403526 B2 JP 4403526B2
Authority
JP
Japan
Prior art keywords
core
shaft body
shaft
outer cylinder
lug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000024206A
Other languages
Japanese (ja)
Other versions
JP2001213550A (en
Inventor
晧 片岡
雄 片岡
博 鈴木
Original Assignee
株式会社片岡機械製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社片岡機械製作所 filed Critical 株式会社片岡機械製作所
Priority to JP2000024206A priority Critical patent/JP4403526B2/en
Publication of JP2001213550A publication Critical patent/JP2001213550A/en
Application granted granted Critical
Publication of JP4403526B2 publication Critical patent/JP4403526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Unwinding Webs (AREA)
  • Winding Of Webs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラスチックフィルム、紙、金属薄板などの帯状シートを管状の巻芯のまわりに巻取る際、又はシートロールから帯状シートを巻戻す際に、巻芯を貫通して固く支持するために用いる巻芯支持軸に関する。
【0002】
【従来の技術】
従来、巻芯支持軸には、巻芯を貫通して支持すると共に、それ自体はシート巻取装置又は巻戻装置に備えたチャック若しくは回転センタ又は軸受等によって両端部を支持される形式のものがある。この形式の巻芯支持軸としては、例えば特開平2−81850号公報に開示されているように、巻取トルク又は制動トルクが伝達される筒状のドラム本体に複数の半径方向の貫通孔を設け、貫通孔を通ってドラム本体表面に突出可能に複数のラグを設け、ドラム本体の内部に、ラグを押し上げるための膨張収縮可能なチューブを設けたエアーシャフトがある。このエアーシャフトは、それを筒状の巻芯内に挿入した後、ドラム本体内部のチューブに圧縮空気を供給し、その圧縮空気によりチューブを膨張させてラグを押し上げ、このラグを巻芯の内周に当接させて巻芯を保持することができる。
【0003】
また、ラグを押し上げるための上述のチューブに替え、シャフトに一体形成された円錐状の支持体をドラム本体の内部に設け、シャフトと共に円錐状の支持体をドラム本体の長手方向に移動させることにより、貫通孔に設けたラグが円錐状の支持体の傾斜面により押し上げられてドラム本体表面に突出可能に構成したメカニカルシャフトもある。
【0004】
更に、特公昭61−29298号公報に開示されているように、軸体の随所に円周方向の傾斜凹陥部を3列に設け、各凹陥部にそれぞれローラを設け、各ローラを、それぞれ凹陥部の深い部分と浅い部分との間を個々に転動できるように個々の保持手段で保持したローラロック式のシャフトがある。このローラロック式のシャフトは、巻芯に軸体を挿入した後、軸体を回転させると、巻芯と軸体との相対的回転によりローラが凹陥部の深い部分から浅い部分へ転動して軸体表面から突出し、それによって巻芯内周がローラにより押圧されて保持される。
【0005】
【発明が解決しようとする課題】
ところで、最近では巻取装置又は巻戻装置で処理される帯状シートの広幅化に伴い、巻芯支持軸は長いものが必要になっている。しかし巻芯の内径は規格化されているため、巻芯支持軸の外径を大きくすることができない。それゆえ巻芯支持軸の長さを長くすると機械的強度が低下して巻芯支持軸が撓み易くなる。また巻芯は、それを巻芯支持軸に容易に着脱できるようにするためにその内径を巻芯支持軸の外径より僅かに大きくしてあるので、ラグによる巻芯内周面の押圧力が小さいと、その内周面と巻芯支持軸の外周面との間の隙間の分だけ巻芯支持軸に対して偏心し得る。そして巻芯支持軸に対し巻芯が偏心して支持されていると、回転中のシートロールが振動し、それがシートロールの品質不良等の原因になる。そこで、最近のシート巻取速度又は巻戻速度の高速化に伴ない、巻芯支持軸は、撓み量が少なく巻芯を偏心しないように保持できるものが必要になっている。
【0006】
ところが、上述のエアーシャフトでは、圧縮空気でチューブを膨張させてラグを押し上げるため、ラグの押し上げ力の大いものを得ることができない。それゆえ、ラグがシートロールの荷重に抗しきれずに押し下げられ、シートロールが巻芯支持軸に対して偏心した状態で回転し、シートロールが不良品になるという問題が生じる。
【0007】
また、上述のメカニカルシャフトでは、円錐状の支持体をドラム本体の長手方向に移動させることによりラグを支持体の傾斜面で押し上げて貫通孔からドラム本体表面に突出させるので、ラグの突出量は、円錐状の支持体の移動量に応じてラグの突出量が決まる。そして巻取運転中に巻芯が空回りしないようにするには、生じ得る最大トルクをラグから巻芯へ伝達できるように、ラグをドラム表面から十分に突出させなければならず、巻取運転の前に円錐状の支持体の移動量を調節しておく必要がある。ところが巻芯に最大トルクが加わるのは、普通、シートロールの外径が大きくなってからであり、巻取開始時にはラグによる巻芯内周の押圧力は小さくてよい。しかも巻き初めの巻芯は、何層にも帯状シートを巻き取っている巻芯に比べ、その内周のラグによる押圧力により変形し易い。しかし上述のメカニカルシャフトでは最初から最大トルクを見込んで大きい押圧力をラグにより巻芯の内周に加えるので、特に巻始め時に巻芯がラグからの押圧力により変形し易く、それにより巻取品質を低下させるという問題が生じる。また、運転中に巻芯がラグの押圧力により変形したり、巻芯の内周がラグにより削り取られたりしたとき、回転中の上述のメカニカルシャフトでは円錐状の支持体の位置を変えることができないので、ラグを更に突出させることができず、巻芯が空回りするという問題も生じる。
【0008】
また、上述のローラロック式のシャフトでは、各ローラの保持手段が軸体の円周方向におけるローラの間隔を一定に保持する機能を持たず、ローラが凹陥部の傾斜面を個々に転動するため、各ローラの、シャフト外周面からの突出量が一様にならず、巻芯支持軸に対し巻芯が偏心した状態で支持され易い。
【0009】
そこで、本発明は、撓み量が小さく、巻芯の変形や偏心回転あるいは空回りが生じないように巻芯を確実に保持することができる、高速運転に適した巻芯支持軸を提供することを課題としている。
【0010】
上述の目的を達成するために、本発明の巻芯支持軸は、帯状シート巻取用の管状の巻芯を貫通して固く支持するための、両端支持される巻芯支持軸において、両端部を支持される軸体と、当該巻芯支持軸の前記巻芯を装着する部分にあって前記軸体の外周に所定間隔で装着した3個以上のころがり軸受と、前記3個以上のころがり軸受により前記軸体に対して回転可能に支持した1個の外筒部材と、前記外筒部材が前記軸体に対して長手方向に移動するのを阻止する手段と、それぞれ前記軸体の回転方向に次第に低くなるように前記軸体の外周に形成され、所定の回転角度を隔てて少なくとも3列に並ぶ複数の滑り面と、前記外筒部材の外周面の、前記滑り面に対応する位置にそれぞれ外筒部材の半径方向に形成した孔と、下端付近に鍔部を有する棒部材並びに該棒部材の上端に固着した係合部材からなり、かつ前記棒部材の上端部で案内筒を貫通し該案内筒を前記孔に挿入して該案内筒の脱落を防ぐことにより前記孔に前記外筒部材の半径方向に長手方向を向けてスライド可能に装着され、前記棒部材の下端が前記滑り面に接触し、前記棒部材が前記滑り面により押上げられると前記係合部材が前記外筒部材の外周面から突出するように構成した、巻芯の内周面を押圧して保持するためのラグと、前記棒部材の上端部で貫通して前記案内筒と前記鍔部との間に装着した圧縮コイルバネからなる、前記ラグを押し下げ付勢するための手段とを備えることを特徴とする。
【0011】
本発明の巻芯支持軸によれば、軸体の外周に所定の回転角度を隔てて少なくとも3列に並ぶ滑り面により複数のラグを一斉に同じ量だけ押し上げ、各ラグの上端を外筒部材の外周から突出させてラグの上端で巻芯内周を保持する。そしてラグを外筒部材の半径方向にスライド可能に装着すことにより、ラグの外筒部材の外周からの突出量を大きくすることができるようになる。ラグの上端部で巻芯内周を保持したとき、その反作用として軸体には曲げ荷重が加わるが、軸体に所定の間隔で3個以上の軸受を装着し、この3個以上の軸受により1個の外筒部材を支持することによって、軸体に加わる曲げ荷重を軸受から外筒部材に伝え、その曲げ荷重を軸体と外筒部材とにより支えるので、曲げ荷重に対する剛性を大きくすることができる。したがって、ラグで保持した巻芯が軸体に対して不当に偏心するのを防ぐことが出きる。
【0012】
また、軸体の回転方向に低くなるよう形成した滑り面によりラグを押し上げるので、ラグの押し上げ力は、軸体に加えられるトルクが大きくなるにつれて大きくなる。それゆえ、トルクが小さくて済む巻始め時には、ラグによる巻芯内周の押圧力は小さくなり巻芯の変形を防ぐことができ、シートロールの外径が大きくなり大きい巻取トルクが必要になると、ラグによる巻芯内周の押圧力も大きくなって巻芯を確実に保持することができる。
【0013】
【発明の実施の形態】
本発明の一実施態様を図面を参照して詳細に説明する。図1に示すように巻芯支持軸1は、シート巻取装置のフレーム2に設けた軸受装置3と、フレーム4に設けた回転センタ5とにより両端部を支持されており、帯状シートを巻取ってシートロール6を形成するための管状の巻芯7を貫通している。そして巻芯7を装着する部分に、軸体8に所定の間隔で装着した3個以上のころがり軸受9と、この3個以上のころがり軸受9により軸体8と同心になるように支持した外筒部材10とを備える。
【0014】
軸体8は軸受装置3側に大径部分8aを有し、この大径部分8aは、フレーム2に軸受11を介して回転可能に装着した円筒体12を貫通し、大径部分8aの端部には、円筒体12の外側端面に形成した爪13に噛み合う噛合クラッチ部材14が固着してある。そして、図示しないモータから出力された巻取トルクが、歯車15、円筒体12に形成した歯車16、円筒体12、噛合クラッチ部材14を経て大径部分8a及び軸体8に伝達されるようになっている。
【0015】
軸受装置3は、フレーム2に固設したホルダー17と、軸体8の大径部分8aの先端に装着した軸受ユニット18とからなる。軸受ユニット18の円錐台状に形成した先端部18aを、ホルダー17に設けたテーパ穴に嵌めることにより、軸受ユニット18をフレーム2上の一定位置に保持することができる。また軸受ユニット18をホルダー17から軸体8の長手方向に引き出すことにより、巻芯支持軸1を回転センタ5から離脱させることができる。
【0016】
軸体8の回転センタ5側端部には、外筒部材10が軸体8に対して長手方向に移動するのを阻止するための筒状の移動防止部材19が止めネジ20により固定してある。また外筒部材10と軸体8の大径部分8aとの間にはスラスト軸受21、外筒部材10と移動防止部材19との間にはスラスト軸受22が装着してある。
【0017】
巻芯7を固く保持し、軸体8に伝達された巻取トルクが巻芯7へ伝わるようにするために、軸体8の長手方向の複数箇所に複数の滑り面23を形成している。この滑り面23は、軸体8の円周方向に伸びており、図2に示すように軸体8の円周方向の4箇所にそれぞれ等しい回転角度を隔てて、即ち軸体8の中心から放射方向にそれぞれ90度の角度をとって配置してある。したがって軸体8上に形成した複数の滑り面23は4列に並んでいる。また、滑り面23は、それぞれ矢印Aで示す軸体8の回転方向に次第に低くなるように形成してある。つまり軸体8の中心から滑り面23までの距離が矢印Aで示す方向に移動するにつれ次第に短くなる。そして図2に示すラグ25の位置が最も低くなる。
【0018】
また、外筒部材10の、滑り面23に対応する位置には、それぞれ外筒部材10の半径方向に孔24が形成してある。したがって孔24は外筒部材10の外周に4列に並んでいる。そして、この孔24には、外筒部材10が貫通した巻芯7の内周を押圧して固く支持するためのラグ25が装着してある。更に孔24にはラグ25を滑り面23に向けて押し下げ付勢する圧縮コイルバネ26が収容してある。
【0019】
図3に示すように、ラグ25は、棒部材27と、棒部材27の上端に固着した係合部材28とからなり、棒部材27の下端が滑り面23に接触し、それが滑り面23により押し上げられると係合部材18が外筒部材10の外周面から突出するように構成してある。棒部材27は横断面が円形であり下端付近に鍔27aを有している。
【0020】
ラグ25を孔24に装着するには、圧縮コイルバネ26を棒部材27の上端部で貫通して棒部材27に装着した後、棒部材27を外筒部材10の半径方向に案内するための案内筒29を、棒部材27の上端部より被せる。そして案内筒29の上端部に形成してある孔に棒部材27の上端部を挿入すると共に、案内筒29の下端から形成した穴に棒部材の鍔27aを挿入する。そして、その状態で案内筒29を外筒部材10の孔24に挿入した後、孔24の上端付近の内周に形成してある溝に止め輪30を取り付けて案内筒29の脱落を防ぐ。その後、係合部材28を棒部材27の上端に止めネジ31で固定する。したがって、孔24に装着したラグ25は、案内筒29に案内されて外筒部材10の半径方向に移動可能であると共に、圧縮コイルバネ26により滑り面23へ向けて押し下げ付勢される。この実施態様では案内筒29の下端部を外筒部材10の内周面より突出させてラグ25の案内面を延長してあるため、ラグ25の傾きやガタツキが小さく、ラグ25の円滑な移動が可能である。
【0021】
軸受9が軸体8の長手方向の移動しないようにするために、軸受9の両側面に沿って軸体8の外周に形成した溝に一対の止め輪32を嵌めている。
【0022】
上述のように構成した巻芯支持軸1により巻芯7を支持するには、巻芯支持軸1の一端を回転センタ5から離脱させる。そして軸体8に対して外筒部材10を回転させることにより、図2に示すようにラグ25が軸体8の傾斜溝の深い部分に位置する状態にして外筒部材10の外周に巻芯7を嵌める。そして巻芯支持軸1を回転センタ5に向けて移動させ、図1に示すように軸体8を両端支持した状態とし、帯状シートの先端を巻芯7に止めた後、軸体8に巻取トルクを伝達する。そうすると軸体8は図2の矢印Aの指示方向に回転し、巻取トルクが軸体8からラグ25を経て外筒部材10に伝達される。そして巻芯7には、それと外筒部材10又はラグ25との摩擦力により回転力が生じて帯状シートに張力が生じる。そして、この帯状シートの張力の反作用により巻芯7にはその回転を阻もうとする力が生じ、巻芯7は軸体8に対して図2の矢印Bの指示方向に回転する。それと同時に外筒部材10も軸体8に対して巻芯7と同じ方向に回転しようとする。それによって、図4に示すように各ラグ25は、外筒部材10により相互間隔を保持した状態でそれぞれ滑り面23の高い部分へ移動すると共に、滑り面23により圧縮コイルバネ26の押し下げ付勢力に抗して押し上げられる。そしてラグ25の上端はそれぞれ外筒部材10の外周面から同じ量だけ突出し、巻芯7の内周面を押圧して固く支持する。そしてラグ25で固く支持された巻芯7は軸体8及び外筒部材10と共に回転することができる。
【0023】
シート巻取中にシートロールの外径が大きくなって大きい巻取トルクが軸体8に伝達されるようになると、その巻取トルクの増大に応じて、軸体8に対する外筒部材10の図2の矢印Bの指示方向への回転力が増大し、ラグ25が滑り面23の更に高い部分へ移動し、それによってラグ25が更に押し上げられるので、ラグ25による巻芯7の内周への押圧力が増し、巻芯7はラグ25上に一層強固に固定される。
【0024】
巻芯7を巻芯支持軸1から取外すには、軸体8回転が停止した状態で外筒部材10に図2の矢印Aの指示方向の回転力を与えて、図2に示すようにラグ25を滑り面23の低い部分に移動させる。そうするとラグ25は圧縮コイルバネ26により押し下げられ、巻芯7の固定が解かれる。その後、巻芯支持軸1を回転センタ5から離脱させ、巻芯7を抜き取る。
【0025】
以上に本発明の一実施態様を説明したが、本発明の実施態様は必要に応じて変わり得る。例えば、本発明の巻芯支持軸は、図3に示すように傾斜溝23を一つのラグ25に対して一つだけ設けたものに限らず、軸体の長手方向に隣り合う複数のラグに対して共通の傾斜溝を形成したものでもよい。また滑り面を軸体上に4列に配置したものに限らず、滑り面を軸体上に3列あるいは5列以上配置したものでもよい。また滑り面を軸体の1横断面につき3以上形成したものに限らず、例えば軸体上の第1の位置では軸体の回転角度180度を隔てて二つの滑り面を設け、その横断面から軸体の長手方向に所定距離離れた第2の位置では、前記第1の位置の滑り面に対して軸体の回転角度90度だけ進めた位置に、軸体の回転角度180度を隔てて二つの滑り面を設けるというように、軸体の長手方向に所定の間隔をおくと共に、軸体の長手方向に隣り合う滑り面が互いに所定の回転角度だけずれるように設け、結果として滑り面が軸体上に3列以上に並ぶようにしたものでもよい。また、回転センタと軸受ユニットで両端部を支持するように構成したものに限らず、一対の巻軸チャックにより両端部を支持し、巻軸チャックから軸体にトルクを伝達するように構成したものでもよい。またラグを押し下げ付勢するための圧縮コイルバネの代わりに弾力性のある筒状のゴム等を用いることもできる。
【0026】
【発明の効果】
本発明によれば、軸体の円周方向に所定回転角度をとって該軸体の回転方向に低くなるようにそれぞれ形成した少なくとも3列の複数の滑り面により、その滑り面に対応して配置した複数のラグをそれぞれ一斉に押し上げて外筒部材の外周から同じ量だけ突出させ、その複数のラグにより巻芯内周を押圧して保持することができる。また軸体に加わるトルクが大きくなるにつれてラグによる巻芯内周の押圧力が大きくなる。また軸体の外周に装着した3個以上の複数の軸受で1個の外筒部材を支持することにより、巻芯支持軸の曲げに対する剛性を大きくすることができる。したがって、巻芯に不当な変形や、巻芯支持軸に対する巻芯の不当な偏心や空回りが生じないように巻芯を確実に保持することができる。そして撓み量が小さく高速運転に適した巻芯支持軸を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施態様の巻芯支持軸を両端支持した状態を示す、軸体長手軸線沿いに切断した縦断面図である。
【図2】図1の線X−Xに沿って矢印C方向に見た巻芯支持軸の横断面図である。
【図3】図1の線Y−Yと線Z−Zで挟まれた部分を軸体長手軸線沿いに切断した縦断面図である。
【図4】図2に示す巻芯支持軸がラグにより巻芯を支持した状態を示す横断面図である。
【符号の説明】
1 巻芯支持軸
7 巻芯
8 軸体
9 軸受
10 外筒部材
19 移動防止部材
23 滑り面
24 孔
25 ラグ
26 圧縮コイルバネ
29 案内筒
30 止め輪
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a solid support for penetrating a core when winding a belt-like sheet such as a plastic film, paper, or a thin metal plate around a tubular core, or when rewinding a belt-like sheet from a sheet roll. The present invention relates to a core support shaft to be used.
[0002]
[Prior art]
Conventionally, the core support shaft has a type in which both ends are supported by a chuck, a rotation center or a bearing provided in the sheet winding device or the rewinding device, while supporting the core through the core. There is. As this type of core support shaft, for example, as disclosed in Japanese Patent Laid-Open No. 2-81850, a plurality of radial through holes are provided in a cylindrical drum body to which winding torque or braking torque is transmitted. There is an air shaft provided with a plurality of lugs provided through the through-holes so as to protrude from the surface of the drum body, and provided with an expandable / shrinkable tube for pushing up the lugs inside the drum body. This air shaft is inserted into a cylindrical core, then compressed air is supplied to the tube inside the drum body, the tube is expanded by the compressed air to push up the lug, and this lug is placed inside the core. The core can be held in contact with the circumference.
[0003]
Also, instead of the above-mentioned tube for pushing up the lug, a conical support integrally formed with the shaft is provided inside the drum body, and the conical support is moved in the longitudinal direction of the drum body together with the shaft. There is also a mechanical shaft configured such that a lug provided in the through hole is pushed up by an inclined surface of a conical support so as to be able to protrude from the surface of the drum body.
[0004]
Further, as disclosed in Japanese Examined Patent Publication No. 61-29298, circumferentially inclined concave portions are provided in three rows at various positions of the shaft body, rollers are provided in the concave portions, and the rollers are respectively provided in the concave portions. There is a roller lock type shaft that is held by individual holding means so that it can individually roll between a deep part and a shallow part of the part. In this roller-locked shaft, when the shaft is rotated after the shaft is inserted into the core, the roller rolls from the deep part of the recess to the shallow part due to the relative rotation of the core and the shaft. Thus, the inner periphery of the core is pressed and held by the roller.
[0005]
[Problems to be solved by the invention]
By the way, recently, along with the widening of the belt-like sheet processed by the winding device or the rewinding device, a long core support shaft is required. However, since the inner diameter of the core is standardized, the outer diameter of the core support shaft cannot be increased. Therefore, when the length of the core support shaft is increased, the mechanical strength is lowered and the core support shaft is easily bent. The inner diameter of the core is slightly larger than the outer diameter of the core support shaft so that it can be easily attached to and detached from the core support shaft. If it is small, it can be eccentric with respect to the core support shaft by the gap between the inner peripheral surface and the outer peripheral surface of the core support shaft. When the core is eccentrically supported with respect to the core support shaft, the rotating sheet roll vibrates, which causes a defective quality of the sheet roll. Therefore, with the recent increase in sheet winding speed or unwinding speed, the core support shaft needs to be able to hold the core so as not to be eccentric with a small amount of deflection.
[0006]
However, in the above air shaft, inflating the tube with compressed air to boost lag, it can not be obtained atmospheric casting upward force of the lug. Therefore, the lug is pushed down without resisting the load of the sheet roll, the sheet roll rotates in an eccentric state with respect to the core support shaft, and the sheet roll becomes defective.
[0007]
Further, in the above-described mechanical shaft, the lug is pushed up by the inclined surface of the support body by moving the conical support body in the longitudinal direction of the drum body and protrudes from the through hole to the drum body surface. The amount of lug protrusion is determined according to the amount of movement of the conical support. In order to prevent the winding core from idling during the winding operation, the lug must be sufficiently protruded from the drum surface so that the maximum torque that can be generated can be transmitted from the lug to the winding core. It is necessary to adjust the amount of movement of the conical support in advance. However, the maximum torque is applied to the winding core normally after the outer diameter of the sheet roll is increased, and the pressing force on the inner periphery of the winding core by the lug may be small at the start of winding. In addition, the winding core at the beginning of winding is more easily deformed by the pressing force of the inner peripheral lug than the winding core in which the belt-like sheet is wound in several layers. However, with the mechanical shaft described above, a large pressing force is applied to the inner periphery of the core by the lug, taking into account the maximum torque from the beginning. This causes a problem of lowering. Also, when the core is deformed by the pressing force of the lug during operation or the inner circumference of the core is scraped off by the lug, the position of the conical support can be changed in the rotating mechanical shaft. Since it is not possible, the lug cannot be further protruded, and there is a problem that the core is idle.
[0008]
Further, in the above-described roller lock type shaft, the holding means of each roller does not have a function of maintaining a constant roller interval in the circumferential direction of the shaft body, and the roller individually rolls on the inclined surface of the recessed portion. Therefore, the protruding amount of each roller from the outer peripheral surface of the shaft is not uniform, and the rollers are easily supported in a state where the core is eccentric with respect to the core support shaft.
[0009]
Therefore, the present invention provides a core support shaft suitable for high-speed operation, which can hold the core reliably so that the amount of deflection is small and deformation, eccentric rotation, or idling of the core does not occur. It is an issue.
[0010]
In order to achieve the object described above, the winding core support shaft of the present invention, for supporting firmly through the core of the tubular preparative belt-like sheet winding, the winding core support shaft is supported at both ends, both ends A shaft body that supports the shaft body, three or more rolling bearings that are mounted on the outer periphery of the shaft body at a predetermined interval on a portion of the core support shaft where the core is mounted, and the three or more rolling bearings rotational direction of the one of the outer cylinder member which is rotatably supported, and means for the outer cylinder member is prevented from moving longitudinally relative to the shaft body, respectively the shaft body relative to the shaft body by to be formed on the outer periphery of the shaft body so as gradually lowered, and a plurality of sliding surfaces arranged in at least three rows at a predetermined rotation angle, the outer peripheral surface of the outer cylinder member, the position corresponding to the sliding surface a hole formed in the radial direction of the outer cylinder member, respectively, the flange portion in the vicinity of the lower end And an engaging member fixed to the upper end of the rod member, and penetrates the guide tube at the upper end of the rod member and inserts the guide tube into the hole to prevent the guide tube from falling off. said bore towards the longitudinal slidably mounted in a radial direction of the outer cylinder member, the engagement between the lower end of the rod member is in contact with the sliding surface, the rod member is pushed up by the sliding surface A lug for pressing and holding the inner peripheral surface of the core, the member projecting from the outer peripheral surface of the outer cylinder member, and penetrating at the upper end of the bar member, the guide cylinder and the flange And a means for pushing down and biasing the lug , comprising a compression coil spring mounted between the two.
[0011]
According to the core support shaft of the present invention, a plurality of lugs are pushed up simultaneously by the same amount by sliding surfaces arranged in at least three rows at a predetermined rotation angle on the outer periphery of the shaft body, and the upper ends of the lugs are external cylinder members. The inner periphery of the core is held at the upper end of the lug. And by be slidably mounted to the lug in the radial direction of the outer cylinder member, it is possible to increase the amount of projection of the outer periphery of the outer cylinder member of the lug. When the inner circumference of the core is held at the upper end of the lug, a bending load is applied to the shaft body as a reaction, but three or more bearings are attached to the shaft body at a predetermined interval, and these three or more bearings By supporting one outer cylinder member, the bending load applied to the shaft body is transmitted from the bearing to the outer cylinder member, and the bending load is supported by the shaft body and the outer cylinder member, so that the rigidity against the bending load is increased. Can do. Therefore, core held by the lug as possible out to prevent unduly eccentric relative to the axle.
[0012]
Further, since the lug is pushed up by the sliding surface formed so as to be lowered in the rotation direction of the shaft body, the pushing force of the lug increases as the torque applied to the shaft body increases. Therefore, at the start of winding, which requires only a small torque, the pressing force on the inner periphery of the core due to the lug can be reduced and deformation of the core can be prevented, and the outer diameter of the sheet roll becomes large and a large winding torque is required. Also, the pressing force on the inner periphery of the core by the lug is increased, and the core can be securely held.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the core support shaft 1 is supported at both ends by a bearing device 3 provided on the frame 2 of the sheet winding device and a rotation center 5 provided on the frame 4, and winds the belt-like sheet. It passes through a tubular core 7 for forming a sheet roll 6. Outside and that the portion for mounting the winding core 7, the shaft 8 and three or more rolling bearings 9 mounted at predetermined intervals and supported so as to shaft 8 concentric with the three or more rolling bearings 9 And a cylindrical member 10.
[0014]
The shaft body 8 has a large-diameter portion 8a on the bearing device 3 side. The large-diameter portion 8a passes through a cylindrical body 12 that is rotatably mounted on the frame 2 via a bearing 11, and the end of the large-diameter portion 8a. A meshing clutch member 14 that meshes with a claw 13 formed on the outer end surface of the cylindrical body 12 is fixed to the portion. The winding torque output from the motor (not shown) is transmitted to the large diameter portion 8a and the shaft body 8 through the gear 15, the gear 16 formed on the cylindrical body 12, the cylindrical body 12, and the meshing clutch member 14. It has become.
[0015]
The bearing device 3 includes a holder 17 fixed to the frame 2 and a bearing unit 18 attached to the tip of the large-diameter portion 8 a of the shaft body 8. By fitting the tip 18 a of the bearing unit 18 in a truncated cone shape into a tapered hole provided in the holder 17, the bearing unit 18 can be held at a fixed position on the frame 2. Further, the core support shaft 1 can be detached from the rotation center 5 by pulling out the bearing unit 18 from the holder 17 in the longitudinal direction of the shaft body 8.
[0016]
A cylindrical movement preventing member 19 for preventing the outer cylinder member 10 from moving in the longitudinal direction with respect to the shaft body 8 is fixed by a set screw 20 at the end of the shaft body 8 on the rotation center 5 side. is there. A thrust bearing 21 is mounted between the outer cylinder member 10 and the large-diameter portion 8 a of the shaft body 8, and a thrust bearing 22 is mounted between the outer cylinder member 10 and the movement preventing member 19.
[0017]
In order to hold the core 7 firmly and to allow the winding torque transmitted to the shaft 8 to be transmitted to the core 7, a plurality of sliding surfaces 23 are formed at a plurality of locations in the longitudinal direction of the shaft 8. . The sliding surface 23 extends in the circumferential direction of the shaft body 8, and as shown in FIG. 2, the sliding surface 23 is spaced from each other at four equal positions in the circumferential direction of the shaft body 8, that is, from the center of the shaft body 8. They are arranged at an angle of 90 degrees in the radial direction. Therefore, the plurality of sliding surfaces 23 formed on the shaft body 8 are arranged in four rows. The sliding surfaces 23 are formed so as to gradually become lower in the rotation direction of the shaft body 8 indicated by the arrow A. That is, as the distance from the center of the shaft body 8 to the sliding surface 23 moves in the direction indicated by the arrow A, the distance gradually decreases. And the position of the lug 25 shown in FIG. 2 becomes the lowest.
[0018]
Further, holes 24 are formed in the radial direction of the outer cylinder member 10 at positions corresponding to the sliding surface 23 of the outer cylinder member 10. Therefore, the holes 24 are arranged in four rows on the outer periphery of the outer cylinder member 10. The hole 24 is provided with a lug 25 for pressing and firmly supporting the inner periphery of the core 7 through which the outer cylinder member 10 has penetrated. Further, the hole 24 accommodates a compression coil spring 26 that presses and biases the lug 25 toward the sliding surface 23.
[0019]
As shown in FIG. 3, the lug 25 includes a rod member 27 and an engaging member 28 fixed to the upper end of the rod member 27, and the lower end of the rod member 27 contacts the sliding surface 23, which is the sliding surface 23. The engagement member 18 is configured to protrude from the outer peripheral surface of the outer cylinder member 10 when pushed up by. The bar member 27 has a circular cross section and has a flange 27a near the lower end.
[0020]
In order to attach the lug 25 to the hole 24, a guide for guiding the rod member 27 in the radial direction of the outer cylinder member 10 after the compression coil spring 26 is passed through the upper end portion of the rod member 27 and attached to the rod member 27. The tube 29 is put on the upper end portion of the rod member 27. And while inserting the upper end part of the rod member 27 in the hole currently formed in the upper end part of the guide cylinder 29, the rod 27a of a rod member is inserted in the hole formed from the lower end of the guide cylinder 29. Then, after the guide tube 29 is inserted into the hole 24 of the outer tube member 10 in this state, a retaining ring 30 is attached to a groove formed in the inner periphery near the upper end of the hole 24 to prevent the guide tube 29 from falling off. Thereafter, the engaging member 28 is fixed to the upper end of the rod member 27 with a set screw 31. Therefore, the lug 25 attached to the hole 24 is guided by the guide cylinder 29 and can move in the radial direction of the outer cylinder member 10, and is pushed down and biased toward the sliding surface 23 by the compression coil spring 26. In this embodiment, since the lower end portion of the guide tube 29 protrudes from the inner peripheral surface of the outer tube member 10 and the guide surface of the lug 25 is extended, the lug 25 is less inclined and loose, and the lug 25 moves smoothly. Is possible.
[0021]
In order to prevent the bearing 9 from moving in the longitudinal direction of the shaft body 8, a pair of retaining rings 32 are fitted in grooves formed on the outer periphery of the shaft body 8 along both side surfaces of the bearing 9.
[0022]
In order to support the core 7 by the core support shaft 1 configured as described above, one end of the core support shaft 1 is detached from the rotation center 5. Then, the outer cylinder member 10 is rotated with respect to the shaft body 8 so that the lug 25 is positioned in a deep portion of the inclined groove of the shaft body 8 as shown in FIG. 7 is inserted. Then, the core support shaft 1 is moved toward the rotation center 5 so that the shaft body 8 is supported at both ends as shown in FIG. 1, and the end of the belt-like sheet is fixed to the core 7, and then wound on the shaft body 8. Transmit torque. Then, the shaft body 8 rotates in the direction indicated by the arrow A in FIG. 2, and the winding torque is transmitted from the shaft body 8 to the outer cylinder member 10 via the lug 25. In the core 7, a rotational force is generated by a frictional force between the core 7 and the outer cylinder member 10 or the lug 25, and tension is generated in the belt-like sheet. Then, due to the reaction of the tension of the belt-like sheet, a force is generated on the core 7 to prevent its rotation, and the core 7 rotates with respect to the shaft body 8 in the direction indicated by the arrow B in FIG. At the same time, the outer cylinder member 10 also tries to rotate in the same direction as the core 7 with respect to the shaft body 8. Accordingly, as shown in FIG. 4, each lug 25 moves to a higher portion of the sliding surface 23 while maintaining the mutual spacing by the outer cylindrical member 10, and the sliding surface 23 causes the pressing force of the compression coil spring 26 to be pushed down. It is pushed up against. And the upper end of the lug 25 protrudes from the outer peripheral surface of the outer cylinder member 10 by the same amount, and presses the inner peripheral surface of the core 7 to firmly support it. The core 7 firmly supported by the lug 25 can rotate together with the shaft body 8 and the outer cylinder member 10.
[0023]
When the outer diameter of the sheet roll is increased during sheet winding and a large winding torque is transmitted to the shaft body 8, the figure of the outer cylinder member 10 with respect to the shaft body 8 according to the increase of the winding torque. The rotational force in the direction indicated by the arrow B in FIG. 2 increases, and the lug 25 moves to a higher part of the sliding surface 23, thereby further pushing up the lug 25, so that the lug 25 moves toward the inner periphery of the core 7. The pressing force is increased, and the core 7 is more firmly fixed on the lug 25.
[0024]
In order to remove the core 7 from the core support shaft 1, the rotational force in the direction indicated by the arrow A in FIG. 2 is applied to the outer cylinder member 10 in a state where the rotation of the shaft body 8 is stopped, and the lug as shown in FIG. 25 is moved to the lower part of the sliding surface 23. Then, the lug 25 is pushed down by the compression coil spring 26, and the core 7 is unfixed. Thereafter, the core support shaft 1 is detached from the rotation center 5 and the core 7 is extracted.
[0025]
Although one embodiment of the present invention has been described above, the embodiment of the present invention can be changed as necessary. For example, the core support shaft of the present invention is not limited to the one provided with one inclined groove 23 for one lug 25 as shown in FIG. 3, and a plurality of lugs adjacent in the longitudinal direction of the shaft body are provided. Alternatively, a common inclined groove may be formed. Further, the sliding surfaces are not limited to the four rows arranged on the shaft body, and the sliding surfaces may be arranged on the shaft body in three rows or five rows or more. Further, the sliding surface is not limited to three or more per one cross section of the shaft body. For example, at the first position on the shaft body, two sliding surfaces are provided with a rotation angle of 180 degrees apart from each other. At a second position that is a predetermined distance away from the longitudinal direction of the shaft body, the shaft body is rotated by a rotation angle of 90 degrees with respect to the sliding surface of the first position by a rotation angle of 180 degrees. The two sliding surfaces are provided at a predetermined interval in the longitudinal direction of the shaft body, and the sliding surfaces adjacent to each other in the longitudinal direction of the shaft body are shifted from each other by a predetermined rotation angle. May be arranged in three or more rows on the shaft. In addition to a configuration in which both ends are supported by the rotation center and the bearing unit, both ends are supported by a pair of winding chucks and torque is transmitted from the winding chuck to the shaft body. But you can. In addition, an elastic cylindrical rubber or the like can be used in place of the compression coil spring for pushing and urging the lug.
[0026]
【The invention's effect】
According to the present invention, at least three rows of the plurality of sliding surfaces formed so as to have a predetermined rotation angle in the circumferential direction of the shaft body and to be lowered in the rotation direction of the shaft body correspond to the sliding surface. The plurality of arranged lugs can be pushed up at the same time to protrude from the outer periphery of the outer cylinder member by the same amount, and the inner periphery of the core can be pressed and held by the plurality of lugs. Further, as the torque applied to the shaft body increases, the pressing force on the inner periphery of the core by the lug increases. Moreover, the rigidity with respect to the bending of the core support shaft can be increased by supporting one outer cylinder member with three or more bearings mounted on the outer periphery of the shaft body. Therefore, the core can be securely held so that the core is not deformed inappropriately, or the core is not eccentrically decentered or idle with respect to the core support shaft. Thus, it is possible to provide a core support shaft that is small in deflection and suitable for high-speed operation.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view taken along a longitudinal axis of a shaft body, showing a state where both ends of a core support shaft according to an embodiment of the present invention are supported.
2 is a cross-sectional view of the core support shaft viewed in the direction of arrow C along line XX in FIG.
3 is a longitudinal sectional view in which a portion sandwiched between the lines YY and ZZ in FIG. 1 is cut along the longitudinal axis of the shaft body. FIG.
4 is a cross-sectional view showing a state in which the core support shaft shown in FIG. 2 supports the core with a lug.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Core support shaft 7 Core 8 Shaft body 9 Bearing 10 Outer cylinder member 19 Movement prevention member 23 Sliding surface 24 Hole 25 Lug 26 Compression coil spring 29 Guide cylinder 30 Retaining ring

Claims (1)

帯状シート巻取用の管状の巻芯を貫通して固く支持するための、両端支持される巻芯支持軸において、両端部を支持される軸体と、当該巻芯支持軸の前記巻芯を装着する部分にあって前記軸体の外周に所定間隔で装着した3個以上のころがり軸受と、前記3個以上のころがり軸受により前記軸体に対して回転可能に支持した1個の外筒部材と、前記外筒部材が前記軸体に対して長手方向に移動するのを阻止する手段と、それぞれ前記軸体の回転方向に次第に低くなるように前記軸体の外周に形成され、所定の回転角度を隔てて少なくとも3列に並ぶ複数の滑り面と、前記外筒部材の外周面の、前記滑り面に対応する位置にそれぞれ外筒部材の半径方向に形成した孔と、下端付近に鍔部を有する棒部材並びに該棒部材の上端に固着した係合部材からなり、かつ前記棒部材の上端部で案内筒を貫通し該案内筒を前記孔に挿入して該案内筒の脱落を防ぐことにより前記孔に前記外筒部材の半径方向に長手方向を向けてスライド可能に装着され、前記棒部材の下端が前記滑り面に接触し、前記棒部材が前記滑り面により押上げられると前記係合部材が前記外筒部材の外周面から突出するように構成した、巻芯の内周面を押圧して保持するためのラグと、前記棒部材の上端部で貫通して前記案内筒と前記鍔部との間に装着した圧縮コイルバネからなる、前記ラグを押し下げ付勢するための手段とを備えることを特徴とする巻芯支持軸。In a core support shaft supported at both ends for firmly supporting a tubular core for winding a belt-like sheet, the shaft body supported at both ends and the core of the core support shaft are and three or more rolling bearings mounted at predetermined intervals on the outer circumference of the shaft body in the part mounting, one of the outer cylinder member which is rotatably supported with respect to the shaft body by the three or more rolling bearings If, means for the outer cylinder member is prevented from moving longitudinally relative to the shaft body, it is formed gradually periphery of said shaft body so as to be lower in the direction of rotation of each of the shaft member, predetermined rotation A plurality of sliding surfaces arranged in at least three rows at an angle, a hole formed in a radial direction of the outer cylinder member at a position corresponding to the sliding surface on an outer peripheral surface of the outer cylinder member, and a flange near the lower end Rod member having the same and an engaging member fixed to the upper end of the rod member Rannahli, and oriented in the longitudinal direction in the radial direction of the outer cylinder member penetrating the guide tube and guide tube at the upper end of the rod member into the hole by preventing falling off of the guide tube is inserted into the hole slidably mounted Te, the lower end of the rod member is in contact with the sliding surface, configured such that the engaging member and the rod member is pushed are up by the sliding surface projects from the outer peripheral surface of the outer cylinder member was, and lugs for pressing and holding the inner peripheral surface of the core, consisting of a compression coil spring mounted between the guide cylinder and the flange portion through at the upper end of said rod member, said lug A core support shaft comprising: a means for pressing and urging the core.
JP2000024206A 2000-02-01 2000-02-01 Core support shaft Expired - Fee Related JP4403526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000024206A JP4403526B2 (en) 2000-02-01 2000-02-01 Core support shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000024206A JP4403526B2 (en) 2000-02-01 2000-02-01 Core support shaft

Publications (2)

Publication Number Publication Date
JP2001213550A JP2001213550A (en) 2001-08-07
JP4403526B2 true JP4403526B2 (en) 2010-01-27

Family

ID=18550234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000024206A Expired - Fee Related JP4403526B2 (en) 2000-02-01 2000-02-01 Core support shaft

Country Status (1)

Country Link
JP (1) JP4403526B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9809417B2 (en) 2015-08-14 2017-11-07 The Procter & Gamble Company Surface winder

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100819163B1 (en) 2007-12-28 2008-04-03 (주)프로템 Mechanical chuck for a winding machine
CN108202528A (en) * 2016-12-19 2018-06-26 汉达精密电子(昆山)有限公司 Automated cleaning rubber head structure
CN107159740A (en) * 2017-07-22 2017-09-15 佛山市正略信息科技有限公司 One kind production electric oven uncoiling of steel plate machine
KR102136701B1 (en) * 2019-02-18 2020-07-22 주식회사 테토스 Auxiliary rollers for roll―to―roll processes
CN110126010B (en) * 2019-04-16 2020-11-17 金华易翔新材料科技有限公司 Reflecting material cutting device
CN110642046B (en) * 2019-09-25 2020-12-08 德清县诚达金属材料有限公司 Pet protection film erection equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9809417B2 (en) 2015-08-14 2017-11-07 The Procter & Gamble Company Surface winder

Also Published As

Publication number Publication date
JP2001213550A (en) 2001-08-07

Similar Documents

Publication Publication Date Title
JP4403526B2 (en) Core support shaft
JP2007113688A (en) Roll
JP5590456B2 (en) Winding color
JP5768806B2 (en) Friction reel
JP4930843B2 (en) Friction reel
US4444364A (en) Self-aligning core chuck
JP2006315836A (en) Friction winding shaft
JPH1179482A (en) Sheet winding shaft
JPH09136745A (en) Chuck for roll paper
US11807477B2 (en) Chuck with improved torque transmission and centralization
JPH0613164Y2 (en) Roll support shaft structure
JP5150351B2 (en) Paper tube cap and paper tube
CN218371035U (en) Taper clamping mechanical shaft
JPH0412054Y2 (en)
JP4827505B2 (en) Sheet winding device
JPH11208942A (en) Sheet winding shaft
JPH0535953Y2 (en)
JPH10120255A (en) Friction winding shaft
JPH053486Y2 (en)
JPH0752126Y2 (en) Winding core support structure for strip winding machine
JP2554803Y2 (en) Sheet reel
JPH0237569Y2 (en)
JP2603914B2 (en) Paper tube chuck device
JPH0522523Y2 (en)
JP5134302B2 (en) Sheet winding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4403526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees