JP2005014637A - Device for monitoring state of on-vehicle battery - Google Patents

Device for monitoring state of on-vehicle battery Download PDF

Info

Publication number
JP2005014637A
JP2005014637A JP2003178131A JP2003178131A JP2005014637A JP 2005014637 A JP2005014637 A JP 2005014637A JP 2003178131 A JP2003178131 A JP 2003178131A JP 2003178131 A JP2003178131 A JP 2003178131A JP 2005014637 A JP2005014637 A JP 2005014637A
Authority
JP
Japan
Prior art keywords
battery
vehicle
charge
monitoring device
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003178131A
Other languages
Japanese (ja)
Other versions
JP4039323B2 (en
Inventor
Takeshi Sada
岳士 佐田
Makoto Taniguchi
真 谷口
Atsushi Ichikawa
淳 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003178131A priority Critical patent/JP4039323B2/en
Priority to US10/868,921 priority patent/US7317300B2/en
Priority to DE102004029437.2A priority patent/DE102004029437B4/en
Priority to FR0406796A priority patent/FR2857516B1/en
Priority to FR0412811A priority patent/FR2860301B1/en
Publication of JP2005014637A publication Critical patent/JP2005014637A/en
Priority to US11/826,627 priority patent/US7554297B2/en
Application granted granted Critical
Publication of JP4039323B2 publication Critical patent/JP4039323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To calculate a SOC (state of charge: charging rate) by utilizing a correlation relation of pseudo OCV (Open Circuit Voltage: open terminal voltage) and the SOC by making an internal part state corresponding to open of an on-vehicle battery. <P>SOLUTION: A vehicle is provided with an on-vehicle generator 7 to be driven by an engine, a voltage control device 8 for adjusting power generation amount of the generator 7 and the on-vehicle battery 5 for accumulating power generated in the generator 7. The voltage control device 8 temporarily stops the power generation of the on-vehicle generator during working of the engine. When the power generation amount is gradually increased, battery voltage is detected when charging/discharging current of the battery is in a very small prescribed range. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用バッテリの内部状態監視装置及び方法に関する。
【0002】
【従来技術】
一般に鉛蓄電池の充電状態量を示す充電率(以下、SOC;state of charge[%]という)は電池端子を開放した状態の起電圧、いわゆる開放端子電圧(以下、OCV;Open Circuit Voltageという)、と極めて強い相関がある(図5)ことが知られている。従って最も簡易的に電池のSOC測定手段として前記OCVを測定することが一般的である(例えば、特許文献1、2参照)。
【0003】
【特許文献1】
特開2002−222668号公報
【0004】
【特許文献2】
特開2002−250757号公報
【0005】
【発明が解決しようとする課題】
しかしながら、自動車に搭載される鉛蓄電池(以下車載バッテリと称す)は車両が稼動中、停止中に限らず、常に何らかの電気装置が接続されており、いつ何時ともその端子を物理的に開放することは困難である。即ち、自動車の車載バッテリでOCV測定からのSOC算出という手段は実施困難である。
【0006】
本発明は上記問題に鑑みてなされ、車載バッテリの端子を開放しなくても開放相当の内部状態を作りこむことで擬似開放端子電圧とSOCの相関関係を利用してSOCを算定するものである。
【0007】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明では、エンジンで駆動される車載発電機と、前記発電機の発電量を調整する制御装置と、前記発電機で発電した電力を蓄積する車載バッテリとを備える車両にて、エンジン稼動中に前記制御装置は前記車載発電機を一旦発電停止させ、徐々に発電量を増加していく際にバッテリの充放電電流が微小な所定範囲内に収まった際のバッテリ電圧を検出する。好適には電流値の微小な範囲は±1A以内が望ましい。
【0008】
車載発電機をこのように制御することで車載バッテリの充放電電流を微小範囲内に収めることは、ほぼ前記バッテリの端子を物理的に開放した状態に極めて近似した状態であることが発明者等の実験により明らかになった。即ち、実質的に端子を開放することが困難な自動車用バッテリでも擬似的に端子を開放した状態を作り出すことができるのである。このようにして検出した擬似OCVと実SOCの相関関係を利用して車載バッテリのSOCを求めることができる。
【0009】
請求項2によれば、前記バッテリ監視装置は、前記車載発電機の発電量を調整して前記バッテリ内部の分極状態が所定範囲内にある状態を作りこみ、その状態から前記発電機の発電量を徐々に増加してゆき前記バッテリの充放電電流が所定範囲内に収まった際のバッテリ電圧を検出する。
【0010】
実際のSOCはバッテリの分極状態に大きく依存して変動するので分極状態をしっかり管理しておかないと正確なSOCが求められないということが一般に知られている。図6を用いて説明する。平衡状態に比較して充電気味にある場合には破線のように擬似OCVに対する実SOCは高めに現われ、逆に放電気味にある場合には一点鎖線のように擬似OCVに対する実SOCは低めに現われる。更に、充電⇒放電という過程を連続的に繰り返す場合には図7のようにヒステリシスを呈しながら曲線的に推移してゆくのである。
【0011】
従って正確にSOCを推定するには分極状態を管理する必要がある。
【0012】
このように車載バッテリの分極状態を所定状態に維持した状態で擬似OCVを検出することにより、前記擬似OCVと実SOCの相関係数が大きくなりSOC推定精度を格段に向上させることが可能となる。
【0013】
請求項4によれば、前記バッテリの内部の分極状態を所定範囲内に作りこむ制御は、エンジン始動後所定時間経過した後に実行する。つまりエンジン始動時には始動用スタータモータで極めて大きな電流を消費、即ちバッテリは極めて大きな電流を放電する。即ち、始動直後は分極状態が著しくなっており、電気化学反応はこの分極状態を直ちに解消しようとする反応を促進するので、極めて不安定な内部状態となっている。この状態は本来の理想的な端子開放状態とは大きくかけはなれている。従って始動放電による分極を解消する必要があるため始動後所定時間の間は分極状態を作りこむ制御を禁止し、所定時間経過後に実施する。
【0014】
このように制御すれば、一層SOCの推定精度が向上する。
【0015】
請求項5によれば、前記バッテリの分極状態は、前回の充放電電流サンプル時に求めた分極指数をPn−1とし、充放電電流のサンプル間隔時間をΔtとし、バッテリの電解液の拡散時定数をτとすると、今回の充放電電流サンプル時の分極指数Pは、次式で定義される。
【0016】
= Pn−1 + I・Δt − Pn−1・Δt/τ
このように定量的に定義しておけば、分極状態の管理を精度良く実施できる。
【0017】
請求項6によれば、前記バッテリの充放電電流値が所定範囲内に収まった際の電圧に対するバッテリの充電率を算出して初期充電率とする。
【0018】
更に請求項7によれば、前記バッテリの充放電電流値を前記サンプル間隔△tで検出し、該電流のサンプル値Iと前記サンプル間隔Δtとの算術積を電池容量値で除した値を、前記充電率初期値に加算してゆくことで逐次のバッテリ充電率を算出する。
【0019】
このようにすればOCV検出時に算出したSOCを基準に充放電電流の変化量(積算量)を加算することで走行中の実SOCを求めることが可能となり、端子を開放する機会を少なくすることができ、充電状態を悪化させることがなくなる。
【0020】
請求項8によれば、前記バッテリ監視装置は、一旦車載発電機を発電停止させた後に徐々に発電量を増大して前記バッテリの充放電電流値を微小な所定範囲内に収める制御をエンジン稼動中に定期的に実施する。
【0021】
このように定期的に擬似OCVを求めておけば、充放電電流積算方式のデメリットである電流センサの誤差積算を定期的にリセットして解消することができる。
【0022】
【発明の実施の形態】
(第1実施形態)
図1は本実施形態の全体構成を示す図である。図1に示す車載バッテリの状態監視システムは、スタータ1、スタータスイッチ2、電気負荷3、電流センサ4、車載バッテリ5、車載バッテリ監視装置6、車載発電機7、電圧制御装置8、ECU(エンジン制御装置)9、電力ケーブル10から構成されている。車載発電機7はエンジン(図示せず)によって回転駆動されて、車載バッテリ5の充電電力や電気負荷3の動作電力を発生する。
【0023】
電圧制御装置8は、車載発電機7に備わった界磁コイルに対する励磁電流の導通状態を制御することにより車載発電機7の出力電圧を所定値に調整する。この電圧制御装置8は、構成回路の動作電圧を生成する電源回路や、励磁電流の導通を制御するパワートランジスタ等のパワー素子や、この導通制御を行うロジック回路等がCMOS−ICによって実現されている。
【0024】
電気負荷3は、照明やエアコン等の電気機器であり、最近ではこれらの電気機器は制御用の電子部品を含む高度電子化装置である場合も多い。
【0025】
車載発電機7と車載バッテリ5との間および車載バッテリ5と電気負荷3との間は、電力ケーブル10によって接続されている。また、電圧制御装置8は、車載発電機7に内蔵されており、必要な電気的結線が車載発電機7の内部で行われている。
【0026】
ECU9は、エンジンの状態、車速、車載発電機7の回転数や発電状態等に基づいてエンジンの回転制御や車載発電機7の発電制御を行う外部制御装置である。例えば、電圧制御装置8からECU9に対して車載発電機7の発電状態情報が送られ、反対に、ECU9から電圧制御装置8に対して車載発電機7の出力電圧を設定する発電電圧指令情報が送られる。この発電指令情報は、発電抑制信号としての機能も有しており、ECU9から電圧制御装置8に向けて車載発電機7の出力電圧を低く設定する発電指令情報を送ることにより、車載発電機7の発電を抑制することが可能になる。
【0027】
また、車載バッテリ5の一方の端子(例えば正極端子側)の近傍には、車載バッテリ5の充放電電流を検出する電流検出手段としての電流センサ4が設けられている。この電流センサ4の検出信号および車載バッテリ5の端子電圧が車載バッテリ監視装置6に入力されている。車載バッテリ監視装置6にはある所定の分極状態におけるOCV対SOCのマップデータ(図5)を格納してある。
【0028】
本実施形態の車載バッテリの状態監視システムはこのような構成を有しており、次にその動作を説明する。
【0029】
図2はエンジン稼動中の自動車用バッテリのSOC検出の動作手順を示すフローチャートであり、この図に基づき説明する。
【0030】
図3は経過時間に対する車載発電機の発電電圧Va、バッテリ電圧Vb、バッテリ電流Ib、バッテリの分極指数Pa、スタータ信号STの特性を示す特性図である。
【0031】
まず、ステップ30にてIGがONの際に、ステップ40にてスタータ信号がHi→Loへ切り替わったことを判定する。これによりエンジンが始動するが、エンジン始動直後は始動用スタータモータで大電流を消費、即ちバッテリは大電流を放電した直後であるから、分極状態が著しく極めて不安定な内部状態となっている。よって、エンジン始動後、所定時間の間はバッテリ内部の分極状態を所定範囲内に作りこむ制御は禁止し、所定時間経過後に実施する。所定時間経過を計測するタイマをステップ50、60、70にてセットする。例えばTは60秒に設定する。ステップ80にてバッテリの充放電電流Iを電流センサ4にてサンプリングし、ステップ90にて分極指数Pを算出する。ここで分極指数Pは、前回の充放電電流サンプル時に求めた分極指数をPn−1とし、充放電電流のサンプル間隔時間をΔtとし、バッテリの電解液の拡散時定数をτとすると、今回の充放電電流サンプル時の分極指数Pは、次式で定義される。
【0032】
= Pn−1 + I・Δt − Pn−1・Δt/τ
ステップ100にて時間Tが所定時間T経過後の際は、ステップ110にて電圧制御装置8から発電停止信号を送信し、車載発電機7の発電を一旦停止させる所定電圧(例えば11.8(V))に調整する(図3の▲1▼)。これによりバッテリは放電状態となるが、ステップ120にて分極指数Pを所定の範囲内に収めるように制御する。分極指数Pnが所定の範囲内に収まれば、車載バッテリ監視装置6に格納したマップを利用できる状態になる。次にSOCを求めるためバッテリの内部状態が安定した状態で、ステップ130にて車載発電機7の発電電圧を所定電圧(例えば11.8(V))から徐々に増大させるよう電圧制御装置8にて制御する(図3の▲2▼)。
【0033】
この際、車載発電機7の発電電圧を徐々に増大させるのは、バッテリの充放電電流Iを急激に変化させないためである。ステップ140にてバッテリの充放電電流Iが微小範囲(例えば±1A)に収まった際にバッテリの端子電圧を測定する(図3の▲3▼)。車載バッテリの充放電電流Iを微小範囲内に収めることは、ほぼ前記バッテリの端子を物理的に開放した状態に極めて近似した状態に作り込むためである。
【0034】
これに基づきステップ150にて測定したバッテリの端子電圧はOCVと見なすことができる。
【0035】
図5はバッテリのOCVに対するバッテリのSOCの特性を示す特性図である。
【0036】
この特性図よりステップ160にてバッテリのOCVからバッテリのSOCを算出することが可能となる。
【0037】
この発明により、端子を実際に開放しなくても、OCV検出時に算出したSOCの基準を求めることができ、以降は充放電電流Iの変化量(積算量)を加算していくことで走行中の実SOCを求めることが可能となる。
【0038】
(他の実施形態)
尚、本発明は上記実施形態に限定されるものではなく、本発明の要旨の範囲内において種々の変形実施が可能である。例えば、上述した実施形態では、エンジン始動後、所定時間T経過後の場合を説明したが、図4に示すように一旦車載発電機を発電停止させた後に徐々に発電量を増大してバッテリの充放電電流Inを微小な所定範囲内に収める制御をエンジン稼動中に定期的に(例えばT<<TなるTとし、数時間とする)実施するようにしてもよい。このように定期的に擬似OCVを求めておけば、充放電電流積算方式のデメリットである電流センサ4の誤差積算を定期的にリセットして解消することができる。
【図面の簡単な説明】
【図1】車載バッテリの状態監視システムの全体構成を示す図である。
【図2】実施例におけるエンジン稼動中の自動車用バッテリのSOC検出の動作手順を示すフローチャートである。
【図3】本実施形態における経過時間に対する車載発電機の発電電圧、バッテリ電圧、バッテリ電流、バッテリの分極指数、スタータ信号の特性を示す特性図である。
【図4】SOC検出をエンジン稼動中に定期的に実施する変形例の、経過時間に対する車載発電機の発電電圧、バッテリ電圧、バッテリ電流、バッテリの分極指数、スタータ信号の特性を示す特性図である。
【図5】擬似OCVと実SOCとの相関関係を示す特性図である。
【図6】分極状態に対する擬似OCVと実SOCとの相関関係を示す特性図である。
【図7】充放電過程に対する擬似OCVと実SOCとの相関関係を示す特性図である。
【符号の説明】
1…スタータ、2…スタータスイッチ、3…電気負荷、4…電流センサ、
5…車載バッテリ、6…車載バッテリ監視装置、7…車載発電機、
8…電圧制御装置、9…ECU(エンジン制御装置)、10…電力ケーブル。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus and a method for monitoring the internal state of an automobile battery.
[0002]
[Prior art]
In general, a charging rate (hereinafter referred to as SOC; state of charge [%]) indicating a state of charge of a lead storage battery is an electromotive voltage in a state where a battery terminal is opened, so-called open terminal voltage (hereinafter referred to as OCV; Open Circuit Voltage). It is known that there is a very strong correlation (FIG. 5). Therefore, it is common to measure the OCV as the battery SOC measuring means in the simplest manner (see, for example, Patent Documents 1 and 2).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-222668
[Patent Document 2]
JP 2002-250757 A
[Problems to be solved by the invention]
However, lead-acid batteries (hereinafter referred to as in-vehicle batteries) mounted on automobiles are not limited to whether the vehicle is operating or stopped, but are always connected to some electrical device, and their terminals are physically opened at any time. It is difficult. In other words, it is difficult to implement a means for calculating the SOC from the OCV measurement with the on-vehicle battery of the automobile.
[0006]
The present invention has been made in view of the above problems, and calculates the SOC using the correlation between the pseudo open terminal voltage and the SOC by creating an internal state equivalent to the open state without opening the terminal of the in-vehicle battery. .
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, an on-vehicle generator driven by an engine, a control device that adjusts the amount of power generated by the generator, and an on-vehicle vehicle that stores electric power generated by the generator. In a vehicle equipped with a battery, the control device temporarily stops power generation while the engine is running, and when the power generation amount is gradually increased, the charge / discharge current of the battery falls within a minute predetermined range. The battery voltage is detected. Preferably, the minute range of the current value is within ± 1A.
[0008]
By controlling the in-vehicle generator in this manner, the charging / discharging current of the in-vehicle battery within a very small range is almost in a state that is almost similar to a state in which the terminal of the battery is physically opened. It became clear by experiment. That is, it is possible to create a state in which the terminals are opened in a pseudo manner even in an automobile battery in which it is substantially difficult to open the terminals. The SOC of the in-vehicle battery can be obtained using the correlation between the pseudo OCV detected in this way and the actual SOC.
[0009]
According to claim 2, the battery monitoring device adjusts the power generation amount of the on-vehicle generator to create a state in which the polarization state inside the battery is within a predetermined range, and from this state, the power generation amount of the generator The battery voltage is detected when the charge / discharge current of the battery falls within a predetermined range.
[0010]
Since the actual SOC fluctuates greatly depending on the polarization state of the battery, it is generally known that an accurate SOC cannot be obtained unless the polarization state is well managed. This will be described with reference to FIG. The actual SOC for the pseudo OCV appears higher as shown by the broken line when it is in a charging state compared to the equilibrium state, while the actual SOC for the pseudo OCV appears lower as shown by a one-dot chain line when it is in a discharging state. . Further, when the process of charging → discharging is continuously repeated, the curve changes while exhibiting hysteresis as shown in FIG.
[0011]
Therefore, in order to accurately estimate the SOC, it is necessary to manage the polarization state.
[0012]
Thus, by detecting the pseudo OCV while the polarization state of the in-vehicle battery is maintained in a predetermined state, the correlation coefficient between the pseudo OCV and the real SOC is increased, and the SOC estimation accuracy can be remarkably improved. .
[0013]
According to a fourth aspect of the present invention, the control for creating the polarization state inside the battery within a predetermined range is executed after a predetermined time has elapsed after the engine is started. That is, when starting the engine, a very large current is consumed by the starter motor for starting, that is, the battery discharges a very large current. That is, the polarization state is remarkable immediately after the start, and the electrochemical reaction promotes the reaction to immediately eliminate the polarization state, so that the internal state is extremely unstable. This state is far from the ideal ideal terminal open state. Therefore, since it is necessary to eliminate the polarization due to the starting discharge, the control for creating the polarization state is prohibited for a predetermined time after the starting, and the control is performed after the elapse of the predetermined time.
[0014]
By controlling in this way, the SOC estimation accuracy is further improved.
[0015]
According to claim 5, the polarization state of the battery is defined as P n-1 as the polarization index obtained at the previous charge / discharge current sample, Δt as the sample interval time of the charge / discharge current, and at the time of battery electrolyte diffusion. When the constant is τ, the polarization index P n at the current charge / discharge current sample is defined by the following equation.
[0016]
P n = P n−1 + I · Δt−P n−1 · Δt / τ
If defined quantitatively in this way, the polarization state can be managed with high accuracy.
[0017]
According to the sixth aspect of the present invention, the battery charging rate relative to the voltage when the charging / discharging current value of the battery falls within a predetermined range is calculated as the initial charging rate.
[0018]
Furthermore, according to claim 7, the charge and discharge current of the battery detected by the sample interval △ t, the value obtained by dividing the battery capacity value arithmetic product of the sample value I n of the current and the sample interval Δt The sequential battery charge rate is calculated by adding to the initial charge rate value.
[0019]
By doing this, it is possible to obtain the actual SOC while traveling by adding the amount of change (integrated amount) of the charge / discharge current based on the SOC calculated at the time of detecting the OCV, thereby reducing the chance of opening the terminal. And the charge state is not deteriorated.
[0020]
According to the eighth aspect of the present invention, the battery monitoring device controls the engine so that the power generation amount is gradually increased and the charge / discharge current value of the battery is kept within a minute predetermined range after the on-vehicle generator is stopped. During the regular implementation.
[0021]
If the pseudo OCV is obtained periodically as described above, the error integration of the current sensor, which is a disadvantage of the charge / discharge current integration method, can be periodically reset and eliminated.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 1 is a diagram showing the overall configuration of the present embodiment. The on-vehicle battery state monitoring system shown in FIG. 1 includes a starter 1, a starter switch 2, an electric load 3, a current sensor 4, an on-vehicle battery 5, an on-vehicle battery monitoring device 6, an on-vehicle generator 7, a voltage control device 8, an ECU (engine). Control device) 9 and power cable 10. The on-vehicle generator 7 is rotationally driven by an engine (not shown) to generate charging power for the on-vehicle battery 5 and operating power for the electric load 3.
[0023]
The voltage control device 8 adjusts the output voltage of the in-vehicle generator 7 to a predetermined value by controlling the conduction state of the excitation current with respect to the field coil provided in the in-vehicle generator 7. In this voltage control device 8, a power supply circuit that generates an operating voltage of a component circuit, a power element such as a power transistor that controls conduction of excitation current, a logic circuit that performs this conduction control, and the like are realized by a CMOS-IC. Yes.
[0024]
The electric load 3 is an electric device such as an illumination or an air conditioner. Recently, these electric devices are often highly electronic devices including electronic components for control.
[0025]
A power cable 10 connects between the in-vehicle generator 7 and the in-vehicle battery 5 and between the in-vehicle battery 5 and the electric load 3. In addition, the voltage control device 8 is built in the in-vehicle generator 7, and necessary electrical connection is performed inside the in-vehicle generator 7.
[0026]
The ECU 9 is an external control device that performs engine rotation control and power generation control of the in-vehicle generator 7 based on the state of the engine, the vehicle speed, the rotational speed and the power generation state of the in-vehicle generator 7, and the like. For example, the power generation state information of the in-vehicle generator 7 is sent from the voltage control device 8 to the ECU 9, and conversely, the generated voltage command information for setting the output voltage of the in-vehicle generator 7 is sent from the ECU 9 to the voltage control device 8. Sent. This power generation command information also has a function as a power generation suppression signal. By sending power generation command information for setting the output voltage of the in-vehicle generator 7 low from the ECU 9 to the voltage control device 8, the in-vehicle generator 7 It becomes possible to suppress power generation.
[0027]
Further, a current sensor 4 as a current detection unit that detects a charging / discharging current of the in-vehicle battery 5 is provided in the vicinity of one terminal (for example, the positive terminal side) of the in-vehicle battery 5. The detection signal of the current sensor 4 and the terminal voltage of the in-vehicle battery 5 are input to the in-vehicle battery monitoring device 6. The in-vehicle battery monitoring device 6 stores OCV vs. SOC map data (FIG. 5) in a predetermined polarization state.
[0028]
The in-vehicle battery state monitoring system of the present embodiment has such a configuration, and the operation thereof will be described next.
[0029]
FIG. 2 is a flowchart showing an operation procedure for SOC detection of the automobile battery while the engine is operating, and will be described based on this figure.
[0030]
FIG. 3 is a characteristic diagram showing the characteristics of the power generation voltage Va, battery voltage Vb, battery current Ib, battery polarization index Pa, and starter signal ST with respect to the elapsed time.
[0031]
First, when the IG is ON in step 30, it is determined in step 40 that the starter signal has been switched from Hi to Lo. As a result, the engine is started, but immediately after the engine is started, a large amount of current is consumed by the starter motor for starting, that is, the battery is immediately after discharging the large current, so that the polarization state is extremely remarkably unstable. Therefore, control for creating the polarization state inside the battery within a predetermined range is prohibited for a predetermined time after the engine is started, and is performed after the predetermined time has elapsed. A timer for measuring the passage of a predetermined time is set in steps 50, 60, and 70. For example T 1 is set to 60 seconds. The discharge current I n of the battery is sampled by the current sensor 4 in step 80, calculates the polarization index P n at step 90. Here, the polarization index P n is the polarization index obtained at the previous charge / discharge current sampling, P n−1 , the charge / discharge current sampling interval time is Δt, and the battery electrolyte diffusion time constant is τ, The polarization index P n at the current charge / discharge current sample is defined by the following equation.
[0032]
P n = P n−1 + I · Δt−P n−1 · Δt / τ
When the time T in step 100 after a predetermined time T 1 elapses, transmits a power generation stop signal from the voltage control device 8 in step 110, once the predetermined voltage for stopping the power generation of the vehicle generator 7 (e.g. 11.8 (V)) ((1) in FIG. 3). As a result, the battery is discharged, but in step 120, the polarization index Pn is controlled to be within a predetermined range. If the polarization index Pn falls within a predetermined range, the map stored in the in-vehicle battery monitoring device 6 can be used. Next, in order to obtain the SOC, in a state where the internal state of the battery is stable, in step 130, the voltage control device 8 is caused to gradually increase the power generation voltage of the in-vehicle generator 7 from a predetermined voltage (for example, 11.8 (V)) (2 in FIG. 3).
[0033]
At this time, the gradually increasing the generated voltage of the vehicle generator 7 is to not abruptly change the discharge current I n of the battery. Step 140 in the charge and discharge current I n of the battery is to measure the battery terminal voltage when subsided small range (e.g., ± 1A) (the ▲ 3 ▼ Figure 3). To keep the discharge current I n of the vehicle battery in the small range is to fabricate in a state very close to the state of being physically open almost terminal of the battery.
[0034]
Based on this, the terminal voltage of the battery measured in step 150 can be regarded as OCV.
[0035]
FIG. 5 is a characteristic diagram showing characteristics of the battery SOC with respect to the battery OCV.
[0036]
From this characteristic diagram, it becomes possible to calculate the SOC of the battery from the OCV of the battery at step 160.
[0037]
This invention, running in it without actually opening the terminal, which can be determined criteria SOC calculated during OCV detection, thereafter gradually adding the change amount of the charge and discharge current I n (accumulated amount) It is possible to obtain the actual SOC.
[0038]
(Other embodiments)
In addition, this invention is not limited to the said embodiment, A various deformation | transformation implementation is possible within the range of the summary of this invention. For example, in the above-described embodiment, the case where the predetermined time T 1 has elapsed after the engine start has been described. However, as shown in FIG. The charging / discharging current In may be controlled periodically (for example, T 1 << T 2 and T 2 for several hours) while the engine is operating. If the pseudo OCV is obtained periodically as described above, the error integration of the current sensor 4 which is a disadvantage of the charge / discharge current integration method can be periodically reset and eliminated.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of an in-vehicle battery state monitoring system.
FIG. 2 is a flowchart showing an operation procedure for SOC detection of a vehicle battery while the engine is operating in the embodiment.
FIG. 3 is a characteristic diagram showing characteristics of a power generation voltage of an in-vehicle generator, a battery voltage, a battery current, a battery polarization index, and a starter signal with respect to elapsed time in the present embodiment.
FIG. 4 is a characteristic diagram showing characteristics of an on-vehicle generator power generation voltage, battery voltage, battery current, battery polarization index, and starter signal with respect to elapsed time, in a modified example in which SOC detection is periodically performed during engine operation; is there.
FIG. 5 is a characteristic diagram showing a correlation between a pseudo OCV and a real SOC.
FIG. 6 is a characteristic diagram showing a correlation between a pseudo OCV and a real SOC with respect to a polarization state.
FIG. 7 is a characteristic diagram showing a correlation between a pseudo OCV and a real SOC with respect to a charge / discharge process.
[Explanation of symbols]
1 ... starter, 2 ... starter switch, 3 ... electrical load, 4 ... current sensor,
5 ... In-vehicle battery, 6 ... In-vehicle battery monitoring device, 7 ... In-vehicle generator,
8 ... Voltage control device, 9 ... ECU (Engine control device), 10 ... Electric power cable.

Claims (8)

エンジンで駆動される車載発電機と、
前記発電機の発電量を調整する制御装置と、
前記発電機で発電した電力を蓄積する車載バッテリとを備える車両にて、
エンジン稼動中に前記制御装置は前記車載発電機を一旦発電停止させ、徐々に発電量を増加していく際にバッテリの充放電電流が微小な所定範囲内に収まった際のバッテリ電圧を検出することを特徴とする車載バッテリ監視装置。
An in-vehicle generator driven by an engine;
A control device for adjusting the power generation amount of the generator;
In a vehicle equipped with an in-vehicle battery that stores electric power generated by the generator,
While the engine is running, the control device temporarily stops generating power and detects the battery voltage when the charge / discharge current of the battery falls within a minute predetermined range when the power generation amount is gradually increased. An in-vehicle battery monitoring device characterized by that.
前記バッテリ監視装置は、前記車載発電機の発電量を調整して前記バッテリ内部の分極状態が所定範囲内にある状態を作りこみ、その状態から前記発電機の発電量を徐々に増加してゆき前記バッテリの充放電電流が所定範囲内に収まった際のバッテリ電圧を検出することを特徴とする請求項1記載の車載バッテリ監視装置。The battery monitoring device adjusts the power generation amount of the in-vehicle generator to create a state in which the polarization state inside the battery is within a predetermined range, and gradually increases the power generation amount of the generator from that state. The in-vehicle battery monitoring device according to claim 1, wherein the battery voltage when the charge / discharge current of the battery falls within a predetermined range is detected. 前記微小な所定範囲内とは±1A以内であることを特徴とする請求項1または2に記載の車載バッテリ監視装置。The in-vehicle battery monitoring device according to claim 1 or 2, wherein the minute predetermined range is within ± 1A. 前記バッテリの内部の分極状態を所定範囲内に作りこむ制御はエンジン始動後所定時間経過した後に実行することを特徴とする請求項2または3に記載の車載バッテリ監視装置。The on-vehicle battery monitoring device according to claim 2 or 3, wherein the control for creating the polarization state inside the battery within a predetermined range is executed after a predetermined time has elapsed after the engine is started. 前記バッテリの分極状態は、前回の充放電電流サンプル時に求めた分極指数をPn−1とし、充放電電流のサンプル間隔時間をΔtとし、バッテリの電解液の拡散時定数をτとすると、今回の充放電電流サンプル時の分極指数Pは、
= Pn−1 + I・Δt − Pn−1・Δt/τ
で定義されることを特徴とする請求項2乃至4のいずれか1つに記載の車載バッテリ監視装置。
The polarization state of the battery is as follows, assuming that the polarization index obtained at the previous charge / discharge current sampling is P n−1 , the charge / discharge current sampling interval time is Δt, and the battery electrolyte diffusion time constant is τ. The polarization index P n at the charge / discharge current sample of
P n = P n−1 + I · Δt−P n−1 · Δt / τ
The vehicle-mounted battery monitoring device according to claim 2, wherein the vehicle-mounted battery monitoring device is defined by:
前記バッテリの充放電電流値が所定範囲内に収まった際の電圧に対するバッテリの充電率を算出して初期充電率とすることを特徴とする請求項1乃至5のいずれか1つに記載の車載バッテリ監視装置。The in-vehicle apparatus according to any one of claims 1 to 5, wherein a charge rate of the battery with respect to a voltage when a charge / discharge current value of the battery is within a predetermined range is calculated to obtain an initial charge rate. Battery monitoring device. 前記バッテリの充放電電流値を前記サンプル間隔Δtで検出し、該電流のサンプル値Iと前記サンプル間隔Δtとの算術積を電池容量値で除した値を、前記充電率初期値に加算してゆくことで逐次のバッテリ充電率を算出することを特徴とする請求項6に記載の車載バッテリ監視装置。The charge and discharge current of the battery detected by the sample interval Delta] t, the value obtained by dividing the battery capacity value arithmetic product of the sample value I n of the current and the sample interval Delta] t, is added to the charging rate initial value The in-vehicle battery monitoring device according to claim 6, wherein a sequential battery charging rate is calculated by moving. 前記バッテリ監視装置は、一旦車載発電機を発電停止させた後に徐々に発電量を増大して前記バッテリの充放電電流値を微小な所定範囲内に収める制御をエンジン稼動中に定期的に実施することを特徴とする請求項1乃至7のいずれか1つに記載の車載バッテリ監視装置。The battery monitoring device periodically performs control during engine operation to temporarily increase the power generation amount after stopping the on-vehicle generator, and to keep the charge / discharge current value of the battery within a minute predetermined range. The in-vehicle battery monitoring device according to any one of claims 1 to 7, wherein
JP2003178131A 2003-06-23 2003-06-23 In-vehicle battery status monitoring device Expired - Lifetime JP4039323B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003178131A JP4039323B2 (en) 2003-06-23 2003-06-23 In-vehicle battery status monitoring device
US10/868,921 US7317300B2 (en) 2003-06-23 2004-06-17 Automotive battery state monitor apparatus
DE102004029437.2A DE102004029437B4 (en) 2003-06-23 2004-06-18 The state of a vehicle battery monitoring device
FR0406796A FR2857516B1 (en) 2003-06-23 2004-06-22 APPARATUS FOR MONITORING THE CONDITION OF AN AUTOMOTIVE BATTERY
FR0412811A FR2860301B1 (en) 2003-06-23 2004-12-02 APPARATUS FOR MONITORING THE CONDITION OF AN AUTOMOTIVE BATTERY
US11/826,627 US7554297B2 (en) 2003-06-23 2007-07-17 Automotive battery state monitor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178131A JP4039323B2 (en) 2003-06-23 2003-06-23 In-vehicle battery status monitoring device

Publications (2)

Publication Number Publication Date
JP2005014637A true JP2005014637A (en) 2005-01-20
JP4039323B2 JP4039323B2 (en) 2008-01-30

Family

ID=34179850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178131A Expired - Lifetime JP4039323B2 (en) 2003-06-23 2003-06-23 In-vehicle battery status monitoring device

Country Status (1)

Country Link
JP (1) JP4039323B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121030A (en) * 2005-10-26 2007-05-17 Denso Corp Internal status detection system for vehicular electric storage device
JP2008302822A (en) * 2007-06-07 2008-12-18 Auto Network Gijutsu Kenkyusho:Kk State detecting method of in-vehicle battery, power supply control method, state detecting device of in-vehicle battery, and power supply control device
WO2009009758A3 (en) * 2007-07-12 2009-03-19 A123 Systems Inc Multifunctional mixed metal olivines for lithium ion batteries
JP2013120174A (en) * 2011-12-09 2013-06-17 Kobelco Contstruction Machinery Ltd Hybrid construction machine
US9660267B2 (en) 2009-09-18 2017-05-23 A123 Systems, LLC High power electrode materials
JPWO2017002529A1 (en) * 2015-07-01 2017-12-14 日立オートモティブシステムズ株式会社 Power conversion control device, battery control device, drive control subsystem
JP2021071415A (en) * 2019-10-31 2021-05-06 株式会社Gsユアサ Power storage amount estimation device, method for estimating power storage amount, and computer program
CN115817218A (en) * 2022-12-28 2023-03-21 中国重汽集团济南动力有限公司 Intelligent generator energy recovery control method and system and vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5406263B2 (en) 2011-11-10 2014-02-05 三菱電機株式会社 Power monitoring device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763830A (en) * 1993-08-24 1995-03-10 Toyota Motor Corp Apparatus for detecting residual capacity of battery for hybrid vehicle
JPH10319100A (en) * 1997-05-15 1998-12-04 Nippon Soken Inc Battery charging state detecting device
JPH11103505A (en) * 1997-09-29 1999-04-13 Nissan Motor Co Ltd Device for calculating amount of battery charge of hybrid vehicle
JP2000123886A (en) * 1998-10-16 2000-04-28 Nippon Soken Inc Full charge determination device of secondary battery for vehicle
JP2002250757A (en) * 2001-02-23 2002-09-06 Yazaki Corp Method and apparatus for estimation of open circuit voltage of battery for vehicle
JP2003134678A (en) * 2001-10-17 2003-05-09 Toyota Motor Corp Vehicular secondary battery control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763830A (en) * 1993-08-24 1995-03-10 Toyota Motor Corp Apparatus for detecting residual capacity of battery for hybrid vehicle
JPH10319100A (en) * 1997-05-15 1998-12-04 Nippon Soken Inc Battery charging state detecting device
JPH11103505A (en) * 1997-09-29 1999-04-13 Nissan Motor Co Ltd Device for calculating amount of battery charge of hybrid vehicle
JP2000123886A (en) * 1998-10-16 2000-04-28 Nippon Soken Inc Full charge determination device of secondary battery for vehicle
JP2002250757A (en) * 2001-02-23 2002-09-06 Yazaki Corp Method and apparatus for estimation of open circuit voltage of battery for vehicle
JP2003134678A (en) * 2001-10-17 2003-05-09 Toyota Motor Corp Vehicular secondary battery control device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121030A (en) * 2005-10-26 2007-05-17 Denso Corp Internal status detection system for vehicular electric storage device
US7679328B2 (en) 2005-10-26 2010-03-16 Denso Corporation Apparatus for detecting charged state of secondary battery
JP2008302822A (en) * 2007-06-07 2008-12-18 Auto Network Gijutsu Kenkyusho:Kk State detecting method of in-vehicle battery, power supply control method, state detecting device of in-vehicle battery, and power supply control device
WO2009009758A3 (en) * 2007-07-12 2009-03-19 A123 Systems Inc Multifunctional mixed metal olivines for lithium ion batteries
US9660267B2 (en) 2009-09-18 2017-05-23 A123 Systems, LLC High power electrode materials
US9954228B2 (en) 2009-09-18 2018-04-24 A123 Systems, LLC High power electrode materials
US10522833B2 (en) 2009-09-18 2019-12-31 A123 Systems, LLC High power electrode materials
US11652207B2 (en) 2009-09-18 2023-05-16 A123 Systems Llc High power electrode materials
US9304969B2 (en) 2011-12-09 2016-04-05 Kobelco Construction Machinery Co., Ltd. Hybrid construction machine
JP2013120174A (en) * 2011-12-09 2013-06-17 Kobelco Contstruction Machinery Ltd Hybrid construction machine
JPWO2017002529A1 (en) * 2015-07-01 2017-12-14 日立オートモティブシステムズ株式会社 Power conversion control device, battery control device, drive control subsystem
JP2021071415A (en) * 2019-10-31 2021-05-06 株式会社Gsユアサ Power storage amount estimation device, method for estimating power storage amount, and computer program
JP7375473B2 (en) 2019-10-31 2023-11-08 株式会社Gsユアサ Energy storage amount estimating device, energy storage amount estimation method, and computer program
CN115817218A (en) * 2022-12-28 2023-03-21 中国重汽集团济南动力有限公司 Intelligent generator energy recovery control method and system and vehicle
CN115817218B (en) * 2022-12-28 2024-05-17 中国重汽集团济南动力有限公司 Intelligent generator energy recovery control method, system and vehicle

Also Published As

Publication number Publication date
JP4039323B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
JP4866187B2 (en) Battery control device, electric vehicle, and program for causing computer to execute processing for estimating charge state of secondary battery
US7317300B2 (en) Automotive battery state monitor apparatus
JP4075762B2 (en) Apparatus and method for calculating remaining capacity in secondary battery
JP5155701B2 (en) Vehicle power supply
JP4057276B2 (en) Method and apparatus for determining the state of a secondary storage battery mounted on a vehicle
JP4001072B2 (en) Vehicle power generation system
JP2005106747A (en) Method and apparatus for estimating remaining amount of secondary battery
JP2007223530A (en) State quantity operation device for battery
JP2007292648A (en) Device for estimating charged state of secondary battery
JP6603888B2 (en) Battery type determination device and battery type determination method
JP2007292666A (en) Device for estimating charged state of secondary battery
WO2016157731A1 (en) Secondary battery status estimation device and status estimation method
JP4494454B2 (en) In-vehicle secondary battery internal state detection device
JP4039323B2 (en) In-vehicle battery status monitoring device
JP6577981B2 (en) Power system
JP2012237665A (en) Battery state estimation device
JP2001224103A (en) Hybrid vehicle control device
JP2004325263A (en) Self-discharge amount detection device of battery
JP5369499B2 (en) Vehicle power supply
JP2005014707A (en) Device for monitoring state of on-vehicle battery
JP2004015963A (en) Device for estimating charge state of battery for vehicle
JP2004354148A (en) Method and device for estimating charging state of battery, and method and device for estimating open circuit voltage
JP3714866B2 (en) Engine start system
JPH10271695A (en) Battery residual capacity detector and generation controller of hybrid electric car
JP4751381B2 (en) Engine control method and engine control apparatus for idling stop vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4039323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term