JP2005013790A - Air cleaner - Google Patents

Air cleaner Download PDF

Info

Publication number
JP2005013790A
JP2005013790A JP2003178830A JP2003178830A JP2005013790A JP 2005013790 A JP2005013790 A JP 2005013790A JP 2003178830 A JP2003178830 A JP 2003178830A JP 2003178830 A JP2003178830 A JP 2003178830A JP 2005013790 A JP2005013790 A JP 2005013790A
Authority
JP
Japan
Prior art keywords
air
gas
solvent
liquid contact
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2003178830A
Other languages
Japanese (ja)
Inventor
Sadahiro Ogata
禎浩 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2003178830A priority Critical patent/JP2005013790A/en
Publication of JP2005013790A publication Critical patent/JP2005013790A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Gas Separation By Absorption (AREA)
  • Separation Of Particles Using Liquids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air cleaner for dissolving/removing a nonpolar or low-polarity contaminant in addition to a polar contaminant contained in the air. <P>SOLUTION: This air cleaner is provided with a gas-liquid contacting means for bringing the contaminated air into contact with a high-polarity solvent and a low-polarity solvent and at least one of an air sending means and an air sucking means for taking-in the contaminated air and introducing the taken contaminated air into the gas-liquid contacting means. The polar contaminant contained in the contaminated air is decreased by processing with the high-polarity solvent and the nonpolar or low-polarity contaminant contained in the contaminated air is decreased by processing with the low-polarity solvent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、空気清浄機に関するものである。
【0002】
【従来の技術】
近年、部屋の空気に含まれる汚染物質を除去する空気清浄機の需要が高まっており、家庭、オフィス、喫煙室、病院、公共機関、老人ホーム、工場などで利用されている。特に換気しにくい場所での空気清浄機の利用が注目されている。
【0003】
汚染物質の化学組成としては、例えばアンモニアやトリメチルアミンなどの窒素化合物、酢酸やイソ吉草酸などのカルボン酸、ホルムアルデヒドやアセトアルデヒドなどのカルボニル化合物、硫化水素やメチルメルカプタンなどの硫黄化合物、トルエン、キシレン、ベンゾ−a−ピレンなどの芳香族化合物がある。空気中の汚染物質は、アルカリ性、酸性、中性、極性、低極性などさまざまな化学的性質を持つ物質の混合物である。空気清浄機はこれら幅広い化学的性質を持つ汚染物質を効果的に除去する必要があり、その方法として下記文献が知られている。
【0004】
【特許文献1】
特許第3349359号公報
【0005】
上記文献ではアルカリ性水および酸性水を用いることにより、汚染物質を中和し、除去する方法について記載されている。この方法では、水に溶けやすい極性物質は除去可能である。しかし、汚染物質の多くは無極性または低極性であり、水という極性溶媒を用いただけでは効果的に除去することができない。特にタバコの煙には、数百種もの有害物質が含まれており、従来の空気清浄機では効果的にタバコの有害物質を除去することができなかった。
【0006】
従来技術としては、その他にオゾンと紫外線照射、またはオゾンと過酸化水素水を使って活性酸素を作り、汚染物質を分解する方法も知られている。活性酸素は上記の極性物質、無極性物質および低極性物質を選ばず分解するが、オゾン濃度が低いため活性酸素の濃度も低く、汚染物質の分解効率が低い問題があった。そこで極性の汚染物質および、無極性または低極性の汚染物質を同時に除去し、かつ除去効率を向上できる方法が望まれていた。
【0007】
【発明が解決しようとする課題】
本発明は、空気中に含まれる極性の汚染物質に加えて無極性または低極性の汚染物質を溶解し除去する空気清浄機を提供することを課題とする。
【0008】
【課題を解決するための手段及び作用・効果】
上記課題を解決するため本発明の空気清浄機は、汚染空気を極性の高い溶媒および極性の低い溶媒に接触させる気液接触手段と、前記汚染空気を取り込み前記気液接触手段へ導入する送気手段および吸気手段の少なくともひとつとを備え、前記汚染空気に含まれる極性物質を前記極性の高い溶媒で処理して減少させ、かつ前記汚染空気に含まれる無極性物質または低極性物質を前記極性の低い溶媒で処理して減少させることを特徴とする。
【0009】
また、本発明の空気清浄機は、汚染空気を極性の高い溶媒および極性の低い溶媒の混合液に接触させる気液接触手段と、前記汚染空気を取り込み前記気液接触手段へ導入する送気手段および吸気手段の少なくとも一つとを備え、前記汚染空気に含まれる極性物質および無極性物質を前記混合液に溶解させて減少させることを特徴とする。
【0010】
空気中に含まれる低極性または無極性の汚染物質を除去するには極性の低い溶媒、特に有機溶媒を用いるのが効果的であり、極性物質を除去するには極性の高い溶媒、特に水が効果的である。水に汚染空気を混合し、気液接触させることにより汚染物質を溶解させ、減少させることができる。さらに水で溶解されなかった物質も有機溶媒と気液接触させることで溶解させ、減少させることができる。上記の水は、純水でも極性物質を吸収することができるが、酸性またはアルカリ性物質の水溶液を使用すると、中和反応を利用して汚染物質を溶解除去することが可能となり、気液接触効率を向上できる。
【0011】
汚染空気と各溶媒とを気液接触させるには、なるべく接触面積を大きくして接触効率を上げることと、汚染空気を流通する際に生じる圧力損失(圧損)を下げることが重要である。また、これらの溶媒は利用に伴い汚染物質の濃度が徐々に上昇する。ある濃度以上になると吸収性能が低下するので、交換が容易になるように取り扱い性を向上させることも重要である。
【0012】
上記のように、溶媒に汚染物質を溶解し除去する方法は、例えば活性酸素を使って分解する従来技術に比較すると、除去速度が向上する。その理由は、溶媒中の分子密度は気体に比べて高いので、汚染分子が溶媒分子に接触する機会が多いためである。
【0013】
具体的な気液接触手段としては、散気または曝気を利用した方法がある。極性溶媒と低極性溶媒とにそれぞれ、ポンプやファンを用いて汚染空気を吹き込み、散気する。すると各溶媒中に、それぞれ汚染空気の気泡が発生する。気泡と各溶媒との気液接触が起こり、汚染物質を溶解して減少させることができる。
【0014】
その他には、放水を利用した気液接触方法がある。極性溶媒と低極性溶媒とをそれぞれ放水し、噴霧状または水膜状にして空気中を流動させる。そこへファンやポンプなどを用いて汚染空気を導入すると、噴霧状または水膜状になった各溶媒に汚染空気が接触して、汚染物質が除去される。各溶媒をそれぞれ空気中へ放水し流動させるのは、汚染空気との接触面積が上がり、さらに相対速度が高まることで汚染物質の吸収効率が上がるためである。
【0015】
また、通気性のある部材に極性溶媒を含ませた極性溶媒含浸部材と、低極性溶媒を含ませた低極性溶媒含浸部材を用意し、これらの部材へ汚染空気を導入して通気させる気液接触方法がある。部材を通気した汚染空気は部材中の、極性溶媒および低極性溶媒と気液接触して、汚染物質が減少する。このような部材には、ウレタンのようなスポンジ状のものや、布や綿、シリカゲルなどが考えられる。通気性のあるものであれば特に限定しないが、なるべく圧力損失の少ないものが好ましい。
【0016】
以上、気液接触手段として気泡にする方法と、空気中を流動させる方法と、通気性部材を用いる方法を説明したが、汚染空気と吸収液を気液接触させることが重要であり、具体的手段としてはこれらの方法に限定しない。また、汚染空気を極性溶媒と低極性溶媒に直列に気液接触させてもよいし、並列に気液接触させてもよい。また、極性溶媒と低極性溶媒の混合液を使用して、極性物質と、低極性物質または無極性物質を同時に除去することもできる。
【0017】
汚染空気を気液接触手段に導入する手段としては、ファンを汚染空気の入り口に設置して、加圧する送気手段としてもよいし、また、ファンを汚染空気の出口に設置して、汚染空気を吸い込む吸気手段としてもよい。空気を導入することができればどちらの手段を利用してもよい。
【0018】
気体からなる汚染物質には以上説明した方法が有効だが、花粉や粉塵などの粒子成分を除去するには濾材などの物理的フィルターが依然有効であり、以上説明した方法と併用することができる。例えば、以上説明した方法に、さらに汚染空気の入り口に濾材を配置することができる。
【0019】
以下、極性の低い汚染物質を除去する手段について説明する。極性の低い汚染物質の例としては、タバコの煙に含まれるベンゾ−a−ピレンがある。この物質は、多環式芳香族炭化水素の代表的な発がん物質である。水などの極性溶媒に溶解しずらい。
【0020】
しかし、ベンゾ−a−ピレンは、有機溶媒には溶解しやすい。表1は各種有機溶媒を使ってベンゾ−a−ピレンを抽出し、抽出効率を求めた実験結果である。有機溶媒として、表1に記載した各有機溶媒を用いた。ガラス繊維フィルター上にベンゾ−a−ピレンを添加し、これを各溶媒により溶解させた後、ベンゾ−a−ピレンを抽出し、抽出効率を求めた。なお、試験は各5回繰り返して行った。
【0021】
【表1】

Figure 2005013790
【0022】
このように、ベンゾ−a−ピレンは有機溶媒を使うことで、ほぼ完全に抽出できることがわかる。有機溶媒の例としては、表1に記載したジクロロメタン、アセトニトリル、トルエン、トルエン−エタノール3:1混合物を例示することができる。これらは抽出効率のよい有機溶媒の例を示したのであって、これらに限定するものではない。対象とする汚染物質の化学的性質により最適な有機溶媒を選択することができる。純粋な有機溶媒に限らず数種類の有機溶媒をブレンドして使用することも可能である。さらに、有機溶媒としては合成されたものに限らず、油脂など、天然の有機化合物を利用したものでもよい。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。極性の高い溶媒の具体例としては水を用い、極性の低い溶媒の具体例としては有機溶媒を用いて説明する。図1は、本発明の実施形態の一例を示す断面図であり、水および有機溶媒に汚染空気を散気して汚染物質を溶解除去するものである。図1において、本発明の空気清浄機は水槽8と有機溶媒槽9を備えてある。汚染物質を含んだ吸入空気1を、ファン2によって、気泡発生部5まで導入する。そこで気泡6が生じ、水3と気泡6とが接触する。この気液接触部分において、極性の高い親水性汚染物質が溶解する。ここで溶解しなかった、極性の低い親油性汚染物質は有機溶媒4に溶解し、清浄空気7となって空気排出口11から排気される。このようにして、特性の異なる汚染物質を効果的に除去し、清浄化できる。なお図1では水と有機溶媒を直列に配置し、かつ水を先に配置したが有機溶媒を先に配置してもよい。
【0024】
図2は、本発明の実施形態の一例を示す断面図であり、並列に配置した水と有機溶媒とに、汚染空気を散気して汚染物質を除去するものである。吸入空気1を、ファン2を使って水槽8と有機溶媒槽9中の気泡発生部5へ導入し、気泡を発生させて気液接触させる。有機溶媒槽9を通過した空気は親油性成分を除去できるが親水性成分が残留しており水槽8を通過した空気は親水性成分を除去できるが親油性成分が残留している。しかし排出された空気は、本発明の空気清浄機が稼動している室内を循環し、吸入空気1として再度処理されるので循環を繰り返すうちに、親水性成分と親油性成分とを除去できる。
【0025】
図2のように水槽8と有機溶媒槽9を並列に配置すると汚染空気を何度も処理する必要があるため効率が悪いが、装置内の圧力損失を小さくできる利点がある。
【0026】
図3は本発明の実施形態の一例を示す断面図であり、水と有機溶媒の混合液12に汚染空気を散気して汚染物質を除去するものである。図3において、本発明の空気清浄機は吸入空気1を、水と有機溶媒の混合液槽13中の気泡発生部5へ導入し、気泡を発生して気液接触させる。混合液では、汚染空気に含まれる親水性の汚染物質と親油性の汚染物質を同時に除去できる。通常、極性の低い有機溶媒と、極性の高い水は互いに溶解せず分離する。しかし、混合液に散気すると、同時に液を攪拌することになる。混合液は微小な水と有機溶媒の混合物となり、効率的に気液接触することができるようになる。
【0027】
図1〜図3では気泡発生部5を使用したが、使用しなくても、気泡を発生させることはできる。例えば、送気管10から直接、気泡を発生させるようにすることもできる。
【0028】
図4は本発明の実施形態の一例を示す斜視図であり、水と有機溶媒とをそれぞれ放出し、流動化したしたところに汚染空気を導入して気液接触させるものである。図4において本発明の空気清浄機は、水槽8と有機溶媒槽9を備えてある。水3および有機溶媒4をそれぞれ循環ポンプ14によって放出部15まで圧送して、噴霧状または水膜状に放水する。ここにファン2を用いて汚染空気を導入すると、まず流動している水17と汚染空気とが接触し空気中の水溶性汚染物質を溶解し、除去できる。ここで除去できなかった親油性の物質も、次のステップで放出した有機溶媒18と接触し、除去できる。このようにして親水性および親油性の汚染物質を効果的に除去し、清浄化できる。なお、図4では水と有機溶媒を直列に配置し、かつ水を先に配置したが、有機溶媒を先に配置してもよい。
【0029】
図5は、本発明の実施形態の一例を示す斜視図であり、水と有機溶媒を並行に配置し、それぞれを放出して流動化したところへ汚染空気を導入して気液接触させるものである。本実施形態では装置内に隔壁20を設け、汚染空気を水および有機溶媒に対して並列に処理した。水を通過した空気は親水性成分を除去できるが親油性成分が残留しており、有機溶媒を通過した空気は親油性成分を除去できるが親水性成分が残留している。しかし排出された空気は、本発明の空気清浄機が稼動している室内を循環し、吸入空気1として再度処理される。循環を繰り返すうちに、親水性汚染物質と親油性汚染物質とを除去できる。
【0030】
図6は、本発明の実施形態の一例を示す斜視図であり、水−有機溶媒混合液を放出し、流動化したところへ汚染空気を導入して気液接触させるものである。図6において本発明の空気清浄機は水−有機溶媒混合液12を循環ポンプ14によって放出部15まで圧送して、噴霧状または水膜状に放水する。混合液が空気中を流動化し、気液接触が起こる。混合液では水と有機溶媒が混在しており、空気中に含まれる極性の汚染物質(親水性成分)と無極性の汚染物質(親油性成分)とを同時に除去できる。
【0031】
図4〜図6で使用した各吸収液を放出し流動化させる方法としては、各吸収液を上から放出する方法、横から噴射する方法、噴水のように下から噴き上げる方法が考えられる。水および有機溶媒をそれぞれ空気中へ流動させることができれば、その方法を特に限定するものではない。
【0032】
図7は本発明の実施形態の一例を示す斜視図である。図7において本発明の空気清浄機は通気性部材に水を含ませた水含浸部材22と、有機溶媒を含ませた有機溶媒含浸部材23とを備えてある。汚染物質を含んだ汚染空気は水含浸部材22を通過し、水と空気の接触部分にて極性の化学物質を除去できる。ここで除去できなかった無極性の物質は、有機溶媒含浸部材23で除去される。このようにして親水性および親油性の汚染物質を効果的に除去し、清浄化できる。なお、図7では水含浸部材22と有機溶媒含浸部材23を直列に配置し、かつ水含浸部材22を先に配置したが、有機溶媒含浸部材23を先に配置してもよい。
【0033】
図8は本発明の実施形態の一例を示す斜視図である。図8において本発明の空気清浄機は通気性のある部材に水を含ませた水含浸部材22と、有機溶媒を含ませた有機溶媒含浸部材23とを並列に配置した。汚染物質を含む汚染空気は、水含浸部材22または有機溶媒含浸部材23のいずれかを通る。水含浸部材22を通過した空気は親水性成分を除去できるが親油性成分が残留し、有機溶媒を通過した空気は親油性成分を除去できるが親水性成分が残留している。しかし排出された空気は、本発明の空気清浄機が稼動している室内を循環し、吸入空気1として再度処理される。循環を繰り返すうちに、親水性成分と親油性成分とを除去できる。
【0034】
図9は本発明の実施形態の一例を示す斜視図である。図9において本発明の空気清浄機は通気性部材に水−有機溶媒混合液を含ませた部材24を備えてある。この部材では水と有機溶媒が混在しており、空気中に含まれる極性の汚染物質と無極性の汚染物質とを同時に除去できる。
【0035】
図7〜図9の実施形態では装置を稼動しているうちに水含浸部材22または有機溶媒含浸部材23が乾燥してしまう場合がある。図10は、そのような問題を解決するための実施形態を示した断面図である。図10では、水含浸部材22の一部を水槽8に浸し、有機溶媒含浸部材23の一部を有機溶媒槽9に浸した。さらに、各吸収液をポンプ14でくみ上げ、各含浸部材の中を流れ、液が循環するようにした。こうすることで、各含浸部材の乾燥を防げる。
【0036】
図1〜図10の実施形態では、極性の高い溶媒として酸性またはアルカリ性を示す水溶液を使用することもできる。すなわち汚染物質を、中和反応を利用して溶解除去するのである。酸性の水溶液ならば、アンモニアなどのアルカリ性の汚染物質を中和でき、アルカリ性の水溶液ならば、酢酸などの酸性の汚染物質を中和できるので、気液接触効率を向上させることができる。
【0037】
図4〜図10の実施形態は汚染空気の導入手段として、空気排出口11側にファン2を設置し、吸気手段としたが、空気清浄機に汚染空気を導入させることができればどのようにしてもよい。例えば、空気導入口25側にファン2を設置して送気手段としてもよいし、吸気手段と排気手段を両方利用してもよい。
【0038】
水および有機溶媒は、利用に伴い汚染物質の濃度が徐々に上昇する。ある濃度以上になると吸収性能が低下するので、定期的に交換しなければならないが、図7〜図10の実施形態は各部材をフィルター状に加工したため、交換する際の取り扱い性を向上できる利点がある。
【図面の簡単な説明】
【図1】散気方式(直列)を用いた実施形態を示す断面図
【図2】散気方式(並列)を用いた実施形態を示す断面図
【図3】散気方式(水−有機溶媒混合液)を用いた実施形態を示す断面図
【図4】水および有機溶媒を流動させた(直列)実施形態を示す斜視図
【図5】水および有機溶媒を流動させた(並列)実施形態を示す斜視図
【図6】水および有機溶媒の混合液を流動させた実施形態を示す斜視図
【図7】水含浸部材および有機溶媒含浸部材(直列)を用いた実施形態を示す斜視図
【図8】水含浸部材および有機溶媒含浸部材(並列)を用いた実施形態を示す斜視図
【図9】水−有機溶媒含浸部材を用いた実施形態を示す斜視図
【図10】水含浸部材および有機溶媒含浸部材の内部に各吸収液が流動する実施形態を示す断面図
【符号の説明】
1 吸入空気
2 ファン
3 水
4 有機溶媒
5 気泡発生部
6 気泡
7 清浄空気
8 水槽
9 有機溶媒槽
10 送気管
11 空気排出口
12 水と有機溶媒の混合液
13 水と有機溶媒の混合液槽
14 循環ポンプ
15 放出部
17 流動している水
18 流動している有機溶媒
19 送液管
20 隔壁
21 流動している水−有機溶媒混合液
22 水含浸部材
23 有機溶媒含浸部材
24 水−有機溶媒混合液を含む部材
25 空気導入口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air cleaner.
[0002]
[Prior art]
In recent years, there has been an increasing demand for air purifiers that remove pollutants contained in room air and are used in homes, offices, smoking rooms, hospitals, public institutions, nursing homes, factories, and the like. In particular, the use of air purifiers in places where ventilation is difficult is drawing attention.
[0003]
The chemical composition of pollutants includes, for example, nitrogen compounds such as ammonia and trimethylamine, carboxylic acids such as acetic acid and isovaleric acid, carbonyl compounds such as formaldehyde and acetaldehyde, sulfur compounds such as hydrogen sulfide and methyl mercaptan, toluene, xylene and benzoic acid. There are aromatic compounds such as -a-pyrene. Air pollutants are a mixture of substances with various chemical properties such as alkaline, acidic, neutral, polar, and low polarity. The air cleaner needs to effectively remove these pollutants having a wide range of chemical properties, and the following documents are known as the method.
[0004]
[Patent Document 1]
Japanese Patent No. 3349359 [0005]
The above document describes a method for neutralizing and removing pollutants by using alkaline water and acidic water. In this method, polar substances that are easily soluble in water can be removed. However, many of the pollutants are nonpolar or low in polarity, and cannot be effectively removed only by using a polar solvent such as water. In particular, cigarette smoke contains hundreds of kinds of harmful substances, and conventional air purifiers cannot effectively remove the harmful substances of tobacco.
[0006]
In addition, as a prior art, there is also known a method of decomposing pollutants by producing active oxygen using ozone and ultraviolet irradiation or ozone and hydrogen peroxide solution. Active oxygen decomposes regardless of the polar substances, nonpolar substances and low-polar substances described above, but there is a problem that the concentration of active oxygen is low due to the low ozone concentration and the decomposition efficiency of pollutants is low. Therefore, a method that can simultaneously remove polar pollutants and nonpolar or low-polar pollutants and improve the removal efficiency has been desired.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide an air cleaner that dissolves and removes nonpolar or low polarity contaminants in addition to polar contaminants contained in the air.
[0008]
[Means for solving the problems and actions / effects]
In order to solve the above-described problems, an air cleaner according to the present invention includes gas-liquid contact means for bringing contaminated air into contact with a highly polar solvent and a solvent with low polarity, and air supply for taking in the contaminated air and introducing it into the gas-liquid contact means. And a suction means for reducing polar substances contained in the contaminated air by treating with the highly polar solvent and reducing nonpolar substances or low-polar substances contained in the contaminated air with the polar substances. Reduced by treatment with a low solvent.
[0009]
In addition, the air cleaner of the present invention includes gas-liquid contact means for bringing contaminated air into contact with a mixture of a solvent having a high polarity and a solvent having a low polarity, and an air supply means for taking in the contaminated air and introducing it into the gas-liquid contact means. And at least one of air intake means, wherein a polar substance and a nonpolar substance contained in the contaminated air are dissolved in the mixed solution and reduced.
[0010]
It is effective to use low-polarity solvents, especially organic solvents, to remove low-polarity or non-polar contaminants in the air, and high-polarity solvents, especially water, are effective for removing polar substances. It is effective. By mixing contaminated air with water and bringing it into gas-liquid contact, the contaminant can be dissolved and reduced. Furthermore, substances that have not been dissolved in water can be dissolved and reduced by bringing them into gas-liquid contact with an organic solvent. The above water can absorb polar substances even with pure water. However, if an aqueous solution of acidic or alkaline substances is used, it is possible to dissolve and remove contaminants using a neutralization reaction. Can be improved.
[0011]
In order to bring the contaminated air and each solvent into gas-liquid contact, it is important to increase the contact area as much as possible to increase the contact efficiency and to reduce the pressure loss (pressure loss) generated when circulating the contaminated air. In addition, the concentration of contaminants gradually increases with use of these solvents. When the concentration exceeds a certain level, the absorption performance deteriorates, so it is also important to improve the handleability so as to facilitate replacement.
[0012]
As described above, the method of dissolving and removing the contaminant in the solvent improves the removal rate as compared with the conventional technique that decomposes using active oxygen, for example. The reason is that since the molecular density in the solvent is higher than that of the gas, there are many opportunities for the contaminating molecules to come into contact with the solvent molecules.
[0013]
As a specific gas-liquid contact means, there is a method using aeration or aeration. Contaminated air is blown into a polar solvent and a low polarity solvent using a pump and a fan, respectively, to diffuse. Then, bubbles of contaminated air are generated in each solvent. Gas-liquid contact between the bubbles and each solvent occurs, and the contaminants can be dissolved and reduced.
[0014]
In addition, there is a gas-liquid contact method using water discharge. A polar solvent and a low polarity solvent are each discharged, and sprayed or formed into a water film to flow in the air. When contaminated air is introduced there by using a fan or a pump, the contaminated air comes into contact with each solvent in the form of a spray or a water film, and the contaminant is removed. The reason why each solvent is allowed to flow into the air and flow is that the contact area with the contaminated air is increased and the relative speed is further increased, so that the absorption efficiency of the contaminants is increased.
[0015]
In addition, a polar solvent-impregnated member in which a polar solvent is contained in a breathable member and a low-polar solvent impregnated member in which a low-polar solvent is contained are prepared, and a gas-liquid that introduces contaminated air into these members and ventilates them. There is a contact method. The contaminated air that has passed through the member comes into gas-liquid contact with the polar solvent and the low polarity solvent in the member, and the contaminants are reduced. Such a member may be a sponge-like material such as urethane, cloth, cotton, silica gel, or the like. Although it will not specifically limit if it has air permeability, A thing with as little pressure loss as possible is preferable.
[0016]
As described above, the method of forming bubbles as the gas-liquid contact means, the method of flowing in the air, and the method of using the air-permeable member have been described. However, it is important to bring the contaminated air and the absorbing liquid into contact with each other. The means is not limited to these methods. Further, the contaminated air may be brought into gas-liquid contact with the polar solvent and the low-polar solvent in series, or may be brought into gas-liquid contact in parallel. In addition, a polar substance and a low-polar substance or a non-polar substance can be simultaneously removed using a mixed solution of a polar solvent and a low-polar solvent.
[0017]
As a means for introducing the contaminated air into the gas-liquid contact means, a fan may be installed at the inlet of the contaminated air and pressurized air supply means, or a fan may be installed at the outlet of the contaminated air to introduce the contaminated air. It is good also as an intake means which sucks in. Either means may be used as long as air can be introduced.
[0018]
Although the method described above is effective for pollutants made of gas, a physical filter such as a filter medium is still effective for removing particulate components such as pollen and dust, and can be used in combination with the method described above. For example, in the method described above, a filter medium can be further arranged at the entrance of contaminated air.
[0019]
Hereinafter, a means for removing a pollutant having a low polarity will be described. An example of a less polar contaminant is benzo-a-pyrene in tobacco smoke. This substance is a typical carcinogen of polycyclic aromatic hydrocarbons. Difficult to dissolve in polar solvents such as water.
[0020]
However, benzo-a-pyrene is easily dissolved in an organic solvent. Table 1 shows the experimental results obtained by extracting benzo-a-pyrene using various organic solvents and obtaining the extraction efficiency. Each organic solvent described in Table 1 was used as the organic solvent. Benzo-a-pyrene was added onto the glass fiber filter and dissolved in each solvent, and then benzo-a-pyrene was extracted to obtain extraction efficiency. The test was repeated 5 times each.
[0021]
[Table 1]
Figure 2005013790
[0022]
Thus, it can be seen that benzo-a-pyrene can be extracted almost completely by using an organic solvent. As an example of the organic solvent, dichloromethane, acetonitrile, toluene, toluene-ethanol 3: 1 mixture described in Table 1 can be exemplified. These are examples of organic solvents with good extraction efficiency, but are not limited thereto. The optimum organic solvent can be selected according to the chemical nature of the target pollutant. Not only a pure organic solvent but several kinds of organic solvents can be blended and used. Furthermore, the organic solvent is not limited to the synthesized one, and may be a natural organic compound such as fats and oils.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. Description will be made using water as a specific example of a highly polar solvent and an organic solvent as a specific example of a low polarity solvent. FIG. 1 is a cross-sectional view showing an example of an embodiment of the present invention, in which polluted air is diffused into water and an organic solvent to dissolve and remove the pollutants. In FIG. 1, the air cleaner of the present invention includes a water tank 8 and an organic solvent tank 9. The intake air 1 containing the pollutant is introduced to the bubble generation unit 5 by the fan 2. There, bubbles 6 are generated, and the water 3 and the bubbles 6 come into contact with each other. In this gas-liquid contact portion, a highly polar hydrophilic contaminant is dissolved. The low-polarity lipophilic contaminants not dissolved here are dissolved in the organic solvent 4 to become clean air 7 and are exhausted from the air outlet 11. In this way, contaminants having different characteristics can be effectively removed and cleaned. In FIG. 1, water and an organic solvent are arranged in series and water is arranged first, but the organic solvent may be arranged first.
[0024]
FIG. 2 is a cross-sectional view showing an example of an embodiment of the present invention, in which polluted air is diffused into water and an organic solvent arranged in parallel to remove pollutants. The intake air 1 is introduced into the bubble generation part 5 in the water tank 8 and the organic solvent tank 9 by using the fan 2, and bubbles are generated and brought into gas-liquid contact. The air that has passed through the organic solvent tank 9 can remove the lipophilic component, but the hydrophilic component remains. The air that has passed through the water tank 8 can remove the hydrophilic component, but the lipophilic component remains. However, since the exhausted air circulates in the room where the air purifier of the present invention is operating and is processed again as the intake air 1, the hydrophilic component and the lipophilic component can be removed while repeating the circulation.
[0025]
When the water tank 8 and the organic solvent tank 9 are arranged in parallel as shown in FIG. 2, the contaminated air needs to be treated many times, which is inefficient, but there is an advantage that the pressure loss in the apparatus can be reduced.
[0026]
FIG. 3 is a cross-sectional view showing an example of an embodiment of the present invention, in which contaminated air is diffused into a mixed solution 12 of water and an organic solvent to remove the pollutants. In FIG. 3, the air cleaner of the present invention introduces intake air 1 into a bubble generation unit 5 in a mixed liquid tank 13 of water and an organic solvent, and generates bubbles to make gas-liquid contact. In the mixed liquid, hydrophilic contaminants and lipophilic contaminants contained in the contaminated air can be removed simultaneously. Usually, an organic solvent having a low polarity and water having a high polarity are separated without dissolving each other. However, if the mixed liquid is diffused, the liquid is stirred at the same time. The liquid mixture becomes a mixture of minute water and an organic solvent, and can efficiently make gas-liquid contact.
[0027]
Although the bubble generation part 5 was used in FIGS. 1-3, even if it does not use, a bubble can be generated. For example, bubbles can be generated directly from the air supply tube 10.
[0028]
FIG. 4 is a perspective view showing an example of an embodiment of the present invention, in which water and an organic solvent are respectively discharged and fluidized, and contaminated air is introduced into gas-liquid contact. In FIG. 4, the air purifier of the present invention includes a water tank 8 and an organic solvent tank 9. The water 3 and the organic solvent 4 are respectively pumped to the discharge unit 15 by the circulation pump 14 and discharged in the form of a spray or water film. When the contaminated air is introduced using the fan 2, the flowing water 17 and the contaminated air first come into contact with each other to dissolve and remove water-soluble contaminants in the air. The lipophilic substance that could not be removed here can also be removed by contacting with the organic solvent 18 released in the next step. In this way, hydrophilic and lipophilic contaminants can be effectively removed and cleaned. In FIG. 4, water and the organic solvent are arranged in series and water is arranged first, but the organic solvent may be arranged first.
[0029]
FIG. 5 is a perspective view showing an example of an embodiment of the present invention, in which water and an organic solvent are arranged in parallel, and each is discharged and fluidized to introduce contaminated air and bring it into gas-liquid contact. is there. In this embodiment, the partition wall 20 is provided in the apparatus, and the contaminated air is processed in parallel with water and the organic solvent. The air that has passed through water can remove the hydrophilic component, but the lipophilic component remains. The air that has passed through the organic solvent can remove the lipophilic component, but the hydrophilic component remains. However, the discharged air circulates in the room where the air cleaner of the present invention is operating, and is processed again as the intake air 1. With repeated circulation, hydrophilic contaminants and lipophilic contaminants can be removed.
[0030]
FIG. 6 is a perspective view showing an example of an embodiment of the present invention, in which a water-organic solvent mixed liquid is discharged and contaminated air is introduced into a fluidized place to bring it into gas-liquid contact. In FIG. 6, the air cleaner of the present invention pumps the water-organic solvent mixture 12 to the discharge unit 15 by the circulation pump 14 and discharges it in the form of a spray or a water film. The liquid mixture fluidizes in the air and gas-liquid contact occurs. In the mixed solution, water and an organic solvent are mixed, and polar contaminants (hydrophilic components) and nonpolar contaminants (lipophilic components) contained in the air can be removed simultaneously.
[0031]
As a method of discharging and fluidizing each absorbing solution used in FIGS. 4 to 6, a method of discharging each absorbing solution from above, a method of spraying from the side, and a method of spraying from below like a fountain can be considered. The method is not particularly limited as long as water and an organic solvent can be flowed into the air.
[0032]
FIG. 7 is a perspective view showing an example of an embodiment of the present invention. In FIG. 7, the air cleaner of the present invention includes a water impregnated member 22 in which water is contained in a breathable member, and an organic solvent impregnated member 23 in which an organic solvent is contained. The polluted air containing the pollutant passes through the water-impregnated member 22, and polar chemical substances can be removed at the contact portion between water and air. The nonpolar substance that could not be removed here is removed by the organic solvent impregnated member 23. In this way, hydrophilic and lipophilic contaminants can be effectively removed and cleaned. In FIG. 7, the water-impregnated member 22 and the organic solvent-impregnated member 23 are arranged in series and the water-impregnated member 22 is arranged first. However, the organic solvent-impregnated member 23 may be arranged first.
[0033]
FIG. 8 is a perspective view showing an example of an embodiment of the present invention. In FIG. 8, the air purifier of the present invention has a water impregnated member 22 in which water is contained in a breathable member and an organic solvent impregnated member 23 in which an organic solvent is contained. Contaminated air containing contaminants passes through either the water-impregnated member 22 or the organic solvent-impregnated member 23. The air that has passed through the water-impregnated member 22 can remove the hydrophilic component, but the lipophilic component remains. The air that has passed the organic solvent can remove the lipophilic component, but the hydrophilic component remains. However, the discharged air circulates in the room where the air cleaner of the present invention is operating, and is processed again as the intake air 1. While repeating the circulation, the hydrophilic component and the lipophilic component can be removed.
[0034]
FIG. 9 is a perspective view showing an example of an embodiment of the present invention. In FIG. 9, the air cleaner of the present invention is provided with a member 24 in which a water-organic solvent mixed solution is contained in a breathable member. In this member, water and an organic solvent are mixed, and polar contaminants and nonpolar contaminants contained in the air can be removed simultaneously.
[0035]
In the embodiment of FIGS. 7 to 9, the water-impregnated member 22 or the organic solvent-impregnated member 23 may be dried while the apparatus is operating. FIG. 10 is a cross-sectional view showing an embodiment for solving such a problem. In FIG. 10, a part of the water-impregnated member 22 is immersed in the water tank 8, and a part of the organic solvent-impregnated member 23 is immersed in the organic solvent tank 9. Furthermore, each absorption liquid was pumped up with the pump 14, and it flowed through each impregnation member so that the liquid circulated. By doing so, drying of each impregnated member can be prevented.
[0036]
In the embodiment of FIGS. 1 to 10, an aqueous solution showing acidity or alkalinity can be used as a highly polar solvent. That is, the contaminant is dissolved and removed using a neutralization reaction. An acidic aqueous solution can neutralize alkaline contaminants such as ammonia, and an alkaline aqueous solution can neutralize acidic contaminants such as acetic acid, thereby improving gas-liquid contact efficiency.
[0037]
In the embodiment of FIGS. 4 to 10, the fan 2 is installed on the air discharge port 11 side as the intake means for the contaminated air, and the intake means is used. However, if the contaminated air can be introduced into the air purifier, how is it? Also good. For example, the fan 2 may be installed on the air inlet 25 side to serve as an air supply unit, or both an intake unit and an exhaust unit may be used.
[0038]
With water and organic solvents, the concentration of contaminants gradually increases with use. Absorption performance decreases when the concentration exceeds a certain level, so it must be replaced periodically. However, the embodiments shown in FIGS. 7 to 10 are processed into a filter shape, so that the ease of handling during replacement can be improved. There is.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment using an air diffusion method (in series). FIG. 2 is a cross-sectional view showing an embodiment using an air diffusion method (in parallel). FIG. 4 is a perspective view showing an embodiment in which water and an organic solvent are made to flow (in series). FIG. 5 is an embodiment in which water and an organic solvent are made to flow (in parallel). FIG. 6 is a perspective view showing an embodiment in which a mixed liquid of water and an organic solvent is flowed. FIG. 7 is a perspective view showing an embodiment using a water-impregnated member and an organic solvent-impregnated member (in series). FIG. 8 is a perspective view showing an embodiment using a water-impregnated member and an organic solvent-impregnated member (in parallel). FIG. 9 is a perspective view showing an embodiment using a water-organic solvent-impregnated member. Sectional drawing showing an embodiment in which each absorbing solution flows inside the organic solvent impregnated member Akira]
DESCRIPTION OF SYMBOLS 1 Intake air 2 Fan 3 Water 4 Organic solvent 5 Bubble generation part 6 Bubble 7 Clean air 8 Water tank 9 Organic solvent tank 10 Air supply pipe 11 Air outlet 12 Mixture 13 of water and organic solvent 13 Mixture tank 14 of water and organic solvent Circulating pump 15 Discharge section 17 Flowing water 18 Flowing organic solvent 19 Feed pipe 20 Partition wall 21 Flowing water-organic solvent mixed liquid 22 Water impregnated member 23 Organic solvent impregnated member 24 Water-organic solvent mixed Liquid containing member 25 Air inlet

Claims (13)

汚染空気を極性の高い溶媒および極性の低い溶媒に接触させる気液接触手段と、前記汚染空気を取り込み前記気液接触手段へ導入する送気手段および吸気手段の少なくともひとつとを備え、前記汚染空気に含まれる極性物質を前記極性の高い溶媒で処理して減少させ、かつ前記汚染空気に含まれる無極性物質または低極性物質を前記極性の低い溶媒で処理して減少させることを特徴とする空気清浄機。A gas-liquid contact means for bringing the contaminated air into contact with a highly polar solvent and a solvent with a low polarity; and at least one of an air supply means and an intake means for taking in the contaminated air and introducing it into the gas-liquid contact means. The air is characterized in that the polar substance contained in the air is reduced by treating with the high polarity solvent, and the nonpolar substance or low polarity substance contained in the contaminated air is treated with the low polarity solvent to reduce the air. Cleaner. 前記極性の高い溶媒は水または水溶液であり、前記極性の低い溶媒は有機溶媒である請求項1記載の空気清浄機。The air cleaner according to claim 1, wherein the high polarity solvent is water or an aqueous solution, and the low polarity solvent is an organic solvent. 前記気液接触手段は、前記汚染空気を前記極性の高い溶媒および前記極性の低い溶媒へそれぞれ導入して散気することで気液接触させる請求項1記載の空気清浄機。The air cleaner according to claim 1, wherein the gas-liquid contact means introduces the contaminated air into the high polarity solvent and the low polarity solvent, respectively, and diffuses the air to make gas-liquid contact. 前記気液接触手段は、前記極性の高い溶媒および前記極性の低い溶媒をそれぞれ空気中に流動させ、そこへ前記汚染空気を導入することで気液接触させる請求項1記載の空気清浄機。The air cleaner according to claim 1, wherein the gas-liquid contact means causes the high-polarity solvent and the low-polarity solvent to flow in air, and introduces the contaminated air into the air-liquid contact. 前記気液接触手段は、前記極性の高い溶媒を含む極性溶媒含浸部材と、前記極性の低い溶媒を含む低極性溶媒含浸部材とに、前記汚染空気を導入して通気することで気液接触させる請求項1記載の空気清浄機。The gas-liquid contact means introduces the contaminated air into the polar solvent-impregnated member containing the high-polarity solvent and the low-polarity solvent-impregnated member containing the low-polarity solvent to bring them into gas-liquid contact. The air cleaner according to claim 1. 前記気液接触手段は、前記極性溶媒含浸部材内に前記極性の高い溶媒を流動させ、前記低極性溶媒含浸部材内に極性の低い溶媒を流動させて、そこへ前記汚染空気を導入して通気することで気液接触させる請求項5記載の空気清浄機。The gas-liquid contact means causes the high-polarity solvent to flow in the polar solvent-impregnated member, causes a low-polarity solvent to flow in the low-polarity solvent-impregnated member, introduces the contaminated air therein, and vents it. The air cleaner according to claim 5, wherein the gas cleaner is brought into gas-liquid contact. 前記気液接触手段は、前記汚染空気を、前記極性の高い溶媒および前記極性の低い溶媒に対して直列に気液接触させる請求項1,3,4,5,6のいずれか1項に記載の空気清浄機。The said gas-liquid contact means makes the said contaminated air gas-liquid contact in series with respect to the said solvent with high polarity, and the solvent with low polarity. Air purifier. 前記気液接触手段は、前記汚染空気を、前記極性の高い溶媒および前記極性の低い溶媒に対して並列に気液接触させる請求項1,3,4,5,6のいずれか1項に記載の空気清浄機。The said gas-liquid contact means makes the said contaminated air gas-liquid contact in parallel with respect to the said high polarity solvent and the said low polarity solvent in any one of Claims 1, 3, 4, 5, 6. Air purifier. 汚染空気を極性の高い溶媒および極性の低い溶媒の混合液に接触させる気液接触手段と、前記汚染空気を取り込み前記気液接触手段へ導入する送気手段および吸気手段の少なくとも一つとを備え、前記汚染空気に含まれる極性物質および、低極性物質または無極性物質を前記混合液に溶解させて減少させることを特徴とする空気清浄機。A gas-liquid contact means for bringing contaminated air into contact with a mixture of a highly polar solvent and a low polarity solvent, and at least one of an air supply means and an intake means for taking in the contaminated air and introducing it into the gas-liquid contact means, An air cleaner characterized by reducing polar substances and low polar substances or nonpolar substances contained in the contaminated air by dissolving them in the mixed solution. 前記極性の高い溶媒は水であり、前記極性の低い溶媒は有機溶媒である請求項9記載の空気清浄機。The air cleaner according to claim 9, wherein the high-polarity solvent is water, and the low-polarity solvent is an organic solvent. 前記気液接触手段は、前記混合液に汚染空気を導入して散気することで気液接触させる請求項9記載の空気清浄機。The air cleaner according to claim 9, wherein the gas-liquid contact means causes gas-liquid contact by introducing contaminated air into the mixed liquid and diffusing it. 前記気液接触手段は、前記混合液を空気中に流動させ、そこへ前記汚染空気を導入することで気液接触させる請求項9記載の空気清浄機。The air cleaner according to claim 9, wherein the gas-liquid contact means causes the liquid mixture to flow into air and introduces the contaminated air into the air-liquid contact. 前記気液接触手段は、前記混合液を含む混合液含浸部材に、前記汚染空気を導入して通気することで気液接触させる請求項9記載の空気清浄機。The air cleaner according to claim 9, wherein the gas-liquid contact means brings the contaminated air into a mixed liquid-impregnated member containing the mixed liquid and introduces the contaminated air into the gas-liquid contact.
JP2003178830A 2003-06-24 2003-06-24 Air cleaner Ceased JP2005013790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003178830A JP2005013790A (en) 2003-06-24 2003-06-24 Air cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178830A JP2005013790A (en) 2003-06-24 2003-06-24 Air cleaner

Publications (1)

Publication Number Publication Date
JP2005013790A true JP2005013790A (en) 2005-01-20

Family

ID=34180297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178830A Ceased JP2005013790A (en) 2003-06-24 2003-06-24 Air cleaner

Country Status (1)

Country Link
JP (1) JP2005013790A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244762A (en) * 2006-03-17 2007-09-27 Sanki Eng Co Ltd Dissection table
JP2013542744A (en) * 2010-11-18 2013-11-28 アール・ジエイ・レイノルズ・タバコ・カンパニー Fire-dried tobacco extract and tobacco products produced therefrom
WO2018037460A1 (en) * 2016-08-22 2018-03-01 フタバ産業株式会社 Cooling device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244762A (en) * 2006-03-17 2007-09-27 Sanki Eng Co Ltd Dissection table
JP2013542744A (en) * 2010-11-18 2013-11-28 アール・ジエイ・レイノルズ・タバコ・カンパニー Fire-dried tobacco extract and tobacco products produced therefrom
WO2018037460A1 (en) * 2016-08-22 2018-03-01 フタバ産業株式会社 Cooling device
JPWO2018037460A1 (en) * 2016-08-22 2019-06-20 フタバ産業株式会社 Cooling system

Similar Documents

Publication Publication Date Title
CN102688513B (en) Harmful substance removal device and air purification device adopting harmful substance removal device
JP4118138B2 (en) Device for removing germicide from atmosphere containing germicide
JPH0415059A (en) Deodorizer and sterilizer device
CN102811794A (en) System and method for air purification using enhanced multi-functional coating based on pn-situ photocatalytic oxidation and ozonation
CN110772913A (en) Waste gas treatment device
KR102269669B1 (en) Device for removing fine dust and odor, and operating method for that device
JP2003250876A (en) Air cleaning method and apparatus therefor
EP4209723A1 (en) Device for generating hydroxyl radicals
JP2008036513A (en) Unit and system for gas treatment
KR101793497B1 (en) Odor removal of organic waste unit
KR100509012B1 (en) Dispersal air scrubber and method thereof
JP5808030B1 (en) Air purifier
KR100976203B1 (en) Wet type air cleaner
JP2005205094A (en) Air purification system
JP2005013790A (en) Air cleaner
KR102096523B1 (en) Air purifying device having an air purifying module
CN113203153B (en) Laboratory-based smell treatment device and treatment method
KR102462476B1 (en) Apparatus removing pathogen, bad smell and virus in room
JP2005013789A (en) Air cleaner
JP2002191682A (en) Air cleaner and air cleaning filter
JPWO2009118836A1 (en) Tobacco odor removal device
JP2005342573A (en) Apparatus for removing volatile organic compound
JP5245469B2 (en) Humidity control device
CN212974689U (en) Laboratory waste treatment device
JP2004136250A (en) Air cleaning system in kitchen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080528

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090821

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20091216