JP2005011845A - Semiconductor chip, method of connecting the same, and method of forming bump electrode - Google Patents

Semiconductor chip, method of connecting the same, and method of forming bump electrode Download PDF

Info

Publication number
JP2005011845A
JP2005011845A JP2003171078A JP2003171078A JP2005011845A JP 2005011845 A JP2005011845 A JP 2005011845A JP 2003171078 A JP2003171078 A JP 2003171078A JP 2003171078 A JP2003171078 A JP 2003171078A JP 2005011845 A JP2005011845 A JP 2005011845A
Authority
JP
Japan
Prior art keywords
semiconductor chip
protruding
electrode
forming
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003171078A
Other languages
Japanese (ja)
Inventor
Yasuo Yamazaki
康男 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003171078A priority Critical patent/JP2005011845A/en
Publication of JP2005011845A publication Critical patent/JP2005011845A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • H01L2224/13018Shape in side view comprising protrusions or indentations

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of protecting a part of a semiconductor chip or a board where a high bump is connected against damage even when bumps vary in height and ensuring that the semiconductor chip or the board is kept high in electrical reliability. <P>SOLUTION: A plurality of bumps 2 connecting a plurality of bonding pads 1a formed on the semiconductor chip 1 with a plurality of lead electrodes 3a formed on the board 3 are formed into blade springs which protrude in a direction in which they are elastically deformed. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体チップ上に形成された複数のボンディングパッドと、基板側の複数の電極とを、それぞれ突起状電極で接続する半導体チップの接続方法及びそれに用いられる半導体チップ、並びに突起状電極の形成方法に関する。
【0002】
【従来の技術】
半導体チップを基体上に取り付けて電気的に接続する方法として、従来より「バンプ」と称される突起状電極を用いた方法が行われている。この方法では、半導体チップ上に複数の電極(ボンディングパッド)を形成するとともに、これに対応する複数の電極を基板側(基板またはリード等)に形成する。そして、いずれかの電極上にバンプを形成した後、両電極間の位置を合わせてバンプを熱圧着する。これにより、両電極間がバンプにより接着固定されて、電気的に接続される。
【0003】
この突起状電極の形成方法としては、例えば、半導体チップのボンディングパッド形成面にバンプ形成用の孔を有する絶縁層を形成し、前記孔のボンディングパッド露出面上にメッキにより金属を析出させる方法が挙げられる。しかしながら、この方法で突起状電極を形成すると、半導体チップの面内で突起状電極の高さにバラツキが生じ易い。そして、バンプの高さにバラツキがある場合には、高さの低いバンプに合わせた圧力で熱圧着を行うことになり、半導体チップや基板の高さの高いバンプで接続される部分に損傷が生じる場合がある。
【0004】
下記の特許文献1には、このような損傷を抑制する方法として、金属を被覆した柔軟なボール(例えば、プラスチック製のボール)を懸濁させた電気メッキ浴を用い、ボンディングパッド上に金属が被覆されたプラスチックボールと金属とからなるバンプを形成することが提案されている。
【0005】
【特許文献1】
特開平5−62981号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上述した特許文献1に記載された方法では、熱圧着時にプラスチックボールが潰れるだけであり、十分な弾性力が得られるものではない。また、プラスチックボール表面の金属が剥がれ易いため、電気的信頼性を確保する点でも改善の余地がある。
【0007】
本発明は、上記事情に鑑みてなされたものであり、バンプの高さにバラツキがあっても、熱圧着時に半導体チップや基板の、高さの高いバンプで接続される部分に損傷が生じ難くでき、しかも電気的信頼性が確保できる方法を提供することを課題としている。
【0008】
【課題を解決するための手段】
このような課題を解決するために、本発明は、半導体チップ上に形成された複数のボンディングパッドと、基板側の複数の電極とを、それぞれ突起状電極で接続する半導体チップの接続方法において、前記突起状電極を、弾性変形方向が当該突起状電極の突出方向であるバネ状に形成することを特徴とする半導体チップの接続方法を提供する。
【0009】
本発明における半導体チップの接続方法によれば、突起状電極を、弾性変形方向が当該突起状電極の突出方向であるバネ状に形成しているため、半導体チップと基板とをバネの反発力によって相互に押し付けて接続することができる。よって、バンプの高さや基板の電極の高さにバラツキがあっても、熱圧着時に半導体チップや基板の、高さの高いバンプで接続される部分に損傷が生じ難くすることができ、しかも電気的信頼性が確保できるようになる。
【0010】
本発明はまた、本発明の半導体チップの接続方法で使用する半導体チップとして、基板との電気的接続をとるための突起状電極が、その突出方向に弾性変形方向を有するバネ状に形成されていることを特徴とする半導体チップを提供する。
本発明はまた、本発明の半導体チップの接続方法で採用できる突起状電極の形成方法として、電極が設けられた基体上に、前記電極と接続される突起状電極をバネ状に設けるための型を形成する工程と、前記型が形成された基体を無電解メッキ液に浸漬し、前記電極上に前記型に沿った形状で金属を析出させることにより、突起状電極をバネ状に形成する工程と、を備えることを特徴とする突起状電極の形成方法を提供する。
【0011】
本発明の突起状電極の形成方法としては、前記型を形成する工程を、型を突起状電極の突出方向で複数の層に分け、その各層部分を、光硬化性樹脂を選択的に硬化させる方法で基体側から順次形成することにより行うことが好ましい。
本発明はまた、本発明の方法で採用できる突起状電極の形成方法として、基体上に設けられた電極上に、突起状電極をバネ状に形成する方法であって、前記突起状電極を、その突出方向で複数の層に分け、その各層部分を、金属材料が混合された光硬化性樹脂を選択的に硬化させる方法で基体側から順次形成することを特徴とする突起状電極の形成方法を提供する。
【0012】
なお、本発明の突起状電極の製造方法において、基体とは、突起状電極が形成されるものを指し、半導体チップや半導体基板などが挙げられる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。
<第一実施形態>
図1は、本発明の一実施形態を示す半導体チップであり、(a)は平面図、(b)は図1(a)におけるA−A線に沿った拡大断面図である。
【0014】
本実施形態の半導体チップ1においては、図1(a)に示すように、素子形成面に複数のボンディングパッド(電極)1aが形成され、その上に、このボンディングパッド1aと平面視で略同一寸法の正方形状を有するNi(ニッケル)製のバンプ(突起状電極)2が形成されている。また、バンプ2は、図1(b)に示すように、その突出方向に弾性変形方向を有する板バネ状に形成されている。
【0015】
この実施形態では、バンプ2を、図2〜図4に示す方法で製造した。図2及び図4は、本発明の突起状電極の形成方法の第一実施形態を説明する断面図である。図3は、この方法を説明する平面図である。また、図5は、本発明の半導体チップの接続方法の一実施形態を示す断面図である。なお、図2〜図5においては、半導体チップ1に形成される複数のバンプ2のうち一つのみを示した。
【0016】
まず、光硬化性樹脂溶液Uが注入された容器10と、容器10内の溶液Uを硬化可能な光を照射する光照射装置20と、を用意した。なお、容器10内には、バンプ2が形成される半導体チップ1を設置する台11が、容器10の深さ方向(図2における上下方向)に移動可能に設けられている。そして、半導体チップ1を、ボンディングパッド1aが形成された面(バンプ形成面)を上に向けた状態で、容器10内の台11の上面に設置した。
【0017】
次に、図2(a)に示すように、半導体チップ1の上面が、容器10内の溶液Uの液面Lから所定深さxに位置するように、容器10内の台11を下方(図2における下方向)に移動させた。
この状態で、半導体チップ1の上面が位置する深さxまで光が到達可能に調整された光照射装置20を用いて、半導体チップ1の上面に満たされた溶液Uに選択的に光照射を行った。光照射装置20から放射する光としては、波長の短い紫外線を用いることが、深さ方向に選択性を持たせるために望ましい。また、同様の理由により、光照射装置20の代わりに、電子線照射装置を用いても良い。そして、図3(a)に示すように、半導体チップ1の上面に、深さx分の厚みを有し、且つ、ボンディングパッド1aの上面のみが露出する開口部H1を有する光硬化層2aを形成した。
【0018】
次に、図2(b)に示すように、半導体チップ1の上面に形成された光硬化層2aの上面が、容器10内の溶液Uの液面Lから所定深さxに位置するように、容器10内の台11をさらに下方に移動させた。
この状態で、上述と同様に選択的に光照射を行うことで、光硬化層2aの上面に、深さx分の厚みを有し、且つ、開口部H1の一辺Eの延長線ELに沿った位置に、開口部H1と半分重なる開口部H2を有する光硬化層2bを形成した。この開口部H2は、開口部H1と略同一寸法に形成した。図3(b)はこの状態を示す。
【0019】
そして、図3(c)〜(e)に示すように、上述と同様の工程を繰り返して、光硬化層2bの上面に、平面視で開口部H1と一部が重なり、且つ、開口部H1一辺Eの延長線ELに沿って互いにずれた位置に開口部H3,H4,H5を有する光硬化層2c,2d,2eを順次積層した。この開口部H3,H4,H5は、いずれも深さx分の厚みを有し、且つ、開口部H1と略同一寸法に形成した。
【0020】
次に、図3(f)に示すように、光硬化層2eの上面に、深さx分の厚みを有し、且つ、開口部H1と平面視で一致する位置に開口部H6を有する光硬化層2fを形成した。この開口部H6は、開口部H1と略同一寸法に形成した。このようにして、図4(a)に示すように、半導体チップ1の上面に、平面視で正方形状且つ側面視で略Z字状の空間を有する型(バネ状の突起を設けるための型)2Aを光硬化層2a〜2fによって形成した。
【0021】
次に、図4(b)に示すように、型2Aが形成された半導体チップ1を容器10内から取り出し、この半導体チップ1を、無電解Niメッキ液Mが注入されたメッキ用容器30内に浸漬して無電解Niメッキを行った。そして、半導体チップ1のボンディングパッド1aの上に、型2Aに沿った形状でNiを析出させた。その後、半導体チップ1から型2Aを除去した。これにより、図1に示すように、平面視で正方形状且つ側面視で略Z字形状のバネ状のバンプ2が、半導体チップ1の各ボンディングパッド1aの上に形成された。
【0022】
次に、図5に示すように、半導体チップ1のボンディングパッド1aの上に形成したバンプ2と、基板3の上に形成されたリード電極3aとを位置合わせした状態で、バンプ2を熱圧着した。この結果、半導体チップ1には高さの異なる複数のバンプ2が形成されていたにもかかわらず、半導体チップ1や基板3の高さの高いバンプで接続された部分に損傷は見られなかった。
【0023】
また、半導体チップ1と基板3とは、バネの反発力によって相互に押し付けられて接続されたため、半導体チップ1と基板3との間で良好な電気的導通をとることができた。
さらに、板バネ状にバンプ2を形成するための型2Aを、半導体チップ1上に、複数層に分けて順次積層した光硬化層2a〜2fで形成したことによって、型2Aを容易に形成することができた。
<第二実施形態>
第二実施形態として、図1に示すバネ状のバンプ2の、第一実施形態とは異なる形成方法について説明する。図6は、本発明の突起状電極の形成方法の第二実施形態を説明する断面図である。図7は、この方法を説明する平面図である。なお、図6及び図7では、半導体チップ1に形成される複数のバンプ2のうち一つのみを示した。
【0024】
まず、第一実施形態で用いた容器10内に、Ni(金属材料)が混合された光硬化性樹脂溶液MUを注入した。そして、半導体チップ1を、そのボンディングパッド1aが形成された面(バンプ形成面)を上に向けた状態で、容器10内の台11の上面に設置した。
次に、図6(a)に示すように、半導体チップ1の上面が、容器10内の溶液MUの液面Lから所定深さxに位置するように、容器10内の台11を下方に移動させた。
【0025】
この状態で、半導体チップ1の上面が位置する深さxまで光が到達可能に調整した光照射装置20を用いて、半導体チップ1の上面に満たされた溶液MUに選択的に光照射を行った。そして、図7(a)に示すように、半導体チップ1のボンディングパッド1aの上面が隠れるように、深さx分の厚みを有し、且つ、ボンディングパッド1aと平面視で同一寸法の光硬化層4aを形成した。
【0026】
次に、図6(b)に示すように、半導体チップ1の上面に形成された光硬化層4aの上面が、容器10内の溶液MUの液面Lから所定深さxに位置するように、容器10内の台11をさらに下方に移動させた。
この状態で、上述と同様に選択的に光照射を行うことで、光硬化層4aの上面に、深さx分の厚みを有し、且つ、光硬化層4aの一辺eの延長線el上に沿った位置に、光硬化層4aと半分重なる光硬化層4bを形成した。この光硬化層4bは、光硬化層4aと略同一寸法に形成した。図7(b)はこの状態を示す。
【0027】
そして、図7(c)〜(e)に示すように、上述と同様の工程を繰り返して、光硬化層4bの上面に、光硬化層4aと平面視で一部が重なり、且つ、光硬化層4aの一辺eの延長線el上に沿って互いにずれた位置に光硬化層4c,4d,4eを順次積層した。この光硬化層4c,4d,4eは、いずれも深さx分の厚みを有し、且つ、光硬化層4aと略同一寸法に形成した。
【0028】
次に、図7(f)に示すように、光硬化層4eの上面に、深さx分の厚みを有し、且つ、光硬化層4aと平面視で一致するように光硬化層4fを形成した。この光硬化層4fは、光硬化層4aと略同一寸法に形成した。このようにして、図6(c)に示すように、半導体チップ1の上面に、光硬化層4a〜4fによって、平面視が正方形状で且つ側面視が略Z字状のバネ状のバンプ2を形成した。
【0029】
この実施形態の方法では、板バネ状のバンプ2を、Niの金属粉が混合された光硬化性樹脂溶液MUを複数層に分けて順次積層した光硬化層4a〜4fで形成したことによって、第一実施形態で必要であった無電解メッキ浴による析出工程が不要となる。そのため、第一実施形態の方法より簡単に板バネ状のバンプ2を形成することができた。
【0030】
なお、第一及び第二実施形態においては、バンプ2をNiで形成した場合について説明したが、金属材料であればこれに限らず、例えば、Au(金)、Ag(銀)、Sn(スズ)などで形成してもよい。
また、第一及び第二実施形態においては、バンプ2を平面視が正方形状で且つ側面視が略Z字状に形成したが、バネとしての機能を有する形状であればこれに限らず、例えば、コイル状に形成しても構わない。
【0031】
さらに、第一及び第二実施形態においては、半導体チップ1を基体としてバンプ2を形成した場合について説明したが、基板3を基体としてバンプ2を形成する場合に適用してもよい。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す半導体チップの図である。
【図2】本発明の突起状電極の形成方法の第一実施形態を説明する断面図である。
【図3】本発明の突起状電極の形成方法の第一実施形態を説明する平面図である。
【図4】本発明の突起状電極の形成方法の第一実施形態を説明する断面図である。
【図5】本発明の半導体チップの接続方法の一実施形態を示す断面図である。
【図6】本発明の突起状電極の形成方法の第二実施形態を説明する断面図である。
【図7】本発明の突起状電極の形成方法の第二実施形態を説明する平面図である。
【符号の説明】1…半導体チップ(基体)、1a…ボンディングパッド(電極)、2…バンプ(突起状電極)、2a〜2f,4a〜4f…光硬化層、2A…型(バネ状の突起状電極を形成するための型)。3…基板。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor chip connection method in which a plurality of bonding pads formed on a semiconductor chip and a plurality of electrodes on a substrate side are respectively connected by protruding electrodes, a semiconductor chip used therefor, and a protruding electrode It relates to a forming method.
[0002]
[Prior art]
As a method for attaching and electrically connecting a semiconductor chip on a substrate, a method using protruding electrodes called “bumps” has been conventionally performed. In this method, a plurality of electrodes (bonding pads) are formed on a semiconductor chip, and a plurality of electrodes corresponding to the electrodes are formed on the substrate side (substrate or lead). Then, after bumps are formed on any of the electrodes, the bumps are thermocompression bonded together by aligning the positions between the electrodes. As a result, both electrodes are bonded and fixed by the bumps to be electrically connected.
[0003]
As a method for forming this protruding electrode, for example, there is a method in which an insulating layer having a bump forming hole is formed on a bonding pad forming surface of a semiconductor chip, and a metal is deposited on the bonding pad exposed surface of the hole by plating. Can be mentioned. However, when the protruding electrode is formed by this method, the height of the protruding electrode is likely to vary within the surface of the semiconductor chip. If there is variation in the bump height, thermocompression bonding is performed at a pressure that matches the low height bump, and the semiconductor chip or the portion connected to the high bump on the substrate is damaged. May occur.
[0004]
In Patent Document 1 below, as a method for suppressing such damage, an electroplating bath in which a soft ball coated with metal (for example, a plastic ball) is suspended is used. It has been proposed to form bumps made of coated plastic balls and metal.
[0005]
[Patent Document 1]
JP-A-5-62981 [0006]
[Problems to be solved by the invention]
However, in the method described in Patent Document 1 described above, the plastic ball is crushed at the time of thermocompression bonding, and sufficient elastic force cannot be obtained. Further, since the metal on the surface of the plastic ball is easily peeled off, there is room for improvement in terms of ensuring electrical reliability.
[0007]
The present invention has been made in view of the above circumstances, and even if there is a variation in the height of the bumps, it is difficult to cause damage to the portion of the semiconductor chip or substrate that is connected by the high bumps during thermocompression bonding. It is an object to provide a method that can ensure electrical reliability.
[0008]
[Means for Solving the Problems]
In order to solve such a problem, the present invention provides a semiconductor chip connection method in which a plurality of bonding pads formed on a semiconductor chip and a plurality of electrodes on a substrate side are connected by protruding electrodes, respectively. Provided is a method for connecting semiconductor chips, wherein the protruding electrodes are formed in a spring shape whose elastic deformation direction is the protruding direction of the protruding electrodes.
[0009]
According to the semiconductor chip connection method of the present invention, since the protruding electrode is formed in a spring shape whose elastic deformation direction is the protruding direction of the protruding electrode, the semiconductor chip and the substrate are moved by the repulsive force of the spring. They can be connected by pressing each other. Therefore, even if there are variations in the height of the bumps and the electrode on the substrate, the portion of the semiconductor chip or substrate that is connected by the high bumps can be made less susceptible to damage during thermocompression. Reliability can be secured.
[0010]
According to the present invention, as a semiconductor chip used in the semiconductor chip connection method of the present invention, a protruding electrode for electrical connection with a substrate is formed in a spring shape having an elastic deformation direction in the protruding direction. A semiconductor chip is provided.
The present invention also provides a method for forming a protruding electrode connected to the electrode in a spring form on a substrate provided with an electrode as a method of forming a protruding electrode that can be employed in the semiconductor chip connecting method of the present invention. And forming a protruding electrode in a spring shape by immersing the substrate on which the mold is formed in an electroless plating solution and depositing a metal on the electrode in a shape along the mold. And a method for forming a protruding electrode.
[0011]
As a method for forming a protruding electrode of the present invention, the step of forming the mold is divided into a plurality of layers in the protruding direction of the protruding electrode, and each layer portion is selectively cured with a photocurable resin. It is preferable to carry out by forming sequentially from the substrate side by the method.
The present invention is also a method of forming a protruding electrode in a spring shape on an electrode provided on a substrate, as a method of forming a protruding electrode that can be employed in the method of the present invention. A method for forming a protruding electrode, wherein the protruding electrode is divided into a plurality of layers in the protruding direction, and each layer portion is sequentially formed from the substrate side by a method of selectively curing a photocurable resin mixed with a metal material. I will provide a.
[0012]
In the method for producing a protruding electrode according to the present invention, the substrate refers to a substrate on which the protruding electrode is formed, and examples thereof include a semiconductor chip and a semiconductor substrate.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First embodiment>
1A and 1B show a semiconductor chip according to an embodiment of the present invention, in which FIG. 1A is a plan view and FIG. 1B is an enlarged cross-sectional view taken along line AA in FIG.
[0014]
In the semiconductor chip 1 of the present embodiment, as shown in FIG. 1A, a plurality of bonding pads (electrodes) 1a are formed on the element formation surface, and are substantially the same as the bonding pads 1a in plan view. A bump (projection electrode) 2 made of Ni (nickel) having a square shape is formed. Further, as shown in FIG. 1B, the bump 2 is formed in a leaf spring shape having an elastic deformation direction in the protruding direction.
[0015]
In this embodiment, the bump 2 was manufactured by the method shown in FIGS. 2 and 4 are cross-sectional views illustrating a first embodiment of the method for forming a protruding electrode of the present invention. FIG. 3 is a plan view for explaining this method. FIG. 5 is a cross-sectional view showing an embodiment of a semiconductor chip connection method of the present invention. 2 to 5, only one of the plurality of bumps 2 formed on the semiconductor chip 1 is shown.
[0016]
First, the container 10 into which the photocurable resin solution U was injected and the light irradiation device 20 that irradiates light that can cure the solution U in the container 10 were prepared. In addition, in the container 10, the base 11 which installs the semiconductor chip 1 in which the bump 2 is formed is provided so as to be movable in the depth direction of the container 10 (vertical direction in FIG. 2). Then, the semiconductor chip 1 was placed on the upper surface of the table 11 in the container 10 with the surface (bump forming surface) on which the bonding pad 1a was formed facing upward.
[0017]
Next, as shown in FIG. 2 (a), the base 11 in the container 10 is placed downward (so that the upper surface of the semiconductor chip 1 is located at a predetermined depth x from the liquid level L of the solution U in the container 10. (Downward direction in FIG. 2).
In this state, light irradiation is selectively performed on the solution U filled on the upper surface of the semiconductor chip 1 by using the light irradiation device 20 adjusted so that light can reach the depth x where the upper surface of the semiconductor chip 1 is located. went. As light emitted from the light irradiation device 20, it is desirable to use ultraviolet rays having a short wavelength in order to provide selectivity in the depth direction. For the same reason, an electron beam irradiation device may be used instead of the light irradiation device 20. Then, as shown in FIG. 3A, a photo-curing layer 2a having a thickness of depth x on the upper surface of the semiconductor chip 1 and having an opening H1 in which only the upper surface of the bonding pad 1a is exposed. Formed.
[0018]
Next, as shown in FIG. 2B, the upper surface of the photocured layer 2 a formed on the upper surface of the semiconductor chip 1 is positioned at a predetermined depth x from the liquid level L of the solution U in the container 10. The base 11 in the container 10 was further moved downward.
In this state, by selectively performing light irradiation in the same manner as described above, the upper surface of the photocured layer 2a has a thickness of depth x, and extends along the extension line EL of one side E of the opening H1. A photocured layer 2b having an opening H2 that overlaps half of the opening H1 was formed at the position. The opening H2 was formed with substantially the same dimensions as the opening H1. FIG. 3B shows this state.
[0019]
Then, as shown in FIGS. 3C to 3E, the same process as described above is repeated, and the opening H1 partially overlaps the upper surface of the photocured layer 2b in plan view, and the opening H1. Photocured layers 2c, 2d, and 2e having openings H3, H4, and H5 were sequentially laminated at positions shifted from each other along the extension line EL of one side E. Each of the openings H3, H4, and H5 has a thickness of a depth x, and is formed to have substantially the same dimensions as the opening H1.
[0020]
Next, as shown in FIG. 3 (f), light having a thickness of depth x on the upper surface of the photocuring layer 2e and having an opening H6 at a position coincident with the opening H1 in plan view. A cured layer 2f was formed. The opening H6 was formed with substantially the same dimensions as the opening H1. In this way, as shown in FIG. 4A, a die having a square shape in plan view and a substantially Z-shaped space in plan view on the top surface of the semiconductor chip 1 (a die for providing a spring-like protrusion). ) 2A was formed by the photocured layers 2a to 2f.
[0021]
Next, as shown in FIG. 4B, the semiconductor chip 1 on which the mold 2A is formed is taken out from the container 10, and the semiconductor chip 1 is placed in the plating container 30 into which the electroless Ni plating solution M is injected. Electroless Ni plating was performed by immersion in Then, Ni was deposited on the bonding pad 1a of the semiconductor chip 1 in a shape along the mold 2A. Thereafter, the mold 2A was removed from the semiconductor chip 1. Thereby, as shown in FIG. 1, spring-like bumps 2 having a square shape in a plan view and a substantially Z shape in a side view are formed on each bonding pad 1 a of the semiconductor chip 1.
[0022]
Next, as shown in FIG. 5, the bump 2 is thermocompression bonded in a state where the bump 2 formed on the bonding pad 1a of the semiconductor chip 1 and the lead electrode 3a formed on the substrate 3 are aligned. did. As a result, although the semiconductor chip 1 was formed with a plurality of bumps 2 having different heights, the semiconductor chip 1 and the portion connected by the high bumps of the substrate 3 were not damaged. .
[0023]
Further, since the semiconductor chip 1 and the substrate 3 were pressed against each other and connected by the repulsive force of the spring, good electrical continuity could be achieved between the semiconductor chip 1 and the substrate 3.
Further, the mold 2A for forming the bumps 2 in the form of leaf springs is formed by the photocured layers 2a to 2f that are sequentially laminated in a plurality of layers on the semiconductor chip 1, thereby easily forming the mold 2A. I was able to.
<Second embodiment>
As a second embodiment, a method of forming the spring-like bump 2 shown in FIG. 1 different from the first embodiment will be described. FIG. 6 is a cross-sectional view illustrating a second embodiment of the method for forming a protruding electrode of the present invention. FIG. 7 is a plan view for explaining this method. 6 and 7, only one of the plurality of bumps 2 formed on the semiconductor chip 1 is shown.
[0024]
First, the photocurable resin solution MU mixed with Ni (metal material) was injected into the container 10 used in the first embodiment. Then, the semiconductor chip 1 was placed on the upper surface of the base 11 in the container 10 with the surface (bump forming surface) on which the bonding pad 1a was formed facing upward.
Next, as shown in FIG. 6A, the base 11 in the container 10 is moved downward so that the upper surface of the semiconductor chip 1 is located at a predetermined depth x from the liquid level L of the solution MU in the container 10. Moved.
[0025]
In this state, light irradiation is selectively performed on the solution MU filled on the upper surface of the semiconductor chip 1 using the light irradiation device 20 adjusted so that the light can reach the depth x where the upper surface of the semiconductor chip 1 is located. It was. Then, as shown in FIG. 7A, the photocuring has a thickness of depth x so that the upper surface of the bonding pad 1a of the semiconductor chip 1 is hidden, and has the same dimensions as the bonding pad 1a in plan view. Layer 4a was formed.
[0026]
Next, as shown in FIG. 6B, the upper surface of the photocured layer 4 a formed on the upper surface of the semiconductor chip 1 is positioned at a predetermined depth x from the liquid level L of the solution MU in the container 10. The base 11 in the container 10 was further moved downward.
In this state, by selectively irradiating light in the same manner as described above, the upper surface of the photocured layer 4a has a thickness of depth x and is on the extension line el of one side e of the photocured layer 4a. The photocuring layer 4b which overlaps with the photocuring layer 4a half was formed in the position along. The photocured layer 4b was formed to have substantially the same dimensions as the photocured layer 4a. FIG. 7B shows this state.
[0027]
Then, as shown in FIGS. 7C to 7E, the same steps as described above are repeated to partially overlap the upper surface of the photocuring layer 4b with the photocuring layer 4a in plan view, and the photocuring. Photocured layers 4c, 4d, and 4e were sequentially laminated at positions shifted from each other along the extension line el of one side e of the layer 4a. Each of the photocured layers 4c, 4d, and 4e has a thickness of depth x and is formed to have substantially the same dimensions as the photocured layer 4a.
[0028]
Next, as shown in FIG. 7F, the photocuring layer 4f is formed on the upper surface of the photocuring layer 4e so as to have a thickness of depth x and coincide with the photocuring layer 4a in plan view. Formed. This photocured layer 4f was formed to have substantially the same dimensions as the photocured layer 4a. In this way, as shown in FIG. 6C, the photo-curing layers 4a to 4f are formed on the upper surface of the semiconductor chip 1, and the spring-like bumps 2 having a square shape in a plan view and a substantially Z shape in a side view. Formed.
[0029]
In the method of this embodiment, the leaf spring-like bump 2 is formed by the photocured layers 4a to 4f obtained by sequentially laminating the photocurable resin solution MU mixed with the metal powder of Ni into a plurality of layers, The deposition step by the electroless plating bath that is necessary in the first embodiment is not necessary. Therefore, the leaf spring-like bumps 2 can be formed more easily than the method of the first embodiment.
[0030]
In the first and second embodiments, the case where the bump 2 is formed of Ni has been described. However, the present invention is not limited to this as long as it is a metal material. For example, Au (gold), Ag (silver), Sn (tin) ) Or the like.
In the first and second embodiments, the bump 2 is formed in a square shape in plan view and in a substantially Z shape in side view. However, the shape is not limited to this as long as the shape has a function as a spring. Alternatively, it may be formed in a coil shape.
[0031]
Further, in the first and second embodiments, the case where the bump 2 is formed using the semiconductor chip 1 as a base has been described. However, the present invention may be applied to the case where the bump 2 is formed using the substrate 3 as a base.
[Brief description of the drawings]
FIG. 1 is a diagram of a semiconductor chip showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view illustrating a first embodiment of a method for forming a protruding electrode according to the present invention.
FIG. 3 is a plan view for explaining a first embodiment of a method for forming a protruding electrode of the present invention.
FIG. 4 is a cross-sectional view illustrating a first embodiment of a method for forming a protruding electrode according to the present invention.
FIG. 5 is a cross-sectional view showing an embodiment of a semiconductor chip connection method of the present invention.
FIG. 6 is a cross-sectional view illustrating a second embodiment of the method for forming a protruding electrode of the present invention.
FIG. 7 is a plan view for explaining a second embodiment of the method for forming a protruding electrode of the present invention.
DESCRIPTION OF SYMBOLS 1 ... Semiconductor chip (base), 1a ... Bonding pad (electrode), 2 ... Bump (projection-like electrode), 2a-2f, 4a-4f ... Photocuring layer, 2A ... Type (spring-like projection) Mold for forming the electrode). 3 ... Board.

Claims (5)

半導体チップ上に形成された複数のボンディングパッドと、基板側の複数の電極とを、それぞれ突起状電極で接続する半導体チップの接続方法において、
前記突起状電極を、弾性変形方向が当該突起状電極の突出方向であるバネ状に形成することを特徴とする半導体チップの接続方法。
In the semiconductor chip connection method of connecting the plurality of bonding pads formed on the semiconductor chip and the plurality of electrodes on the substrate side with the protruding electrodes, respectively.
A method of connecting semiconductor chips, wherein the protruding electrodes are formed in a spring shape whose elastic deformation direction is the protruding direction of the protruding electrodes.
基板との電気的接続をとるための突起状電極が、その突出方向を弾性変形方向とするバネ状に形成されていることを特徴とする半導体チップ。A semiconductor chip, characterized in that a projecting electrode for electrical connection with a substrate is formed in a spring shape having the protruding direction as an elastic deformation direction. 電極が設けられた基体上に、前記電極と接続される突起状電極をバネ状に設けるための型を形成する工程と、
前記型が形成された基体を無電解メッキ液に浸漬し、前記電極上に前記型に沿った形状で金属を析出させることにより、突起状電極をバネ状に形成する工程と、
を備えることを特徴とする突起状電極の形成方法。
Forming a mold for providing a protruding electrode connected to the electrode in a spring shape on a substrate provided with an electrode;
Immersing the substrate on which the mold is formed in an electroless plating solution, and depositing a metal in a shape along the mold on the electrode, thereby forming a protruding electrode in a spring shape;
A method of forming a protruding electrode, comprising:
前記型を形成する工程は、型を突起状電極の突出方向で複数の層に分け、その各層部分を、光硬化性樹脂を選択的に硬化させる方法で基体側から順次形成することにより行うことを特徴とする請求項3に記載の突起状電極の形成方法。The step of forming the mold is performed by dividing the mold into a plurality of layers in the protruding direction of the protruding electrodes, and sequentially forming each layer portion from the substrate side by a method of selectively curing the photocurable resin. The method for forming a protruding electrode according to claim 3. 基体上に設けられた電極上に、突起状電極をバネ状に形成する方法であって、
前記突起状電極を、その突出方向で複数の層に分け、その各層部分を、金属材料が混合された光硬化性樹脂を選択的に硬化させる方法で基体側から順次形成することを特徴とする突起状電極の形成方法。
A method of forming a protruding electrode in a spring shape on an electrode provided on a substrate,
The protruding electrode is divided into a plurality of layers in the protruding direction, and each layer portion is sequentially formed from the substrate side by a method of selectively curing a photocurable resin mixed with a metal material. Method for forming protruding electrode.
JP2003171078A 2003-06-16 2003-06-16 Semiconductor chip, method of connecting the same, and method of forming bump electrode Pending JP2005011845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003171078A JP2005011845A (en) 2003-06-16 2003-06-16 Semiconductor chip, method of connecting the same, and method of forming bump electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003171078A JP2005011845A (en) 2003-06-16 2003-06-16 Semiconductor chip, method of connecting the same, and method of forming bump electrode

Publications (1)

Publication Number Publication Date
JP2005011845A true JP2005011845A (en) 2005-01-13

Family

ID=34095689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003171078A Pending JP2005011845A (en) 2003-06-16 2003-06-16 Semiconductor chip, method of connecting the same, and method of forming bump electrode

Country Status (1)

Country Link
JP (1) JP2005011845A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099765A (en) * 2007-10-17 2009-05-07 Seiko Epson Corp Mounting structure of electronic component
JP2009179823A (en) * 2008-01-29 2009-08-13 Sankyo Kasei Co Ltd Plastic spring having conductive circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099765A (en) * 2007-10-17 2009-05-07 Seiko Epson Corp Mounting structure of electronic component
JP2009179823A (en) * 2008-01-29 2009-08-13 Sankyo Kasei Co Ltd Plastic spring having conductive circuit

Similar Documents

Publication Publication Date Title
TWI527175B (en) Etch-back type semiconductor package, substrate and manufacturing method thereof
US8873244B2 (en) Package structure
CN103367300B (en) The manufacture method of lead frame, semiconductor device and lead frame
JP5018826B2 (en) Electronic device and manufacturing method thereof
US8604348B2 (en) Method of making a connection component with posts and pads
US6884652B2 (en) Semiconductor package free of substrate and fabrication method thereof
JP5123664B2 (en) Semiconductor device and manufacturing method thereof
US7423340B2 (en) Semiconductor package free of substrate and fabrication method thereof
JP5329083B2 (en) Parts with posts and pads
US7884453B2 (en) Semiconductor device and manufacturing method thereof
TWI390684B (en) Semiconductor package and manufacturing method thereof
JP2002093831A (en) Semiconductor device and method of manufacturing the same
JP2013118255A (en) Wiring board, manufacturing method of the same and semiconductor package
US20080108182A1 (en) Method for fabricating semiconductor package free of substrate
JP2009302505A (en) Semiconductor device and method of manufacturing semiconductor device
JP5543754B2 (en) Semiconductor package and manufacturing method thereof
US6853060B1 (en) Semiconductor package using a printed circuit board and a method of manufacturing the same
KR101009110B1 (en) A printed circuit board having buried solder bump and a manufacturing method of the same
CN101567355A (en) Semiconductor packaging base plate and manufacturing method thereof
KR20120096024A (en) Interconnect-use electronic component and method for producing same
JP3732378B2 (en) Manufacturing method of semiconductor device
CN102356462B (en) The manufacture method of substrates for semiconductor elements and semiconductor device
US9112063B2 (en) Fabrication method of semiconductor package
US20050194665A1 (en) Semiconductor package free of substrate and fabrication method thereof
JP2005011845A (en) Semiconductor chip, method of connecting the same, and method of forming bump electrode