【0001】
【発明が属する技術分野】
本発明は、紫外光源、例えば塗料の硬化、表面洗浄、殺菌又は光化学反応用の紫外光源として使用されるエキシマランプの改良に関する。
【0002】
【従来の技術】
本発明に関連した従来技術として、例えば特開2000−235840号公報に、石英ガラス製の外側管と内側管とを二重に配置し、その両端部を閉じて中空円筒状の放電容器とし、その内部に放電用ガスを封入して、この外側管と内側管の外面にそれぞれ外部電極と内部電極を設け、この電極に電圧を印加して放電容器内に誘電体バリヤ放電を発生させてエキシマ光を放射する誘電体バリヤ放電ランプが記載されている。
この誘電体バリヤ放電ランプは網目形状に穿孔した金属板を外部電極に使用している。
【特許文献1】特開2000−235840号公報(第1図及び第2図)
【0003】
【発明が解決しようとする課題】
しかしながら、放電容器を形成する外側管は、外径寸法のばらつきや軸方向のゆがみ、曲がりなどの寸法のばらつきが存在することにより、外側管の外面に前記した外部電極を設けた場合において、外側管との間に空隙なく設置することは困難であり、ランプを点灯したとき、この空隙に不要な放電が発生して発光効率が低下する課題があった。
【0004】
また、ランプの点灯消灯による温度変化のために放電容器や外部電極の伸張収縮が起って、外部電極と外側管との間に空隙を生じ、ランプを点灯したとき、この空隙に不要な放電が発生し、ランプの発光効率が低下する課題があった。
【0005】
また、外部電極の外側管の軸方向に沿った軸方向両端部は、網目形状に穿孔された金属板を裁断して形成されるので凹凸形状の穿孔部分を有し、この両端部をバネ状部材をもって締め付けたとしても、この穿孔部分が毛羽立ち、外側面から浮き上がるために、この両端部と外側管との間に空隙を生じるので、ランプを点灯したとき、この空隙に不要な放電が発生し、ランプの発光効率が低下する課題があった。
【0006】
従って、本発明が解決しようとする課題は、外部電極に多数隣接した孔を穿孔した金属板を使用した場合において、外側管の寸法のばらつきによる外部電極と外側管との間の空隙を減少させ、また、ランプの点灯消灯に伴う温度変化のために起こる放電容器や外部電極の伸張収縮による外部電極と外側管との間の空隙を減少させ、また、外部電極の外側管の軸方向に沿った軸方向両端部が毛羽立って生じる外部電極と外側管の間の空隙を無くして、外部電極と外側管の間の不要な放電を防止し、発光効率を向上させたエキシマランプを提供することである。
【0007】
【課題を解決するための手段】
上記した課題を解決する手段として、
本発明の請求項1に記載のエキシマランプは、それぞれ誘電体からなる円筒状の外側管と内側管とを二重に配置して形成された放電空間に放電用ガスを封入した放電容器と、前記外側管と前記内側管のそれぞれの外側面に外部電極と内部電極とを備え、前記外部電極と前記内部電極に電圧を印加することにより、エキシマ光を放射するエキシマランプにおいて、前記外部電極が、前記外側管に巻き付けた、矩形の孔を縦横に多数隣接して穿孔した金属板であって、前記矩形の孔の2対の相対向する2辺のうち、一方の2辺の方向が前記放電容器の軸方向と平行であり、他方の2辺の方向が前記放電容器の軸方向と直交しており、前記放電容器の軸方向に沿った前記金属板の軸方向両端部に、前記矩形の孔が穿孔されていない無孔部を設け、かつ、前記外側管の外側面に巻き付けることにより接近した前記金属板の接近両端部に、バネ状部材を取り付けて、前記金属板を前記外側管の外側面に密着固定したことを特徴とする。
【0008】
また、本発明の請求項2に記載のエキシマランプは、上記したエキシマランプにおいて、前記金属板の接近両端部に前記無孔部を設けたことを特徴とする。
【0009】
ここで、本発明に係る「エキシマランプ」は、誘電体バリヤ放電ランプ、無声放電ランプ、及び高周波電圧印加による電界放電ランプを含むものである。
【0010】
上記した「誘電体」としては、石英ガラス、サファイアが使用され、後記する高周波電圧を印加することによる放電によって放射される光の波長に対して高い透過率(例えば70%以上)を有する材質であることが望ましい。この誘電体は、外径寸法の異なる2つの円筒状体であり、外径の小さなものは内側管として、外径の大きい外側管に挿入され、後記する放電容器の外壁の一部を兼ねる。
【0011】
上記した「放電用ガス」は、アルゴン、キセノン、クリプトン、ヘリウム、ネオン等のガス、又はこれらガスとフッ素、塩素若しくはヨウ素等を混合させた混合ガスが使用される。なお、この放電用ガスに応じて放射光の波長が定まり、例えば、キセノンガスを使用した場合の放射光の波長は、160〜190nm(ピーク波長:172nm)である。
【0012】
上記した「放電容器」は、前記内側管を前記外側管の内側に配置し、それぞれの両端部が気密に封止され、前記外側管の内周面、前記内側管の外周面及び封止部により包囲される放電空間とにより構成され、この放電空間に前記放電用ガスが封入される。
【0013】
上記した「内部電極」は、前記内側管の外面(内周面)に沿って配設され、ステンレス等の金属を用いた薄板状電極、アルミニウム等の金属蒸着膜、これら金属の箔状電極、網状電極又は螺旋状の線状電極等が使用可能である。その厚さは、その形状及び機械的強度により設計される。この内側電極は、本発明に係るエキシマランプを点灯した状態において、この内側電極に印加された高周波電圧を効率よく、前記放電容器に印加するため、この放電容器の外壁を構成する前記内側管の外面(内周面)と、この内側電極との間に介在する空隙をできるだけ少なくするよう、密着して配設されることが望ましい。
【0014】
上記した「金属板」は、ステンレス鋼、アルミニウム合金、ニッケル合金、銅合金などが使用され、その板厚は、外側管の外径寸法及び機械的強度及び外側管への密着性を考慮して0.05mm〜0.5mmの範囲であることが望ましい。
【0015】
上記した「矩形の孔」は、正方形又は長方形の矩形の形状を有し、フォトエッチング法、パンチング法、レーザ加工法、メッキ法などにより穿孔され、開口率(穿孔した領域の孔の総面積/穿孔した領域の面積)は、光の透過性を考慮して90%以上であることが望ましい。
【0016】
そして、上記した「バネ状部材」は、ステンレス鋼、アルミニウム合金、ニッケル合金、銅合金などの金属板を三角形、半円形などに曲げ加工した板バネや(図3参照)、金属線をループ状、コイル状に加工したものなどが使用できる。
【0017】
【発明の実施の形態】
図1は、本発明のエキシマランプを示す図であり、側面図(図の右側)と断面図(図の左側)を示す。図2は本発明のエキシマランプの外部電極を示す図であり、図2(a)は外部電極の正面図を、図2(b)は外部電極の一部拡大図を示す。図3はバネ状部材の側面図を示す。図3(a)は金属帯より作製した三角形状のバネ状部材を、図3(b)は金属帯より作製した半円形状のバネ状部材を、図3(c)は金属帯より作製した小判形状のバネ状部材を、図3(d)は金属線より作製したループ形状のバネ状部材を、図3(e)は金属線より作製したコイル形状のバネ状部材をそれぞれ示す。
【0018】
エキシマランプ1は、全長450mmの石英ガラス製の内側管2(内径d=24mm)と外側管3(外径D=40mm)とを同軸状に二重に配置し、外側管3及び内側管2のそれぞれの両端部を溶接して、その内部に形成された放電空間4に6×104Paの圧力でキセノンガスを封入した放電容器5と、内側管2の外面に設けたニッケル合金の薄板状電極(厚さ0.1mm)よりなる内部電極6と、外側管3の外面に設けた後述する外部電極7とから構成される。内部電極6及び外部電極7に電源8を接続して、この電源8より周波数数百kHz〜数十MHz(本例:2MHz)、電圧数kV(本例:5kV)の高周波電圧を印加し、放電空間4に電界放電を発生させて波長172nmのエキシマ光を放射する。
【0019】
外部電極7は金属板71であって、この金属板71を外側管3に巻き付けて、これを固定するためにバネ状部材72aを取り付ける。
【0020】
バネ状部材72aは幅9mm、長さ20mmのステンレス製の金属帯を折り曲げて作製され、その側面が三角形状であり、取り付け孔76a、76bに引っかけるための引っかけ部72a1、72a2を有する。このバネ状部材72aの側面における横幅W4は6.5mmである(図3(a)参照)。
【0021】
金属板71は長方形のステンレス製の板(長辺の寸法380mm、短辺の寸法123mm、厚さ0.1mm)であり、その外側管3の軸方向に沿った金属板71の軸方向両端部74a、74bと、金属板71を外側管3の外側面に巻き付けたとき接近する接近両端部75a、75bとに、それぞれ幅W1=2mm、W2=2mmに渡って穿孔されていない無孔部73を有している。本例ではW1とW2とを等しくしているが、一致させる必要はない。
【0022】
金属板71には、この無孔部73を除き、一辺aが2.4mmの正方形の孔70がフォトエッチング法により縦横に多数隣接して穿孔される。隣り合う孔70のX方向の間隔L1とY方向の間隔L2はそれぞれ0.1mmであり、開口率は92%である。本例では、L1とL2とを等しくしているが、一致させる必要はない。この金属板71は、金属板71を前記外側管3の外側面に巻き付けたとき、孔70の2つの相対する2辺のうち、一方の2辺の方向を放電容器5の軸方向と平行な向きXに、他方の2辺の方向を放電容器5の軸方向と直交する向きYに揃えて配置される(図2(b)参照)。
【0023】
金属板71には、接近両端部75a、75bのそれぞれに、バネ状部材72aを取り付けるための長方形の形状を有する取り付け孔76a、76b(長辺の寸法10mm、短辺の寸法1mm)がフォトエッチング法により穿孔されている。これら取り付け孔76a、76bはそれぞれ相対向して設けられている。そして、バネ状部材72aが、これら取り付け孔76a、76bに、その引っかけ部72a1、72a2をそれぞれ引っかけて取り付けられている。この場合、接近両端部75aと75bとの間隔W3は、約1mmとなる。この一組のバネ状部材72aを取り付けた取り付け孔76a、76bは、隣接する別の一組のバネ状部材72aを取り付けた取り付け孔76a、76bとの間隔L2を41mmとして、接近両端部75a、75bに、外側管3の軸方向に沿って9組配置される。
【0024】
このようにバネ状部材72aを取り付けることにより、接近両端部75a、75bを互いに接近させる方向に金属板71を引っ張り、金属板71を外側管3に密着固定する。
【0025】
本発明のエキシマランプの実施の形態において、バネ状部材72aを使用したが、これに換えて図3(b)〜図3(e)に記載のバネ状部材72b〜72eを使用しても良い。これらバネ状部材72b〜72eについて説明する。
【0026】
バネ状部材72bは、幅9mm、長さ14mmのステンレス製の金属帯を折り曲げて作製され、その側面が半円形状であり、取り付け孔76a、76bに引っかけるための引っかけ部72b1、72b2を有する。このバネ状部材72bの側面における横幅W4は6.5mmである(図3(b)参照)。
【0027】
バネ状部材72cは、幅9mm、長さ19mmのステンレス製の金属帯を曲げて作製され、その側面が小判状であり、取り付け孔76a、76bに引っかけるための引っかけ部72c1、72c2を有する。このバネ状部材72cの側面における横幅W4は6.5mmである(図3(c)参照)。
【0028】
バネ状部材72dは、直径0.5mm、長さ24mmのステンレス製の金属線より作製され、その側面の中央部に二重のループを有し、このステンレス線の両端部に引っかけ部72d1、72d2を設けている。このバネ状部材72dの側面における横幅W4は6.5mmである(図3(d)参照)。
【0029】
バネ状部材72eは、ステンレス製の金属線より作製されたコイルバネであって、そのコイルの外径が3mm、横幅W4が6.5mmであり、その両端部に引っかけ部72e1、72e2を有する(図3(e)参照)。
【0030】
バネ状部材72d又は72eを使用する場合、金属板71に設けられたバネ状部材72d又は72eを取り付けるための取り付け孔76a、76bは、金属線の外径の2〜3倍の直径を有する円形の孔であればよい。
【0031】
本実施の形態に、本発明に係るエキシマランプに使用するバネ状部材の例を説明したが、これらの例に限定されるものではない。
【0032】
本発明のエキシマランプ1は、外側管3の寸法にばらつきや、ランプの点灯消灯によるランプの温度変化のために外部電極7と外側管3との間に空隙の発生があっても、バネ状部材72aにより金属板71が引っ張られて外側管3に密着するので、外部電極7と外側管3との間の空隙を減少させることができ、ランプを点灯させたとき、この空隙による不要な放電を防止することができるので、発光効率を向上させたエキシマランプを得ることができる。
【0033】
本発明のエキシマランプ1は、孔70が、孔70の2つの相対する2辺のうち、一方の2辺の方向を放電容器5の軸方向と平行な向きに、他方の2辺の方向を放電容器5の軸方向と直交する向きに揃えて配置されるので、金属板71に引っ張り応力又は収縮応力がかかった場合において、孔70の形状の変形が抑制され、金属板71と外側管3との密着状態を保つことができるので、外部電極7と外側管3との間の空隙を減少させることができ、ランプを点灯させたとき、この空隙による不要な放電を防止することができるので、発光効率を向上させたエキシマランプを得ることができる。
【0034】
さらに、本発明のエキシマランプ1は、金属板71に無孔部73を設けることにより、上記した外部電極7の端部(軸方向端部74a及び74b及び接近端部75a及び75b)の毛羽立ちによる外部電極7と外側管3との間の空隙を無くして、ランプを点灯したとき、この空隙による不要な放電を防止して、発光効率を向上させたエキシマランプとすることができる。
【0035】
【発明の効果】
以上説明したように、本発明のエキシマランプによれば、外部電極と外側管の間の空隙を減少させて、ランプを点灯したとき、この空隙に発生する不要な放電を防止し、発光効率を向上させたエキシマランプを得ることができる。
【図面の簡単な説明】
【図1】本発明に係るエキシマランプの正面図とその一部断面を示す図である。
【図2】本発明に係るエキシマランプの外部電極を示す図である。(a)は正面図であり、(b)は外部電極の一部拡大図である。
【図3】本発明に係るエキシマランプの外部電極を固定するバネ状部材の断面図である。(a)は金属帯より作製した三角形状のバネ状部材を、(b)は金属帯より作製した半円形状のバネ状部材を、(c)は金属帯より作製した小判状のバネ状部材を、(d)は金属線より作製したループ形状のバネ状部材を、(e)は金属線より作製したコイル状のバネ状部材を示す。
【符号の説明】
1 エキシマランプ
2 内側管
3 外側管
4 放電空間
5 放電容器
6 内部電極
7 外部電極
70 孔
71 金属板
72a、72b、72c、72d、72e バネ状部材
73 無孔部
74a、74b 軸方向端部
75a、75b 接近両端部
8 電源[0001]
[Technical field to which the invention belongs]
The present invention relates to improvements in excimer lamps used as ultraviolet light sources, for example as ultraviolet light sources for curing paints, surface cleaning, sterilization or photochemical reactions.
[0002]
[Prior art]
As a conventional technique related to the present invention, for example, in JP 2000-235840 A, an outer tube and an inner tube made of quartz glass are arranged twice, and both ends thereof are closed to form a hollow cylindrical discharge vessel, The discharge gas is sealed inside, and an outer electrode and an inner electrode are provided on the outer surfaces of the outer tube and the inner tube, respectively, and a voltage is applied to the electrodes to generate a dielectric barrier discharge in the discharge vessel, thereby excimer. A dielectric barrier discharge lamp that emits light is described.
This dielectric barrier discharge lamp uses a metal plate perforated in a mesh shape as an external electrode.
Japanese Patent Laid-Open No. 2000-235840 (FIGS. 1 and 2)
[0003]
[Problems to be solved by the invention]
However, the outer tube forming the discharge vessel has a variation in the outer diameter, the distortion in the axial direction, the variation in the bending, and the like. It is difficult to install without a space between the tube and when the lamp is turned on, there is a problem that unnecessary discharge occurs in the space and the luminous efficiency decreases.
[0004]
In addition, due to temperature changes caused by the lighting and extinguishing of the lamp, the discharge vessel and the external electrode expand and contract, creating a gap between the external electrode and the outer tube. When the lamp is lit, unnecessary discharge is generated in this gap. Has occurred, and the luminous efficiency of the lamp has been reduced.
[0005]
Also, both axial end portions along the axial direction of the outer tube of the external electrode are formed by cutting a metal plate perforated in a mesh shape, so that it has uneven perforated portions, and both end portions are spring-like. Even if it is tightened with a member, the perforated part fluffs and floats up from the outer surface, so that a gap is created between the both ends and the outer tube, so when the lamp is turned on, unnecessary discharge occurs in the gap. There has been a problem that the luminous efficiency of the lamp is lowered.
[0006]
Therefore, the problem to be solved by the present invention is to reduce the gap between the outer electrode and the outer tube due to the dimensional variation of the outer tube when using a metal plate having a large number of holes adjacent to the outer electrode. Also, the gap between the outer electrode and the outer tube due to the expansion and contraction of the discharge vessel and the outer electrode that occurs due to the temperature change accompanying the lighting of the lamp is reduced, and also along the axial direction of the outer tube of the outer electrode By eliminating the gap between the outer electrode and the outer tube that occurs when both ends in the axial direction are fluffed, an unnecessary discharge between the outer electrode and the outer tube is prevented, and an excimer lamp with improved luminous efficiency is provided. is there.
[0007]
[Means for Solving the Problems]
As a means to solve the above problems,
The excimer lamp according to claim 1 of the present invention includes a discharge vessel in which a discharge gas is sealed in a discharge space formed by double arrangement of a cylindrical outer tube and an inner tube each made of a dielectric, In an excimer lamp that includes an outer electrode and an inner electrode on the outer surface of each of the outer tube and the inner tube, and emits excimer light by applying a voltage to the outer electrode and the inner electrode, the outer electrode is A metal plate that is wound around the outer tube and has a number of rectangular holes perforated adjacent to each other, the direction of one of the two opposing sides of the rectangular hole being It is parallel to the axial direction of the discharge vessel, and the other two sides are orthogonal to the axial direction of the discharge vessel, and the rectangular shape is formed at both ends of the metal plate in the axial direction along the axial direction of the discharge vessel. Provide a non-perforated part that is not perforated , The approach both ends of the metal plate in close proximity by winding on the outer surface of the outer tube, by attaching a spring-like member, characterized in that the metal plate is tightly fixed to the outer surface of the outer tube.
[0008]
The excimer lamp according to claim 2 of the present invention is characterized in that, in the excimer lamp described above, the non-hole portions are provided at both close ends of the metal plate.
[0009]
Here, the “excimer lamp” according to the present invention includes a dielectric barrier discharge lamp, a silent discharge lamp, and a field discharge lamp by applying a high frequency voltage.
[0010]
As the above-mentioned “dielectric”, quartz glass and sapphire are used, which are made of a material having a high transmittance (for example, 70% or more) with respect to the wavelength of light emitted by discharge by applying a high frequency voltage described later. It is desirable to be. This dielectric is two cylindrical bodies having different outer diameters, and those having a small outer diameter are inserted into an outer tube having a larger outer diameter as an inner tube, and also serve as a part of the outer wall of the discharge vessel described later.
[0011]
As the “discharge gas”, a gas such as argon, xenon, krypton, helium, or neon, or a mixed gas obtained by mixing these gases with fluorine, chlorine, iodine, or the like is used. The wavelength of the emitted light is determined according to the discharge gas. For example, the wavelength of the emitted light when using xenon gas is 160 to 190 nm (peak wavelength: 172 nm).
[0012]
In the above-mentioned “discharge vessel”, the inner tube is disposed inside the outer tube, and both end portions thereof are hermetically sealed, and the inner peripheral surface of the outer tube, the outer peripheral surface of the inner tube, and the sealing portion And the discharge gas is enclosed in the discharge space.
[0013]
The above-mentioned “internal electrode” is disposed along the outer surface (inner peripheral surface) of the inner tube, and is a thin plate electrode using a metal such as stainless steel, a metal vapor deposition film such as aluminum, a foil electrode of these metals, A mesh electrode or a helical linear electrode can be used. Its thickness is designed by its shape and mechanical strength. This inner electrode, in a state where the excimer lamp according to the present invention is turned on, efficiently applies the high-frequency voltage applied to the inner electrode to the discharge vessel, so that the inner tube constituting the outer wall of the discharge vessel It is desirable that the gaps are arranged in close contact with each other so as to minimize the gap between the outer surface (inner peripheral surface) and the inner electrode.
[0014]
Stainless steel, aluminum alloy, nickel alloy, copper alloy, etc. are used for the above-mentioned “metal plate”, and the plate thickness is determined in consideration of the outer diameter size and mechanical strength of the outer tube and the adhesion to the outer tube. A range of 0.05 mm to 0.5 mm is desirable.
[0015]
The above-mentioned “rectangular hole” has a square shape or a rectangular shape and is perforated by a photo etching method, a punching method, a laser processing method, a plating method, etc., and has an aperture ratio (the total area of holes in the perforated region / The area of the perforated region is preferably 90% or more in consideration of light transmittance.
[0016]
The above-mentioned “spring-like member” is a plate spring obtained by bending a metal plate of stainless steel, aluminum alloy, nickel alloy, copper alloy or the like into a triangle or semi-circle (see FIG. 3), or a metal wire in a loop shape. A coil processed into a coil shape can be used.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a view showing an excimer lamp of the present invention, and shows a side view (right side of the figure) and a cross-sectional view (left side of the figure). 2A and 2B are diagrams showing the external electrode of the excimer lamp of the present invention. FIG. 2A is a front view of the external electrode, and FIG. 2B is a partially enlarged view of the external electrode. FIG. 3 shows a side view of the spring-like member. 3A shows a triangular spring-like member made of a metal band, FIG. 3B shows a semicircular spring-like member made of a metal band, and FIG. 3C shows a metal band. FIG. 3D shows a loop-shaped spring-like member made of a metal wire, and FIG. 3E shows a coil-shaped spring-like member made of a metal wire.
[0018]
The excimer lamp 1 has an inner tube 2 (inner diameter d = 24 mm) made of quartz glass having a total length of 450 mm and an outer tube 3 (outer diameter D = 40 mm) arranged in a coaxial manner, and the outer tube 3 and the inner tube 2 are arranged coaxially. A discharge vessel 5 in which xenon gas is sealed at a pressure of 6 × 10 4 Pa in a discharge space 4 formed inside by welding both ends of the tube, and a nickel alloy thin plate provided on the outer surface of the inner tube 2 The inner electrode 6 is formed of an electrode (thickness: 0.1 mm) and the outer electrode 7 described later provided on the outer surface of the outer tube 3. A power supply 8 is connected to the internal electrode 6 and the external electrode 7, and a high frequency voltage having a frequency of several hundred kHz to several tens of MHz (example: 2 MHz) and a voltage of several kV (example: 5 kV) is applied from the power supply 8. An electric field discharge is generated in the discharge space 4 to emit excimer light having a wavelength of 172 nm.
[0019]
The external electrode 7 is a metal plate 71. The metal plate 71 is wound around the outer tube 3, and a spring-like member 72a is attached to fix the metal plate 71.
[0020]
The spring-like member 72a is manufactured by bending a stainless steel metal band having a width of 9 mm and a length of 20 mm, and its side surface has a triangular shape, and has hook portions 72a 1 and 72a 2 for hooking the attachment holes 76a and 76b. Width W 4 in the side surface of the spring-like member 72a is 6.5 mm (see Figure 3 (a)).
[0021]
The metal plate 71 is a rectangular stainless steel plate (long side dimension 380 mm, short side dimension 123 mm, thickness 0.1 mm), and both axial ends of the metal plate 71 along the axial direction of the outer tube 3. 74a, 74b and non-perforated holes that are not perforated over the widths W 1 = 2 mm and W 2 = 2 mm, respectively, at the close end portions 75a, 75b that approach when the metal plate 71 is wound around the outer surface of the outer tube 3 A portion 73 is provided. In this example, W 1 and W 2 are made equal, but it is not necessary to match.
[0022]
Except for this non-hole portion 73, a large number of square holes 70 having a side a of 2.4 mm are formed in the metal plate 71 adjacent to each other vertically and horizontally by a photoetching method. Distance L 1 and the distance L 2 in the Y direction in the X direction of the adjacent holes 70 is 0.1mm, respectively, the opening ratio is 92%. In this example, L 1 and L 2 are equal, but it is not necessary to match. When the metal plate 71 is wound around the outer surface of the outer tube 3, the direction of one of the two opposite sides of the hole 70 is parallel to the axial direction of the discharge vessel 5. In the direction X, the other two sides are arranged so as to be aligned with the direction Y perpendicular to the axial direction of the discharge vessel 5 (see FIG. 2B).
[0023]
The metal plate 71 has photo-etched attachment holes 76a and 76b (long side dimension 10 mm, short side dimension 1 mm) having a rectangular shape for attaching the spring-like member 72a to the both close ends 75a and 75b, respectively. Perforated by law. These mounting holes 76a and 76b are provided opposite to each other. The spring-like member 72a is attached to the attachment holes 76a and 76b by hooking the hook portions 72a 1 and 72a 2 respectively. In this case, the interval W 3 between the approaching end portions 75a and 75b is approximately 1 mm. The pair of spring-like member 72a mounting the mounting hole 76a, 76b is another set of mounting holes 76a fitted with spring-like member 72a adjacent, the distance L 2 between 76b as 41mm, approaching opposite end portions 75a , 75b, nine sets are arranged along the axial direction of the outer tube 3.
[0024]
By attaching the spring-like member 72a in this way, the metal plate 71 is pulled in a direction in which the approaching end portions 75a and 75b are brought close to each other, and the metal plate 71 is tightly fixed to the outer tube 3.
[0025]
In the embodiment of the excimer lamp of the present invention, the spring-like member 72a is used, but instead of this, the spring-like members 72b to 72e described in FIGS. 3B to 3E may be used. . These spring-like members 72b to 72e will be described.
[0026]
The spring-like member 72b is manufactured by bending a stainless steel metal band having a width of 9 mm and a length of 14 mm, and its side surface is semicircular, and has hook portions 72b 1 and 72b 2 for hooking the attachment holes 76a and 76b. Have. Width W 4 in the side surface of the spring-like member 72b is 6.5 mm (see Figure 3 (b)).
[0027]
The spring-like member 72c is manufactured by bending a metal strip made of stainless steel having a width of 9 mm and a length of 19 mm, and its side surface is oval, and has hook portions 72c 1 and 72c 2 for hooking the mounting holes 76a and 76b. . Width W 4 in the side surface of the spring-like member 72c is 6.5 mm (see Figure 3 (c)).
[0028]
The spring-like member 72d is made of a stainless steel metal wire having a diameter of 0.5 mm and a length of 24 mm. The spring-like member 72d has a double loop at the center of the side surface, and hook portions 72d 1 and 72d 1 at both ends of the stainless wire. 72d 2 is provided. Width W 4 in the side surface of the spring member 72d is 6.5 mm (see FIG. 3 (d)).
[0029]
Spring-like member 72e is a coil spring made of a stainless steel metal wire, 3 mm outer diameter of the coil, the width W 4 is 6.5 mm, the hook portion 72e 1, 72e 2 at both ends (See FIG. 3E).
[0030]
When the spring-like member 72d or 72e is used, the attachment holes 76a and 76b for attaching the spring-like member 72d or 72e provided on the metal plate 71 are circular having a diameter two to three times the outer diameter of the metal wire. Any hole may be used.
[0031]
Although the example of the spring-like member used for the excimer lamp according to the present invention has been described in the present embodiment, it is not limited to these examples.
[0032]
The excimer lamp 1 of the present invention has a spring-like shape even when a gap is generated between the external electrode 7 and the outer tube 3 due to variations in the dimensions of the outer tube 3 or a change in the lamp temperature due to the lamp turning on and off. Since the metal plate 71 is pulled by the member 72a and is brought into close contact with the outer tube 3, the gap between the external electrode 7 and the outer tube 3 can be reduced. Therefore, an excimer lamp with improved luminous efficiency can be obtained.
[0033]
In the excimer lamp 1 according to the present invention, the hole 70 has a direction in which one of two opposite sides of the hole 70 is parallel to the axial direction of the discharge vessel 5 and a direction in the other two sides. Since they are arranged in a direction orthogonal to the axial direction of the discharge vessel 5, when tensile stress or contraction stress is applied to the metal plate 71, deformation of the shape of the hole 70 is suppressed, and the metal plate 71 and the outer tube 3 are suppressed. The gap between the external electrode 7 and the outer tube 3 can be reduced, and unnecessary discharge due to this gap can be prevented when the lamp is turned on. Thus, an excimer lamp with improved luminous efficiency can be obtained.
[0034]
Further, the excimer lamp 1 according to the present invention is provided with the non-hole portion 73 in the metal plate 71, thereby fuzzing the end portions (the axial end portions 74a and 74b and the approaching end portions 75a and 75b) of the external electrode 7 described above. When the gap between the external electrode 7 and the outer tube 3 is eliminated and the lamp is turned on, unnecessary discharge due to the gap is prevented, and an excimer lamp with improved luminous efficiency can be obtained.
[0035]
【The invention's effect】
As described above, according to the excimer lamp of the present invention, when the lamp is turned on by reducing the gap between the external electrode and the outer tube, unnecessary discharge generated in the gap is prevented, and the luminous efficiency is improved. An improved excimer lamp can be obtained.
[Brief description of the drawings]
FIG. 1 is a front view of an excimer lamp according to the present invention and a partial cross-sectional view thereof.
FIG. 2 is a diagram showing external electrodes of an excimer lamp according to the present invention. (A) is a front view, (b) is a partially enlarged view of an external electrode.
FIG. 3 is a cross-sectional view of a spring-like member that fixes an external electrode of an excimer lamp according to the present invention. (A) is a triangular spring-like member made from a metal band, (b) is a semicircular spring-like member made from a metal band, and (c) is an oval spring-like member made from a metal band. (D) shows a loop-shaped spring-like member made from a metal wire, and (e) shows a coil-like spring-like member made from a metal wire.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Excimer lamp 2 Inner tube 3 Outer tube 4 Discharge space 5 Discharge vessel 6 Internal electrode 7 External electrode 70 Hole 71 Metal plate 72a, 72b, 72c, 72d, 72e Spring-like member 73 Non-hole part 74a, 74b Axial direction end part 75a , 75b Approaching both ends 8 Power supply