JP2005009616A - Damping device - Google Patents

Damping device Download PDF

Info

Publication number
JP2005009616A
JP2005009616A JP2003175988A JP2003175988A JP2005009616A JP 2005009616 A JP2005009616 A JP 2005009616A JP 2003175988 A JP2003175988 A JP 2003175988A JP 2003175988 A JP2003175988 A JP 2003175988A JP 2005009616 A JP2005009616 A JP 2005009616A
Authority
JP
Japan
Prior art keywords
dampers
damping force
damper
abnormality
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003175988A
Other languages
Japanese (ja)
Other versions
JP4041017B2 (en
Inventor
Junichi Arai
順一 荒井
Masanori Ogura
雅則 小倉
Takashi Kaai
崇 河相
Koji Oka
功治 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Ohmoto Gumi Co Ltd
Original Assignee
Kayaba Industry Co Ltd
Ohmoto Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd, Ohmoto Gumi Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP2003175988A priority Critical patent/JP4041017B2/en
Publication of JP2005009616A publication Critical patent/JP2005009616A/en
Application granted granted Critical
Publication of JP4041017B2 publication Critical patent/JP4041017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a damping device capable of coping with the abnormality of dampers, controllers and the like. <P>SOLUTION: This damping device comprises a plurality of dampers 1-4 being expanded and contracted in the multiple direction in accordance with the movement of a floor slab (base-isolated structure) to the ground, and controllers (damping force control means) 11-14 for controlling the damping force of each of the dampers 1-4. This damping device comprises a main controller (integrated control means) 15 for monitoring the abnormality of the dampers 1-4 and the controllers 11-14, stopping the control of the damping force of the abnormal damper and the dampers expanded and contracted in the direction same as the abnormal damper, when the abnormality in one of the dampers is determined, and continuing the control of the damping force of the remaining dampers expanded and contracted in the directions different from that of the abnormal damper. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本本発明は、地震発生時に建築物の揺れを抑える制振装置の改良に関するものである。
【0002】
【従来の技術】
例えば特許文献1開示された制振装置は、地盤に対する建築物の動きに追従して多方向に伸縮作動する複数のダンパと、各ダンパの減衰力を制御するコントローラを備え、各ダンパまたはコントローラの異常を監視するようになっている。
【0003】
従来、この種の制振装置として、図5に示すように、地盤に対する建築物30の動きに追従して多方向に伸縮作動する複数のダンパ1〜4と、各ダンパ1〜4の減衰力を個別に制御する複数のコントローラ11〜14を備えるものがあった。
【0004】
また、図6に示すように、地盤に対する建築物30の動きに追従して多方向に伸縮作動する複数のダンパ1〜4と、各ダンパ1〜4の減衰力を統合して制御する1台のコントローラ10を備えるものがあった。
【0005】
【特許文献1】
特開2000−18304号公報
【0006】
【発明が解決しようとする課題】
しかしながら、図5に示す従来の制振装置にあっては、各ダンパ1〜4またはコントローラ11〜14のうち1台に異常が生じると、各ダンパ1〜4のうち1本だけの減衰力制御が停止されるため、建築物にねじれが生じるという問題点があった。
【0007】
また、図6に示す従来の制振装置にあっては、コントローラ15に異常が生じると、全てのダンパ1〜4の減衰力制御が行えなくなってしまうという問題点があった。
【0008】
本発明は上記の問題点に鑑みてなされたものであり、ダンパまたはコントローラ等の異常に対処できる制振装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
第1の発明は、地盤に対する被免震構造体の動きに追従して多方向に伸縮作動する複数のダンパと、各ダンパの減衰力を個別に制御する減衰力制御手段とを備える制振装置に適用される。
【0010】
そして、各ダンパまたは減衰力制御手段の異常を監視し、そのうち1台に異常が生じたと判定された場合、異常が生じたダンパ及びこれと同方向に伸縮作動するダンパの減衰力制御を停止し、異常が生じたダンパと異なる方向に伸縮作動する残りのダンパの減衰力制御を続行する統合制御手段を備えたことを特徴とするものとした。
【0011】
【発明の作用および効果】
第1の発明によると、ダンパまたは減衰力制御手段のうち1台に異常が生じると、異常が生じたもの及びこれと同方向に伸縮作動するものの減衰力制御が停止されるため、被免震構造体にねじれが生じることが回避され、被免震構造体の要求強度を下げられる。
【0012】
そして、ダンパまたは減衰力制御手段のうち1台に異常が生じても、異常が生じたものと他方向に伸縮作動するものの減衰力制御が続けて行われるため、被免震構造体の揺れをその方向について抑えられる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて説明する。
【0014】
図1において、30はビル等の建築物の躯体を構成する床スラブ(被免震構造体)であり、図示しない基礎スラブ(地盤)、両者の間には図示しない免震機構が設けられるとともに、複数のダンパ1〜4が設けられている。
【0015】
この免震機構は例えば積層ゴムまたは転がり軸受等によって構成され、基礎に対して建築物を水平方向について変位可能に支持し、地震発生時に基礎の揺れが建築物に伝わることを抑える働きをする。
【0016】
ダンパ1〜4は、基礎に対して建築物が水平方向に変位するのに伴い伸縮作動し、その内部で流れる作動油に付与する抵抗によって建築物の揺れを抑える減衰力を発生する。図1において、互いに直交して水平方向に延びるX、Yの2軸を設定し、ダンパ1,2をX軸方向に延びるように配置し、ダンパ3,4をY軸方向に延びるように配置している。
【0017】
各ダンパ1〜4は各コントローラ11〜14から配線5を介して送られる駆動電流によって減衰力を変えられる減衰力可変機構を備えた、いわゆるセミアクティブダンパが用いられる。各ダンパ1〜4と各コントローラ11〜14及び配線5等によって4つのダンパコントロールユニット21〜24が構成される。
【0018】
コントローラ11〜14は図示しないストロークセンサによって検出される各ダンパ1〜4のストローク信号を入力し、建築物が揺れる速度に応じて減衰力を変化させるスカイフック制御等を行う。各コントローラ11〜14が各ダンパ1〜4の減衰力を個別に制御する減衰力制御手段を構成している。
【0019】
ここで、スカイフック制御とは、図2に示すように、絶対座標系にある仮想の壁と建物間にダンパ(スカイフックダンパ)を取り付ければ、建物絶対加速度応答値を小さくできるため、そのスカイフックダンパの減衰力を実際に地盤と建物の間に取り付けるダンパで再現する制御方法である。図3(a)のように、パッシブ(無制御)ダンパでは建物速度と地盤速度が同位相で建物速度より地盤速度が速い場合、ダンパの減衰力によって地盤の動きを建物に伝えてしまい、建物応答加速度が増大する(加振モード)。また、スカイフック制御は、スカイフックダンパ力の向きと実際のダンパの発生する力の向きが反対になり、セミアクティブダンパは加振力を持たないため、スカイフックダンパの力を発生することが出来ない。そのため、カルノップ理論によるスカイフック制御では、加振モード時には減衰力を0(アンロードモード)とし、地盤の動きを建物へ伝達しない(図3(b))制御理論である。減衰力切り替えの必要十分条件は次式で示される。
1)v*(V−v)>0:アンロードモード
2)v*(V−v)<0:減衰力発生
ところで、各コントローラ11〜14が各ダンパ1〜4の減衰力を個別に制御するため、ダンパコントロールユニット21〜24のうち1台に異常が生じると、各ダンパ1〜4のうち1本だけの減衰力制御が停止されるため、建築物にねじれが生じる。
【0020】
また、これに対処して、1台のコントローラによって各ダンパ1〜4の減衰力を個別に制御することも考えられるが、このコントローラに異常が生じると、全てのダンパ1〜4の減衰力制御が行えなくなってしまう。
【0021】
そこで、本発明は、各コントローラ11〜14の作動を制御する統合制御手段としてメインコントローラ15が設けられる。このメインコントローラ15は各ダンパコントロールユニット21〜24の異常を監視して、そのうち1台に異常が生じたと判定された場合、異常が生じたダンパ及びこれと同方向に伸縮作動するダンパの減衰力制御を停止し、異常が生じたダンパと他方向に伸縮作動する残りのダンパの減衰力制御を停止しない構成とする。
【0022】
図4のフローチャートは上記メインコントローラ15が各コントローラ11〜14の作動を制御するルーチンを示しており、メインコントローラ15において一定周期毎に実行される。
【0023】
まず、ステップS1にて各ダンパコントロールユニット21〜24の作動状態を読み込む。続く、ステップS2〜S5にてダンパコントロールユニット21〜24に異常が生じたかどうかを判定する。
【0024】
ステップS2、S3にてダンパコントロールユニット21,22のいずれか一方に異常があると判定された場合、ステップS6に進んでX軸方向に配置されたコントローラ11,12からダンパ1,2に送られる駆動電流を遮断する。
【0025】
ステップS4、S5にてダンパコントロールユニット23,24のいずれか一一方に異常があると判定された場合、ステップS7に進んでY軸方向に配置されたコントローラ13,14からダンパ3,4に送られる駆動電流を遮断する。
【0026】
ステップS2〜S5にて全てのダンパコントロールユニット21〜24に異常が生じていないと判定された場合、全てのダンパコントロールユニット21〜24の減衰力制御が行われる。
【0027】
以上のように構成されて、ダンパコントロールユニット21〜24のうち1台に異常が生じると、異常が生じたもの及びこれと同方向に伸縮作動するものの減衰力制御が停止されるため、建築物にねじれが生じることが回避され、建築物の要求強度を下げられる。
【0028】
そして、ダンパコントロールユニット21〜24のうち1台に異常が生じても、異常が生じたものと他方向に伸縮作動するものの減衰力制御が続けて行われるため、建築物の揺れをその方向について抑えられる。
【0029】
本発明は上記の実施の形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す制振装置の構成図。
【図2】図同じくスカイフック理論を説明する図。
【図3】同じくスカイフック理論を説明する図。
【図4】同じくメインコントローラの制御内容を示すフローチャート。
【図5】従来例を示す制振装置の構成図。
【図6】従来例を示す制振装置の構成図。
【符号の説明】
1〜4 ダンパ
11〜14 コントローラ
15 メインコントローラ
21〜24 ダンパコントロールユニット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a vibration damping device that suppresses shaking of a building when an earthquake occurs.
[0002]
[Prior art]
For example, the vibration damping device disclosed in Patent Document 1 includes a plurality of dampers that extend and contract in multiple directions following the movement of a building with respect to the ground, and a controller that controls the damping force of each damper. Anomalies are monitored.
[0003]
Conventionally, as this type of damping device, as shown in FIG. 5, a plurality of dampers 1 to 4 that extend and contract in multiple directions following the movement of the building 30 with respect to the ground, and the damping force of each damper 1 to 4 Some of them have a plurality of controllers 11 to 14 for individually controlling them.
[0004]
In addition, as shown in FIG. 6, a plurality of dampers 1 to 4 that extend and contract in multiple directions following the movement of the building 30 with respect to the ground, and one unit that controls the damping force of each of the dampers 1 to 4 in an integrated manner. Some of them have a controller 10.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-18304
[Problems to be solved by the invention]
However, in the conventional vibration damping device shown in FIG. 5, when an abnormality occurs in one of the dampers 1 to 4 or the controllers 11 to 14, only one damping force control among the dampers 1 to 4 is controlled. The problem was that the building would be twisted because it was stopped.
[0007]
Further, the conventional vibration damping device shown in FIG. 6 has a problem that if the controller 15 is abnormal, it is impossible to control the damping force of all the dampers 1 to 4.
[0008]
The present invention has been made in view of the above-described problems, and an object thereof is to provide a vibration damping device that can cope with an abnormality such as a damper or a controller.
[0009]
[Means for Solving the Problems]
A first aspect of the present invention is a vibration damping device including a plurality of dampers that extend and contract in multiple directions following the movement of a seismically isolated structure with respect to the ground, and damping force control means that individually controls the damping force of each damper. Applies to
[0010]
Then, the abnormality of each damper or damping force control means is monitored, and if it is determined that one of them has an abnormality, the damping force control of the damper in which the abnormality has occurred and the damper that expands and contracts in the same direction is stopped. The integrated control means for continuing the damping force control of the remaining dampers that extend and contract in a direction different from that of the damper in which the abnormality has occurred is provided.
[0011]
Operation and effect of the invention
According to the first invention, when an abnormality occurs in one of the dampers or the damping force control means, the damping force control is stopped for those in which an abnormality has occurred and those that extend and contract in the same direction. It is avoided that the structure is twisted, and the required strength of the base-isolated structure can be reduced.
[0012]
Even if an abnormality occurs in one of the damper or damping force control means, the damping force control is continuously performed for the one in which the abnormality has occurred and the one that expands and contracts in the other direction. It can be suppressed in that direction.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0014]
In FIG. 1, reference numeral 30 denotes a floor slab (base-isolated structure) that constitutes a building frame such as a building. A base slab (ground) (not shown) and a seismic isolation mechanism (not shown) are provided between the two. A plurality of dampers 1 to 4 are provided.
[0015]
This seismic isolation mechanism is composed of, for example, laminated rubber or a rolling bearing, and supports the building so that it can be displaced in the horizontal direction with respect to the foundation, and functions to prevent the foundation from being transmitted to the building when an earthquake occurs.
[0016]
The dampers 1 to 4 operate to expand and contract as the building is displaced in the horizontal direction with respect to the foundation, and generate a damping force that suppresses the shaking of the building by the resistance applied to the hydraulic oil flowing inside the damper. In FIG. 1, two axes X and Y that are orthogonal to each other and extend in the horizontal direction are set, dampers 1 and 2 are arranged to extend in the X-axis direction, and dampers 3 and 4 are arranged to extend in the Y-axis direction. is doing.
[0017]
Each of the dampers 1 to 4 is a so-called semi-active damper having a damping force variable mechanism that can change the damping force by a driving current sent from the controllers 11 to 14 via the wiring 5. Four damper control units 21 to 24 are configured by the dampers 1 to 4, the controllers 11 to 14, the wiring 5, and the like.
[0018]
The controllers 11 to 14 input the stroke signals of the dampers 1 to 4 detected by a stroke sensor (not shown), and perform skyhook control for changing the damping force according to the speed at which the building is shaken. Each controller 11-14 constitutes damping force control means for individually controlling the damping force of each damper 1-4.
[0019]
Here, as shown in FIG. 2, skyhook control means that if a damper (skyhook damper) is attached between a virtual wall in an absolute coordinate system and a building, the building absolute acceleration response value can be reduced. This control method reproduces the damping force of the hook damper with a damper that is actually installed between the ground and the building. As shown in Fig. 3 (a), with passive (uncontrolled) dampers, if the building speed and ground speed are the same phase and the ground speed is faster than the building speed, the damper's damping force will transmit the ground movement to the building. Response acceleration increases (excitation mode). Skyhook control also generates the force of the Skyhook damper because the direction of the Skyhook damper force is opposite to the direction of the actual damper force, and the semi-active damper has no excitation force. I can't. Therefore, the skyhook control based on the Carnop theory is a control theory in which the damping force is set to 0 (unload mode) in the vibration mode and the ground motion is not transmitted to the building (FIG. 3B). Necessary and sufficient conditions for switching the damping force are expressed by the following equation.
1) v * (V−v)> 0: Unload mode 2) v * (V−v) <0: Damping force generation Each controller 11-14 individually controls the damping force of each damper 1-4. Therefore, when an abnormality occurs in one of the damper control units 21 to 24, the damping force control of only one of the dampers 1 to 4 is stopped, so that the building is twisted.
[0020]
In addition, in response to this, it is conceivable that the damping force of each of the dampers 1 to 4 is individually controlled by a single controller. However, when an abnormality occurs in this controller, the damping force control of all the dampers 1 to 4 is performed. Cannot be done.
[0021]
Therefore, in the present invention, the main controller 15 is provided as an integrated control means for controlling the operations of the controllers 11 to 14. The main controller 15 monitors the abnormality of each of the damper control units 21 to 24, and when it is determined that one of the dampers has an abnormality, the damping force of the damper in which the abnormality has occurred and the damper that expands and contracts in the same direction as the damper. The control is stopped, and the damping force control of the damper in which the abnormality has occurred and the remaining damper that expands and contracts in the other direction is not stopped.
[0022]
The flowchart of FIG. 4 shows a routine in which the main controller 15 controls the operations of the controllers 11 to 14, and is executed in the main controller 15 at regular intervals.
[0023]
First, the operation state of each damper control unit 21-24 is read in step S1. In subsequent steps S2 to S5, it is determined whether or not an abnormality has occurred in the damper control units 21 to 24.
[0024]
When it is determined in steps S2 and S3 that either one of the damper control units 21 and 22 is abnormal, the process proceeds to step S6 and is sent to the dampers 1 and 2 from the controllers 11 and 12 arranged in the X-axis direction. Cut off the drive current.
[0025]
If it is determined in step S4 or S5 that either one of the damper control units 23 or 24 is abnormal, the process proceeds to step S7 and the controller 13 or 14 disposed in the Y-axis direction is changed to the damper 3 or 4. Cut off the drive current sent.
[0026]
When it is determined in steps S2 to S5 that no abnormality has occurred in all the damper control units 21 to 24, the damping force control of all the damper control units 21 to 24 is performed.
[0027]
Since it is configured as described above, if an abnormality occurs in one of the damper control units 21 to 24, the damping force control of the abnormality occurring and the one that expands and contracts in the same direction is stopped. The twisting of the building is avoided and the required strength of the building can be reduced.
[0028]
And even if an abnormality occurs in one of the damper control units 21 to 24, the damping force control of the one in which the abnormality has occurred and the one that expands and contracts in the other direction is continuously performed. It can be suppressed.
[0029]
The present invention is not limited to the above-described embodiment, and it is obvious that various modifications can be made within the scope of the technical idea.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a vibration damping device showing an embodiment of the present invention.
FIG. 2 is a diagram for explaining Skyhook theory.
FIG. 3 is a diagram for explaining Skyhook theory.
FIG. 4 is a flowchart showing the control contents of the main controller.
FIG. 5 is a configuration diagram of a vibration damping device showing a conventional example.
FIG. 6 is a configuration diagram of a vibration damping device showing a conventional example.
[Explanation of symbols]
1-4 damper 11-14 controller 15 main controller 21-24 damper control unit

Claims (1)

地盤に対する被免震構造体の動きに追従して多方向に伸縮作動する複数のダンパと、各ダンパの減衰力を個別に制御する減衰力制御手段とを備える制振装置において、前記各ダンパまたは前記減衰力制御手段の異常を監視し、そのうち1台に異常が生じたと判定された場合、異常が生じたダンパ及びこれと同方向に伸縮作動するダンパの減衰力制御を停止し、異常が生じたダンパと異なる方向に伸縮作動する残りのダンパの減衰力制御を続行する統合制御手段を備えたことを特徴とする制振装置。In the vibration damping device comprising a plurality of dampers that extend and contract in multiple directions following the movement of the seismically isolated structure with respect to the ground, and damping force control means that individually controls the damping force of each damper, When the abnormality of the damping force control means is monitored and it is determined that one of them has an abnormality, the damping force control of the damper in which the abnormality has occurred and the damper that expands and contracts in the same direction is stopped, and an abnormality occurs. A vibration damping device comprising integrated control means for continuing damping force control of the remaining dampers that extend and contract in different directions from the dampers.
JP2003175988A 2003-06-20 2003-06-20 Vibration control device Expired - Fee Related JP4041017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003175988A JP4041017B2 (en) 2003-06-20 2003-06-20 Vibration control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003175988A JP4041017B2 (en) 2003-06-20 2003-06-20 Vibration control device

Publications (2)

Publication Number Publication Date
JP2005009616A true JP2005009616A (en) 2005-01-13
JP4041017B2 JP4041017B2 (en) 2008-01-30

Family

ID=34098984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003175988A Expired - Fee Related JP4041017B2 (en) 2003-06-20 2003-06-20 Vibration control device

Country Status (1)

Country Link
JP (1) JP4041017B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127087A (en) * 2010-12-14 2012-07-05 Toyota Home Kk Building

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127087A (en) * 2010-12-14 2012-07-05 Toyota Home Kk Building

Also Published As

Publication number Publication date
JP4041017B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
JP2006125633A5 (en)
JP6295166B2 (en) Elevator apparatus and vibration damping mechanism adjusting method thereof
JP3162421B2 (en) Damping structure
JP2001214633A (en) Cushioning device for building and its monitor system and control system
JP4041017B2 (en) Vibration control device
Nishitani et al. Semiactive structural-control based on variable slip-force level dampers
JP2002327791A (en) Device and method for vibration insulation and support of load
JP2009007916A (en) Vibration damping structure and its specification setting method
JP3741227B2 (en) Structure damping device
WO2005013027A1 (en) Lorentz motor control system for a payload
JP2009209623A (en) Base isolation method and base isolation device for living quarter of construction
JP2011174509A (en) Damping device
JP3571417B2 (en) Floor vibration control device
JP2001003982A (en) Non-resonant semi-active base isolating structure and base isolating method
JPH07127306A (en) Vibration controller
JP2010024708A (en) Connecting and vibration control structure of structure
JP2002235455A (en) Damper for controlling plural modes
JP2019163631A (en) Damping system
JP3690451B2 (en) Active damping floor device
JPH0713420B2 (en) Vibration control device
JP2003014034A (en) Vibration damping device
JPH0369431B2 (en)
JPH06264645A (en) Damping device
JP2000087589A (en) Active type earthquake damping system for multilayer structure
JP2000130497A (en) Vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4041017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees