JP2005009398A - Abnormality diagnostic device for high pressure fuel supply system for internal combustion engine - Google Patents

Abnormality diagnostic device for high pressure fuel supply system for internal combustion engine Download PDF

Info

Publication number
JP2005009398A
JP2005009398A JP2003174193A JP2003174193A JP2005009398A JP 2005009398 A JP2005009398 A JP 2005009398A JP 2003174193 A JP2003174193 A JP 2003174193A JP 2003174193 A JP2003174193 A JP 2003174193A JP 2005009398 A JP2005009398 A JP 2005009398A
Authority
JP
Japan
Prior art keywords
pressure
fuel
low
abnormal
abnormal mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003174193A
Other languages
Japanese (ja)
Other versions
JP4372466B2 (en
Inventor
Taiji Isobe
大治 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003174193A priority Critical patent/JP4372466B2/en
Priority to DE200410029454 priority patent/DE102004029454A1/en
Publication of JP2005009398A publication Critical patent/JP2005009398A/en
Application granted granted Critical
Publication of JP4372466B2 publication Critical patent/JP4372466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0205Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively for cutting-out pumps or injectors in case of abnormal operation of the engine or the injection apparatus, e.g. over-speed, break-down of fuel pumps or injectors ; for cutting-out pumps for stopping the engine
    • F02M63/022Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively for cutting-out pumps or injectors in case of abnormal operation of the engine or the injection apparatus, e.g. over-speed, break-down of fuel pumps or injectors ; for cutting-out pumps for stopping the engine by acting on fuel control mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0205Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively for cutting-out pumps or injectors in case of abnormal operation of the engine or the injection apparatus, e.g. over-speed, break-down of fuel pumps or injectors ; for cutting-out pumps for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect abnormality of a high pressure fuel supply system at an early stage and identify an abnormal part. <P>SOLUTION: A low pressure side fuel pressure sensor 33 detecting fuel pressure (low pressure side fuel pressure) in a low pressure side fuel pipe 13 connecting a low pressure pump 12 and a high pressure pump 14. An ECU 36 counts number of times when it is determined that low pressure side fuel pressure is lower than a normal range in a predetermined period of time and determines that a first abnormal mode occurs when the count value is a predetermined number of higher. Also the ECU 36 counts number of times when it is determined that low pressure side fuel pressure is higher than a normal range in a predetermined period of time and determines that a second abnormal mode occurs when the count value is a predetermined number of higher. The first abnormal mode occurs due to deterioration of delivery capacity of the low pressure pump 12 or abnormality of a pulsation damper 34 (large amount fuel leak) or the like, and the second abnormal mode occurs due to abnormality of the pulsation damper 34 (abnormal drop of fuel pressure pulsation reduction effect) or the like. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料タンクから低圧ポンプで汲み上げられた燃料を高圧ポンプで高圧に加圧して燃料噴射弁に圧送する高圧燃料供給システムの異常の有無を判定する内燃機関の高圧燃料供給システムの異常診断装置に関するものである。
【0002】
【従来の技術】
気筒内に燃料を直接噴射する筒内噴射式エンジンでは、燃焼性を確保するために、噴射圧力を高圧にして噴射燃料を微粒化する必要がある。そのため、筒内噴射エンジンでは、燃料タンクから低圧ポンプで汲み上げた燃料を、エンジンのカム軸で駆動される高圧ポンプで高圧に加圧して燃料噴射弁へ圧送するようにしている。このような高圧燃料供給システムでは、高圧ポンプから燃料噴射弁へ圧送する燃料の圧力(以下「高圧側燃圧」という)を燃圧センサで検出し、その検出燃圧と目標燃圧との偏差に基づいて高圧ポンプの燃料吐出量をフィードバック制御することで、高圧側燃圧を目標燃圧に制御するようにしている。この際、高圧ポンプの燃料吐出量の制御は、高圧ポンプのプランジャの1ストローク当たりの燃料吐出量を制御する流量制御弁の閉弁期間(プランジャの有効ストローク)を制御することで行うようにしている。
【0003】
このような高圧燃料供給システムにおいても、異常診断機能を搭載したものがある。例えば、特許文献1(特開2000−274322号公報)では、エンジン始動時に燃圧センサで検出した高圧側燃圧が所定値以下で、且つ、エンジン始動から所定時間経過後(高圧ポンプの昇圧作用が十分に発生する少し前)においても、燃圧センサで検出した高圧側燃圧が依然として所定圧以下であるときに、低圧ポンプの異常と判定するようにしている。
【0004】
【特許文献1】
特開2000−274322号公報(第1頁〜第2頁等)
【0005】
【発明が解決しようとする課題】
しかし、上記特許文献1の異常診断方法は、エンジン始動から高圧ポンプの昇圧作用が十分に発生するまでの期間を利用して低圧ポンプの異常の有無を判定するものであるため、その後のエンジン運転中に低圧ポンプが異常になっても、その異常を早期に検出することができず、次の始動まで異常検出が持ち越されてしまうという欠点がある。しかも、低圧ポンプ以外の箇所が異常になっても、その異常は全く検出することができない。
【0006】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、高圧燃料供給システムの異常が発生したときには、その異常を早期に検出できると共に、異常箇所の特定も可能になる内燃機関の高圧燃料供給システムの異常診断装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る発明は、内燃機関の高圧燃料供給システムにおいて、低圧ポンプと高圧ポンプとをつなぐ燃料通路内の燃圧(以下「低圧側燃圧」という)を検出する燃圧検出手段を設け、この燃圧検出手段で検出した低圧側燃圧が正常範囲よりも低いときには、“第1の異常モード”と判定し、該低圧側燃圧が正常範囲よりも高いときには、“第2の異常モード”と判定するようにしたものである。この構成では、低圧側燃圧を検出する燃圧検出手段を設けているため、内燃機関の始動時に限らず、運転中でも、燃圧検出手段の検出値に基づいて低圧側燃圧が正常範囲内であるか否かを判定することができ、低圧側燃圧を調節する箇所に異常が発生すれば、その異常を早期に検出できる。しかも、低圧側燃圧が正常範囲よりも低い“第1の異常モード”と、低圧側燃圧が正常範囲よりも高い“第2の異常モード”とを区別して検出するようにしたので、異常箇所の特定も可能になる。
【0008】
この場合、請求項2のように、第1の所定時間内に低圧側燃圧が正常範囲よりも低いと判定された回数が第1の所定回数以上になったときに第1の異常モードと判定するようにすると良い。このようにすれば、高圧ポンプの燃料吐出量(高圧側燃圧)に与える影響が少ない低圧側燃圧の瞬間的な落ち込みを第1の異常モードと判定せずに済み、異常検出の信頼性を向上することができる。
【0009】
同様に、請求項3のように、第2の所定時間内に低圧側燃圧が正常範囲よりも高いと判定された回数が第2の所定回数以上になったときに第2の異常モードと判定するようにすると良い。このようにすれば、高圧ポンプの燃料吐出量(高圧側燃圧)に与える影響が少ない低圧側燃圧の瞬間的な上昇を第2の異常モードと判定せずに済み、異常検出の信頼性を向上することができる。
【0010】
また、請求項4のように、低圧側燃圧の脈動を低減する燃圧脈動低減手段(パルセーションダンパ等)を備えたシステムにおいては、第1の異常モード判定手段で第1の異常モードと判定されたときに、低圧ポンプの性能低下又は燃圧脈動低減手段の異常と判定し、第2の異常モード判定手段で第2の異常モードと判定されたときに、燃圧脈動低減手段の異常と判定と判定するようにすれば良い。つまり、低圧側燃圧が異常低下する第1の異常モードは、低圧ポンプの吐出性能低下(低圧ポンプの燃料吐出量の異常減少)や燃圧脈動低減手段の異常(燃圧脈動低減手段の大量燃料漏れ)によって発生するため、第1の異常モードと判定されれれば、低圧ポンプの吐出性能低下又は燃圧脈動低減手段の異常と判定することができる。また、低圧側燃圧が異常上昇する第2の異常モードは、燃圧脈動低減手段の異常(燃圧脈動低減効果の異常低下)によって発生するため、第2の異常モードと判定されれば、燃圧脈動低減手段の異常と判定することができる。
【0011】
また、請求項5のように、第1の異常モード又は第2の異常モードと判定されたときに警告手段によって警告動作するようにすると良い。このようにすれば、異常発生時に直ちに運転者に異常発生を警告して修理を促すことができ、運転者が異常を知らずに長期間運転し続けてしまう事態を回避できる。
【0012】
更に、請求項6のように、第1の異常モード又は第2の異常モードと判定されたときに、フェイルセーフ手段によってフェイルセーフ処理を実行するようにすると良い。このようにすれば、異常発生時にその異常状態が更に悪化する事態を回避できる。
【0013】
この場合、請求項7のように、フェイルセーフ処理は、▲1▼低圧ポンプの停止、▲2▼燃料噴射弁の噴射停止、▲3▼高圧ポンプのプランジャの1ストローク当たりの燃料吐出量を制御する流量制御弁の常時開放のうちのいずれか1つ又は2つ以上を実行するようにすると良い。上記▲1▼〜▲3▼のいずれの処理も、内燃機関への燃料供給を停止することになるため、異常発生時に自動的に内燃機関の運転を停止することができる。
【0014】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。まず、図1に基づいて筒内噴射エンジン(内燃機関)の高圧燃料供給システムの構成を説明する。燃料を貯溜する燃料タンク11内には、燃料を汲み上げる低圧ポンプ12が配置されている。この低圧ポンプ12は、バッテリ(図示せず)を電源とする電動モータ(図示せず)によって駆動される。この低圧ポンプ12から吐出される燃料は、低圧側燃料配管13(燃料通路)を通して高圧ポンプ14に供給される。低圧側燃料配管13の途中には、プレッシャレギュレータ15が設けられ、このプレッシャレギュレータ15によって低圧ポンプ12の吐出圧(高圧ポンプ14への燃料供給圧力)が所定圧力(例えば400kPa程度)に調圧され、その圧力を越える燃料の余剰分は燃料戻し管16により燃料タンク11内に戻される。
【0015】
図2に示すように、高圧ポンプ14は、円筒状のポンプ室18内でプランジャ19を往復運動させて燃料を吸入/吐出するプランジャポンプであり、プランジャ19は、エンジンのカム軸20に嵌着されたカム21の回転運動によって駆動される。これにより、図3に示すように、クランク角に応じてプランジャ19のリフト量が周期的に変化する。
【0016】
また、図2に示すように、ポンプ室18の吸入口23側には、流量制御弁22が設けられている。この流量制御弁22は、常開型の電磁弁であり、吸入口23を開閉する弁体26と、弁体26を開弁方向に付勢するスプリング27と、弁体26を閉弁方向に電磁駆動するノレノイド28とから構成されている。ソレノイド28に駆動電流が通電されていないときには、スプリング27の付勢力により弁体26が開弁されて吸入口23が開放される。一方、ソレノイド28に駆動電流が通電されると、ソレノイド28の電磁駆動力により弁体26がスプリング27の付勢力に抗して閉弁されて吸入口23が閉塞される。
【0017】
高圧ポンプ14の吸入行程(プランジャ19が上死点から下死点に移動する行程)で、流量制御弁22が開弁されてポンプ室18内に燃料が吸入され、吐出行程(プランジャ19が下死点から上死点に移動する行程)で、流量制御弁22の閉弁開始時期を制御することで、燃料吐出量を調節して高圧ポンプ14の吐出燃料圧力(以下「高圧側燃圧」という)を制御する。
【0018】
例えば、高圧側燃圧を上昇させるときには、流量制御弁22の閉弁開始時期を例えば図3の実線から点線のタイミングに早めて、吐出行程終了までの閉弁期間(有効ストローク)を長くして燃料吐出量を増加させ、反対に、高圧側燃圧を低下させるときには、流量制御弁22の閉弁開始時期を例えば図3の点線から実線のタイミングに遅らせて、吐出行程終了までの閉弁期間(有効ストローク)を短くして燃料吐出量を減少させる。この時、吐出行程のうちの流量制御弁22が開弁している期間は、燃料が低圧側に逆流し、ポンピング作用により大きな脈動が発生するため、後述するパルセーションダンパ34で脈動を吸収する。
【0019】
一方、高圧ポンプ14の吐出口24側には、吐出した燃料の逆流を防止する逆止弁25が設けられている。図1に示すように、高圧ポンプ14から吐出された燃料は、高圧側燃料配管29を通してデリバリパイプ30に圧送され、このデリバリパイプ30から各気筒の燃料噴射弁31に高圧の燃料が分配される。デリバリパイプ30には、高圧側燃圧を検出する高圧側燃圧センサ32が設けられている。
【0020】
また、低圧ポンプ12と高圧ポンプ14とをつなぐ低圧側燃料配管13には、高圧ポンプ14の吸入口23側の燃圧(以下「低圧側燃圧」という)を検出する低圧側燃圧センサ33(燃圧検出手段)が設けられている。高圧ポンプ14の吸入口23と低圧側燃料配管13との連結部分には、低圧側燃圧の脈動を低減するパルセーションダンパ34(燃圧脈動低減手段)が接続されている。このパルセーションダンパ34は、ダイヤフラム(図示せず)を内蔵し、このダイヤフラムが低圧側燃圧の脈動を吸収して、低圧側燃料配管13内の燃圧を安定させるようにしている。
【0021】
上記高圧側燃圧センサ32と低圧側燃圧センサ33の出力信号(検出燃圧)がECU36に入力される。このECU36は、マイクロコンピュータを主体として構成され、内蔵のROM(記憶媒体)に記憶された燃圧制御ルーチン(図示せず)を実行することで、高圧側燃圧センサ32で検出した高圧側燃圧を目標燃圧に一致させるように高圧ポンプ14の流量制御弁22の閉弁開始時期(有効ストローク)をフィードバック制御する。
【0022】
更に、ECU36は、内蔵のROM(記憶媒体)に記憶された図4及び図5の異常診断ルーチンを実行することで、高圧燃料供給システムの異常診断を実行する。この異常診断では、高圧燃料供給システムのうちの低圧側燃圧を調整する箇所(低圧ポンプ12、パルセーションダンパ34、プレッシャレギュレータ15)の異常の有無を判定する。例えば、図7に示すように、低圧ポンプ12の吐出性能が異常に低下して低圧ポンプ12から低圧側燃料配管13内に吐出する燃料量が異常に減少すると、低圧側燃料配管13内の燃圧(低圧側燃圧)が正常範囲よりも低くなる。また、パルセーションダンパ34の燃料漏れが異常に増加した場合(ダイヤフラムの破孔大の場合)や、プレッシャレギュレータ15の戻し燃料量が異常に増加した場合も、低圧側燃圧が正常範囲よりも低くなる。一方、パルセーションダンパ34の燃圧脈動低減効果が異常に低下した場合(ダイヤフラムの破孔小の場合)は、低圧側燃圧が正常範囲よりも高くなる。また、プレッシャレギュレータ15の燃料戻し機能が故障して燃料が燃料タンク11内に戻されなくなった場合も、低圧側燃圧が正常範囲よりも高くなる。
【0023】
但し、図7に示すように、低圧側燃圧は、高圧ポンプ14の吐出行程で上昇し、吸入行程で低下するため、異常発生の初期段階では、低圧側燃圧が周期的に正常範囲から外れることになる。そこで、図4及び図5の異常診断ルーチンでは、第1の所定時間内に低圧側燃圧が正常範囲よりも低いと判定された回数をカウントし、そのカウント値が第1の所定回数以上になったときに“第1の異常モード”と判定する。低圧側燃圧が異常低下する第1の異常モードは、低圧ポンプ12の吐出性能低下(低圧ポンプの燃料吐出量の異常減少)、パルセーションダンパ34の異常(大量燃料漏れ)、プレッシャレギュレータ15の異常(戻し燃料量の異常増加)によって発生するため、第1の異常モードと判定されれれば、低圧ポンプ12の吐出性能低下又はパルセーションダンパ34の異常又はプレッシャレギュレータ15の異常と判定することができる。
【0024】
更に、図4及び図5の異常診断ルーチンでは、第2の所定時間内に低圧側燃圧が正常範囲よりも高いと判定された回数をカウントし、そのカウント値が第2の所定回数以上になったときに“第2の異常モード”と判定する。低圧側燃圧が異常上昇する第2の異常モードは、パルセーションダンパ34の異常(燃圧脈動低減効果の異常低下)やプレッシャレギュレータ15の異常(燃料戻し機能不良)によって発生するため、第2の異常モードと判定されれば、パルセーションダンパ34の異常又はプレッシャレギュレータ15の異常と判定することができる。以下、図4及び図5の異常診断ルーチンの処理内容を説明する。
【0025】
図4及び図5の異常診断ルーチンは、低圧側燃圧のほぼ最大値とほぼ最小値を検出するために、180℃A毎(例えば高圧ポンプ14の吐出行程終了時と吸入行程終了時毎)に起動される。本ルーチンが起動されると、まずステップ101で、低圧側燃圧センサ33で検出した低圧側燃圧HPを読み込んだ後、ステップ102に進み、低圧側燃圧HPが正常範囲内であるか否かを判定する。ここで、低圧側燃圧HPの正常範囲は、プレッシャレギュレータ15の目標燃圧(例えば400kPa)±許容燃圧変動量α[kPa]である。
【0026】
このステップ102で、低圧側燃圧HPが正常範囲内(400−α<HP<400+α)であると判定されれば、ステップ103に進み、低圧側燃圧HPが正常範囲内と判定された回数(正常判定回数)をカウントする正常カウンタCNORMをインクリメントする。そして、次のステップ104で、正常カウンタCNORMのカウント値(正常判定回数)が所定回数N以上であるか否かを判定し、所定回数N未満であれば、そのまま本ルーチンを終了する。
【0027】
これに対し、正常カウンタCNORMのカウント値(正常判定回数)が所定回数N以上であれば、低圧側燃圧HPが正常と判断して、ステップ105に進み、低圧側燃圧HPが異常(正常範囲外)と判定された回数(異常判定回数)をカウントする異常カウンタCFAILを0にリセットして、ステップ106に進み、異常状態の継続時間をカウントする異常継続時間カウンタTFAILを0にリセットし、更に、次のステップ107で、異常判定フラグXFAILを0にリセットする。
【0028】
一方、上記ステップ102で、低圧側燃圧HPが正常範囲外(HP≦400−α又はHP≧400+α)であると判定された場合は、図5のステップ108に進み、異常判定フラグXFAILを1にセットした後、ステップ109に進み、低圧側燃圧HPが異常(正常範囲外)と判定された回数(異常判定回数)をカウントする異常カウンタCFAILをインクリメントする。この後、ステップ110に進み、正常カウンタCNORMを0にリセットし、次のステップ111で、異常カウンタCFAILのカウント値(異常判定回数)が所定回数N2以上であるか否かを判定する。その結果、異常カウンタCFAILのカウント値(異常判定回数)が所定回数N2未満と判定されれば、異常の判定を確定せずに、そのまま本ルーチンを終了する。
【0029】
これに対し、異常カウンタCFAILのカウント値(異常判定回数)が所定回数N2以上と判定されれば、ステップ112に進み、低圧側燃圧HPが正常範囲よりも低い(HP<400−α)か否かを判定する。その結果、低圧側燃圧HPが正常範囲よりも低い(HP<400−α)と判定された場合は、ステップ113に進み、異常状態の継続時間をカウントする異常継続時間カウンタTFAILの計測時間が第1の所定時間βよりも短いか否かを判定する。その結果、異常継続時間カウンタTFAILの計測時間が第1の所定時間βよりも短いと判定されれば、ステップ114に進み、第1の異常モードフラグX1を1にセットする。この第1の異常モードフラグX1が1にセットされている場合は、低圧側燃圧が異常低下する“第1の異常モード”と判定し、低圧ポンプ12の吐出性能低下(低圧ポンプの燃料吐出量の異常減少)又はパルセーションダンパ34の異常(大量燃料漏れ)又はプレッシャレギュレータ15の異常(戻し燃料量の異常増加)と判定する。
【0030】
この後、ステップ119に進み、インストルメントパネル(図示せず)の警告ランプを点灯又は点滅させたり、又は、インストルメントパネルの表示部に警告表示して、運転者に異常発生を知らせると共に、次のステップ120で、フェイルセーフ処理を実行する。フェイルセーフ処理は、▲1▼低圧ポンプ12の停止、▲2▼燃料噴射弁31の噴射停止、▲3▼高圧ポンプ14のプランジャ19の1ストローク当たりの燃料吐出量を制御する流量制御弁22の常時開放のうちのいずれか1つ又は2つ以上を実行する。いずれの処理も、エンジンへの燃料供給を停止することになるため、異常発生時に自動的にエンジンの運転を停止することができる。尚、フェイルセーフ処理において、退避走行を可能にする制御を所定時間実行した後、上記▲1▼〜▲3▼のうちのいずれか1つ又は2つ以上を実行するようにしても良い。上記ステップ119とステップ120は、それぞれ警告手段とフェイルセーフ手段として機能する。
【0031】
上記ステップ113で「No」と判定された場合、つまり異常継続時間カウンタTFAILの計測時間が第1の所定時間β以上である場合は、低圧側燃圧HPが正常と判断して、ステップ115に進み、異常カウンタCFAILを0にリセットする。これらステップ102、108〜115の処理が特許請求の範囲でいう第1の異常モード判定手段としての役割を果たす。
【0032】
一方、上記ステップ112で「No」と判定された場合、つまり、低圧側燃圧HPが正常範囲よりも高いと判定された場合は、ステップ116に進み、異常状態の継続時間をカウントする異常継続時間カウンタTFAILの計測時間が第2の所定時間γよりも短いか否かを判定する。その結果、異常継続時間カウンタTFAILの計測時間が第2の所定時間γよりも短いと判定されれば、ステップ117に進み、第2の異常モードフラグX2を1にセットする。これにより、低圧側燃圧が異常上昇する“第2の異常モード”と判定し、パルセーションダンパ34の異常(燃圧脈動低減効果の異常低下)又はプレッシャレギュレータ15の異常(燃料戻し機能不良)と判定する。尚、第2の所定時間γは、第1の所定時間βと同じ時間に設定しても良いし、異なる時間に設定しても良い。
【0033】
この後、ステップ121に進み、インストルメントパネル(図示せず)の警告ランプを点灯又は点滅させたり、又は、インストルメントパネルの表示部に警告表示して、運転者に異常発生を知らせると共に、次のステップ122で、前記ステップ120と同様のフェイルセーフ処理を実行する。尚、ステップ121とステップ122は、それぞれ警告手段とフェイルセーフ手段として機能する。
【0034】
上記ステップ116で「No」と判定された場合、つまり異常継続時間カウンタTFAILの計測時間が第2の所定時間γ以上である場合は、低圧側燃圧HPが正常と判断して、ステップ118に進み、異常カウンタCFAILを0にリセットする。これらステップ102、108〜112、116〜118の処理が特許請求の範囲でいう第2の異常モード判定手段としての役割を果たす。
【0035】
図6の異常継続時間カウンタルーチンは、所定時間毎(例えば4ms毎)に起動され、異常状態の継続時間を次のようにしてカウントする。本ルーチンが起動されると、まずステップ201で、異常判定フラグXFAILが1(低圧側燃圧HPが正常範囲外)であるか否かを判定し、異常判定フラグXFAILが1であれば、ステップ202に進み、異常継続時間カウンタTFAILをインクリメントすることで、異常状態の継続時間をカウントする。尚、ステップ201で、異常判定フラグXFAILが0(低圧側燃圧HPが正常範囲内)と判定されれば、何もせずに本ルーチンを終了する。
【0036】
以上説明した本実施形態の異常診断の一例を図8のタイムチャートを用いて説明する。図8は、低圧側燃圧HPが異常上昇する第2の異常モード(パルセーションダンパ34の異常等)が発生した場合の制御例である。低圧側燃圧HPが異常上昇して、低圧側燃圧HPが正常範囲より高くなると、その異常を検出するごとに、異常カウンタCFAILがインクリメントされる。
【0037】
一旦、低圧側燃圧HPが正常範囲より高くなって、異常判定フラグXFAILが1にセットされると、低圧側燃圧HPが正常範囲内である状態が所定回数N以上連続して検出されるまで、異常判定フラグXFAILが1に維持される。この異常判定フラグXFAILが1に維持されている期間は、異常継続時間カウンタTFAILが所定周期でインクリメントされることで、異常状態の継続時間がカウントされる。
【0038】
その後、異常継続時間カウンタTFAILの計測時間が第2の所定時間γに到達する前に、異常カウンタCFAILのカウント値(異常判定回数)が所定回数N2に到達すれば、その時点で、第2の異常モードフラグX2が1にセットされる。これにより、低圧側燃圧が異常上昇する第2の異常モードと判定され、パルセーションダンパ34の異常(燃圧脈動低減効果の異常低下)又はプレッシャレギュレータ15の異常(燃料戻し機能不良)と判定される。
【0039】
第2の異常モードフラグX2が1にセットされると、フェイルセーフ処理を実行し、低圧ポンプ12を停止させたり、燃料噴射弁31の噴射を停止させたり、或は、高圧ポンプ14の流量制御弁22を常時開放状態にすることで、異常発生時に自動的にエンジンの運転を停止させると共に、インストルメントパネル(図示せず)の警告ランプを点灯又は点滅させたり、又は、インストルメントパネルの表示部に警告表示して、運転者に異常発生を知らせる。
【0040】
以上説明した本実施形態によれば、低圧ポンプ12と高圧ポンプ14とをつなぐ低圧側燃料配管13内の燃圧(低圧側燃圧HP)を検出する低圧側燃圧センサ33を設け、この低圧側燃圧センサ33で検出した低圧側燃圧HPが正常範囲よりも低いときには、“第1の異常モード”と判定し、該低圧側燃圧HPが正常範囲よりも高いときには、“第2の異常モード”と判定するようにしたので、エンジン始動時に限らず、エンジン運転中でも、低圧側燃圧センサ33の検出値に基づいて低圧側燃圧HPが異常低下する“第1の異常モード”と、低圧側燃圧HPが異常上昇する“第2の異常モード”とを区別して検出することができ、異常箇所の特定も可能になる。
【0041】
しかも、第1の所定時間β内に低圧側燃圧HPが正常範囲よりも低いと判定された回数が所定回数N2以上になったときに第1の異常モードと判定するようにしたので、高圧ポンプ14の燃料吐出量(高圧側燃圧)に与える影響が少ない低圧側燃圧HPの瞬間的な落ち込みを第1の異常モードと判定せずに済み、異常検出の信頼性を向上することができる。
【0042】
同様に、第2の所定時間γ内に低圧側燃圧HPが正常範囲よりも高いと判定された回数が所定回数N2以上になったときに第2の異常モードと判定するようにしたので、高圧ポンプ14の燃料吐出量(高圧側燃圧)に与える影響が少ない低圧側燃圧HPの瞬間的な上昇を第2の異常モードと判定せずに済む。
【0043】
尚、本実施形態では、第1の異常モードと判定するまでの判定回数(所定回数N2)と第2の異常モードと判定するまでの判定回数(所定回数N2)とが同一に設定されているが、両者の判定回数を異ならせるようにしても良い。
【0044】
また、本実施形態では、低圧ポンプ12の吐出側にプレッシャレギュレータ15を設けて、このプレッシャレギュレータ15によって低圧ポンプ12の吐出圧(高圧ポンプ14への燃料供給圧力)を目標燃圧(例えば400kPa)に制御するようにしたが、このプレッシャレギュレータ15を省略し、低圧側燃圧センサ33で検出した低圧側燃圧HPを目標燃圧(例えば400kPa)に一致させるように低圧ポンプ12の駆動モータの回転速度(吐出流量)をフィードバック制御するようにしても良い。
【図面の簡単な説明】
【図1】本発明の一実施形態における高圧燃料供給システムの概略構成を示す図
【図2】高圧ポンプの構成図
【図3】流量制御弁、高圧ポンプの挙動を示すタイムチャート
【図4】異常診断ルーチンの処理の流れを示すフローチャート(その1)
【図5】異常診断ルーチンの処理の流れを示すフローチャート(その2)
【図6】異常継続時間カウンタルーチンの処理の流れを示すフローチャート
【図7】第1の異常モードと第2の異常モードにおける低圧側燃圧HPの挙動を示すタイムチャート
【図8】異常診断の一例を示すタイムチャート
【符号の説明】
11…燃料タンク、12…低圧ポンプ、13…低圧側燃料配管(燃料通路)、14…高圧ポンプ、18…ポンプ室、19…プランジャ、20…カム軸、21…カム、22…流量制御弁、23…吸入口、24…吐出口、25…逆止弁、26…弁体、27…スプリング、28…ノレノイド、31…燃料噴射弁、32…高圧側燃圧センサ、33…低圧側燃圧センサ(燃圧検出手段)、34…パルセーションダンパ(燃圧脈動低減手段)、36…ECU(第1の異常モード判定手段,第2の異常モード判定手段,フェイルセーフ手段,警告手段)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an abnormality diagnosis of a high-pressure fuel supply system for an internal combustion engine that determines whether there is an abnormality in a high-pressure fuel supply system that pressurizes fuel pumped from a fuel tank by a low-pressure pump to a high pressure by a high-pressure pump and pumps the fuel to a fuel injection valve It relates to the device.
[0002]
[Prior art]
In a cylinder injection engine that directly injects fuel into a cylinder, it is necessary to atomize the injected fuel by increasing the injection pressure in order to ensure combustibility. Therefore, in the cylinder injection engine, the fuel pumped up from the fuel tank by the low pressure pump is pressurized to a high pressure by the high pressure pump driven by the cam shaft of the engine and is sent to the fuel injection valve. In such a high-pressure fuel supply system, the pressure of the fuel pumped from the high-pressure pump to the fuel injection valve (hereinafter referred to as “high-pressure side fuel pressure”) is detected by a fuel pressure sensor, and a high pressure is determined based on the deviation between the detected fuel pressure and the target fuel pressure. The high pressure side fuel pressure is controlled to the target fuel pressure by feedback controlling the fuel discharge amount of the pump. At this time, the fuel discharge amount of the high pressure pump is controlled by controlling the valve closing period (effective plunger stroke) of the flow rate control valve for controlling the fuel discharge amount per stroke of the plunger of the high pressure pump. Yes.
[0003]
Some of these high-pressure fuel supply systems are equipped with an abnormality diagnosis function. For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2000-274322), the high-pressure side fuel pressure detected by the fuel pressure sensor at the time of engine start is equal to or less than a predetermined value, and after a predetermined time has elapsed since the engine was started (the pressure increase action of the high-pressure pump is sufficient) Even before the occurrence of the low pressure pump, when the high pressure side fuel pressure detected by the fuel pressure sensor is still below the predetermined pressure, it is determined that the low pressure pump is abnormal.
[0004]
[Patent Document 1]
JP 2000-274322 A (first page to second page, etc.)
[0005]
[Problems to be solved by the invention]
However, the abnormality diagnosis method disclosed in Patent Document 1 uses the period from when the engine starts until the high pressure pump sufficiently boosts to determine whether there is an abnormality in the low pressure pump. Even if the low pressure pump becomes abnormal, there is a drawback that the abnormality cannot be detected at an early stage, and the abnormality detection is carried over until the next start. Moreover, even if a location other than the low-pressure pump becomes abnormal, the abnormality cannot be detected at all.
[0006]
The present invention has been made in view of such circumstances. Therefore, when an abnormality occurs in the high-pressure fuel supply system, the object of the present invention is to detect the abnormality at an early stage and to identify the abnormal part. An object of the present invention is to provide an abnormality diagnosis device for a high-pressure fuel supply system of an internal combustion engine.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to a first aspect of the present invention, in a high-pressure fuel supply system for an internal combustion engine, a fuel pressure (hereinafter referred to as “low-pressure side fuel pressure”) in a fuel passage connecting a low-pressure pump and a high-pressure pump is detected. When the low pressure side fuel pressure detected by the fuel pressure detection means is lower than the normal range, it is determined as “first abnormal mode”, and when the low pressure side fuel pressure is higher than the normal range, “second The abnormal mode ”is determined. In this configuration, since the fuel pressure detecting means for detecting the low pressure side fuel pressure is provided, whether the low pressure side fuel pressure is within the normal range based on the detected value of the fuel pressure detecting means not only when starting the internal combustion engine but also during operation. If an abnormality occurs at a location where the low-pressure side fuel pressure is adjusted, the abnormality can be detected at an early stage. Moreover, since the “first abnormal mode” in which the low-pressure side fuel pressure is lower than the normal range and the “second abnormal mode” in which the low-pressure side fuel pressure is higher than the normal range are distinguished, detection is performed. Identification is also possible.
[0008]
In this case, as in claim 2, the first abnormal mode is determined when the number of times that the low-pressure side fuel pressure is determined to be lower than the normal range within the first predetermined time is equal to or greater than the first predetermined number of times. It is good to do. In this way, it is not necessary to judge the first drop in the low-pressure side fuel pressure, which has little effect on the fuel discharge amount (high-pressure side fuel pressure) of the high-pressure pump, and the reliability of abnormality detection is improved. can do.
[0009]
Similarly, the second abnormal mode is determined when the number of times that the low pressure side fuel pressure is determined to be higher than the normal range within the second predetermined time is equal to or greater than the second predetermined number of times. It is good to do. In this way, the instantaneous increase in the low-pressure side fuel pressure, which has little effect on the fuel discharge amount (high-pressure side fuel pressure) of the high-pressure pump, can be determined as the second abnormal mode, and the reliability of abnormality detection is improved. can do.
[0010]
Further, in the system including the fuel pressure pulsation reducing means (pulsation damper or the like) for reducing the pulsation of the low-pressure side fuel pressure as in the fourth aspect, the first abnormal mode is determined by the first abnormal mode determining means. When it is determined that the performance of the low-pressure pump has deteriorated or the fuel pressure pulsation reducing means is abnormal, and the second abnormal mode determination means determines that the second abnormal mode is selected, it is determined that the fuel pressure pulsation reducing means is abnormal. You should do it. That is, the first abnormal mode in which the low-pressure side fuel pressure drops abnormally is a drop in the discharge performance of the low-pressure pump (abnormal decrease in the fuel discharge amount of the low-pressure pump) or an abnormality in the fuel pressure pulsation reducing means (a large amount of fuel leakage from the fuel pressure pulsation reducing means). Therefore, if the first abnormal mode is determined, it can be determined that the discharge performance of the low-pressure pump is deteriorated or the fuel pressure pulsation reducing unit is abnormal. Further, since the second abnormal mode in which the low-pressure side fuel pressure abnormally increases occurs due to an abnormality in the fuel pressure pulsation reducing means (abnormal decrease in the fuel pressure pulsation reduction effect), if it is determined as the second abnormal mode, the fuel pressure pulsation is reduced. It can be determined that the means is abnormal.
[0011]
Further, as in claim 5, it is preferable to perform a warning operation by a warning means when it is determined that the first abnormal mode or the second abnormal mode. In this way, when an abnormality occurs, the driver can be immediately warned of the occurrence of the abnormality and prompted to repair, and a situation in which the driver continues to drive for a long time without knowing the abnormality can be avoided.
[0012]
Further, as described in claim 6, when it is determined that the first abnormal mode or the second abnormal mode, the fail safe process may be executed by the fail safe means. In this way, it is possible to avoid a situation in which the abnormal state is further deteriorated when an abnormality occurs.
[0013]
In this case, as in claim 7, the fail-safe process controls (1) low pressure pump stop, (2) fuel injection valve injection stop, and (3) high pressure pump plunger per stroke of fuel control. Any one or more of the normally open flow control valves may be executed. In any of the above processes (1) to (3), the fuel supply to the internal combustion engine is stopped, so that the operation of the internal combustion engine can be automatically stopped when an abnormality occurs.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. First, the configuration of a high-pressure fuel supply system for a direct injection engine (internal combustion engine) will be described with reference to FIG. A low pressure pump 12 that pumps up the fuel is disposed in the fuel tank 11 that stores the fuel. The low-pressure pump 12 is driven by an electric motor (not shown) that uses a battery (not shown) as a power source. The fuel discharged from the low pressure pump 12 is supplied to the high pressure pump 14 through the low pressure side fuel pipe 13 (fuel passage). A pressure regulator 15 is provided in the middle of the low-pressure side fuel pipe 13, and the pressure regulator 15 regulates the discharge pressure of the low-pressure pump 12 (fuel supply pressure to the high-pressure pump 14) to a predetermined pressure (for example, about 400 kPa). The surplus fuel exceeding the pressure is returned to the fuel tank 11 by the fuel return pipe 16.
[0015]
As shown in FIG. 2, the high-pressure pump 14 is a plunger pump that sucks / discharges fuel by reciprocating a plunger 19 in a cylindrical pump chamber 18, and the plunger 19 is fitted to a cam shaft 20 of the engine. It is driven by the rotational movement of the cam 21. Thereby, as shown in FIG. 3, the lift amount of the plunger 19 changes periodically according to the crank angle.
[0016]
As shown in FIG. 2, a flow control valve 22 is provided on the suction port 23 side of the pump chamber 18. This flow control valve 22 is a normally-open electromagnetic valve, and a valve body 26 that opens and closes the suction port 23, a spring 27 that urges the valve body 26 in the valve opening direction, and a valve body 26 in the valve closing direction. It is composed of a norenoid 28 that is electromagnetically driven. When the drive current is not supplied to the solenoid 28, the valve element 26 is opened by the biasing force of the spring 27, and the suction port 23 is opened. On the other hand, when a drive current is applied to the solenoid 28, the valve body 26 is closed against the biasing force of the spring 27 by the electromagnetic driving force of the solenoid 28 and the suction port 23 is closed.
[0017]
In the suction stroke of the high-pressure pump 14 (stroke in which the plunger 19 moves from the top dead center to the bottom dead center), the flow control valve 22 is opened, fuel is sucked into the pump chamber 18, and the discharge stroke (plunger 19 is lowered). By controlling the valve closing start timing of the flow rate control valve 22 in the process of moving from the dead center to the top dead center, the fuel discharge amount is adjusted, and the discharge fuel pressure of the high-pressure pump 14 (hereinafter referred to as “high-pressure side fuel pressure”). ) To control.
[0018]
For example, when increasing the high-pressure side fuel pressure, the closing timing of the flow rate control valve 22 is advanced from, for example, the timing of the solid line to the dotted line in FIG. 3 to increase the valve closing period (effective stroke) until the end of the discharge stroke. When the discharge amount is increased and, conversely, when the high-pressure side fuel pressure is decreased, the closing timing of the flow control valve 22 is delayed from the dotted line to the solid line, for example, in FIG. Stroke) is shortened to reduce fuel discharge. At this time, during the period in which the flow rate control valve 22 is open in the discharge stroke, the fuel flows backward to the low pressure side and a large pulsation is generated by the pumping action, so the pulsation damper 34 described later absorbs the pulsation. .
[0019]
On the other hand, a check valve 25 for preventing the backflow of discharged fuel is provided on the discharge port 24 side of the high-pressure pump 14. As shown in FIG. 1, the fuel discharged from the high-pressure pump 14 is pumped to the delivery pipe 30 through the high-pressure side fuel pipe 29, and the high-pressure fuel is distributed from the delivery pipe 30 to the fuel injection valve 31 of each cylinder. . The delivery pipe 30 is provided with a high-pressure side fuel pressure sensor 32 that detects a high-pressure side fuel pressure.
[0020]
Further, a low pressure side fuel pipe 13 connecting the low pressure pump 12 and the high pressure pump 14 has a low pressure side fuel pressure sensor 33 (fuel pressure detection) for detecting a fuel pressure on the suction port 23 side of the high pressure pump 14 (hereinafter referred to as “low pressure side fuel pressure”). Means). A pulsation damper 34 (fuel pressure pulsation reducing means) for reducing pulsation of the low-pressure side fuel pressure is connected to a connecting portion between the suction port 23 of the high-pressure pump 14 and the low-pressure side fuel pipe 13. The pulsation damper 34 incorporates a diaphragm (not shown), and this diaphragm absorbs the pulsation of the low-pressure side fuel pressure to stabilize the fuel pressure in the low-pressure side fuel pipe 13.
[0021]
Output signals (detected fuel pressure) of the high-pressure side fuel pressure sensor 32 and the low-pressure side fuel pressure sensor 33 are input to the ECU 36. The ECU 36 is mainly composed of a microcomputer, and executes a fuel pressure control routine (not shown) stored in a built-in ROM (storage medium) to target the high-pressure side fuel pressure detected by the high-pressure side fuel pressure sensor 32. The valve closing start timing (effective stroke) of the flow control valve 22 of the high-pressure pump 14 is feedback-controlled so as to match the fuel pressure.
[0022]
Furthermore, the ECU 36 performs abnormality diagnosis of the high-pressure fuel supply system by executing the abnormality diagnosis routines of FIGS. 4 and 5 stored in the built-in ROM (storage medium). In this abnormality diagnosis, it is determined whether or not there is an abnormality in a portion (low pressure pump 12, pulsation damper 34, pressure regulator 15) for adjusting the low pressure side fuel pressure in the high pressure fuel supply system. For example, as shown in FIG. 7, when the discharge performance of the low-pressure pump 12 is abnormally reduced and the amount of fuel discharged from the low-pressure pump 12 into the low-pressure side fuel pipe 13 is abnormally reduced, the fuel pressure in the low-pressure side fuel pipe 13 (Low-pressure side fuel pressure) becomes lower than the normal range. In addition, when the fuel leakage of the pulsation damper 34 increases abnormally (when the diaphragm has a large hole), or when the return fuel amount of the pressure regulator 15 increases abnormally, the low-pressure side fuel pressure is lower than the normal range. Become. On the other hand, when the fuel pressure pulsation reduction effect of the pulsation damper 34 is abnormally reduced (when the diaphragm is broken), the low-pressure side fuel pressure becomes higher than the normal range. Further, even when the fuel return function of the pressure regulator 15 fails and the fuel is not returned into the fuel tank 11, the low-pressure side fuel pressure becomes higher than the normal range.
[0023]
However, as shown in FIG. 7, the low-pressure side fuel pressure rises in the discharge stroke of the high-pressure pump 14 and decreases in the suction stroke, so that the low-pressure side fuel pressure periodically deviates from the normal range at the initial stage of occurrence of abnormality. become. Therefore, in the abnormality diagnosis routines of FIGS. 4 and 5, the number of times that the low-pressure side fuel pressure is determined to be lower than the normal range within the first predetermined time is counted, and the count value becomes equal to or greater than the first predetermined number of times. Is determined as “first abnormal mode”. The first abnormal mode in which the low-pressure side fuel pressure decreases abnormally is a decrease in the discharge performance of the low-pressure pump 12 (abnormal decrease in the fuel discharge amount of the low-pressure pump), an abnormality in the pulsation damper 34 (a large amount of fuel leakage), and an abnormality in the pressure regulator 15. Since it occurs due to (abnormal increase of the return fuel amount), if it is determined as the first abnormal mode, it can be determined that the discharge performance of the low-pressure pump 12 is reduced, the pulsation damper 34 is abnormal, or the pressure regulator 15 is abnormal. .
[0024]
Further, in the abnormality diagnosis routines of FIGS. 4 and 5, the number of times that the low-pressure side fuel pressure is determined to be higher than the normal range within the second predetermined time is counted, and the count value becomes equal to or greater than the second predetermined number of times. Is determined as “second abnormal mode”. The second abnormal mode in which the low-pressure side fuel pressure rises abnormally occurs due to an abnormality in the pulsation damper 34 (abnormal decrease in the effect of reducing fuel pressure pulsation) or an abnormality in the pressure regulator 15 (defective fuel return function). If the mode is determined, it can be determined that the pulsation damper 34 is abnormal or the pressure regulator 15 is abnormal. Hereinafter, processing contents of the abnormality diagnosis routine of FIGS. 4 and 5 will be described.
[0025]
The abnormality diagnosis routines in FIGS. 4 and 5 detect every 180 ° C. A (for example, at the end of the discharge stroke and at the end of the intake stroke of the high-pressure pump 14) in order to detect the substantially maximum value and the substantially minimum value of the low-pressure side fuel pressure. It is activated. When this routine is started, first, in step 101, the low-pressure side fuel pressure HP detected by the low-pressure side fuel pressure sensor 33 is read, and then the process proceeds to step 102 to determine whether or not the low-pressure side fuel pressure HP is within the normal range. To do. Here, the normal range of the low-pressure side fuel pressure HP is the target fuel pressure (for example, 400 kPa) of the pressure regulator 15 ± the allowable fuel pressure fluctuation amount α [kPa].
[0026]
If it is determined in step 102 that the low-pressure side fuel pressure HP is within the normal range (400−α <HP <400 + α), the process proceeds to step 103 and the number of times that the low-pressure side fuel pressure HP is determined to be within the normal range (normal) The normal counter CNORM that counts the number of determinations) is incremented. Then, in the next step 104, it is determined whether or not the count value (normality determination count) of the normal counter CNORM is equal to or greater than the predetermined number N. If the count value is less than the predetermined number N, the present routine is terminated.
[0027]
On the other hand, if the count value (normality determination number) of the normal counter CNORM is equal to or greater than the predetermined number N, it is determined that the low-pressure side fuel pressure HP is normal, the process proceeds to step 105, and the low-pressure side fuel pressure HP is abnormal (outside the normal range). ) Is reset to 0, and the process proceeds to step 106, where an abnormal duration counter TFAIL that counts the duration of the abnormal state is reset to 0, and In the next step 107, the abnormality determination flag XFAIL is reset to zero.
[0028]
On the other hand, if it is determined in step 102 that the low-pressure side fuel pressure HP is outside the normal range (HP ≦ 400−α or HP ≧ 400 + α), the process proceeds to step 108 in FIG. 5 and the abnormality determination flag XFAIL is set to 1. After the setting, the routine proceeds to step 109, where the abnormality counter CFAIL which counts the number of times that the low pressure side fuel pressure HP is determined to be abnormal (out of the normal range) (the number of times of abnormality determination) is incremented. Thereafter, the process proceeds to step 110, where the normal counter CNORM is reset to 0. In the next step 111, it is determined whether or not the count value (abnormality determination count) of the abnormal counter CFAIL is equal to or greater than the predetermined number N2. As a result, if it is determined that the count value (abnormality determination count) of the abnormal counter CFAIL is less than the predetermined number N2, the routine is terminated without confirming the determination of abnormality.
[0029]
On the other hand, if the count value (abnormality determination count) of the abnormal counter CFAIL is determined to be equal to or greater than the predetermined number N2, the process proceeds to step 112, and whether or not the low-pressure side fuel pressure HP is lower than the normal range (HP <400−α). Determine whether. As a result, when it is determined that the low-pressure side fuel pressure HP is lower than the normal range (HP <400−α), the routine proceeds to step 113 where the measurement time of the abnormal duration counter TFAIL for counting the duration of the abnormal state is the first. It is determined whether it is shorter than a predetermined time β of 1. As a result, if it is determined that the measurement time of the abnormality duration counter TFAIL is shorter than the first predetermined time β, the routine proceeds to step 114 where the first abnormality mode flag X1 is set to 1. When the first abnormal mode flag X1 is set to 1, it is determined as the “first abnormal mode” in which the low-pressure side fuel pressure decreases abnormally, and the discharge performance of the low-pressure pump 12 decreases (the fuel discharge amount of the low-pressure pump). Of the pulsation damper 34 (a large amount of fuel leakage) or an abnormality of the pressure regulator 15 (an abnormal increase of the return fuel amount).
[0030]
Thereafter, the process proceeds to step 119, where a warning lamp on the instrument panel (not shown) is turned on or blinked, or a warning is displayed on the display section of the instrument panel to notify the driver of the occurrence of abnormality, and In step 120, fail-safe processing is executed. The fail-safe process includes (1) stopping the low pressure pump 12, (2) stopping injection of the fuel injection valve 31, and (3) the flow rate control valve 22 for controlling the fuel discharge amount per stroke of the plunger 19 of the high pressure pump 14. Any one or more of the always open is executed. In either process, the fuel supply to the engine is stopped, so that the operation of the engine can be automatically stopped when an abnormality occurs. In the fail-safe process, one or more of the above (1) to (3) may be executed after executing the control for enabling the retreat travel for a predetermined time. Steps 119 and 120 function as warning means and fail-safe means, respectively.
[0031]
If it is determined as “No” in step 113, that is, if the measurement time of the abnormality duration counter TFAIL is equal to or longer than the first predetermined time β, it is determined that the low-pressure side fuel pressure HP is normal, and the process proceeds to step 115. The abnormal counter CFAIL is reset to zero. The processes in these steps 102 and 108 to 115 serve as first abnormal mode determination means in the claims.
[0032]
On the other hand, if it is determined as “No” in the above step 112, that is, if it is determined that the low-pressure side fuel pressure HP is higher than the normal range, the process proceeds to step 116, where the abnormal duration for counting the duration of the abnormal state is counted. It is determined whether or not the measurement time of the counter TFAIL is shorter than the second predetermined time γ. As a result, if it is determined that the measurement time of the abnormality duration counter TFAIL is shorter than the second predetermined time γ, the process proceeds to step 117 and the second abnormality mode flag X2 is set to 1. As a result, it is determined as the “second abnormal mode” in which the low-pressure side fuel pressure abnormally increases, and it is determined that the pulsation damper 34 is abnormal (abnormal decrease in the effect of reducing fuel pressure pulsation) or the pressure regulator 15 is abnormal (defective fuel return function). To do. The second predetermined time γ may be set to the same time as the first predetermined time β, or may be set to a different time.
[0033]
Thereafter, the process proceeds to step 121, and a warning lamp on the instrument panel (not shown) is turned on or blinked, or a warning is displayed on the display unit of the instrument panel to notify the driver of the occurrence of abnormality, and In step 122, the same fail-safe process as in step 120 is executed. Step 121 and step 122 function as warning means and fail-safe means, respectively.
[0034]
If “No” is determined in step 116, that is, if the measurement time of the abnormality duration counter TFAIL is equal to or longer than the second predetermined time γ, it is determined that the low-pressure side fuel pressure HP is normal, and the process proceeds to step 118. The abnormal counter CFAIL is reset to zero. The processes of these steps 102, 108 to 112, and 116 to 118 serve as second abnormal mode determination means in the claims.
[0035]
The abnormal duration counter routine of FIG. 6 is activated every predetermined time (for example, every 4 ms), and counts the duration of the abnormal state as follows. When this routine is started, it is first determined in step 201 whether or not the abnormality determination flag XFAIL is 1 (low-pressure side fuel pressure HP is outside the normal range). If the abnormality determination flag XFAIL is 1, step 202 is determined. Then, the abnormal continuation time counter TFAIL is incremented to count the continuation time of the abnormal state. If it is determined in step 201 that the abnormality determination flag XFAIL is 0 (low-pressure side fuel pressure HP is within the normal range), this routine is terminated without doing anything.
[0036]
An example of the abnormality diagnosis of the present embodiment described above will be described with reference to the time chart of FIG. FIG. 8 is an example of control when the second abnormal mode (abnormality of the pulsation damper 34, etc.) in which the low-pressure side fuel pressure HP abnormally increases occurs. When the low-pressure side fuel pressure HP is abnormally increased and the low-pressure side fuel pressure HP becomes higher than the normal range, the abnormality counter CFAIL is incremented every time the abnormality is detected.
[0037]
Once the low-pressure side fuel pressure HP becomes higher than the normal range and the abnormality determination flag XFAIL is set to 1, until the state where the low-pressure side fuel pressure HP is within the normal range is continuously detected a predetermined number N or more, The abnormality determination flag XFAIL is maintained at 1. During the period when the abnormality determination flag XFAIL is maintained at 1, the abnormality continuation time counter TFAIL is incremented at a predetermined period, whereby the continuation time of the abnormal state is counted.
[0038]
Thereafter, if the count value (abnormality determination count) of the abnormal counter CFAIL reaches the predetermined number N2 before the measurement time of the abnormal duration counter TFAIL reaches the second predetermined time γ, The abnormal mode flag X2 is set to 1. Thereby, it is determined as the second abnormal mode in which the low-pressure side fuel pressure abnormally increases, and it is determined that the pulsation damper 34 is abnormal (abnormal decrease in the fuel pressure pulsation reduction effect) or the pressure regulator 15 is abnormal (fuel returning function is defective). .
[0039]
When the second abnormal mode flag X2 is set to 1, fail-safe processing is executed, the low pressure pump 12 is stopped, the injection of the fuel injection valve 31 is stopped, or the flow control of the high pressure pump 14 is performed. By always opening the valve 22, the engine operation is automatically stopped when an abnormality occurs, and a warning lamp on an instrument panel (not shown) is turned on or blinked, or the instrument panel is displayed. A warning is displayed on the section to inform the driver of the occurrence of an abnormality.
[0040]
According to the present embodiment described above, the low-pressure side fuel pressure sensor 33 that detects the fuel pressure (low-pressure side fuel pressure HP) in the low-pressure side fuel pipe 13 that connects the low-pressure pump 12 and the high-pressure pump 14 is provided. When the low pressure side fuel pressure HP detected at 33 is lower than the normal range, it is determined as “first abnormal mode”, and when the low pressure side fuel pressure HP is higher than the normal range, it is determined as “second abnormal mode”. Because of this, not only when the engine is started, but also during engine operation, the “first abnormal mode” in which the low-pressure side fuel pressure HP abnormally decreases based on the detection value of the low-pressure side fuel pressure sensor 33 and the low-pressure side fuel pressure HP abnormally increases. Thus, it is possible to distinguish and detect the “second abnormal mode”, and it is also possible to identify an abnormal location.
[0041]
In addition, since the first abnormal mode is determined when the number of times that the low-pressure side fuel pressure HP is determined to be lower than the normal range within the first predetermined time β is equal to or greater than the predetermined number N2, the high-pressure pump Therefore, the instantaneous drop in the low-pressure side fuel pressure HP that has little influence on the fuel discharge amount (high-pressure side fuel pressure) 14 does not have to be determined as the first abnormal mode, and the reliability of abnormality detection can be improved.
[0042]
Similarly, since the number of times that the low pressure side fuel pressure HP is determined to be higher than the normal range within the second predetermined time γ is equal to or greater than the predetermined number N2, the second abnormal mode is determined. The instantaneous increase in the low-pressure side fuel pressure HP that has little influence on the fuel discharge amount (high-pressure side fuel pressure) of the pump 14 does not have to be determined as the second abnormal mode.
[0043]
In the present embodiment, the number of determinations (predetermined number N2) until the first abnormal mode is determined and the number of determinations (predetermined number N2) until the second abnormal mode are determined are set to be the same. However, the number of determinations may be made different.
[0044]
In the present embodiment, a pressure regulator 15 is provided on the discharge side of the low-pressure pump 12, and the pressure regulator 15 sets the discharge pressure of the low-pressure pump 12 (fuel supply pressure to the high-pressure pump 14) to a target fuel pressure (for example, 400 kPa). However, the pressure regulator 15 is omitted, and the rotational speed (discharge) of the drive motor of the low-pressure pump 12 is set so that the low-pressure side fuel pressure HP detected by the low-pressure side fuel pressure sensor 33 matches the target fuel pressure (for example, 400 kPa). The flow rate may be feedback controlled.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a high-pressure fuel supply system according to an embodiment of the present invention.
Fig. 2 Configuration diagram of high-pressure pump
FIG. 3 is a time chart showing the behavior of the flow control valve and high-pressure pump.
FIG. 4 is a flowchart (part 1) showing a flow of processing of an abnormality diagnosis routine.
FIG. 5 is a flowchart showing a flow of processing of an abnormality diagnosis routine (part 2).
FIG. 6 is a flowchart showing a flow of processing of an abnormal duration counter routine.
FIG. 7 is a time chart showing the behavior of the low-pressure side fuel pressure HP in the first abnormal mode and the second abnormal mode.
FIG. 8 is a time chart showing an example of abnormality diagnosis
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Fuel tank, 12 ... Low pressure pump, 13 ... Low pressure side fuel piping (fuel passage), 14 ... High pressure pump, 18 ... Pump chamber, 19 ... Plunger, 20 ... Cam shaft, 21 ... Cam, 22 ... Flow control valve, DESCRIPTION OF SYMBOLS 23 ... Suction port, 24 ... Discharge port, 25 ... Check valve, 26 ... Valve body, 27 ... Spring, 28 ... Norenoid, 31 ... Fuel injection valve, 32 ... High pressure side fuel pressure sensor, 33 ... Low pressure side fuel pressure sensor (fuel pressure) Detecting means), 34... Pulsation damper (fuel pressure pulsation reducing means), 36... ECU (first abnormal mode determining means, second abnormal mode determining means, fail safe means, warning means).

Claims (7)

燃料タンク内の燃料を汲み上げる低圧ポンプと、前記低圧ポンプから吐出される燃料を高圧に加圧して燃料噴射弁に圧送する高圧ポンプとを備えた内燃機関の高圧燃料供給システムにおいて、
前記低圧ポンプと前記高圧ポンプとをつなぐ燃料通路内の燃圧(以下「低圧側燃圧」という)を検出する燃圧検出手段と、
前記燃圧検出手段で検出した低圧側燃圧が正常範囲よりも低いときに第1の異常モードと判定する第1の異常モード判定手段と、
前記燃圧検出手段で検出した低圧側燃圧が正常範囲よりも高いときに第2の異常モードと判定する第2の異常モード判定手段と
を備えていることを特徴とする内燃機関の高圧燃料供給システムの異常診断装置。
In a high-pressure fuel supply system for an internal combustion engine comprising a low-pressure pump that pumps fuel in a fuel tank, and a high-pressure pump that pressurizes fuel discharged from the low-pressure pump to a high pressure and pumps the fuel to a fuel injection valve.
Fuel pressure detecting means for detecting a fuel pressure in a fuel passage connecting the low pressure pump and the high pressure pump (hereinafter referred to as “low pressure side fuel pressure”);
First abnormal mode determination means for determining a first abnormal mode when the low-pressure side fuel pressure detected by the fuel pressure detection means is lower than a normal range;
A high-pressure fuel supply system for an internal combustion engine, comprising: a second abnormal mode determination unit that determines a second abnormal mode when the low-pressure side fuel pressure detected by the fuel pressure detection unit is higher than a normal range. Abnormality diagnosis device.
前記第1の異常モード判定手段は、第1の所定時間内に前記低圧側燃圧が正常範囲よりも低いと判定された回数が第1の所定回数以上になったときに第1の異常モードと判定することを特徴とする請求項1に記載の内燃機関の高圧燃料供給システムの異常診断装置。The first abnormal mode determination means is configured to detect the first abnormal mode when the number of times that the low-pressure side fuel pressure is determined to be lower than the normal range within a first predetermined time is equal to or greater than the first predetermined number of times. The abnormality diagnosis device for a high-pressure fuel supply system for an internal combustion engine according to claim 1, wherein the determination is made. 前記第2の異常モード判定手段は、第2の所定時間内に前記低圧側燃圧が正常範囲よりも高いと判定された回数が第2の所定回数以上になったときに第2の異常モードと判定することを特徴とする請求項1又は2に記載の内燃機関の高圧燃料供給システムの異常診断装置。The second abnormal mode determining means is configured to detect the second abnormal mode when the number of times that the low-pressure side fuel pressure is determined to be higher than the normal range within a second predetermined time is equal to or greater than the second predetermined number of times. The abnormality diagnosis device for a high-pressure fuel supply system for an internal combustion engine according to claim 1, wherein the abnormality diagnosis device determines the abnormality. 前記低圧側燃圧の脈動を低減する燃圧脈動低減手段と、
前記第1の異常モード判定手段で前記第1の異常モードと判定されたときに、前記低圧ポンプの吐出性能低下又は前記燃圧脈動低減手段の異常と判定し、前記第2の異常モード判定手段で前記第2の異常モードと判定されたときに、前記燃圧脈動低減手段の異常と判定と判定する異常部位特定手段とを備えていることを特徴とする請求項1乃至3のいずれかに記載の内燃機関の高圧燃料供給システムの異常診断装置。
Fuel pressure pulsation reducing means for reducing pulsation of the low-pressure side fuel pressure;
When it is determined that the first abnormal mode is determined by the first abnormal mode determining means, it is determined that the discharge performance of the low-pressure pump is deteriorated or the fuel pressure pulsation reducing means is abnormal, and the second abnormal mode determining means is 4. The apparatus according to claim 1, further comprising: an abnormal region specifying unit that determines that the fuel pressure pulsation reducing unit is abnormal when it is determined as the second abnormal mode. 5. An abnormality diagnosis device for a high-pressure fuel supply system of an internal combustion engine.
前記第1の異常モード又は前記第2の異常モードと判定されたときに警告動作する警告手段を備えていることを特徴とする請求項1乃至4のいずれかに記載の内燃機関の高圧燃料供給システムの異常診断装置。5. The high-pressure fuel supply for an internal combustion engine according to claim 1, further comprising a warning unit that performs a warning operation when it is determined that the first abnormal mode or the second abnormal mode is detected. System abnormality diagnosis device. 前記第1の異常モード又は前記第2の異常モードと判定されたときにフェイルセーフ処理を実行するフェイルセーフ手段を備えていることを特徴とする請求項1乃至5のいずれかに記載の内燃機関の高圧燃料供給システムの異常診断装置。6. The internal combustion engine according to claim 1, further comprising fail-safe means for executing a fail-safe process when the first abnormal mode or the second abnormal mode is determined. Abnormality diagnosis device for high-pressure fuel supply system. 前記フェイルセーフ処理は、▲1▼前記低圧ポンプの停止、▲2▼前記燃料噴射弁の噴射停止、▲3▼前記高圧ポンプのプランジャの1ストローク当たりの燃料吐出量を制御する流量制御弁の常時開放のうちのいずれか1つ又は2つ以上であることを特徴とする請求項6に記載の内燃機関の高圧燃料供給システムの異常診断装置。The fail-safe process includes (1) stopping the low-pressure pump, (2) stopping injection of the fuel injection valve, and (3) a flow control valve that controls the fuel discharge amount per stroke of the plunger of the high-pressure pump. 7. The abnormality diagnosis device for a high-pressure fuel supply system for an internal combustion engine according to claim 6, wherein any one or two or more of the openings are open.
JP2003174193A 2003-06-19 2003-06-19 Abnormality diagnosis device for high pressure fuel supply system of internal combustion engine Expired - Fee Related JP4372466B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003174193A JP4372466B2 (en) 2003-06-19 2003-06-19 Abnormality diagnosis device for high pressure fuel supply system of internal combustion engine
DE200410029454 DE102004029454A1 (en) 2003-06-19 2004-06-18 Abnormality diagnostic unit of fuel supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003174193A JP4372466B2 (en) 2003-06-19 2003-06-19 Abnormality diagnosis device for high pressure fuel supply system of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005009398A true JP2005009398A (en) 2005-01-13
JP4372466B2 JP4372466B2 (en) 2009-11-25

Family

ID=34097744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003174193A Expired - Fee Related JP4372466B2 (en) 2003-06-19 2003-06-19 Abnormality diagnosis device for high pressure fuel supply system of internal combustion engine

Country Status (2)

Country Link
JP (1) JP4372466B2 (en)
DE (1) DE102004029454A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263090A (en) * 2006-03-30 2007-10-11 Denso Corp Fuel injection quantity control device of internal combustion engine
JP2009138649A (en) * 2007-12-07 2009-06-25 Bosch Corp Fuel supply device of internal combustion engine and abnormality determination device of fuel supply device
JP2009243286A (en) * 2008-03-28 2009-10-22 Fuji Heavy Ind Ltd Engine fuel supply system
JP2009545725A (en) * 2006-07-17 2009-12-24 ルノー・エス・アー・エス Verification process for device failure detection
JP2011058448A (en) * 2009-09-11 2011-03-24 Bosch Corp Abnormal condition diagnostic device for accumulator fuel injection device
JP2011196255A (en) * 2010-03-19 2011-10-06 Hitachi Automotive Systems Ltd Fuel pump control device
JP2014177897A (en) * 2013-03-14 2014-09-25 Toyota Motor Corp Control device of internal combustion engine
US20160252032A1 (en) * 2013-10-14 2016-09-01 Continental Automotive Gmbh Method and Device for Operating a Fuel Pump
JP2017106413A (en) * 2015-12-11 2017-06-15 株式会社デンソー Pump control device
WO2019181995A1 (en) * 2018-03-22 2019-09-26 いすゞ自動車株式会社 Error diagnosis device and error diagnosis method
CN113357032A (en) * 2021-06-29 2021-09-07 东风汽车集团股份有限公司 High-pressure oil pump fault detection post-processing method and electronic equipment
JP7387556B2 (en) 2020-08-19 2023-11-28 ボッシュ株式会社 Fuel injection control device and control method for the fuel injection control device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010027677B4 (en) * 2010-07-20 2013-07-11 Continental Automotive Gmbh A method for detecting a malfunction in the low-pressure system of an electronically controlled fuel injection system of an internal combustion engine by evaluating a stimulated pressure behavior
GB2486417A (en) 2010-12-13 2012-06-20 Gm Global Tech Operations Inc Method for diagnosing a clogging of an injector in an internal combustion engine
JP5630462B2 (en) 2012-06-19 2014-11-26 株式会社デンソー Fuel injection control device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635938B2 (en) * 2006-03-30 2011-02-23 株式会社デンソー Fuel injection amount control device for internal combustion engine
JP2007263090A (en) * 2006-03-30 2007-10-11 Denso Corp Fuel injection quantity control device of internal combustion engine
JP2009545725A (en) * 2006-07-17 2009-12-24 ルノー・エス・アー・エス Verification process for device failure detection
JP2009138649A (en) * 2007-12-07 2009-06-25 Bosch Corp Fuel supply device of internal combustion engine and abnormality determination device of fuel supply device
JP2009243286A (en) * 2008-03-28 2009-10-22 Fuji Heavy Ind Ltd Engine fuel supply system
JP2011058448A (en) * 2009-09-11 2011-03-24 Bosch Corp Abnormal condition diagnostic device for accumulator fuel injection device
JP2011196255A (en) * 2010-03-19 2011-10-06 Hitachi Automotive Systems Ltd Fuel pump control device
US9938920B2 (en) 2013-03-14 2018-04-10 Toyota Jidosha Kabushiki Kaisha Electronic control unit of internal combustion engine and method thereof
JP2014177897A (en) * 2013-03-14 2014-09-25 Toyota Motor Corp Control device of internal combustion engine
US20160252032A1 (en) * 2013-10-14 2016-09-01 Continental Automotive Gmbh Method and Device for Operating a Fuel Pump
US10443534B2 (en) * 2013-10-14 2019-10-15 Continental Automotive Gmbh Method and device for operating a fuel pump
JP2017106413A (en) * 2015-12-11 2017-06-15 株式会社デンソー Pump control device
WO2019181995A1 (en) * 2018-03-22 2019-09-26 いすゞ自動車株式会社 Error diagnosis device and error diagnosis method
US11454186B2 (en) 2018-03-22 2022-09-27 Isuzu Motors Limited Error diagnosis device and error diagnosis method
JP7387556B2 (en) 2020-08-19 2023-11-28 ボッシュ株式会社 Fuel injection control device and control method for the fuel injection control device
CN113357032A (en) * 2021-06-29 2021-09-07 东风汽车集团股份有限公司 High-pressure oil pump fault detection post-processing method and electronic equipment

Also Published As

Publication number Publication date
JP4372466B2 (en) 2009-11-25
DE102004029454A1 (en) 2005-03-03

Similar Documents

Publication Publication Date Title
US9279404B2 (en) Fuel supply device and fuel supply control method for internal combustion engine
JP5387538B2 (en) Fail safe control device for in-cylinder internal combustion engine
JP4372466B2 (en) Abnormality diagnosis device for high pressure fuel supply system of internal combustion engine
US7143747B2 (en) Common rail fuel injection system
US7431018B2 (en) Fuel injection system monitoring abnormal pressure in inlet of fuel pump
JP2007023833A (en) Diagnostic device of solenoid relief valve in fuel supply system
JP2005337031A (en) Abnormality diagnosis apparatus for high pressure fuel system of cylinder injection type internal combustion engine
JP2008286160A (en) Internal combustion engine control device
JP4045594B2 (en) Accumulated fuel injection system
JP2011185158A (en) Failure diagnostic device of high pressure fuel supply system of internal combustion engine
JP2003239794A (en) Accumulator type fuel injection device
JP3876694B2 (en) Common rail fuel injection system
JP2004225630A (en) Accumulator fuel injection system
JP3941667B2 (en) Accumulated fuel injection system
JP2002221069A (en) Control device of internal combustion engine equipped with fuel supplying device
JP3191388B2 (en) Accumulation type fuel supply system for diesel engine
JP2003155943A (en) Driving method for internal combustion engine, computer program and control and/or adjustment device
CN108386286B (en) Fuel injection device for internal combustion engine
JP2011032870A (en) Abnormality diagnostic device for fuel pressure holding mechanism
JP5370685B2 (en) Failure diagnosis device for fuel supply system of direct injection internal combustion engine
US9062625B2 (en) Fuel control system and fuel control method of a gasoline direct injection engine
US11384710B2 (en) Control device for fuel injection system
JP2005344521A (en) Fuel supply system abnormality diagnosis device for internal combustion engine
JP5344312B2 (en) Abnormality diagnosis device for fuel supply system of internal combustion engine
CN108386285B (en) Fuel injection device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070522

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees