JP5370685B2 - Failure diagnosis device for fuel supply system of direct injection internal combustion engine - Google Patents

Failure diagnosis device for fuel supply system of direct injection internal combustion engine Download PDF

Info

Publication number
JP5370685B2
JP5370685B2 JP2010106596A JP2010106596A JP5370685B2 JP 5370685 B2 JP5370685 B2 JP 5370685B2 JP 2010106596 A JP2010106596 A JP 2010106596A JP 2010106596 A JP2010106596 A JP 2010106596A JP 5370685 B2 JP5370685 B2 JP 5370685B2
Authority
JP
Japan
Prior art keywords
pressure
fuel
failure diagnosis
relief
fuel pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010106596A
Other languages
Japanese (ja)
Other versions
JP2011236753A (en
Inventor
敬介 矢野東
浩司 葛原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010106596A priority Critical patent/JP5370685B2/en
Publication of JP2011236753A publication Critical patent/JP2011236753A/en
Application granted granted Critical
Publication of JP5370685B2 publication Critical patent/JP5370685B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To diagnose a failure of a relief valve during the operation of a high pressure pump. <P>SOLUTION: When a failure diagnosis execution condition of the prescribed relief valve 33 is satisfied at the start of an engine or during the drive of the engine, target fuel pressure Pftg in a high pressure fuel system is set higher than relief pressure Pfrl, and fuel-pressure forcible rise control for controlling the high pressure pump 14 is performed so as to make fuel pressure Pf in the high pressure fuel system reach the target fuel pressure Pftg. After the lapse of a prescribed standby period KT1 after the fuel pressure Pf in the high pressure fuel system reaches the relief pressure Pfrl by the fuel-pressure forcible rise control, the fuel pressure Pf in the high pressure fuel system is acquired as determination fuel pressure Pf2, and when the determination fuel1 prescribed Pf2 is determined to be lower than failure determination fuel pressure KPf, it is determined that the relief valve 33 has no failure (normal). However, when the determination fuel pressure Pf2 is not lower than the failure determination fuel pressure KPf, it is determined that there is a failure of the relief valve 33 (for example, closed valve adhesion failure that the relief valve 33 is firmly adhered in a closed-valve state). <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、高圧ポンプから吐出される高圧の燃料を燃料噴射弁に供給する筒内噴射式内燃機関の燃料供給システムの故障診断装置に関する発明である。   The present invention relates to a failure diagnosis device for a fuel supply system of a direct injection internal combustion engine that supplies high-pressure fuel discharged from a high-pressure pump to a fuel injection valve.

気筒内に燃料を直接噴射する筒内噴射式エンジンは、吸気ポートに燃料を噴射する吸気ポート噴射式エンジンと比較して、噴射から燃焼までの時間が短く、噴射燃料を霧化させる時間を十分に稼ぐことができないため、噴射圧力を高圧にして噴射燃料を微粒化する必要がある。そのため、筒内噴射式エンジンでは、電動式の低圧ポンプで燃料タンクから汲み上げた燃料を、高圧ポンプ(例えばエンジンのカム軸で駆動される)に供給し、この高圧ポンプから吐出される高圧の燃料を燃料噴射弁へ圧送するようにしている。   An in-cylinder injection engine that directly injects fuel into a cylinder has a shorter time from injection to combustion and sufficient time to atomize the injected fuel compared to an intake port injection engine that injects fuel into an intake port. Therefore, it is necessary to atomize the injected fuel by increasing the injection pressure. Therefore, in a cylinder injection engine, the fuel pumped up from the fuel tank by the electric low-pressure pump is supplied to a high-pressure pump (for example, driven by the camshaft of the engine), and the high-pressure fuel discharged from this high-pressure pump Is pumped to the fuel injection valve.

このような筒内噴射式エンジンの燃料供給システムにおいては、例えば、特許文献1(特開2002−256943号公報)に記載されているように、高圧ポンプから燃料噴射弁に高圧の燃料を供給する高圧燃料系内の燃圧(燃料圧力)が過度に高くなることを防止するために、高圧燃料系の所定箇所(例えばデリバリパイプ)にリリーフ弁を設け、高圧燃料系内の燃圧が所定のリリーフ圧よりも高くなったときに、リリーフ弁が開弁して高圧燃料系内の燃料を低圧燃料系に戻すことで、高圧燃料系内の燃圧を低下させるようにしたものがある。   In such a fuel injection system for an in-cylinder injection engine, for example, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2002-256943), high-pressure fuel is supplied from a high-pressure pump to a fuel injection valve. In order to prevent the fuel pressure (fuel pressure) in the high-pressure fuel system from becoming excessively high, a relief valve is provided at a predetermined location (for example, a delivery pipe) of the high-pressure fuel system so that the fuel pressure in the high-pressure fuel system is at a predetermined relief pressure. In some cases, when the pressure becomes higher, the relief valve opens to return the fuel in the high-pressure fuel system to the low-pressure fuel system, thereby reducing the fuel pressure in the high-pressure fuel system.

更に、この特許文献1の技術では、エンジン停止直後の燃圧と、エンジン停止から所定時間経過後の燃圧との差(燃圧下がり代)を算出し、この燃圧下がり代が所定の故障判定値(基準燃圧下がり代)よりも大きい場合に、リリーフ弁の故障(異物を噛み込んで不完全な閉弁状態となる故障)有りと判定するようにしている。   Furthermore, in the technique of Patent Document 1, the difference (fuel pressure reduction allowance) between the fuel pressure immediately after the engine is stopped and the fuel pressure after a predetermined time has elapsed since the engine stop is calculated, and the fuel pressure reduction allowance is calculated as a predetermined failure judgment value (reference value). If it is greater than the allowance for lowering fuel pressure, it is determined that there is a relief valve failure (a failure that causes a foreign object to become incompletely closed).

特開2002−256943号公報JP 2002-256943 A

しかし、上記特許文献1の技術は、エンジン停止後(つまり高圧ポンプの停止後)の燃圧に基づいてリリーフ弁の故障診断を行うものであるため、高圧ポンプの作動中にはリリーフ弁の故障診断を行うことができない。このため、もし、高圧ポンプの作動中にリリーフ弁の故障が発生していても、その故障を高圧ポンプの作動中(つまりエンジン運転中)に検出することができないという欠点がある。更に、この方法では、リリーフ弁の不完全閉弁の故障は検出できても、リリーフ弁が閉側で固着している状態を検出することができないという欠点もある。   However, since the technique of Patent Document 1 performs failure diagnosis of the relief valve based on the fuel pressure after the engine is stopped (that is, after the high pressure pump is stopped), the failure diagnosis of the relief valve is performed during the operation of the high pressure pump. Can not do. For this reason, even if a relief valve failure occurs during operation of the high-pressure pump, there is a drawback that the failure cannot be detected during operation of the high-pressure pump (that is, during engine operation). Further, this method has a drawback that even if a failure of the incomplete closing of the relief valve can be detected, a state where the relief valve is stuck on the closed side cannot be detected.

そこで、本発明が解決しようとする課題は、高圧ポンプの作動中にリリーフ弁の故障診断を行うことができる筒内噴射式内燃機関の燃料供給システムの故障診断装置を提供することにある。   Accordingly, an object of the present invention is to provide a failure diagnosis device for a fuel supply system of a direct injection internal combustion engine capable of performing failure diagnosis of a relief valve during operation of a high pressure pump.

上記課題を解決するために、請求項1に係る発明は、高圧ポンプから吐出される高圧の燃料を燃料噴射弁に供給する筒内噴射式内燃機関の燃料供給システムに適用され、高圧ポンプから燃料噴射弁に燃料を供給する高圧燃料系内の燃料圧力(以下「燃圧」という)が所定のリリーフ圧よりも高くなったときに開弁して高圧燃料系内の燃圧を低下させるリリーフ弁を備えた筒内噴射式内燃機関の燃料供給システムの故障診断装置において、高圧燃料系内の目標燃圧をリリーフ圧よりも高い圧力に設定して、高圧燃料系内の燃圧を目標燃圧にするように高圧ポンプを制御する燃圧強制上昇制御を実行し、この燃圧強制上昇制御によって高圧燃料系内の燃圧がリリーフ圧に到達してから所定の待機期間が経過した後に、高圧燃料系内の燃圧を所定の故障判定燃圧と比較してリリーフ弁の故障の有無を判定する故障診断手段を備え、前記故障診断手段は、前記燃圧強制上昇制御時の目標燃圧を前記リリーフ圧よりも第1の所定値だけ高い圧力に設定すると共に、前記故障判定燃圧を前記リリーフ圧よりも第2の所定値だけ高い圧力に設定し、前記第1の所定値を前記第2の所定値よりも大きい値に設定することを特徴とするものである。 In order to solve the above problems, the invention according to claim 1 is applied to a fuel supply system of a direct injection internal combustion engine that supplies high-pressure fuel discharged from a high-pressure pump to a fuel injection valve. Provided with a relief valve that opens to lower the fuel pressure in the high-pressure fuel system when the fuel pressure (hereinafter referred to as “fuel pressure”) in the high-pressure fuel system that supplies fuel to the injection valve becomes higher than a predetermined relief pressure In the in-cylinder internal combustion engine fuel supply system failure diagnosis device, the target fuel pressure in the high-pressure fuel system is set to a pressure higher than the relief pressure, and the fuel pressure in the high-pressure fuel system is set to the target fuel pressure. run the fuel pressure force increase control for controlling the pump, after the fuel pressure in the high pressure fuel system has passed the predetermined standby time from reaching the relief pressure by the fuel pressure force increase control, the fuel pressure to a predetermined high-pressure fuel system Compared to impaired judgment fuel pressure includes determining failure diagnosis means the presence or absence of a failure of the relief valve, the failure diagnosing means is higher by a first predetermined value than the relief pressure to the target fuel pressure during the fuel pressure force increase control And setting the failure determination fuel pressure to a pressure higher by a second predetermined value than the relief pressure, and setting the first predetermined value to a value larger than the second predetermined value. It is a feature.

高圧燃料系内の燃圧をリリーフ圧よりも高い目標燃圧にするように高圧ポンプを制御する燃圧強制上昇制御を実行すると、高圧燃料系内の燃圧が目標燃圧(リリーフ圧よりも高い圧力)に向かって上昇するが、その際、リリーフ弁の正常時と故障時とでは、高圧燃料系内の燃圧がリリーフ圧に到達した後の挙動が異なってくる。従って、燃圧強制上昇制御によって高圧燃料系内の燃圧がリリーフ圧に到達した後の高圧燃料系内の燃圧を監視すれば、リリーフ弁の故障の有無を判定することができる。このようにすれば、高圧ポンプの作動中にリリーフ弁の故障診断を行うことができるため、もし、高圧ポンプの作動中にリリーフ弁の故障が発生していても、その故障を高圧ポンプの作動中に検出することができる。   When the fuel pressure forced increase control is performed to control the high pressure pump so that the fuel pressure in the high pressure fuel system becomes a target fuel pressure higher than the relief pressure, the fuel pressure in the high pressure fuel system moves toward the target fuel pressure (pressure higher than the relief pressure). However, the behavior after the fuel pressure in the high-pressure fuel system reaches the relief pressure differs depending on whether the relief valve is normal or failure. Therefore, by monitoring the fuel pressure in the high-pressure fuel system after the fuel pressure in the high-pressure fuel system reaches the relief pressure by the fuel pressure forced increase control, it is possible to determine whether or not the relief valve has failed. In this way, since the failure diagnosis of the relief valve can be performed during the operation of the high-pressure pump, even if a failure of the relief valve occurs during the operation of the high-pressure pump, the failure is determined as the operation of the high-pressure pump. Can be detected in.

本発明は、燃圧強制上昇制御によって高圧燃料系内の燃圧がリリーフ圧に到達してから所定の待機期間が経過した後に、高圧燃料系内の燃圧を所定の故障判定燃圧と比較してリリーフ弁の故障の有無を判定することを第1の特徴とする。 The present invention relates to a relief valve that compares a fuel pressure in a high-pressure fuel system with a predetermined failure determination fuel pressure after a predetermined waiting period has elapsed after the fuel pressure in the high-pressure fuel system has reached a relief pressure by fuel pressure forced increase control. The first feature is to determine whether or not there is a failure .

燃圧強制上昇制御を実行すると、高圧燃料系内の燃圧が目標燃圧(リリーフ圧よりも高い圧力)に向かって上昇する。その際、リリーフ弁が正常に機能すれば、高圧燃料系内の燃圧がリリーフ圧に到達した後に、高圧燃料系内の燃圧がリリーフ圧付近に維持されるが、もし、リリーフ弁が正常に開弁しない故障(例えばリリーフ弁が閉弁状態で固着する閉弁固着故障等)が発生していると、高圧燃料系内の燃圧がリリーフ圧に到達した後に、更にリリーフ圧よりも高い目標燃圧付近まで高圧燃料系内の燃圧が上昇する。従って、燃圧強制上昇制御によって高圧燃料系内の燃圧がリリーフ圧に到達してから所定の待機期間(例えばリリーフ弁の閉弁固着故障時に高圧燃料系内の燃圧が目標燃圧付近に上昇するまでに必要な期間)が経過した後に、高圧燃料系内の燃圧を所定の故障判定燃圧と比較すれば、リリーフ弁の故障の有無を精度良く判定することができる。   When the fuel pressure forced increase control is executed, the fuel pressure in the high-pressure fuel system increases toward the target fuel pressure (pressure higher than the relief pressure). At that time, if the relief valve functions normally, after the fuel pressure in the high-pressure fuel system reaches the relief pressure, the fuel pressure in the high-pressure fuel system is maintained near the relief pressure, but if the relief valve opens normally. If a failure that does not occur (for example, a closed failure that closes when the relief valve is closed) occurs, after the fuel pressure in the high-pressure fuel system reaches the relief pressure, it is near the target fuel pressure that is higher than the relief pressure. The fuel pressure in the high-pressure fuel system rises to Therefore, after the fuel pressure in the high-pressure fuel system reaches the relief pressure by the fuel pressure forced increase control, a predetermined waiting period (for example, when the fuel pressure in the high-pressure fuel system rises to the vicinity of the target fuel pressure when the relief valve closes and closes) If the fuel pressure in the high-pressure fuel system is compared with a predetermined failure determination fuel pressure after the necessary period has elapsed, it is possible to accurately determine whether there is a failure in the relief valve.

更に、本発明は、燃圧強制上昇制御時の目標燃圧をリリーフ圧よりも第1の所定値だけ高い圧力(=リリーフ圧+第1の所定値)に設定すると共に、故障判定燃圧をリリーフ圧よりも第2の所定値だけ高い圧力(=リリーフ圧+第2の所定値)に設定し、第1の所定値を第2の所定値よりも大きい値に設定することを第2の特徴とする。このようにすれば、燃圧強制上昇制御時の目標燃圧とリリーフ圧との間に、故障判定燃圧を設定することができる。 Furthermore, the present invention sets the target fuel pressure at the time of forced fuel pressure increase control to a pressure that is higher than the relief pressure by a first predetermined value (= relief pressure + first predetermined value), and sets the failure determination fuel pressure from the relief pressure. also set to a higher pressure by a second predetermined value (= relief pressure + second predetermined value), the second setting means sets the first predetermined value to a value larger than the second predetermined value . In this way, the failure determination fuel pressure can be set between the target fuel pressure and the relief pressure during the fuel pressure forced increase control.

更に、請求項のように、第1の所定値と第2の所定値を、それぞれリリーフ弁の開弁特性と高圧燃料系の設計仕様のうちの少なくとも一方に基づいて設定するようにしても良い。このようにすれば、燃圧強制上昇制御時の目標燃圧(=リリーフ圧+第1の所定値)と故障判定燃圧(=リリーフ圧+第2の所定値)を、それぞれリリーフ弁の開弁特性や高圧燃料系の設計仕様(例えば耐圧性能)等を考慮した適正値に設定することができる。 Further, as in claim 2 , the first predetermined value and the second predetermined value may be set based on at least one of a valve opening characteristic of the relief valve and a design specification of the high pressure fuel system, respectively. good. In this way, the target fuel pressure (= relief pressure + first predetermined value) and the failure determination fuel pressure (= relief pressure + second predetermined value) at the time of forced increase control of the fuel pressure are respectively calculated as the valve opening characteristics of the relief valve, It can be set to an appropriate value in consideration of the design specifications (for example, pressure resistance performance) of the high pressure fuel system.

また、請求項のように、内燃機関の回転速度に応じて待機期間を設定するようにしても良い。このようにすれば、内燃機関の回転速度に応じて高圧ポンプの吐出性能が変化して、例えばリリーフ弁の閉弁固着故障時に高圧燃料系内の燃圧が目標燃圧付近に上昇するまでに必要な期間が変化するのに対応して、待機期間を変化させることができ、待機期間を適正値に設定することができる。これにより、待機期間が必要以上に長くなることを回避して、リリーフ弁の故障診断を早期に完了することができる。 Further, as in claim 3 , the standby period may be set according to the rotational speed of the internal combustion engine. In this way, the discharge performance of the high-pressure pump changes according to the rotational speed of the internal combustion engine, which is necessary, for example, until the fuel pressure in the high-pressure fuel system rises to the vicinity of the target fuel pressure when the relief valve is closed and stuck. Corresponding to the change of the period, the standby period can be changed, and the standby period can be set to an appropriate value. Thereby, it is possible to avoid the standby period from becoming unnecessarily long and complete the failure diagnosis of the relief valve at an early stage.

更に、請求項のように、燃圧強制上昇制御を開始してから所定の許容期間が経過しても、高圧燃料系内の燃圧がリリーフ圧に到達しない場合には、燃圧強制上昇制御を終了するようにしても良い。つまり、燃圧強制上昇制御を開始してから所定の許容期間(例えば高圧燃料系内の燃圧がリリーフ圧に上昇するまでに必要な期間よりも少し長い期間)が経過したにも拘らず、高圧燃料系内の燃圧がリリーフ圧に到達しない場合には、高圧ポンプや高圧ポンプの制御系等に何らかの異常が発生している可能性があると判断して、燃圧強制上昇制御を終了する。このようにすれば、燃圧強制上昇制御が無駄に長期間継続されることを未然に防止することができる。 Further, as described in claim 4 , if the fuel pressure in the high-pressure fuel system does not reach the relief pressure even after a predetermined permissible period has elapsed since the start of the fuel pressure forced increase control, the fuel pressure forced increase control is terminated. You may make it do. In other words, the high-pressure fuel is used even though a predetermined permissible period (for example, a period slightly longer than the period required for the fuel pressure in the high-pressure fuel system to rise to the relief pressure) has elapsed since the fuel pressure forced increase control was started. If the fuel pressure in the system does not reach the relief pressure, it is determined that there is a possibility that some abnormality has occurred in the high-pressure pump, the control system of the high-pressure pump, etc., and the fuel pressure forced increase control is terminated. In this way, it is possible to prevent the fuel pressure forced increase control from being continued unnecessarily for a long time.

この場合、請求項のように、燃圧強制上昇制御開始時の高圧燃料系内の燃圧と、内燃機関の回転速度とに応じて許容期間を設定するようにしても良い。このようにすれば、燃圧強制上昇制御開始時の高圧燃料系内の燃圧や、内燃機関の回転速度(高圧ポンプの吐出性能)に応じて、高圧燃料系内の燃圧がリリーフ圧に上昇するまでに必要な期間が変化するのに対応して、許容期間を変化させることができ、許容期間を適正値に設定することができる。 In this case, as in claim 5 , the allowable period may be set according to the fuel pressure in the high-pressure fuel system at the start of the forced fuel pressure increase control and the rotational speed of the internal combustion engine. In this way, the fuel pressure in the high-pressure fuel system rises to the relief pressure according to the fuel pressure in the high-pressure fuel system at the start of the fuel pressure forced increase control and the rotational speed of the internal combustion engine (discharge performance of the high-pressure pump). The permissible period can be changed corresponding to the change in the period required for the time period, and the permissible period can be set to an appropriate value.

更に、請求項のように、燃圧強制上昇制御開始時の内燃機関の冷却水温に応じて許容期間を補正するようにしても良い。このようにすれば、燃圧強制上昇制御開始時の内燃機関の冷却水温に応じて高圧ポンプの吐出性能が変化して、高圧燃料系内の燃圧がリリーフ圧に上昇するまでに必要な期間が変化するのに対応して、許容期間を適正に補正することができる。 Further, as in claim 6 , the allowable period may be corrected according to the coolant temperature of the internal combustion engine at the start of the forced fuel pressure increase control. In this way, the discharge performance of the high-pressure pump changes according to the cooling water temperature of the internal combustion engine at the start of the fuel pressure forced increase control, and the period required for the fuel pressure in the high-pressure fuel system to rise to the relief pressure changes. Corresponding to this, the allowable period can be appropriately corrected.

本発明は、内燃機関の運転毎にリリーフ弁の故障診断を実行するようにしても良いが、リリーフ弁の故障診断の実行頻度が高くなり過ぎると、燃圧強制上昇制御に伴うリリーフ弁の開弁/閉弁の繰り返し動作の実行頻度が高くなり過ぎて、リリーフ弁の耐久寿命が低下する可能性がある。   According to the present invention, the relief valve failure diagnosis may be executed every time the internal combustion engine is operated. However, if the frequency of the relief valve failure diagnosis becomes too high, the relief valve opening associated with the forced fuel pressure increase control is performed. / The frequency of repeated valve closing operations may become too high, which may reduce the durable life of the relief valve.

そこで、請求項のように、リリーフ弁の故障診断を前回実行してからの内燃機関の運転回数が所定回数に達したときに、次のリリーフ弁の故障診断を許可するようにしても良い。このようにすれば、リリーフ弁の故障診断の実行頻度を適度に抑えて、燃圧強制上昇制御に伴うリリーフ弁の開弁/閉弁の繰り返し動作の実行頻度を適度に抑えることができ、リリーフ弁の耐久寿命の低下を防止することができる。 Therefore, as in claim 7 , when the number of operations of the internal combustion engine since the previous execution of the failure diagnosis of the relief valve reaches a predetermined number, the failure diagnosis of the next relief valve may be permitted. . In this way, it is possible to moderately suppress the frequency of execution of the failure diagnosis of the relief valve, and moderately suppress the frequency of execution of the repeated opening / closing operation of the relief valve associated with the forced increase control of the fuel pressure. It is possible to prevent a decrease in the durable life.

また、請求項のように、車両の点検のために所定のチェックモードに切り換えられた場合に、リリーフ弁の故障診断を許可するようにしても良い。つまり、通常の内燃機関の運転中はリリーフ弁の故障診断を禁止して、ディーラー等で車両の点検のためにチェックモードに切り換えられた場合にリリーフ弁の故障診断を許可する。このようにしても、リリーフ弁の故障診断の実行頻度を抑えて、燃圧強制上昇制御に伴うリリーフ弁の開弁/閉弁の繰り返し動作の実行頻度を抑えることができ、リリーフ弁の耐久寿命の低下を防止することができる。 Further, as described in claim 8 , when the vehicle is switched to a predetermined check mode for vehicle inspection, the relief valve failure diagnosis may be permitted. That is, during normal operation of the internal combustion engine, the relief valve failure diagnosis is prohibited, and when the dealer switches to the check mode for vehicle inspection, the relief valve failure diagnosis is permitted. Even in this case, it is possible to suppress the frequency of execution of the relief valve failure diagnosis, and to suppress the frequency of repeated relief valve opening / closing operations associated with the forced fuel pressure increase control. A decrease can be prevented.

また、請求項のように、内燃機関の始動時にリリーフ弁の故障診断を実行する場合に、該リリーフ弁の故障診断が完了するまで燃料噴射弁の燃料噴射を停止するようにしても良い。このようにすれば、内燃機関の始動時にリリーフ弁の故障診断を実行する場合には、燃料噴射弁の燃料噴射を停止した状態(つまり高圧燃料系内の燃料を消費しない状態)で燃圧強制上昇制御を実行することができるため、燃圧強制上昇制御によって高圧燃料系内の燃圧を速やかに上昇させることができ、リリーフ弁の故障診断を早期に完了することができる。
本発明は、請求項10のように、高圧燃料系内の燃料を高圧ポンプ内に戻す燃料戻し通路を備えた構成としても良い。
Further, as described in claim 9 , when the failure diagnosis of the relief valve is executed when the internal combustion engine is started, the fuel injection of the fuel injection valve may be stopped until the failure diagnosis of the relief valve is completed. In this way, when the failure diagnosis of the relief valve is executed at the start of the internal combustion engine, the fuel pressure is forcibly increased in a state where the fuel injection of the fuel injection valve is stopped (that is, the fuel in the high-pressure fuel system is not consumed). Since the control can be executed, the fuel pressure in the high-pressure fuel system can be quickly increased by the fuel pressure forced increase control, and the failure diagnosis of the relief valve can be completed early.
According to a tenth aspect of the present invention, a fuel return passage may be provided that returns the fuel in the high-pressure fuel system to the high-pressure pump.

図1は本発明の実施例1における筒内噴射式エンジンの燃料供給システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a fuel supply system for a direct injection engine according to Embodiment 1 of the present invention. 図2は実施例1のリリーフ弁の故障診断を通常のエンジン始動時に実行した場合の実行例を説明するタイムチャートである。FIG. 2 is a time chart for explaining an execution example when the failure diagnosis of the relief valve of the first embodiment is executed at the time of normal engine start. 図3は実施例1のリリーフ弁の故障診断を完全暖機後のエンジン再始動時に実行した場合の実行例を説明するタイムチャートである。FIG. 3 is a time chart illustrating an execution example when the failure diagnosis of the relief valve of the first embodiment is executed at the time of engine restart after complete warm-up. 図4は実施例1のリリーフ弁の故障診断をエンジン運転中に実行した場合の実行例を説明するタイムチャートである。FIG. 4 is a time chart for explaining an execution example when the failure diagnosis of the relief valve of the first embodiment is executed during engine operation. 図5は実施例1のリリーフ弁故障診断ルーチンの処理の流れを説明するフローチャートである。FIG. 5 is a flowchart for explaining the processing flow of the relief valve failure diagnosis routine of the first embodiment. 図6は許容期間KT2 のマップの一例を概念的に示す図である。FIG. 6 is a diagram conceptually showing an example of the map of the allowable period KT2. 図7は補正係数αのテーブルの一例を概念的に示す図である。FIG. 7 is a diagram conceptually illustrating an example of a table of the correction coefficient α. 図8は待機期間KT1 のテーブルの一例を概念的に示す図である。FIG. 8 is a diagram conceptually showing an example of the table of the standby period KT1. 図9は実施例2のリリーフ弁の故障診断をエンジン運転中に実行した場合の実行例を説明するタイムチャートである。FIG. 9 is a time chart for explaining an execution example when the failure diagnosis of the relief valve of the second embodiment is executed during engine operation. 図10は実施例2のリリーフ弁故障診断ルーチンの処理の流れを説明するフローチャートである。FIG. 10 is a flowchart for explaining the flow of processing of the relief valve failure diagnosis routine of the second embodiment. 図11は判定期間KT3 のテーブルの一例を概念的に示す図である。FIG. 11 is a diagram conceptually showing an example of the table of the determination period KT3. 図12は故障判定値ΔKPf のテーブルの一例を概念的に示す図である。FIG. 12 is a diagram conceptually illustrating an example of the failure determination value ΔKPf table. 図13は他の実施例における筒内噴射式エンジンの燃料供給システムの概略構成を示す図である。FIG. 13 is a diagram showing a schematic configuration of a fuel supply system for a direct injection engine according to another embodiment.

以下、本発明を実施するための形態を具体化した幾つかの実施例を説明する。   Hereinafter, some embodiments embodying the mode for carrying out the present invention will be described.

本発明の実施例1を図1乃至図8に基づいて説明する。
まず、図1に基づいて筒内噴射式のエンジン(内燃機関)の燃料供給システム全体の概略構成を説明する。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire fuel supply system of an in-cylinder injection engine (internal combustion engine) will be described with reference to FIG.

燃料を貯溜する燃料タンク11内には、燃料を汲み上げる低圧ポンプ12が設置されている。この低圧ポンプ12は、バッテリ(図示せず)を電源とする電動モータ(図示せず)によって駆動される。この低圧ポンプ12から吐出される燃料は、燃料配管13を通して高圧ポンプ14に供給される。燃料配管13には、プレッシャレギュレータ15が接続され、このプレッシャレギュレータ15によって低圧ポンプ12の吐出圧力(高圧ポンプ14への燃料供給圧力)が所定圧力に調圧され、その圧力を越える燃料の余剰分が燃料戻し管16により燃料タンク11内に戻されるようになっている。   A low pressure pump 12 that pumps up the fuel is installed in the fuel tank 11 that stores the fuel. The low-pressure pump 12 is driven by an electric motor (not shown) that uses a battery (not shown) as a power source. The fuel discharged from the low pressure pump 12 is supplied to the high pressure pump 14 through the fuel pipe 13. A pressure regulator 15 is connected to the fuel pipe 13, and the pressure regulator 15 regulates the discharge pressure of the low-pressure pump 12 (fuel supply pressure to the high-pressure pump 14) to a predetermined pressure. Is returned to the fuel tank 11 by the fuel return pipe 16.

高圧ポンプ14は、円筒状のポンプ室18内でピストン19を往復運動させて燃料を吸入/吐出するピストンポンプであり、ピストン19は、エンジンのカム軸20に嵌着されたカム21の回転運動によって駆動される。このカム21は、例えば、2つのカム山を有する2山カムを用いるようにしても良いが、これに限定されず、3つのカム山を有する3山カムや4つのカム山を有する4山カムを用いるようにしても良い。また、高圧ポンプ14の駆動方法はカム軸20により駆動される方式には限定しないものとする。   The high-pressure pump 14 is a piston pump that reciprocates a piston 19 in a cylindrical pump chamber 18 and sucks / discharges fuel. The piston 19 rotates by a cam 21 fitted to a camshaft 20 of the engine. Driven by. For example, a double mountain cam having two cam peaks may be used as the cam 21, but the cam 21 is not limited to this, and a three mountain cam having three cam peaks and a four mountain cam having four cam peaks are used. May be used. Further, the driving method of the high-pressure pump 14 is not limited to the method driven by the cam shaft 20.

この高圧ポンプ14の吸入口22側には、燃圧制御弁23が設けられている。この燃圧制御弁23は、常開型の電磁弁であり、吸入口22を開閉する弁体24と、この弁体24を開弁方向に付勢するスプリング25と、弁体24を閉弁方向に電磁駆動するソレノイド26とから構成されている。   A fuel pressure control valve 23 is provided on the suction port 22 side of the high-pressure pump 14. The fuel pressure control valve 23 is a normally open type electromagnetic valve, and includes a valve body 24 that opens and closes the suction port 22, a spring 25 that urges the valve body 24 in the valve opening direction, and a valve body 24 in the valve closing direction. And a solenoid 26 that is electromagnetically driven.

高圧ポンプ14の吸入行程(ピストン19の下降時)においては、燃圧制御弁23が開弁されてポンプ室18内に燃料が吸入され、高圧ポンプ14の吐出行程(ピストン19の上昇時)においては、燃圧制御弁23の閉弁期間(閉弁開始時期からピストン19の上死点までの閉弁状態のクランク角区間)を制御することで、高圧ポンプ14の吐出量を制御して燃圧(吐出圧力)を制御する。   During the suction stroke of the high-pressure pump 14 (when the piston 19 is lowered), the fuel pressure control valve 23 is opened and fuel is sucked into the pump chamber 18, and during the discharge stroke of the high-pressure pump 14 (when the piston 19 is raised). By controlling the valve closing period of the fuel pressure control valve 23 (the crank angle section in the valve closing state from the valve closing start time to the top dead center of the piston 19), the discharge amount of the high pressure pump 14 is controlled to control the fuel pressure (discharge). Pressure).

つまり、燃圧を上昇させるときには、燃圧制御弁23の閉弁開始時期(通電時期)を進角させることで、燃圧制御弁23の閉弁期間を長くして高圧ポンプ14の吐出量を増加させ、逆に、燃圧を低下させるときには、燃圧制御弁23の閉弁開始時期(通電時期)を遅角させることで、燃圧制御弁23の閉弁期間を短くして高圧ポンプ14の吐出量を減少させる。   That is, when increasing the fuel pressure, the valve closing start timing (energization timing) of the fuel pressure control valve 23 is advanced, thereby extending the valve closing period of the fuel pressure control valve 23 and increasing the discharge amount of the high pressure pump 14. Conversely, when lowering the fuel pressure, the valve closing start timing (energization timing) of the fuel pressure control valve 23 is retarded, thereby shortening the valve closing period of the fuel pressure control valve 23 and reducing the discharge amount of the high-pressure pump 14. .

一方、高圧ポンプ14の吐出口27側には、吐出した燃料の逆流を防止する逆止弁28が設けられている。高圧ポンプ14から吐出される燃料は、高圧燃料配管29を通してデリバリパイプ30に送られ、このデリバリパイプ30からエンジンの各気筒に取り付けられた燃料噴射弁31に高圧の燃料が分配される。デリバリパイプ30(又は高圧燃料配管29)には、高圧燃料配管29やデリバリパイプ30等の高圧燃料系内の燃圧(燃料圧力)を検出する燃圧センサ32(燃圧検出手段)が設けられている。   On the other hand, a check valve 28 for preventing the backflow of discharged fuel is provided on the discharge port 27 side of the high-pressure pump 14. The fuel discharged from the high-pressure pump 14 is sent to the delivery pipe 30 through the high-pressure fuel pipe 29, and the high-pressure fuel is distributed from the delivery pipe 30 to the fuel injection valve 31 attached to each cylinder of the engine. The delivery pipe 30 (or the high-pressure fuel pipe 29) is provided with a fuel pressure sensor 32 (fuel pressure detection means) that detects the fuel pressure (fuel pressure) in the high-pressure fuel system such as the high-pressure fuel pipe 29 and the delivery pipe 30.

また、高圧燃料系内の燃圧が過度に高くなることを防止するために、デリバリパイプ30には、リリーフ弁33が設けられ、このリリーフ弁33の排出ポートがリリーフ配管34を介して燃料タンク11(又は低圧側の燃料配管13)に接続されている。更に、リリーフ配管34から分岐した分岐管35が高圧ポンプ14のポンプ室18に接続されている。高圧燃料系内の燃圧が所定のリリーフ圧Pfrl よりも高くなったときに、リリーフ弁33が開弁して高圧燃料系内の燃料をリリーフ配管34を通して燃料タンク11(又は低圧側の燃料配管13)やポンプ室18に戻すことで、高圧燃料系内の燃圧Pf が低下し、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl 以下になったときに、リリーフ弁33が閉弁するようになっている。   In order to prevent the fuel pressure in the high-pressure fuel system from becoming excessively high, the delivery pipe 30 is provided with a relief valve 33, and the discharge port of the relief valve 33 is connected to the fuel tank 11 via the relief pipe 34. (Or the fuel pipe 13 on the low pressure side). Further, a branch pipe 35 branched from the relief pipe 34 is connected to the pump chamber 18 of the high-pressure pump 14. When the fuel pressure in the high-pressure fuel system becomes higher than a predetermined relief pressure Pfrl, the relief valve 33 opens and the fuel in the high-pressure fuel system passes through the relief pipe 34 and the fuel tank 11 (or the low-pressure side fuel pipe 13). ) Or the pump chamber 18, the fuel pressure Pf in the high-pressure fuel system decreases, and the relief valve 33 closes when the fuel pressure Pf in the high-pressure fuel system falls below the relief pressure Pfrl. Yes.

また、エンジンには、吸入空気量を検出するエアフローメータ36や、クランク軸(図示せず)の回転に同期して所定クランク角毎にパルス信号を出力するクランク角センサ37が設けられている。このクランク角センサ37の出力信号に基づいてクランク角やエンジン回転速度が検出される。   Further, the engine is provided with an air flow meter 36 for detecting the amount of intake air and a crank angle sensor 37 for outputting a pulse signal at every predetermined crank angle in synchronization with rotation of a crankshaft (not shown). Based on the output signal of the crank angle sensor 37, the crank angle and the engine speed are detected.

これら各種センサの出力は、電子制御回路(以下「ECU」と表記する)38に入力される。このECU38は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて、燃料噴射量、点火時期、スロットル開度(吸入空気量)等を制御する。   Outputs of these various sensors are input to an electronic control circuit (hereinafter referred to as “ECU”) 38. The ECU 38 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount and the ignition timing are determined according to the engine operating state. The throttle opening (intake air amount) and the like are controlled.

その際、ECU38は、エンジン運転状態(例えば、エンジン回転速度やエンジン負荷等)に応じて目標燃圧Pftg をマップ等により算出し、燃圧センサ32で検出した高圧燃料系内の燃圧Pf を目標燃圧Pftg に一致させるように高圧ポンプ14の吐出量(燃圧制御弁23の通電時期)をフィードバック制御する燃圧フィードバック制御を実行する。   At that time, the ECU 38 calculates the target fuel pressure Pftg based on the engine operating state (for example, engine speed, engine load, etc.) using a map or the like, and uses the fuel pressure Pf in the high-pressure fuel system detected by the fuel pressure sensor 32 as the target fuel pressure Pftg. The fuel pressure feedback control is executed to feedback control the discharge amount of the high-pressure pump 14 (the energization timing of the fuel pressure control valve 23) so as to match the above.

また、ECU38は、後述する図5のリリーフ弁故障診断ルーチンを実行することで、エンジン始動時又はエンジン運転中に所定のリリーフ弁33の故障診断実行条件が成立したときに、高圧燃料系内の目標燃圧Pftg をリリーフ圧Pfrl よりも高い圧力に設定して、高圧燃料系内の燃圧Pf を目標燃圧Pftg にするように高圧ポンプ14を制御する燃圧強制上昇制御を実行し、この燃圧強制上昇制御によって高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達してから所定の待機期間KT1 が経過した後に、高圧燃料系内の燃圧Pf を所定の故障判定燃圧KPf と比較してリリーフ弁33の故障の有無を判定する。   In addition, the ECU 38 executes a relief valve failure diagnosis routine shown in FIG. 5 to be described later, so that when a predetermined failure diagnosis execution condition for the relief valve 33 is satisfied during engine start-up or engine operation, The target fuel pressure Pftg is set to a pressure higher than the relief pressure Pfrl, and the fuel pressure forced increase control for controlling the high pressure pump 14 is executed so that the fuel pressure Pf in the high pressure fuel system becomes the target fuel pressure Pftg. After a predetermined waiting period KT1 has elapsed after the fuel pressure Pf in the high-pressure fuel system has reached the relief pressure Pfrl, the fuel pressure Pf in the high-pressure fuel system is compared with a predetermined failure determination fuel pressure KPf and a failure of the relief valve 33 occurs. The presence or absence of is determined.

高圧燃料系内の燃圧Pf をリリーフ圧Pfrl よりも高い目標燃圧Pftg にするように高圧ポンプ14を制御する燃圧強制上昇制御を実行すると、高圧燃料系内の燃圧Pf が目標燃圧Pftg (リリーフ圧Pfrl よりも高い圧力)に向かって上昇するが、その際、リリーフ弁33の正常時と故障時とでは、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達した後の高圧燃料系内の燃圧Pf の挙動が異なってくる。   When the fuel pressure forcibly increasing control for controlling the high pressure pump 14 is performed so that the fuel pressure Pf in the high pressure fuel system becomes a target fuel pressure Pftg higher than the relief pressure Pfrl, the fuel pressure Pf in the high pressure fuel system becomes the target fuel pressure Pftg (relief pressure Pfrl). In this case, the fuel pressure Pf in the high-pressure fuel system after the fuel pressure Pf in the high-pressure fuel system reaches the relief pressure Pfrl when the relief valve 33 is normal and when the failure occurs. Behave differently.

例えば、図2〜図4に実線で示すように、リリーフ弁33が正常に機能すれば、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達した後に、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl 付近に維持されるが、図2〜図4に破線で示すように、もし、リリーフ弁33が正常に開弁しない故障(例えばリリーフ弁33が閉弁状態で固着する閉弁固着故障等)が発生していると、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達した後に、更にリリーフ圧Pfrl よりも高い目標燃圧Pftg 付近まで高圧燃料系内の燃圧Pf が上昇する。従って、燃圧強制上昇制御によって高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達してから所定の待機期間KT1 (例えばリリーフ弁33の閉弁固着故障時に高圧燃料系内の燃圧Pf が目標燃圧Pftg 付近に上昇するまでに必要な期間)が経過した後に、高圧燃料系内の燃圧Pf を所定の故障判定燃圧KPf と比較すれば、リリーフ弁33の故障の有無を精度良く判定することができる。   For example, as shown by solid lines in FIGS. 2 to 4, if the relief valve 33 functions normally, the fuel pressure Pf in the high-pressure fuel system reaches the relief pressure Pfrl after the fuel pressure Pf in the high-pressure fuel system reaches the relief pressure Pfrl. Although it is maintained in the vicinity of Pfrl, as shown by broken lines in FIGS. 2 to 4, if the relief valve 33 does not open normally (for example, a closed valve fixing failure in which the relief valve 33 is fixed in a closed state). If this occurs, after the fuel pressure Pf in the high-pressure fuel system reaches the relief pressure Pfrl, the fuel pressure Pf in the high-pressure fuel system rises to near the target fuel pressure Pftg that is higher than the relief pressure Pfrl. Therefore, after the fuel pressure Pf in the high-pressure fuel system reaches the relief pressure Pfrl by the fuel pressure forced increase control, a predetermined waiting period KT1 (for example, the fuel pressure Pf in the high-pressure fuel system at the time when the relief valve 33 is stuck closed becomes the target fuel pressure Pftg). If the fuel pressure Pf in the high-pressure fuel system is compared with a predetermined failure determination fuel pressure KPf after a lapse of a necessary period until it rises in the vicinity, the presence or absence of the failure of the relief valve 33 can be accurately determined.

この場合、燃圧強制上昇制御時の目標燃圧Pftg をリリーフ圧Pfrl よりも第1の所定値P1 だけ高い圧力(=リリーフ圧Pfrl +第1の所定値P1 )に設定すると共に、故障判定燃圧KPf をリリーフ圧Pfrl よりも第2の所定値P2 だけ高い圧力(=リリーフ圧Pfrl +第2の所定値P2 )に設定し、第1の所定値P1 を第2の所定値P2 よりも大きい値に設定することで、燃圧強制上昇制御時の目標燃圧Pftg とリリーフ圧Pfrl との間に、故障判定燃圧KPf を設定する。   In this case, the target fuel pressure Pftg at the time of forced fuel pressure increase control is set to a pressure (= relief pressure Pfrl + first predetermined value P1) higher than the relief pressure Pfrl by the first predetermined value P1, and the failure determination fuel pressure KPf is set. A pressure higher than the relief pressure Pfrl by a second predetermined value P2 (= relief pressure Pfrl + second predetermined value P2) is set, and the first predetermined value P1 is set to a value larger than the second predetermined value P2. Thus, the failure determination fuel pressure KPf is set between the target fuel pressure Pftg and the relief pressure Pfrl at the time of forced fuel pressure increase control.

ここで、第1の所定値P1 と第2の所定値P2 を、それぞれリリーフ弁33の開弁特性と高圧燃料系の設計仕様(例えば高圧燃料配管29やデリバリパイプ30の耐圧性能)等に基づいて設定することで、燃圧強制上昇制御時の目標燃圧Pftg (=リリーフ圧Pfrl +第1の所定値P1 )と故障判定燃圧KPf (=リリーフ圧Pfrl +第2の所定値P2 )を、それぞれリリーフ弁33の開弁特性や高圧燃料系の設計仕様等を考慮した適正値に設定する。   Here, the first predetermined value P1 and the second predetermined value P2 are based on the valve opening characteristics of the relief valve 33 and the design specifications of the high pressure fuel system (for example, the pressure resistance performance of the high pressure fuel pipe 29 and the delivery pipe 30), respectively. Thus, the target fuel pressure Pftg (= relief pressure Pfrl + first predetermined value P1) and failure determination fuel pressure KPf (= relief pressure Pfrl + second predetermined value P2) at the time of forced increase control of the fuel pressure are respectively relieved. The valve 33 is set to an appropriate value in consideration of the valve opening characteristics, the design specifications of the high pressure fuel system, and the like.

以下、本実施例1でECU38が実行する図5のリリーフ弁故障診断ルーチンの処理内容を説明する。   The processing contents of the relief valve failure diagnosis routine of FIG. 5 executed by the ECU 38 in the first embodiment will be described below.

図5に示すリリーフ弁故障診断ルーチンは、ECU38の電源オン中に所定周期で繰り返し実行され、特許請求の範囲でいう故障診断手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、所定のリリーフ弁33の故障診断実行条件が成立しているか否かを判定する。ここで、リリーフ弁33の故障診断実行条件は、例えば、次の(1) 〜(3) の条件を全て満たすことである。   The relief valve failure diagnosis routine shown in FIG. 5 is repeatedly executed at a predetermined cycle while the ECU 38 is turned on, and serves as failure diagnosis means in the claims. When this routine is started, first, at step 101, it is determined whether or not a predetermined failure diagnosis execution condition for the relief valve 33 is satisfied. Here, the failure diagnosis execution condition of the relief valve 33 is to satisfy all of the following conditions (1) to (3), for example.

(1) 燃圧センサ32及び高圧ポンプ14が正常であること
(2) エンジン始動時又はエンジン定常運転中であること
(3) リリーフ弁33の故障診断を前回実行してからのエンジン運転回数が所定回数(例えば3回)に達していること
尚、上記(2) の条件は、単に「エンジン始動時であること」としても良い。或は、単に「エンジン定常運転中であること」としても良い。
(1) The fuel pressure sensor 32 and the high pressure pump 14 are normal.
(2) The engine is starting or the engine is in steady operation
(3) The number of times the engine has been operated since the previous failure diagnosis of the relief valve 33 has reached a predetermined number (for example, 3 times). Note that the above condition (2) is simply that the engine is started. It's also good. Alternatively, it may simply be “being in steady engine operation”.

上記(1) 〜(3) の条件を全て満たせば、リリーフ弁33の故障診断実行条件が成立するが、上記(1) 〜(3) の条件のうちいずれか1つでも満たさない条件があれば、リリーフ弁33の故障診断実行条件が不成立となる。尚、リリーフ弁33の故障診断実行条件は、上記(1) 〜(3) の条件に限定されず、適宜変更しても良い。   If all the above conditions (1) to (3) are satisfied, the failure diagnosis execution condition for the relief valve 33 is satisfied, but there is a condition that does not satisfy any one of the above conditions (1) to (3). In this case, the failure diagnosis execution condition for the relief valve 33 is not satisfied. The failure diagnosis execution condition of the relief valve 33 is not limited to the above conditions (1) to (3), and may be changed as appropriate.

このステップ101で、リリーフ弁33の故障診断実行条件が不成立と判定された場合には、ステップ102以降の処理を実行することなく、本ルーチンを終了する。   If it is determined in step 101 that the failure diagnosis execution condition for the relief valve 33 is not satisfied, this routine is terminated without executing the processing from step 102 onward.

一方、上記ステップ101で、リリーフ弁33の故障診断実行条件が成立していると判定された場合には、ステップ102以降の処理を次のようにして実行する。   On the other hand, if it is determined in step 101 that the failure diagnosis execution condition for the relief valve 33 is satisfied, the processing after step 102 is executed as follows.

まず、ステップ102で、エンジン始動時(始動完了前)であるか否かを判定し、エンジン始動時であると判定された場合には、ステップ103に進み、燃料噴射弁31の燃料噴射を停止するが、エンジン始動時ではない(つまりエンジン始動完了後のエンジン運転中)と判定された場合には、燃料噴射弁31の燃料噴射を継続する。   First, in step 102, it is determined whether or not the engine is being started (before starting is completed). If it is determined that the engine is being started, the process proceeds to step 103 and fuel injection of the fuel injection valve 31 is stopped. However, if it is determined that the engine is not being started (that is, the engine is running after the engine is started), the fuel injection of the fuel injection valve 31 is continued.

この後、ステップ104に進み、高圧燃料系内の目標燃圧Pftg をリリーフ圧Pfrl よりも第1の所定値P1 だけ高い圧力(=リリーフ圧Pfrl +第1の所定値P1 )に設定して、高圧燃料系内の燃圧Pf を目標燃圧Pftg にするように高圧ポンプ14の吐出量を制御する燃圧強制上昇制御を実行する。この燃圧強制上昇制御では、例えば、予め目標燃圧Pftg を実現するように設定された制御量で高圧ポンプ14の吐出量(燃圧制御弁23の通電時期)を制御するようにしても良いし、或は、燃圧センサ32で検出した高圧燃料系内の燃圧Pf を目標燃圧Pftg に一致させるように高圧ポンプ14の吐出量(燃圧制御弁23の通電時期)をフィードバック制御するようにしても良い。   Thereafter, the routine proceeds to step 104, where the target fuel pressure Pftg in the high pressure fuel system is set to a pressure (= relief pressure Pfrl + first predetermined value P1) higher than the relief pressure Pfrl by the first predetermined value P1. Fuel pressure forcible increase control for controlling the discharge amount of the high-pressure pump 14 is executed so that the fuel pressure Pf in the fuel system becomes the target fuel pressure Pftg. In this fuel pressure forced increase control, for example, the discharge amount of the high-pressure pump 14 (the energization timing of the fuel pressure control valve 23) may be controlled by a control amount that is set in advance to achieve the target fuel pressure Pftg. Alternatively, the discharge amount of the high-pressure pump 14 (the energization timing of the fuel pressure control valve 23) may be feedback-controlled so that the fuel pressure Pf in the high-pressure fuel system detected by the fuel pressure sensor 32 matches the target fuel pressure Pftg.

この後、ステップ105に進み、燃圧強制上昇制御を開始してからの経過期間T2 が所定の許容期間KT2 以内であるか否かを判定する。ここで、許容期間KT2 は、例えば、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に上昇するまでに必要な期間よりも少し長い期間に設定される。尚、経過期間T2 と許容期間KT2 は、時間(msec等)で設定しても良いし、或は、クランク角(℃A)で設定しても良い。   Thereafter, the routine proceeds to step 105, where it is determined whether or not an elapsed period T2 from the start of the fuel pressure forced increase control is within a predetermined allowable period KT2. Here, the allowable period KT2 is set to a period slightly longer than a period necessary for the fuel pressure Pf in the high-pressure fuel system to rise to the relief pressure Pfrl, for example. The elapsed period T2 and the allowable period KT2 may be set by time (msec or the like) or may be set by crank angle (° C. A).

この場合、図6に示す許容期間KT2 のマップを参照して、燃圧強制上昇制御開始時の高圧燃料系内の燃圧Pf1と、エンジン回転速度Ne とに応じた許容期間KT2 を算出すると共に、図7に示す補正係数αのテーブルを参照して、燃圧強制上昇制御開始時のエンジンの冷却水温THWに応じた補正係数αを算出した後、この補正係数αで許容期間KT2 を補正して最終的な許容期間KT2 を求める。   In this case, referring to the map of the allowable period KT2 shown in FIG. 6, the allowable period KT2 corresponding to the fuel pressure Pf1 in the high-pressure fuel system at the start of the fuel pressure forced increase control and the engine rotational speed Ne is calculated. Referring to the table of the correction coefficient α shown in FIG. 7, after calculating the correction coefficient α according to the engine coolant temperature THW at the start of the fuel pressure forced increase control, the allowable period KT2 is corrected by this correction coefficient α and finally A permissible period KT2 is obtained.

図6の許容期間KT2 のマップは、燃圧強制上昇制御開始時の高圧燃料系内の燃圧Pf1や、エンジン回転速度Ne (高圧ポンプ14の吐出性能)に応じて、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に上昇するまでに必要な期間が変化することを考慮して、例えば、燃圧強制上昇制御開始時の高圧燃料系内の燃圧Pf1が低くなるほど許容期間KT2 が長くなり、エンジン回転速度Ne が高くなるほど許容期間KT2 が短くなるように設定されている。この許容期間KT2 のマップは、予め試験データや設計データ等に基づいて作成され、ECU38のROMに記憶されている。   The map of the allowable period KT2 in FIG. 6 indicates that the fuel pressure Pf in the high-pressure fuel system at the start of the fuel pressure forced increase control and the fuel pressure Pf in the high-pressure fuel system according to the engine speed Ne (discharge performance of the high-pressure pump 14). Considering that the period required to increase to the relief pressure Pfrl changes, for example, the allowable period KT2 becomes longer as the fuel pressure Pf1 in the high-pressure fuel system at the start of the forced fuel pressure increase control becomes lower, and the engine speed Ne. The allowable period KT2 is set to be shorter as the value becomes higher. The map of the allowable period KT2 is created in advance based on test data, design data, etc., and is stored in the ROM of the ECU 38.

また、図7の補正係数αのテーブルは、燃圧強制上昇制御開始時の冷却水温THWに応じて高圧ポンプ14の吐出性能が変化して、高圧燃料系内の燃圧Pf1がリリーフ圧Pfrl に上昇するまでに必要な期間が変化することを考慮して、例えば、燃圧強制上昇制御開始時の冷却水温THWが低くなるほど補正係数αが大きくなって許容期間KT2 が長くなるように設定されている。この補正係数αのテーブルは、予め試験データや設計データ等に基づいて作成され、ECU38のROMに記憶されている。   In the table of the correction coefficient α in FIG. 7, the discharge performance of the high-pressure pump 14 changes according to the cooling water temperature THW at the start of the fuel pressure forced increase control, and the fuel pressure Pf1 in the high-pressure fuel system rises to the relief pressure Pfrl. For example, the correction coefficient α is set to be larger and the allowable period KT2 is longer as the coolant temperature THW at the start of the fuel pressure forced increase control is lower. The table of the correction coefficient α is created in advance based on test data, design data, and the like, and is stored in the ROM of the ECU 38.

このステップ105で、燃圧強制上昇制御を開始してからの経過期間T2 が許容期間KT2 以内であると判定されれば、ステップ106に進み、燃圧センサ32で検出した高圧燃料系内の燃圧Pf がリリーフ圧Pfrl 以上であるか否かを判定し、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl よりも低いと判定されれば、上記ステップ105に戻る。   If it is determined in step 105 that the elapsed period T2 from the start of the fuel pressure forced increase control is within the allowable period KT2, the process proceeds to step 106, where the fuel pressure Pf in the high-pressure fuel system detected by the fuel pressure sensor 32 is determined. It is determined whether or not the pressure is equal to or higher than the relief pressure Pfrl. If it is determined that the fuel pressure Pf in the high-pressure fuel system is lower than the relief pressure Pfrl, the process returns to step 105.

その後、上記ステップ105で燃圧強制上昇制御を開始してからの経過期間T2 が許容期間KT2 を越えたと判定された場合、つまり、燃圧強制上昇制御を開始してから許容期間KT2 が経過したにも拘らず、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達しない場合には、高圧ポンプ14や高圧ポンプ14の制御系等に何らかの異常が発生している可能性があると判断して、ステップ111に進み、燃圧強制上昇制御を終了して、通常制御(例えば通常の燃圧フィードバック制御や燃料噴射制御)を実行する。この場合、リリーフ弁33の故障診断は実行されない。   Thereafter, if it is determined in step 105 that the elapsed time T2 from the start of the fuel pressure forced increase control exceeds the allowable period KT2, that is, the allowable period KT2 has elapsed since the start of the fuel pressure forced increase control. Regardless, if the fuel pressure Pf in the high pressure fuel system does not reach the relief pressure Pfrl, it is determined that there may be some abnormality in the high pressure pump 14, the control system of the high pressure pump 14, etc. Proceeding to 111, the fuel pressure forced increase control is terminated, and normal control (for example, normal fuel pressure feedback control or fuel injection control) is executed. In this case, failure diagnosis of the relief valve 33 is not executed.

一方、上記ステップ106で高圧燃料系内の燃圧Pf がリリーフ圧Pfrl 以上であると判定された場合、つまり、燃圧強制上昇制御を開始してから許容期間KT2 が経過する前に、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達した場合には、ステップ107に進み、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達してからの経過期間T1 が所定の待機期間KT1 以上であるか否かを判定する。ここで、待機期間KT1 は、例えば、リリーフ弁33の閉弁固着故障時に高圧燃料系内の燃圧Pf が目標燃圧Pftg 付近に上昇するまでに必要な期間に設定される。尚、経過期間T1 と待機期間KT1 は、時間(msec等)で設定しても良いし、或は、クランク角(℃A)で設定しても良い。   On the other hand, if it is determined in step 106 that the fuel pressure Pf in the high pressure fuel system is equal to or higher than the relief pressure Pfrl, that is, before the permissible period KT2 elapses after the fuel pressure forced increase control is started, When the fuel pressure Pf of the fuel reaches the relief pressure Pfrl, the routine proceeds to step 107, and whether or not the elapsed period T1 after the fuel pressure Pf in the high-pressure fuel system reaches the relief pressure Pfrl is equal to or longer than the predetermined standby period KT1. Determine whether. Here, the standby period KT1 is set to a period necessary for the fuel pressure Pf in the high-pressure fuel system to rise to the vicinity of the target fuel pressure Pftg, for example, when the relief valve 33 is stuck closed. The elapsed period T1 and the standby period KT1 may be set by time (msec or the like), or may be set by crank angle (° C. A).

この場合、図8に示す待機期間KT1 のテーブルを参照して、エンジン回転速度Ne に応じた待機期間KT1 を算出する。図8の待機期間KT1 のテーブルは、エンジン回転速度Ne に応じて高圧ポンプ14の吐出性能が変化して、リリーフ弁33の閉弁固着故障時に高圧燃料系内の燃圧Pf が目標燃圧付近Pftg に上昇するまでに必要な期間が変化することを考慮して、例えば、エンジン回転速度Ne が高くなるほど待機期間KT1 が短くなるように設定されている。この待機期間KT1 のテーブルは、予め試験データや設計データ等に基づいて作成され、ECU38のROMに記憶されている。   In this case, the standby period KT1 corresponding to the engine speed Ne is calculated with reference to the table of the standby period KT1 shown in FIG. The table of the waiting period KT1 in FIG. 8 shows that the discharge performance of the high-pressure pump 14 changes according to the engine speed Ne, and the fuel pressure Pf in the high-pressure fuel system becomes Pftg near the target fuel pressure when the relief valve 33 is stuck closed. Considering that the period required until the engine speed increases, for example, the standby period KT1 is set shorter as the engine speed Ne increases. The table of the waiting period KT1 is created in advance based on test data, design data, and the like, and is stored in the ROM of the ECU 38.

このステップ107で、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達してからの経過期間T1 が待機期間KT1 以上であると判定されたとき、つまり、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達してから待機期間KT1 が経過したと判定されたときに、ステップ108に進み、燃圧センサ32で検出した高圧燃料系内の燃圧Pf を判定用燃圧Pf2として取得した後、ステップ109に進み、判定用燃圧Pf2が所定の故障判定燃圧KPf (=リリーフ圧Pfrl +第2の所定値P2 )よりも低いか否かを判定する。   If it is determined in step 107 that the elapsed time T1 after the fuel pressure Pf in the high-pressure fuel system reaches the relief pressure Pfrl is equal to or longer than the standby period KT1, that is, the fuel pressure Pf in the high-pressure fuel system is the relief pressure. When it is determined that the standby period KT1 has elapsed since reaching Pfrl, the routine proceeds to step 108, where the fuel pressure Pf in the high-pressure fuel system detected by the fuel pressure sensor 32 is acquired as the determination fuel pressure Pf2, and then the routine proceeds to step 109. Then, it is determined whether the determination fuel pressure Pf2 is lower than a predetermined failure determination fuel pressure KPf (= relief pressure Pfrl + second predetermined value P2).

このステップ109で、判定用燃圧Pf2が故障判定燃圧KPf よりも低いと判定された場合には、ステップ110に進み、リリーフ弁33の故障無し(正常)と判定して異常フラグをOFFに維持した後、ステップ111に進み、燃圧強制上昇制御を終了して、通常制御(例えば通常の燃圧フィードバック制御や燃料噴射制御)を実行する。   If it is determined at step 109 that the determination fuel pressure Pf2 is lower than the failure determination fuel pressure KPf, the routine proceeds to step 110, where it is determined that there is no failure (normal) of the relief valve 33 and the abnormality flag is kept OFF. Thereafter, the process proceeds to step 111 where the fuel pressure forced increase control is terminated and normal control (for example, normal fuel pressure feedback control or fuel injection control) is executed.

これに対して、上記ステップ109で、判定用燃圧Pf2が故障判定燃圧KPf 以上であると判定された場合には、ステップ112に進み、リリーフ弁33の故障(例えばリリーフ弁33が閉弁状態で固着する閉弁固着故障)有りと判定して異常フラグをONにセットし、運転席のインストルメントパネルに設けられた警告ランプ(図示せず)を点灯したり、或は、運転席のインストルメントパネルの警告表示部(図示せず)に警告表示して運転者に警告すると共に、その異常情報(異常コード等)をECU38のバックアップRAM(図示せず)等の書き換え可能な不揮発性メモリ(ECU38の電源オフ中でも記憶データを保持する書き換え可能なメモリ)に記憶する。   On the other hand, when it is determined in step 109 that the determination fuel pressure Pf2 is equal to or higher than the failure determination fuel pressure KPf, the process proceeds to step 112, and the failure of the relief valve 33 (for example, the relief valve 33 is in the closed state). It is determined that there is a malfunction (fixing failure of the closed valve), the abnormality flag is set to ON, a warning lamp (not shown) provided on the instrument panel of the driver's seat is turned on, or the instrument of the driver's seat is turned on. A warning is displayed on a warning display section (not shown) of the panel to warn the driver, and the abnormal information (abnormal code, etc.) is rewritable nonvolatile memory (ECU 38) such as a backup RAM (not shown) of the ECU 38. Stored in a rewritable memory that retains stored data even when the power is off.

この後、ステップ113に進み、フェールセーフ処理を実行する。このフェールセーフ処理では、例えば、高圧ポンプ14の燃圧制御弁23を開弁状態(通電オフ状態)に維持して高圧ポンプ14の燃料吐出動作を停止する。或は、エンジンを停止して高圧ポンプ14の作動を停止する。   Thereafter, the process proceeds to step 113, where fail-safe processing is executed. In this fail-safe process, for example, the fuel pressure control valve 23 of the high-pressure pump 14 is maintained in an open state (energization off state), and the fuel discharge operation of the high-pressure pump 14 is stopped. Alternatively, the engine is stopped and the operation of the high-pressure pump 14 is stopped.

以上説明した本実施例1のリリーフ弁33の故障診断の実行例を図2乃至図4のタイムチャートを用いて説明する。ここで、図2は通常のエンジン始動時にリリーフ弁33の故障診断を実行した場合の実行例を示し、図3は完全暖機後のエンジン再始動時にリリーフ弁33の故障診断を実行した場合の実行例を示し、図4はエンジン運転中にリリーフ弁33の故障診断を実行した場合の実行例を示している。   An execution example of the failure diagnosis of the relief valve 33 of the first embodiment described above will be described with reference to time charts of FIGS. Here, FIG. 2 shows an example of execution when the failure diagnosis of the relief valve 33 is executed during normal engine start, and FIG. 3 shows the case where the failure diagnosis of the relief valve 33 is executed when the engine is restarted after complete warm-up. FIG. 4 shows an execution example when failure diagnosis of the relief valve 33 is executed during engine operation.

図2乃至図4のいずれの場合も、リリーフ弁33の故障診断実行条件が成立したときに、燃圧強制上昇制御を実行する。この燃圧強制上昇制御では、目標燃圧Pftg をリリーフ圧Pfrl よりも第1の所定値P1 だけ高い圧力(=リリーフ圧Pfrl +第1の所定値P1 )に設定して、高圧燃料系内の燃圧Pf を目標燃圧Pftg にするように高圧ポンプ14を制御する。尚、エンジン始動時(始動完了前)に故障診断実行条件が成立した場合(図2又は図3の場合)には、リリーフ弁33の故障診断が終了するまで燃料噴射弁31の燃料噴射を停止するが、エンジン運転中に故障診断実行条件が成立した場合(図4の場合)には、燃料噴射弁31の燃料噴射を継続する。   In any of the cases shown in FIGS. 2 to 4, the forced fuel pressure increase control is executed when the failure diagnosis execution condition for the relief valve 33 is satisfied. In this fuel pressure forced increase control, the target fuel pressure Pftg is set to a pressure higher than the relief pressure Pfrl by a first predetermined value P1 (= relief pressure Pfrl + first predetermined value P1), and the fuel pressure Pf in the high-pressure fuel system is set. The high pressure pump 14 is controlled so that the fuel pressure becomes the target fuel pressure Pftg. If the failure diagnosis execution condition is satisfied at the time of engine start (before the start is completed) (in the case of FIG. 2 or FIG. 3), the fuel injection of the fuel injection valve 31 is stopped until the failure diagnosis of the relief valve 33 is completed. However, when the failure diagnosis execution condition is satisfied during engine operation (in the case of FIG. 4), the fuel injection of the fuel injection valve 31 is continued.

この後、実際に燃圧強制上昇制御が開始された時点t1 (実際に高圧ポンプ14の制御量が変化した時点)から許容期間KT2 が経過する前に、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達した場合には、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達した時点t2 から待機期間KT1 が経過した時点t3 で、高圧燃料系内の燃圧Pf を判定用燃圧Pf2として取得し、この判定用燃圧Pf2を故障判定燃圧KPf (=リリーフ圧Pfrl +第2の所定値P2 )と比較する。   Thereafter, the fuel pressure Pf in the high-pressure fuel system is reduced to the relief pressure Pfrl before the allowable period KT2 elapses from the time t1 when the fuel pressure forced increase control is actually started (the time when the control amount of the high-pressure pump 14 is actually changed). When the fuel pressure Pf in the high-pressure fuel system reaches the relief pressure Pfrl, the fuel pressure Pf in the high-pressure fuel system is acquired as the judgment fuel pressure Pf2 at the time t3 when the standby period KT1 has elapsed from the time t2 when the fuel pressure Pf in the high-pressure fuel system reaches the relief pressure Pfrl. This determination fuel pressure Pf2 is compared with a failure determination fuel pressure KPf (= relief pressure Pfrl + second predetermined value P2).

その結果、判定用燃圧Pf2が故障判定燃圧KPf よりも低いと判定された場合には、リリーフ弁33の故障無し(正常)と判定するが、判定用燃圧Pf2が故障判定燃圧KPf 以上であると判定された場合には、リリーフ弁33の故障(例えばリリーフ弁33が閉弁状態で固着する閉弁固着故障)有りと判定して、高圧ポンプ14の燃料吐出動作を停止する(或は、エンジンを停止して高圧ポンプ14の作動を停止する)。   As a result, when it is determined that the determination fuel pressure Pf2 is lower than the failure determination fuel pressure KPf, it is determined that there is no failure (normal) of the relief valve 33, but the determination fuel pressure Pf2 is greater than or equal to the failure determination fuel pressure KPf. When the determination is made, it is determined that there is a failure of the relief valve 33 (for example, a closed valve fixing failure in which the relief valve 33 is fixed in a closed state), and the fuel discharge operation of the high pressure pump 14 is stopped (or the engine To stop the operation of the high-pressure pump 14).

尚、実際に燃圧強制上昇制御が開始された時点t1 から許容期間KT2 が経過したにも拘らず、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達しない場合には、高圧ポンプ14や高圧ポンプ14の制御系等に何らかの異常が発生している可能性があると判断して、燃圧強制上昇制御を終了する。この場合、リリーフ弁33の故障診断は実行されない。   If the fuel pressure Pf in the high-pressure fuel system does not reach the relief pressure Pfrl even though the allowable period KT2 has elapsed from the time t1 when the fuel pressure forced increase control is actually started, the high-pressure pump 14 or the high-pressure pump 14 14 determines that there is a possibility that some abnormality has occurred in the control system 14 and the like, and terminates the fuel pressure forced increase control. In this case, failure diagnosis of the relief valve 33 is not executed.

以上説明した本実施例1では、高圧燃料系内の目標燃圧Pftg をリリーフ圧Pfrl よりも高い圧力に設定して、高圧燃料系内の燃圧Pf を目標燃圧Pftg にするように高圧ポンプ14を制御する燃圧強制上昇制御を実行し、この燃圧強制上昇制御によって高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達してから所定の待機期間KT1 が経過した後に、高圧燃料系内の燃圧Pf を所定の故障判定燃圧KPf と比較してリリーフ弁33の故障の有無を判定するようにしたので、高圧ポンプ14の作動中にリリーフ弁33の故障診断を行うことができる。このため、もし、高圧ポンプ14の作動中にリリーフ弁33の故障が発生していても、その故障を高圧ポンプ14の作動中に検出することができる。   In the first embodiment described above, the target fuel pressure Pftg in the high-pressure fuel system is set to a pressure higher than the relief pressure Pfrl, and the high-pressure pump 14 is controlled so that the fuel pressure Pf in the high-pressure fuel system becomes the target fuel pressure Pftg. The fuel pressure forced increase control is executed, and after the predetermined standby period KT1 has elapsed after the fuel pressure Pf in the high pressure fuel system reaches the relief pressure Pfrl by this fuel pressure forced increase control, the fuel pressure Pf in the high pressure fuel system is set to a predetermined value. Therefore, the failure diagnosis of the relief valve 33 can be performed during the operation of the high-pressure pump 14. For this reason, even if a failure of the relief valve 33 occurs during the operation of the high-pressure pump 14, the failure can be detected during the operation of the high-pressure pump 14.

また、本実施例1では、エンジン回転速度Ne に応じて待機期間KT1 を設定するようにしたので、エンジン回転速度Ne に応じて高圧ポンプ14の吐出性能が変化して、例えばリリーフ弁33の閉弁固着故障時に高圧燃料系内の燃圧Pf が目標燃圧付近Pftg に上昇するまでに必要な期間が変化するのに対応して、待機期間KT1 を変化させることができ、待機期間KT1 を適正値に設定することができる。これにより、待機期間KT1 が必要以上に長くなることを回避して、リリーフ弁33の故障診断を早期に完了することができる。   In the first embodiment, since the standby period KT1 is set according to the engine rotational speed Ne, the discharge performance of the high-pressure pump 14 changes according to the engine rotational speed Ne, for example, the relief valve 33 is closed. The waiting period KT1 can be changed in response to the change of the period required for the fuel pressure Pf in the high-pressure fuel system to rise to Pftg near the target fuel pressure at the time of valve sticking failure, and the waiting period KT1 is set to an appropriate value. Can be set. As a result, it is possible to avoid the standby period KT1 from becoming unnecessarily long and complete the failure diagnosis of the relief valve 33 at an early stage.

更に、本実施例1では、燃圧強制上昇制御を開始してから所定の許容期間KT2 が経過したにも拘らず、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達しない場合には、高圧ポンプ14や高圧ポンプ14の制御系等に何らかの異常が発生している可能性があると判断して、燃圧強制上昇制御を終了するようにしたので、燃圧強制上昇制御が無駄に長期間継続されることを未然に防止することができる。   Further, in the first embodiment, the high pressure pump is used when the fuel pressure Pf in the high pressure fuel system does not reach the relief pressure Pfrl even though the predetermined allowable period KT2 has elapsed since the start of the fuel pressure forced increase control. 14 and the control system of the high-pressure pump 14 and the like, and it is determined that there is a possibility that some abnormality has occurred, so that the fuel pressure forced increase control is terminated, so that the fuel pressure forced increase control is continued unnecessarily for a long time. This can be prevented beforehand.

また、本実施例1では、燃圧強制上昇制御開始時の高圧燃料系内の燃圧Pf1と、エンジン回転速度Ne とに応じて許容期間KT2 を設定するようにしたので、燃圧強制上昇制御開始時の高圧燃料系内の燃圧Pf1や、エンジン回転速度Ne (高圧ポンプ14の吐出性能)に応じて、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に上昇するまでに必要な期間が変化するのに対応して、許容期間KT2 を変化させることができ、許容期間KT2 を適正値に設定することができる。   In the first embodiment, the allowable period KT2 is set according to the fuel pressure Pf1 in the high-pressure fuel system at the start of the fuel pressure forced increase control and the engine speed Ne. Corresponding to the change in the time required for the fuel pressure Pf in the high pressure fuel system to rise to the relief pressure Pfrl according to the fuel pressure Pf1 in the high pressure fuel system and the engine speed Ne (discharge performance of the high pressure pump 14) Thus, the allowable period KT2 can be changed, and the allowable period KT2 can be set to an appropriate value.

更に、本実施例1では、燃圧強制上昇制御開始時の冷却水温THWに応じて許容期間KT2 を補正するようにしたので、燃圧強制上昇制御開始時の冷却水温THWに応じて高圧ポンプ14の吐出性能が変化して、高圧燃料系内の燃圧Pf1がリリーフ圧Pfrl に上昇するまでに必要な期間が変化するのに対応して、許容期間KT2 を適正に補正することができる。   Further, in the first embodiment, since the allowable period KT2 is corrected according to the cooling water temperature THW at the start of the fuel pressure forced increase control, the discharge of the high pressure pump 14 according to the cooling water temperature THW at the start of the fuel pressure forced increase control. The permissible period KT2 can be appropriately corrected in response to the change in the period required for the fuel pressure Pf1 in the high-pressure fuel system to rise to the relief pressure Pfrl due to the change in performance.

また、本実施例1では、リリーフ弁33の故障診断を前回実行してからのエンジン運転回数が所定回数に達していることをリリーフ弁33の故障診断実行条件の1つとすることで、リリーフ弁33の故障診断を前回実行してからのエンジン運転回数が所定回数に達したときに、次のリリーフ弁33の故障診断を許可するようにしたので、リリーフ弁33の故障診断の実行頻度を適度に抑えて、燃圧強制上昇制御に伴うリリーフ弁33の開弁/閉弁の繰り返し動作の実行頻度を適度に抑えることができ、リリーフ弁33の耐久寿命の低下を防止することができる。   Further, in the first embodiment, the fact that the number of engine operations since the previous execution of the failure diagnosis of the relief valve 33 has reached a predetermined number of times is set as one of the failure diagnosis execution conditions of the relief valve 33. Since the failure diagnosis of the next relief valve 33 is permitted when the number of engine operations since the previous execution of the failure diagnosis of 33 has reached a predetermined number of times, the frequency of execution of the failure diagnosis of the relief valve 33 is moderate. Therefore, it is possible to moderately reduce the frequency of the repeated opening / closing operation of the relief valve 33 associated with the forced increase control of the fuel pressure, and to prevent the durability life of the relief valve 33 from being lowered.

また、本実施例1では、エンジン始動時にリリーフ弁33の故障診断を実行する場合に、リリーフ弁33の故障診断が完了するまで燃料噴射弁31の燃料噴射を停止するようにしたので、エンジン始動時にリリーフ弁33の故障診断を実行する場合には、燃料噴射弁31の燃料噴射を停止した状態(つまり高圧燃料系内の燃料を消費しない状態)で燃圧強制上昇制御を実行することができる。これにより、燃圧強制上昇制御によって高圧燃料系内の燃圧Pf を速やかに上昇させることができ、リリーフ弁33の故障診断を早期に完了することができる。   In the first embodiment, when the failure diagnosis of the relief valve 33 is executed when the engine is started, the fuel injection of the fuel injection valve 31 is stopped until the failure diagnosis of the relief valve 33 is completed. When failure diagnosis of the relief valve 33 is sometimes executed, the forced fuel pressure increase control can be executed in a state where the fuel injection of the fuel injection valve 31 is stopped (that is, a state where fuel in the high-pressure fuel system is not consumed). Thus, the fuel pressure Pf in the high-pressure fuel system can be quickly raised by the fuel pressure forced increase control, and the failure diagnosis of the relief valve 33 can be completed early.

次に、図9乃至図12を用いて本発明の実施例2を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, a second embodiment of the present invention will be described with reference to FIGS. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例2では、ECU38により後述する図10のリリーフ弁故障診断ルーチンを実行することで、燃圧強制上昇制御によって高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達してから所定の待機期間KT1 が経過した後に、所定の判定期間KT3 内における高圧燃料系内の燃圧の変動量(振幅)ΔPf を算出し、この燃圧の変動量ΔPf を所定の故障判定値ΔKPf と比較してリリーフ弁33の故障の有無を判定する。   In the second embodiment, the ECU 38 executes a relief valve failure diagnosis routine shown in FIG. 10 to be described later, so that a predetermined waiting period KT1 after the fuel pressure Pf in the high-pressure fuel system reaches the relief pressure Pfrl by the fuel pressure forced increase control. After a lapse of time, a fluctuation amount (amplitude) ΔPf of the fuel pressure in the high-pressure fuel system within a predetermined judgment period KT3 is calculated, and this fluctuation amount ΔPf of the fuel pressure is compared with a predetermined failure judgment value ΔKPf. Determine if there is a failure.

燃圧強制上昇制御を実行すると、高圧燃料系内の燃圧Pf が目標燃圧Pftg (リリーフ圧Pfrl よりも高い圧力)に向かって上昇する。その際、例えば、図9に実線で示すように、リリーフ弁33が正常に機能すれば、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達した後に、リリーフ弁33の開弁/閉弁が繰り返されて高圧燃料系内の燃圧Pf がリリーフ圧Pfrl 付近で変動(振動)するが、図9に破線で示すように、もし、リリーフ弁33が正常に開弁しない故障(例えばリリーフ弁33が閉弁状態で固着する閉弁固着故障等)が発生していると、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達した後に、更にリリーフ圧Pfrl よりも高い目標燃圧Pftg 付近まで高圧燃料系内の燃圧Pf が上昇して目標燃圧Pftg 付近でほぼ安定する(尚、燃料噴射中は燃料噴射毎に高圧燃料系内の燃圧Pf が比較的小さく変動する)。従って、燃圧強制上昇制御によって高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達してから所定の待機期間KT1 (例えばリリーフ弁33の閉弁固着故障時に高圧燃料系内の燃圧Pf が目標燃圧Pftg 付近に上昇するまでに必要な期間)が経過した後に、所定の判定期間KT3 内における高圧燃料系内の燃圧の変動量(振幅)ΔPf を所定の故障判定値ΔKPf と比較すれば、リリーフ弁33の故障の有無を精度良く判定することができる。   When the fuel pressure forced increase control is executed, the fuel pressure Pf in the high-pressure fuel system increases toward the target fuel pressure Pftg (pressure higher than the relief pressure Pfrl). At this time, for example, as shown by a solid line in FIG. 9, if the relief valve 33 functions normally, after the fuel pressure Pf in the high-pressure fuel system reaches the relief pressure Pfrl, the relief valve 33 is opened / closed. Repeatedly, the fuel pressure Pf in the high-pressure fuel system fluctuates (vibrates) in the vicinity of the relief pressure Pfrl. However, as shown by the broken line in FIG. 9, if the relief valve 33 does not open normally (for example, the relief valve 33 is If the valve is stuck in the closed state, the fuel pressure Pf reaches the relief pressure Pfrl, and then reaches the target fuel pressure Pftg higher than the relief pressure Pfrl. The fuel pressure Pf in the fuel tank rises and is substantially stabilized near the target fuel pressure Pftg (Note that during fuel injection, the fuel pressure Pf in the high-pressure fuel system fluctuates relatively small for each fuel injection). Therefore, after the fuel pressure Pf in the high-pressure fuel system reaches the relief pressure Pfrl by the fuel pressure forced increase control, a predetermined waiting period KT1 (for example, the fuel pressure Pf in the high-pressure fuel system at the time when the relief valve 33 is stuck closed becomes the target fuel pressure Pftg). If the amount of fluctuation (amplitude) ΔPf of the fuel pressure in the high-pressure fuel system within a predetermined determination period KT3 is compared with a predetermined failure determination value ΔKPf after a lapse of a necessary period until it rises in the vicinity, the relief valve 33 It is possible to accurately determine whether or not there is a failure.

図10のルーチンは、前記実施例1で説明した図5のルーチンのステップ108、109の処理をステップ108a、109aの処理に変更したものであり、それ以外の各ステップの処理は図5と同じである。   The routine of FIG. 10 is obtained by changing the processing of steps 108 and 109 of the routine of FIG. 5 described in the first embodiment to the processing of steps 108a and 109a, and the processing of each other step is the same as FIG. It is.

以下、本実施例2でECU38が実行する図10のリリーフ弁故障診断ルーチンの処理内容を説明する。本ルーチンでは、リリーフ弁33の故障診断実行条件が成立したときに、高圧燃料系内の目標燃圧Pftg をリリーフ圧Pfrl よりも高い圧力に設定して、高圧燃料系内の燃圧Pf を目標燃圧Pftg にするように高圧ポンプ14の吐出量を制御する燃圧強制上昇制御を実行する(ステップ101〜104)。   The processing contents of the relief valve failure diagnosis routine of FIG. 10 executed by the ECU 38 in the second embodiment will be described below. In this routine, when the failure diagnosis execution condition for the relief valve 33 is satisfied, the target fuel pressure Pftg in the high-pressure fuel system is set to a pressure higher than the relief pressure Pfrl, and the fuel pressure Pf in the high-pressure fuel system is set to the target fuel pressure Pftg. The fuel pressure forced increase control for controlling the discharge amount of the high-pressure pump 14 is executed (steps 101 to 104).

この後、燃圧強制上昇制御を開始してから許容期間KT2 が経過する前に、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達した場合には、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達してからの経過期間T1 が待機期間KT1 以上であるか否かを判定する(ステップ105〜107)。   Thereafter, if the fuel pressure Pf in the high-pressure fuel system reaches the relief pressure Pfrl before the allowable period KT2 elapses after the fuel pressure forced increase control is started, the fuel pressure Pf in the high-pressure fuel system becomes the relief pressure Pfrl. It is determined whether or not the elapsed period T1 after reaching the period is equal to or longer than the waiting period KT1 (steps 105 to 107).

この後、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達してからの経過期間T1 が待機期間KT1 以上であると判定されたとき、つまり、高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達してから待機期間KT1 が経過したと判定されたときに、ステップ108aに進み、所定の判定期間KT3 内における高圧燃料系内の燃圧の変動量ΔPf を算出する。ここで、判定期間KT3 は、例えば、高圧燃料系内の燃圧の変動量ΔPf を算出可能な最小期間に設定される。尚、判定期間KT1 は、時間(msec等)で設定しても良いし、或は、クランク角(℃A)で設定しても良い。   Thereafter, when it is determined that the elapsed time T1 after the fuel pressure Pf in the high-pressure fuel system reaches the relief pressure Pfrl is equal to or longer than the standby period KT1, that is, the fuel pressure Pf in the high-pressure fuel system is set to the relief pressure Pfrl. When it is determined that the standby period KT1 has elapsed since the arrival, the routine proceeds to step 108a, where the fluctuation amount ΔPf of the fuel pressure in the high-pressure fuel system within the predetermined determination period KT3 is calculated. Here, the determination period KT3 is set to, for example, the minimum period in which the fuel pressure fluctuation amount ΔPf in the high-pressure fuel system can be calculated. The determination period KT1 may be set by time (msec or the like), or may be set by crank angle (° C. A).

この場合、図11に示す判定期間KT3 のテーブルを参照して、エンジン回転速度Ne に応じた判定期間KT3 を算出する。図11の判定期間KT3 のテーブルは、エンジン回転速度Ne に応じて、高圧燃料系内の燃圧Pf の変動周期が変化することを考慮して、例えば、エンジン回転速度Ne が高くなるほど判定期間KT3 が短くなるように設定されている。この判定期間KT3 のテーブルは、予め試験データや設計データ等に基づいて作成され、ECU38のROMに記憶されている。   In this case, the determination period KT3 corresponding to the engine speed Ne is calculated with reference to the determination period KT3 table shown in FIG. The table of the determination period KT3 in FIG. 11 takes into account that the fluctuation cycle of the fuel pressure Pf in the high-pressure fuel system changes according to the engine speed Ne, for example, the determination period KT3 increases as the engine speed Ne increases. It is set to be shorter. The determination period KT3 table is created in advance based on test data, design data, and the like, and is stored in the ROM of the ECU 38.

また、判定期間KT3 内における高圧燃料系内の燃圧の変動量ΔPf は、例えば、判定期間KT3 内における高圧燃料系内の燃圧Pf の最大値と最小値との差を、高圧燃料系内の燃圧の変動量ΔPf として算出する。或は、判定期間KT3 内における高圧燃料系内の燃圧Pf のピーク値の平均値とボトム値の平均値との差(又はピーク値とボトム値との差の平均値)を、高圧燃料系内の燃圧の変動量ΔPf として算出するようにしても良い。   Further, the fluctuation amount ΔPf of the fuel pressure in the high-pressure fuel system in the determination period KT3 is, for example, the difference between the maximum value and the minimum value of the fuel pressure Pf in the high-pressure fuel system in the determination period KT3. Is calculated as a fluctuation amount ΔPf. Alternatively, the difference between the average value of the peak value of the fuel pressure Pf and the average value of the bottom value (or the average value of the difference between the peak value and the bottom value) in the high-pressure fuel system within the judgment period KT3 is calculated in the high-pressure fuel system. The fuel pressure fluctuation amount ΔPf may be calculated.

この後、ステップ109aに進み、判定期間KT3 内における高圧燃料系内の燃圧の変動量ΔPf が所定の故障判定値ΔKPf よりも大きいか否かを判定する。この場合、図12に示す故障判定値ΔKPf のテーブルを参照して、エンジン回転速度Ne に応じた故障判定値ΔKPf を算出する。図12の故障判定値ΔKPf のテーブルは、エンジン回転速度Ne に応じて高圧ポンプ14の吐出性能が変化して、リリーフ弁33の開弁/閉弁による高圧燃料系内の燃圧の変動量(振幅)ΔPf が変化することを考慮して、例えば、エンジン回転速度Ne が高くなるほど故障判定値ΔKPf が大きくなるように設定されている。この故障判定値ΔKPf のテーブルは、予め試験データや設計データ等に基づいて作成され、ECU38のROMに記憶されている。   Thereafter, the routine proceeds to step 109a, where it is determined whether or not the fuel pressure fluctuation amount ΔPf in the high-pressure fuel system within the determination period KT3 is larger than a predetermined failure determination value ΔKPf. In this case, the failure determination value ΔKPf corresponding to the engine rotational speed Ne is calculated with reference to the failure determination value ΔKPf table shown in FIG. In the table of failure judgment value ΔKPf in FIG. 12, the discharge performance of the high-pressure pump 14 changes according to the engine rotational speed Ne, and the fluctuation amount (amplitude) of the fuel pressure in the high-pressure fuel system due to the relief valve 33 being opened / closed. ) In consideration of the change in ΔPf, for example, the failure determination value ΔKPf is set to increase as the engine speed Ne increases. The table of the failure determination value ΔKPf is created in advance based on test data, design data, and the like, and is stored in the ROM of the ECU 38.

このステップ109aで、高圧燃料系内の燃圧の変動量ΔPf が故障判定値ΔKPf よりも大きいと判定された場合には、リリーフ弁33の故障無し(正常)と判定した後、燃圧強制上昇制御を終了して、通常制御を実行する(ステップ110、111)。   If it is determined in step 109a that the fluctuation amount ΔPf of the fuel pressure in the high-pressure fuel system is larger than the failure determination value ΔKPf, it is determined that there is no failure (normal) in the relief valve 33, and then the fuel pressure forced increase control is performed. After completing, normal control is executed (steps 110 and 111).

これに対して、上記ステップ109aで、高圧燃料系内の燃圧の変動量ΔPf が故障判定値ΔKPf 以下であると判定された場合には、リリーフ弁33の故障(例えばリリーフ弁33が閉弁状態で固着する閉弁固着故障)有りと判定した後、フェールセーフ処理を実行する(ステップ112、113)。   On the other hand, when it is determined in step 109a that the fuel pressure fluctuation amount ΔPf in the high-pressure fuel system is equal to or less than the failure determination value ΔKPf, the relief valve 33 has failed (for example, the relief valve 33 is closed). After it is determined that there is a valve-closing sticking failure that is stuck at), fail-safe processing is executed (steps 112 and 113).

以上説明した本実施例2では、燃圧強制上昇制御によって高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達してから所定の待機期間KT1 が経過した後に、所定の判定期間KT3 内における高圧燃料系内の燃圧の変動量(振幅)ΔPf を算出し、この燃圧の変動量ΔPf を所定の故障判定値ΔKPf と比較してリリーフ弁33の故障の有無を判定するようにしたので、高圧ポンプ14の作動中にリリーフ弁33の故障診断を行うことができ、前記実施例1とほぼ同じ効果を得ることができる。   In the second embodiment described above, after the predetermined standby period KT1 has elapsed after the fuel pressure Pf in the high-pressure fuel system has reached the relief pressure Pfrl by the fuel pressure forced increase control, the high-pressure fuel system in the predetermined determination period KT3 has elapsed. The fuel pressure fluctuation amount (amplitude) ΔPf is calculated, and the fuel pressure fluctuation amount ΔPf is compared with a predetermined failure judgment value ΔKPf to determine whether or not the relief valve 33 has failed. Failure diagnosis of the relief valve 33 can be performed during operation, and substantially the same effect as in the first embodiment can be obtained.

また、本実施例2では、判定期間KT3 内における高圧燃料系内の燃圧の変動量ΔPf を算出する際に、エンジン回転速度Ne に応じて判定期間KT3 を設定するようにしたので、エンジン回転速度Ne に応じて、高圧燃料系内の燃圧Pf の変動周期が変化するのに対応して、判定期間KT3 を変化させることができ、判定期間KT3 を適正値(例えば高圧燃料系内の燃圧の変動量ΔPf を算出可能な最小期間)に設定することができる。   In the second embodiment, the determination period KT3 is set according to the engine speed Ne when calculating the fuel pressure fluctuation amount ΔPf in the high-pressure fuel system in the determination period KT3. According to Ne, the determination period KT3 can be changed in response to the change of the fluctuation cycle of the fuel pressure Pf in the high-pressure fuel system, and the determination period KT3 can be changed to an appropriate value (for example, the fluctuation of the fuel pressure in the high-pressure fuel system). The amount ΔPf can be set to a minimum period during which calculation is possible.

更に、本実施例2では、エンジン回転速度Ne に応じて故障判定値ΔKPf を設定するようにしたので、エンジン回転速度Ne に応じて高圧ポンプ14の吐出性能が変化して、リリーフ弁33の開弁/閉弁による高圧燃料系内の燃圧の変動量(振幅)ΔPf が変化するのに対応して、故障判定値ΔKPf を変化させることができ、故障判定値ΔKPf を適正値に設定することができる。   Further, in the second embodiment, since the failure determination value ΔKPf is set according to the engine speed Ne, the discharge performance of the high-pressure pump 14 changes according to the engine speed Ne, and the relief valve 33 is opened. The failure judgment value ΔKPf can be changed in response to the change (amplitude) ΔPf of the fuel pressure in the high-pressure fuel system due to the valve / valve closing, and the failure judgment value ΔKPf can be set to an appropriate value. it can.

尚、上記各実施例1,2では、リリーフ弁33の故障診断を前回実行してからのエンジン運転回数が所定回数に達したときに、次のリリーフ弁33の故障診断を許可するようにしたが、これに限定されず、例えば、リリーフ弁33の故障診断を前回実行してからの走行時間、走行距離等が所定値に達したときに、次のリリーフ弁33の故障診断を許可するようにしても良い。或は、通常のエンジン運転中はリリーフ弁33の故障診断を禁止して、ディーラー等で車両の点検のためにチェックモードに切り換えられた場合に、リリーフ弁33の故障診断を許可するようにしても良い。このようにしても、リリーフ弁33の故障診断の実行頻度を抑えて、燃圧強制上昇制御に伴うリリーフ弁33の開弁/閉弁の繰り返し動作の実行頻度を抑えることができ、リリーフ弁33の耐久寿命の低下を防止することができる。しかしながら、リリーフ弁33の耐久寿命があまり問題にならないような場合には、エンジン運転毎にリリーフ弁33の故障診断を許可するようにしても良い。   In the first and second embodiments, the failure diagnosis of the next relief valve 33 is permitted when the number of engine operations after the previous execution of the failure diagnosis of the relief valve 33 has reached a predetermined number. However, the present invention is not limited to this. For example, when the travel time, travel distance, etc. since the previous failure diagnosis of the relief valve 33 has reached a predetermined value, the failure diagnosis of the next relief valve 33 is permitted. Anyway. Alternatively, the failure diagnosis of the relief valve 33 is prohibited during normal engine operation, and the failure diagnosis of the relief valve 33 is permitted when the dealer or the like switches to the check mode for vehicle inspection. Also good. Even in this case, it is possible to suppress the frequency of execution of failure diagnosis of the relief valve 33, and to suppress the frequency of execution of the repeated opening / closing operation of the relief valve 33 associated with the fuel pressure forced increase control. It is possible to prevent a decrease in durability life. However, if the durable life of the relief valve 33 is not a problem, failure diagnosis of the relief valve 33 may be permitted every time the engine is operated.

また、上記各実施例1,2では、燃圧強制上昇制御によって高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達してから所定の待機期間KT1 が経過した後の高圧燃料系内の燃圧Pf や燃圧の変動量ΔPf に基づいてリリーフ弁33の故障の有無を判定するようにしたが、故障判定方法は、これに限定されず、適宜変更しても良く、例えば、燃圧強制上昇制御によって高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達した後の所定期間内における高圧燃料系内の燃圧Pf の上昇量を故障判定値と比較してリリーフ弁33の故障の有無を判定するようにしたり、或は、燃圧強制上昇制御によって高圧燃料系内の燃圧Pf がリリーフ圧Pfrl に到達してから所定期間が経過した後の高圧燃料系内の燃圧Pf と目標燃圧Pftg との差(又は高圧燃料系内の燃圧Pf とリリーフ圧Pfrl との差)を故障判定値と比較してリリーフ弁33の故障の有無を判定するようにしても良い。   In the first and second embodiments, the fuel pressure Pf in the high-pressure fuel system after a predetermined waiting period KT1 has elapsed after the fuel pressure Pf in the high-pressure fuel system reaches the relief pressure Pfrl by the fuel pressure forced increase control. Although the presence or absence of failure of the relief valve 33 is determined based on the variation amount ΔPf of the fuel pressure, the failure determination method is not limited to this, and may be changed as appropriate. For example, high pressure fuel is controlled by fuel pressure forced increase control. The increase amount of the fuel pressure Pf in the high-pressure fuel system within a predetermined period after the fuel pressure Pf in the system reaches the relief pressure Pfrl is compared with a failure determination value to determine whether or not the relief valve 33 has failed, Alternatively, the difference between the fuel pressure Pf in the high-pressure fuel system and the target fuel pressure Pftg after the predetermined period has elapsed after the fuel pressure Pf in the high-pressure fuel system reaches the relief pressure Pfrl by the fuel pressure forced increase control (or the high-pressure fuel system). Inside fuel pressure The difference between Pf and the relief pressure Pfrl) may be compared with a failure determination value to determine whether or not the relief valve 33 has failed.

また、上記各実施例1,2では、図1に示すように、高圧ポンプ14と別体でリリーフ弁33を設けたシステム(デリバリパイプ30にリリーフ弁33を設けたシステム)に本発明を適用したが、これに限定されず、燃料供給システムの構成を適宜変更しても良く、例えば、図13に示すように、高圧ポンプ14にリリーフ弁33を一体的に設けたシステム(高圧ポンプ14に、高圧燃料配管29内の燃料をポンプ室18へ戻す燃料戻し通路39を一体的に設け、この燃料戻し通路39の途中にリリーフ弁33を設けたシステム)に本発明を適用しても良い。   In the first and second embodiments, as shown in FIG. 1, the present invention is applied to a system in which a relief valve 33 is provided separately from the high-pressure pump 14 (a system in which the relief valve 33 is provided in the delivery pipe 30). However, the present invention is not limited to this, and the configuration of the fuel supply system may be appropriately changed. For example, as shown in FIG. 13, a system in which a relief valve 33 is integrally provided in the high pressure pump 14 (in the high pressure pump 14 The present invention may be applied to a system in which a fuel return passage 39 for returning the fuel in the high-pressure fuel pipe 29 to the pump chamber 18 is integrally provided, and a relief valve 33 is provided in the middle of the fuel return passage 39).

11…燃料タンク、12…低圧ポンプ、14…高圧ポンプ、18…ポンプ室、19…ピストン、22…吸入口、23…燃圧制御弁、27…吐出口、29…高圧燃料配管、30…デリバリパイプ、31…燃料噴射弁、32…燃圧センサ、33…リリーフ弁、34…リリーフ配管、38…ECU(故障診断手段)   DESCRIPTION OF SYMBOLS 11 ... Fuel tank, 12 ... Low pressure pump, 14 ... High pressure pump, 18 ... Pump chamber, 19 ... Piston, 22 ... Suction port, 23 ... Fuel pressure control valve, 27 ... Discharge port, 29 ... High pressure fuel piping, 30 ... Delivery pipe , 31 ... Fuel injection valve, 32 ... Fuel pressure sensor, 33 ... Relief valve, 34 ... Relief piping, 38 ... ECU (failure diagnosis means)

Claims (10)

高圧ポンプから吐出される高圧の燃料を燃料噴射弁に供給する筒内噴射式内燃機関の燃料供給システムに適用され、前記高圧ポンプから前記燃料噴射弁に燃料を供給する高圧燃料系内の燃料圧力(以下「燃圧」という)が所定のリリーフ圧よりも高くなったときに開弁して前記高圧燃料系内の燃圧を低下させるリリーフ弁を備えた筒内噴射式内燃機関の燃料供給システムの故障診断装置において、
前記高圧燃料系内の目標燃圧を前記リリーフ圧よりも高い圧力に設定して、前記高圧燃料系内の燃圧を前記目標燃圧にするように前記高圧ポンプを制御する燃圧強制上昇制御を実行し、この燃圧強制上昇制御によって前記高圧燃料系内の燃圧が前記リリーフ圧に到達してから所定の待機期間が経過した後に、前記高圧燃料系内の燃圧を所定の故障判定燃圧と比較して前記リリーフ弁の故障の有無を判定する故障診断手段を備え
前記故障診断手段は、前記燃圧強制上昇制御時の目標燃圧を前記リリーフ圧よりも第1の所定値だけ高い圧力に設定すると共に、前記故障判定燃圧を前記リリーフ圧よりも第2の所定値だけ高い圧力に設定し、前記第1の所定値を前記第2の所定値よりも大きい値に設定することを特徴とする筒内噴射式内燃機関の燃料供給システムの故障診断装置。
Fuel pressure in a high-pressure fuel system that is applied to a fuel supply system of a direct injection internal combustion engine that supplies high-pressure fuel discharged from a high-pressure pump to a fuel injection valve, and that supplies fuel from the high-pressure pump to the fuel injection valve Failure of a fuel supply system of a direct injection internal combustion engine provided with a relief valve that opens when the fuel pressure (hereinafter referred to as “fuel pressure”) becomes higher than a predetermined relief pressure and reduces the fuel pressure in the high-pressure fuel system In the diagnostic device,
A target fuel pressure in the high-pressure fuel system is set to a pressure higher than the relief pressure, and a fuel pressure forced increase control is performed to control the high-pressure pump so that the fuel pressure in the high-pressure fuel system becomes the target fuel pressure, The fuel pressure in the high-pressure fuel system is compared with a predetermined failure determination fuel pressure after a predetermined standby period has elapsed after the fuel pressure in the high-pressure fuel system reaches the relief pressure by the fuel pressure forced increase control. Provided with a failure diagnosis means for determining the presence or absence of a valve failure ,
The failure diagnosis means sets the target fuel pressure during the fuel pressure forced increase control to a pressure higher by a first predetermined value than the relief pressure, and sets the failure determination fuel pressure by a second predetermined value above the relief pressure. A failure diagnosis device for a fuel supply system of a direct injection internal combustion engine , wherein the pressure is set to a high pressure and the first predetermined value is set to a value larger than the second predetermined value .
前記故障診断手段は、前記第1の所定値と前記第2の所定値を、それぞれ前記リリーフ弁の開弁特性と前記高圧燃料系の設計仕様のうちの少なくとも一方に基づいて設定することを特徴とする請求項に記載の筒内噴射式内燃機関の燃料供給システムの故障診断装置。 The failure diagnosis means sets the first predetermined value and the second predetermined value based on at least one of a valve opening characteristic of the relief valve and a design specification of the high-pressure fuel system, respectively. The failure diagnosis device for a fuel supply system of a direct injection internal combustion engine according to claim 1 . 前記故障診断手段は、内燃機関の回転速度に応じて前記待機期間を設定することを特徴とする請求項1又は2に記載の筒内噴射式内燃機関の燃料供給システムの故障診断装置。 The failure diagnosis device for a fuel supply system for a direct injection internal combustion engine according to claim 1 or 2 , wherein the failure diagnosis means sets the standby period according to the rotational speed of the internal combustion engine. 前記故障診断手段は、前記燃圧強制上昇制御を開始してから所定の許容期間が経過しても、前記高圧燃料系内の燃圧が前記リリーフ圧に到達しない場合には、前記燃圧強制上昇制御を終了することを特徴とする請求項1乃至のいずれかに記載の筒内噴射式内燃機関の燃料供給システムの故障診断装置。 If the fuel pressure in the high-pressure fuel system does not reach the relief pressure even after a predetermined allowable period has elapsed since the start of the fuel pressure forced increase control, the failure diagnosis means performs the fuel pressure forced increase control. The failure diagnosis apparatus for a fuel supply system for a direct injection internal combustion engine according to any one of claims 1 to 3 , wherein the apparatus is terminated. 前記故障診断手段は、前記燃圧強制上昇制御開始時の前記高圧燃料系内の燃圧と、内燃機関の回転速度とに応じて前記許容期間を設定することを特徴とする請求項に記載の筒内噴射式内燃機関の燃料供給システムの故障診断装置。 5. The cylinder according to claim 4 , wherein the failure diagnosis unit sets the allowable period according to a fuel pressure in the high-pressure fuel system at the start of the fuel pressure forced increase control and a rotation speed of the internal combustion engine. A failure diagnosis device for a fuel supply system of an internal injection internal combustion engine. 前記故障診断手段は、前記燃圧強制上昇制御開始時の内燃機関の冷却水温に応じて前記許容期間を補正することを特徴とする請求項に記載の筒内噴射式内燃機関の燃料供給システムの故障診断装置。 6. The fuel supply system for a direct injection internal combustion engine according to claim 5 , wherein the failure diagnosis unit corrects the permissible period according to a cooling water temperature of the internal combustion engine at the start of the fuel pressure forced increase control. Fault diagnosis device. 前記故障診断手段は、前記リリーフ弁の故障診断を前回実行してからの内燃機関の運転回数が所定回数に達したときに、次のリリーフ弁の故障診断を許可することを特徴とする請求項1乃至のいずれかに記載の筒内噴射式内燃機関の燃料供給システムの故障診断装置。 The failure diagnosis means permits a failure diagnosis of the next relief valve when the number of operations of the internal combustion engine after a previous execution of the failure diagnosis of the relief valve reaches a predetermined number. A failure diagnosis apparatus for a fuel supply system for a direct injection internal combustion engine according to any one of claims 1 to 6 . 前記故障診断手段は、車両の点検のために所定のチェックモードに切り換えられた場合に、前記リリーフ弁の故障診断を許可することを特徴とする請求項1乃至のいずれかに記載の筒内噴射式内燃機関の燃料供給システムの故障診断装置。 The in-cylinder according to any one of claims 1 to 7 , wherein the failure diagnosis unit permits failure diagnosis of the relief valve when the vehicle is switched to a predetermined check mode for vehicle inspection. A failure diagnosis device for a fuel supply system of an injection internal combustion engine. 前記故障診断手段は、内燃機関の始動時に前記リリーフ弁の故障診断を実行する場合に、該リリーフ弁の故障診断が完了するまで前記燃料噴射弁の燃料噴射を停止することを特徴とする請求項1乃至のいずれかに記載の筒内噴射式内燃機関の燃料供給システムの故障診断装置。 The failure diagnosis means stops fuel injection of the fuel injection valve until the failure diagnosis of the relief valve is completed when the failure diagnosis of the relief valve is executed when the internal combustion engine is started. A failure diagnosis apparatus for a fuel supply system for a direct injection internal combustion engine according to any one of 1 to 8 . 前記高圧燃料系内の燃料を前記高圧ポンプ内に戻す燃料戻し通路を備えていることを特徴とする請求項1乃至9のいずれかに記載の筒内噴射式内燃機関の燃料供給システムの故障診断装置。10. A failure diagnosis of a fuel supply system for a direct injection internal combustion engine according to claim 1, further comprising a fuel return passage for returning the fuel in the high pressure fuel system into the high pressure pump. apparatus.
JP2010106596A 2010-05-06 2010-05-06 Failure diagnosis device for fuel supply system of direct injection internal combustion engine Expired - Fee Related JP5370685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010106596A JP5370685B2 (en) 2010-05-06 2010-05-06 Failure diagnosis device for fuel supply system of direct injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010106596A JP5370685B2 (en) 2010-05-06 2010-05-06 Failure diagnosis device for fuel supply system of direct injection internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011236753A JP2011236753A (en) 2011-11-24
JP5370685B2 true JP5370685B2 (en) 2013-12-18

Family

ID=45325013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010106596A Expired - Fee Related JP5370685B2 (en) 2010-05-06 2010-05-06 Failure diagnosis device for fuel supply system of direct injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP5370685B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6714537B2 (en) * 2017-04-24 2020-06-24 株式会社デンソー Relief valve determination device for high pressure fuel supply system
KR102262581B1 (en) * 2017-05-08 2021-06-09 현대자동차주식회사 Method for dealing with a failure in fuel injection equipment system
JP2019039408A (en) * 2017-08-28 2019-03-14 株式会社デンソー Valve opening determining device of relief valve

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3714132B2 (en) * 2000-07-28 2005-11-09 株式会社デンソー Abnormality diagnosis device for high pressure fuel supply system of internal combustion engine
JP4380071B2 (en) * 2001-03-01 2009-12-09 株式会社デンソー Fuel injection system
JP4508020B2 (en) * 2005-07-13 2010-07-21 トヨタ自動車株式会社 Diagnostic device for electromagnetic relief valve in fuel supply system
JP4286819B2 (en) * 2005-08-11 2009-07-01 株式会社日立製作所 Engine high-pressure fuel supply control device
JP4407608B2 (en) * 2005-09-28 2010-02-03 株式会社デンソー Abnormality judgment device for pressure accumulating injector
JP4483770B2 (en) * 2005-11-18 2010-06-16 株式会社デンソー Solenoid valve abnormality diagnosis method
JP4591390B2 (en) * 2006-03-27 2010-12-01 株式会社デンソー Pump fault diagnosis device
JP5093644B2 (en) * 2006-11-24 2012-12-12 トヨタ自動車株式会社 Fuel cell system
JP5093890B2 (en) * 2008-01-31 2012-12-12 日野自動車株式会社 Abnormality diagnosis device for accumulator fuel supply system
JP2010025102A (en) * 2008-06-16 2010-02-04 Hitachi Ltd Control diagnostic system of internal combustion engine

Also Published As

Publication number Publication date
JP2011236753A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5387538B2 (en) Fail safe control device for in-cylinder internal combustion engine
JP4355346B2 (en) Control device for internal combustion engine
JP4508020B2 (en) Diagnostic device for electromagnetic relief valve in fuel supply system
US10113500B2 (en) Fuel-pressure controller for direct injection engine
JP4297129B2 (en) Start control device for internal combustion engine
JP5163810B2 (en) Leak mechanism diagnostic device for internal combustion engine
JP2005337031A (en) Abnormality diagnosis apparatus for high pressure fuel system of cylinder injection type internal combustion engine
JP3972823B2 (en) Accumulated fuel injection system
JP2009115009A (en) After-stop fuel pressure control device of direct injection engine
JP2006291785A (en) Start controller of cylinder injection type internal combustion engine
JP4348805B2 (en) Accumulated fuel injection control device
JP4349451B2 (en) Fuel injection control device and fuel injection system using the same
JP2011185158A (en) Failure diagnostic device of high pressure fuel supply system of internal combustion engine
JP4372466B2 (en) Abnormality diagnosis device for high pressure fuel supply system of internal combustion engine
JP2010169022A (en) Fuel supply system for internal combustion engine
JP2006329033A (en) Accumulator fuel injection device
JP5370685B2 (en) Failure diagnosis device for fuel supply system of direct injection internal combustion engine
JP2009180158A (en) Abnormality diagnosis device for accumulator type fuel supply device
JP2009091963A (en) After-stop fuel pressure control device for cylinder injection internal combustion engine
JP2011202597A (en) High-pressure pump control device for internal combustion engine
JP5141706B2 (en) Fuel pressure control device
JP2004156558A (en) Pressure accumulating fuel injection device
JP5344312B2 (en) Abnormality diagnosis device for fuel supply system of internal combustion engine
JP2011032870A (en) Abnormality diagnostic device for fuel pressure holding mechanism
JPH10176592A (en) Fuel pressure diagnostic device of fuel injection device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130903

R151 Written notification of patent or utility model registration

Ref document number: 5370685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees