JP2005009169A - Compaction pile formation method - Google Patents

Compaction pile formation method Download PDF

Info

Publication number
JP2005009169A
JP2005009169A JP2003174400A JP2003174400A JP2005009169A JP 2005009169 A JP2005009169 A JP 2005009169A JP 2003174400 A JP2003174400 A JP 2003174400A JP 2003174400 A JP2003174400 A JP 2003174400A JP 2005009169 A JP2005009169 A JP 2005009169A
Authority
JP
Japan
Prior art keywords
pile
casing pipe
compaction
sand
reaches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003174400A
Other languages
Japanese (ja)
Other versions
JP4583730B2 (en
Inventor
Makoto Otsuka
誠 大塚
Osamu Ishida
修 石田
Hiroki Yoshitomi
宏紀 吉富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Construction Co Ltd filed Critical Fudo Construction Co Ltd
Priority to JP2003174400A priority Critical patent/JP4583730B2/en
Priority to US10/624,930 priority patent/US6881013B2/en
Publication of JP2005009169A publication Critical patent/JP2005009169A/en
Application granted granted Critical
Publication of JP4583730B2 publication Critical patent/JP4583730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compaction pile formation method capable of forming a sand pile having such an extent that no inconvenience occurs in terms of strength even if a natural ground is a soft ground and surely controlling a total construction time and the increase of a total amount of sand. <P>SOLUTION: In a compacting process, a compacting force F when the sand is compacted by a casing pipe and a pile diameter D of the sand compacted by the casing pipe is always calculated, and when the compacting force F reaches a predetermined set point F<SB>0</SB>before the pile diameter D of sand reaches a minimum pile diameter D1, compaction has completed when the compacting force F reaches a predetermined set point F<SB>0</SB>, and when the compacting force F reaches the predetermined set point F<SB>0</SB>before the pile diameter D of the sand compacted by the casing pipe reaches a maximum pile diameter D2, compaction has completed when the compacting force F reaches the predetermined set point F<SB>0</SB>, when the pile diameter D of sand reaches the maximum pile diameter D2 before the compacting force F reaches the predetermined set point F<SB>0</SB>, the compaction has completed when it reaches the maximum pile diameter D2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、地盤を改良するために地盤中に砂等の杭を適所に造成する締め固め杭造成工法に関する。
【0002】
【従来の技術】
軟弱地盤等の改良を行う工法として、改良エリアの適所の地盤中に砂杭を造成して地盤改良を行うサンドコンパクションパイル工法(SCP工法)が従来より知られている。このサンドコンパクションパイル工法による従来の締め固め杭造成工法を説明する。
【0003】
図8に示すように、締め固め杭造成装置1は、図示しない施工機本体に対して上下方向に配置されたケーシングパイプ2と、このケーシングパイプ2を振動させる起振機3と、ケーシングパイプ2の下端側に設けられた締め固め部材4と、この締め固め部材4を上下方向に往復動させるピストンシリンダ機構5とを備えている。
【0004】
次に、この締め固め杭造成装置1を使用した砂杭造成作業を説明する。起振機3を作動してケーシングパイプ2を地盤6中の所定深度まで貫入する。次に、ピストンシリンダ機構5を往復動させながらケーシングパイプ2の下端から砂を排出、かつ締め固めながらケーシングパイプ2を所定長だけ上方に引き抜く引き抜き工程を行う。この引き抜き工程によって、ケーシングパイプ2が引き抜かれた地盤6中のスペースに砂が充填される。
【0005】
次に、昇降を止めてケーシングパイプ2内に砂を補給する。そして、ケーシングパイプ2を再度上方に引き抜く工程を行う。この引き工程時にピストンシリンダ機構5を往復動させながら砂を排出、かつ締め固めが行われる。以降、地表に達するまで引き抜き工程の中で締め固めを行うと、ケーシングパイプ2を貫入した位置に図9に示すような砂杭7が造成される。このような砂杭7を改良エリアに適当間隔に造成する。
【0006】
ところで、地盤改良したい原地盤6の強度は、均一ではなくバラツキがあるのは一般的である。そのため、原地盤6の強度に応じて造成する砂杭7の杭径及び強度のいずれか一方、若しくは双方を可変させる工法を本出願人が先に提案した(特許文献1、特許文献2、特許文献3参照)。
【0007】
この工法を例えば杭径のみを可変する場合を例に説明すると、締め固め工程においてピストンシリンダ機構5が砂杭7を下方に押圧する押圧力を検出し、この押圧力が所定の設置値に達するまで砂杭7を押圧する。原地盤6が軟弱な箇所では砂杭7が拡径する方向に大きく圧縮変形して初めて押圧力が所定の設定値に達し、大きな径の砂杭7が造成される。
【0008】
また、原地盤6が硬い箇所では砂杭7があまり拡径しないで押圧力が所定の設定値に達し、比較的小さな径の砂杭7が造成される。このように締め固め工程において、ピストンシリンダ機構5の押圧力を一定とする砂杭7を造成することによって原地盤の軟弱性に応じた地盤補強を行い、ひいては均一な地盤改良を達成しようとするものである。
【0009】
【特許文献1】
特公昭61−25859号公報
【0010】
【特許文献2】
特公昭64−2725号公報
【0011】
【特許文献3】
米国特許第4,487,524号明細書
【0012】
【発明が解決しようとする課題】
しかしながら、前記従来の締め固め杭造成工法では、原地盤6が非常に軟弱であると、ピストンシリンダ機構5の押圧力が所定の設定値に達するまでに砂杭7の径があまりにも大きくなり過ぎ、図10の左側に示すような大径の砂杭8が造成されることになる。最悪の場合には、ピストンシリンダ機構5の押圧力が所定の設定値に達せずに、作業を一旦中止することにもなる。以上より、トータルの施工時間やトータルの砂量が増加し、これらの増加は、工事費の増大につながった。
【0013】
特に、施工開始初期のように周囲に何ら砂杭7が造成されていない箇所では、上述のような問題が発生する可能性が高かった。
【0014】
そこで、本発明は、前記した課題を解決すべくなされたものであり、原地盤が非常に軟弱な箇所であっても強度的に不都合が発生しない程度の砂杭を造成し、且つ、トータルの施工時間やトータルの砂量の増加を確実に抑えることができる締め固め杭造成工法を提供することを目的とする。
【0015】
【課題を解決するための手段】
請求項1の発明は、ケーシングパイプを地盤中の所定深度まで貫入する初期貫入工程の後に、前記ケーシングパイプの下端から粉粒体を排出しつつ前記ケーシングパイプを引き抜く引き抜き工程と、前記ケーシングパイプを再貫入して排出した粉粒体を締め固める締め固め工程とを交互に繰り返して地盤中に粉粒体の杭を造成する締め固め杭造成工法において、前記締め固め工程では、前記ケーシングパイプが粉粒体を締め固めする際の締め固め力と、前記ケーシングパイプによって締め固められた粉粒体の杭断面積とを常時算出し、前記ケーシングパイプの締め固めによって粉粒体の杭断面積が最小杭断面積に達する前に締め固め力が所定の設定値に達した場合には粉粒体の杭断面積が最小杭断面積に達した時点で締め固めを完了し、前記ケーシングパイプの締め固めによって粉粒体の杭断面積が最大杭断面積に達する前に締め固め力が所定の設定値に達した場合には締め固め力が所定の設定値に達した時点で締め固めを完了し、締め固め力が所定の設定値に達する前に前記ケーシングパイプの締め固めによる粉粒体の杭断面積が最大杭断面積に達した場合には粉粒体の杭断面積が最大杭断面積に達した時点で締め固めを完了することを特徴とする。
【0016】
この締め固め杭造成工法では、原地盤が非常に軟弱な箇所であっても杭断面積が最大断面積を越えることがなく、また、所定の設定値の締め固め力で締め固めされなくとも杭径が最大断面積を有することから必要最小限の強度が保持される。従って、原地盤が非常に軟弱な箇所であっても強度的に不都合が発生しない程度の砂杭が造成され、且つ、トータルの施工時間やトータルの砂量の増加が確実に抑えられる。
【0017】
請求項2の発明は、請求項1記載の締め固め杭造成工法であって、前記締め固め工程では、前記ケーシングパイプを下方に押圧すると共に前記ケーシングパイプを回転して粉粒体の杭を締め固め、前記締め固め力は、前記ケーシングパイプが粉粒体の杭を押圧する押圧力と、前記ケーシングパイプが粉粒体の杭に対して回転する回転トルクとを要素とすることを特徴とする。
【0018】
この締め固め杭造成工法では、請求項1の発明の作用に加え、正確に締め固め状態、即ち、杭の強度に即した情報が得られるため、所望の強度を有する杭が造成される。
【0019】
請求項3の発明は、請求項2記載の締め固め杭造成工法であって、前記ケーシングパイプの押圧力をP、前記引き抜き工程時のケーシングパイプの回転トルクをT1、前記締め固め工程時のケーシングパイプの回転トルクをT2、締め固め時間をt、施工データより得られる係数をα、βとすると、締め固め力Fは、F=α・P・(T2/T1)・t+βの式で算出される値としたことを特徴とする。
【0020】
この締め固め杭造成工法では、請求項2の発明の作用に加え、回転トルクの成分として直前の引き抜き工程とその後の締め固め工程との相対的な回転トルク比を用いるため、地盤の深度の違いによるケーシングパイプのフリクション抵抗を除いた回転トルクの大きさが締め固め力の要素になる。従って、更に正確に締め固め状態、つまり、杭の強度が把握され、その結果、所望の強度を有する杭が造成される。
【0021】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。
【0022】
図1〜図6は本発明の一実施形態を示し、図1は締め固め杭造成装置の側面図、図2(a)は回転機構の正面図、図2(b)は図2(a)中A−A線に沿う断面図、図3は締め固め杭造成装置の制御系の要部回路ブロック図、図4は締め固め杭造成時のフローチャート、図5は締め固め杭造成工法を説明する工程図、図6は造成杭の最小杭径と最大杭径を示す図である。
【0023】
図1に示すように、締め固め杭造成装置10は、施工機本体11の前面にリーダ12を有し、このリーダ12は地盤6の表面より上方位置で垂直方向に立設されている。このリーダ12には垂直方向に沿ってケーシングパイプ13が昇降自在に配置されている。
【0024】
ケーシングパイプ13は円筒状を有し、その上端側にはホッパー14が設けられている。このホッパー14よりケーシングパイプ13内に粉粒体である砂15を投入できるようになっている。また、ケーシングパイプ13には、該ケーシングパイプ13内に堆積された砂15(図5にのみ示す)の砂面位置を検出する砂面センサ16(図3にのみ示す)が設けられている。
【0025】
昇降機構17は、図示しない昇降用モータとこの昇降用モータの回転力をケーシングパイプ13に伝達する図示しない動力伝達手段とを有し、ケーシングパイプ13を地盤6中に昇降動させる。また、昇降機構17には、ケーシングパイプ13の昇降動作時の油圧を検出する油圧センサ18が設けられている。さらに、昇降機構17には、ケーシングパイプ13の下端の深度を検知する深度計19が設けられている。
【0026】
回転機構20は、図2(a),(b)に示すように、左右一対の回転用モータ21,21と、この各モータ21の回転軸に固定された第1ギア22と、この各第1ギア22が共に噛み合い、ケーシングパイプ13の外周の同軸上で固定された第2ギア23とを有し、ケーシングパイプ13を一定方向に回転させるようになっている。また、回転機構20には、回転用モータ21の電流値を検出する電流センサ24が設けられている。
【0027】
スイベルジョイント25は、図2(a)に示すように、回転機構20の下方位置のケーシングパイプ13に設けられ、このスイベルジョイント25を介してエアーパイプ26が連結されている。エアーパイプ26の他端側は図示しない空気圧縮機が接続され、エアーパイプ26を介してケーシングパイプ13に加圧エアーを供給できるようになっている。
【0028】
次に、締め固め杭造成装置10の制御系を説明する。図3に示すように、砂面センサ16、油圧センサ18、深度計19、電流センサ24の各検出出力が制御部25に入力され、制御部27はこれら情報等に基づいて昇降機構17、回転機構20、空気圧縮機などを制御するようになっている。制御部27は、油圧センサ18の検出する油圧値がケーシングパイプ13の下端13aで砂杭30を押圧する押圧力(砂杭30からの反力)に比例することから、油圧センサ18の油圧値より押圧力を演算により得る。制御部27は、電流センサ24の検出する電流値がケーシングパイプ13の回転負荷に比例することから、電流センサ24の電流値よりケーシングパイプ13の回転トルクを演算により得る。
【0029】
また、各種センサの検出情報などは制御部27が施工機本体11の運転席位置に設けられた計器盤28に表示する。運転者は、計器盤28より締め固め造成作業の状況を把握し、監視できるようになっている。
【0030】
次に、締め固め杭造成装置10による締め固め杭造成作業を図4のフロー及び図5の説明図に基づいて説明する。
【0031】
先ず、図5の(1)の状態に示すように、締め固め杭造成装置10を所望の施工位置まで移動し、立設されたケーシングパイプ13内にホッパー14より砂15を投入する。次に、図5の(2)の状態に示すように、昇降機構17及び回転機構20を駆動してケーシングパイプ13を地盤6中に回転しつつ降下させる初期貫入工程を開始する(ステップS1)。深度計19でケーシングパイプ13の下端13aが所定の深度Lに達したか否かを常時チェックし(ステップS2)、図5の(3)の状態に示すように、ケーシングパイプ13の下端13aが所定の深度Lに達した時点で初期貫入工程を終了する(ステップS3)。
【0032】
次に、図5の(4)の状態に示すように、ケーシングパイプ13内を加圧エアーで加圧し、ケーシングパイプ13の下端13aから砂15を排出しつつケーシングパイプ13を所定長さL1だけ引き抜く引き抜き工程を開始する(ステップS4)。深度計19でケーシングパイプ13が所定の引き抜き量L1だけ引き抜かれたか否かを常時チェックし(ステップS5)、ケーシングパイプ13が所定長さL1だけ引き抜いた時点でケーシングパイプ13内の加圧エアーを抜き、引き抜き工程を終了する(ステップS6)。この引き抜き工程によって、ケーシングパイプ13が引き抜かれた地盤6中のスペースに砂15が充填される。
【0033】
次に、図5の(5)の状態に示すように、昇降機構17及び回転機構20を駆動してケーシングパイプ13を回転しつつ降下させることによって再貫入する締め固め工程を開始する(ステップS7)。この締め固め工程では、ケーシングパイプ13による締め固め力Fが所定の設定値F以上である否か(ステップS8)、締め固め力Fが設定値F以上になると砂杭径Dが最小値D1以上に達したか否か(ステップS9)、締め固め力Fが設定値F未満であれば砂杭径Dが最大値D2に達したか否か(ステップS10)をチェックする。
【0034】
ここで、締め付け力Fは、ケーシングパイプ13の押圧力をP、引き抜き工程時のケーシングパイプ13の回転トルクをT1、締め固め工程時のケーシングパイプ13の回転トルクをT2、締め固め時間をt、施工データより得られる係数をα、βとすると、F=α・P・(T2/T1)・t+βの式で算出される値である。
【0035】
押圧力Pは油圧センサ18の油圧値に所定の係数を、回転トルクT1,T2は電流センサ24の電流値に所定の係数をそれぞれ掛けることにより算出される。最小砂杭径D1及び最大砂杭径D2は、杭径一定で施工し、その押圧力と事前ボーリングデータとを土層毎に対照し、過去の施工データを参考としながら決定する。また、砂杭径Dは、直前の引き抜き工程前の砂面位置と引き抜き工程終了後の砂面位置との高低差を砂面センサ16より検出して地盤6中に排出された砂量を算出し、この砂量と締め固め工程での締め固めストロークSより算出される。
【0036】
そして、図6に示すように、ケーシングパイプ13の締め固めによって砂杭30の杭径(杭断面積)が最小杭径(最小断面積)D1に達する前に締め固め力Fが所定の設定値Fに達した場合には砂杭30の杭径Dが最小杭径D1に達した時点で締め固めを完了する(ステップS11)。ケーシングパイプ13の締め固めによって砂杭30の杭径Dが最大杭径(最大杭断面積)D2に達する前に締め固め力Fが所定の設定値Fに達した場合には締め固め力Fが所定の設定値Fに達した時点で締め固めを完了する(ステップS11)。さらに、締め固め力Fが所定の設定値Fに達する前にケーシングパイプ13の締め固めによる砂杭30の杭径Dが最大杭径D2に達した場合には、砂杭30の杭径Dが最大杭径D2に達した時点で締め固めを完了する(ステップS11)。
【0037】
以降、前述したケーシングパイプ13の引き抜き工程と締め固め工程とを交互に繰り返す。これら繰り返し過程でケーシングパイプ13内の砂15が少なくなれば、その時点でケーシングパイプ13内のエアーを抜き、砂15の補給作業を行う。そして、図5の(6)の状態に示すように、ケーシングパイプ13の下端13aの深度がゼロに達した時点で終了する(ステップS12)。すると、ケーシングパイプ13を初期貫入させた位置に砂杭30が造成される。造成される砂杭30の杭径Dは、D1≦D≦D2の範囲である。
【0038】
以上、この締め固め杭造成工法によれば、原地盤6が非常に軟弱な箇所であっても砂杭30の杭径(杭断面積)が最大杭径(最大断面積)D2を越えることがなく、また、所定の設定値の締め固め力で締め固めされなくとも杭径30が最大杭径(最大断面積)D2を有することから必要最小限の強度が保持される。従って、原地盤6が非常に軟弱な箇所であっても強度的に不都合が発生しない程度の砂杭30を造成し、且つ、トータルの施工時間やトータルの砂量の増加を極力抑えることができる。また、原地盤6が非常に硬い箇所であっても砂杭30の杭径(断面積)Dが最小杭径(最小断面積)D1より小さくなることがなく、必要最低限の杭径(断面積)の砂杭30が造成される。
【0039】
前記実施形態の締め固め工程では、ケーシングパイプ13を下方に押圧すると共にケーシングパイプ13を回転して砂15を締め固め、その締め固め力Fは、ケーシングパイプ13が砂15を押圧する押圧力Pと、ケーシングパイプ13が砂13に対して回転する回転トルクT(=T2/T1)とを要素とする。つまり、柱状の砂15を締め固める場合にはケーシングパイプ13から押圧力Pのみを加える場合よりも押圧力Pと回転トルクT(=T2/T1)を共に加えた方が確実に締め固めされる。従って、砂15の締め固め状態、つまり、強度を把握するには押圧力Pと回転トルクT(=T2/T1)を要素とした外力を締め固め力とすることで正確に締め固め状態、つまり、砂杭30の強度を把握でき、その結果、所望の強度を有する砂杭30を造成することができる。
【0040】
前記実施形態では、ケーシングパイプ13の押圧力をP、引き抜き工程時のケーシングパイプ13の回転トルクをT1、締め固め工程時のケーシングパイプ13の回転トルクをT2、締め固め時間をt、施工データより得られる係数をα、βとすると、締め固め力Fは、F=α・P・(T2/T1)・t+βの式で算出される値とした。従って、回転トルクTの成分として直前の引き抜き工程とその後の締め固め工程との相対的な回転トルク比(T2/T1)を用いるため、地盤6の深度の違いによるケーシングパイプ13のフリクション抵抗を除いた回転トルクTの大きさを締め固め力の要素にできる。従って、更に正確に締め固め状態、つまり、砂杭30の強度を把握でき、その結果、所望の強度を有する砂杭30を造成することができる。
【0041】
図7は前記回転機構の変形例の要部の斜視図である。前記実施形態の回転機構20は一定方向に連続的にケーシングパイプ13を回転させるものであったが、この変形例の回転機構(揺動機構)31は正転方向と逆転方向に交互に往復回転させるものである。つまり、回転機構(揺動機構)31は、図7に示すように、一対の水圧シリンダ機構32,32を有し、この一対のシリンダ機構32,32の各ピストンロッド32aの先端がケーシングパイプ13の外周の略180度対向位置より突設された各連結アーム33に支持ピン34を介して連結されている。
【0042】
一対の水圧シリンダ機構32,32が交互にその各ピストンロッド32aを進退移動することによりケーシングパイプ13が正転方向と逆転方向に交互に往復回転される。
【0043】
本発明の締め固め工法に変形例の回転機構31を適用した場合にも前記実施形態と同様の作用・効果を得ることができる。そして、前記実施形態の回転機構20に比べてスイベルジョイント25を介在することなくエアーパイプ等をケーシングパイプ13に連結できるため、全体として締め固め杭造成装置10の機構が簡単になるという利点がある。
【0044】
また、締め固め杭造成工法としては、地盤改良したいエリア内に粗い間隔で砂杭30を造成する第1ステージと、この第1ステージの後に粗い間隔の砂杭30の間に砂杭30を補充する第2ステージとに分割して最終的に密な間隔の砂杭30を造成する2ステップ造成工程がある。この工法では、第1ステージで造成する砂杭30は、所定の設定強度を常に有する必要はなく、ある程度の強度さえあれば良いと考えることができるので、本発明の締め固め造成工法は第1ステージでの砂杭30の造成に特に優れた工法といえる。但し、本発明は、最初から密な間隔で砂杭30を順次造成する工法に適用できることは勿論である。
【0045】
尚、前記実施形態では、ケーシングパイプ13が円筒状であるため、砂杭30の断面積に変えて径寸法を用い、砂杭径Dが最小砂径D1以上か、最大砂径D2以上か否かを判別した。しかし、ケーシングパイプ13が円筒状以外の形態の場合も考えられ、その場合には断面積を用いて砂杭30の大きさを制御することになる。但し、ケーシングパイプ13が円筒状以外の形状の場合には、ケーシングパイプ13の回転に困難を伴うため、ケーシングパイプ13を回転させることなく押圧力Pのみで砂杭30を締め固めすることになる。この場合の締め固め力Fは、回転トルクTを要素としない押圧力Pのみを要素とするものとなる。
【0046】
また、前記実施形態では、杭材料である粉粒体として砂15を用いたが、杭材料としては砂15に限られず、砂利、砕石等の砂類似粒状材料や固化材及び砂15や砂利等を含めたそれらの混合物、例えば砕石と鉄粉との混合物等を用いても良いことは勿論である。
【0047】
【発明の効果】
以上説明したように、請求項1の発明によれば、締め固め工程では、ケーシングパイプが粉粒体を締め固めする際の締め固め力と、ケーシングパイプによって締め固められた粉粒体の杭断面積とを常時算出し、ケーシングパイプの締め固めによって粉粒体の杭断面積が最小杭断面積に達する前に締め固め力が所定の設定値に達した場合には粉粒体の杭断面積が最小杭断面積に達した時点で締め固めを完了し、ケーシングパイプの締め固めによって粉粒体の杭断面積が最大杭断面積に達する前に締め固め力が所定の設定値に達した場合には締め固め力が所定の設定値に達した時点で締め固めを完了し、締め固め力が所定の設定値に達する前にケーシングパイプの締め固めによる粉粒体の杭断面積が最大杭断面積に達した場合には、粉粒体の杭断面積が最大杭断面積に達した時点で締め固めを完了する。このような締め固め杭造成工法であるので、原地盤が非常に軟弱な箇所であっても杭断面積が最大断面積を越えることがなく、また、所定の設定値の締め固め力で締め固めされなくとも杭径が最大断面積を有することから必要最小限の強度が保持される。従って、原地盤が非常に軟弱な箇所であっても強度的に不都合が発生しない程度の砂杭を造成し、且つ、トータルの施工時間やトータルの砂量の増加を確実に抑えることができる。
【0048】
請求項2の発明によれば、締め固め工程では、ケーシングパイプを下方に押圧すると共にケーシングパイプを回転して粉粒体の杭を締め固め、締め固め力は、ケーシングパイプが粉粒体の杭を押圧する押圧力と、ケーシングパイプが粉粒体の杭に対して回転する回転トルクとを要素とするので、正確に締め固め状態、即ち、杭の強度に即した情報を得ることができ、所望の強度を有する杭を造成することができる。即ち、柱状の粉粒体を締め固める場合にはケーシングパイプから押圧力のみを加える場合よりも押圧力と回転力を共に加えた方が確実に締め固めされる。従って、粉粒体の締め固め状態、即ち、杭の強度を把握するには押圧力と回転トルクを要素とした外力を締め固め力とする方が正確な情報が得られる。
【0049】
請求項3の発明によれば、ケーシングパイプの押圧力をP、引き抜き工程時のケーシングパイプの回転トルクをT1、締め固め工程時のケーシングパイプの回転トルクをT2、締め固め時間をt、施工データより得られる係数をα、βとすると、締め固め力Fは、F=α・P・(T2/T1)・t+βの式で算出される値としたので、回転トルクの成分として直前の引き抜き工程とその後の締め固め工程との相対的な回転トルク比を用いることができ、地盤の深度の違いによるケーシングパイプのフリクション抵抗を除いた回転トルクの大きさを締め固め力の要素にできる。従って、更に正確に締め固め状態、つまり、杭の強度を把握でき、その結果、所望の強度を有する杭を造成することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示し、締め固め杭造成装置の側面図である。
【図2】本発明の一実施形態を示し、(a)は回転機構の正面図、(b)は図2(a)中A−A線に沿う断面図、である。
【図3】本発明の一実施形態を示し、締め固め杭造成装置の制御系の要部回路ブロック図である。
【図4】本発明の一実施形態を示し、締め固め杭造成時のフローチャートである。
【図5】本発明の一実施形態を示し、締め固め杭造成工法を説明する工程図である。
【図6】本発明の一実施形態を示し、造成杭の最小杭径と最大杭径を示す図である。
【図7】回転機構の変形例の要部の斜視図である。
【図8】従来例の締め固め杭造成装置の要部の構成図である。
【図9】地盤中に造成された砂杭を示す断面図である。
【図10】非常に軟弱な地盤上に造成された砂杭とほぼ標準的な径の砂杭を示す断面図である。
【符号の説明】
10 締め固め杭造成装置
13 ケーシングパイプ
13a 下端
15 砂(粉粒体)
30 砂杭(粉粒体の杭)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a compacted pile construction method for creating a pile of sand or the like in the ground in order to improve the ground.
[0002]
[Prior art]
As a construction method for improving soft ground or the like, a sand compaction pile construction method (SCP construction method) is conventionally known in which a sand pile is created in a suitable ground in an improvement area to improve the ground. The conventional compacted pile construction method by this sand compaction pile method will be described.
[0003]
As shown in FIG. 8, the compacting pile forming apparatus 1 includes a casing pipe 2 arranged in a vertical direction with respect to a construction machine main body (not shown), a vibrator 3 that vibrates the casing pipe 2, and a casing pipe 2. And a piston cylinder mechanism 5 for reciprocating the compacting member 4 in the vertical direction.
[0004]
Next, sand pile creation work using this compacted pile creation device 1 will be described. The vibrator 3 is operated to penetrate the casing pipe 2 to a predetermined depth in the ground 6. Next, a pulling process is performed in which sand is discharged from the lower end of the casing pipe 2 while reciprocating the piston cylinder mechanism 5 and the casing pipe 2 is pulled upward by a predetermined length while being compacted. By this drawing process, the space in the ground 6 from which the casing pipe 2 is drawn is filled with sand.
[0005]
Next, raising and lowering is stopped and sand is supplied into the casing pipe 2. And the process of pulling the casing pipe 2 upward again is performed. Sand is discharged and compacted while reciprocating the piston cylinder mechanism 5 during this pulling process. Thereafter, when compaction is performed in the drawing process until reaching the ground surface, a sand pile 7 as shown in FIG. 9 is formed at a position where the casing pipe 2 is penetrated. Such sand piles 7 are formed at appropriate intervals in the improved area.
[0006]
By the way, it is general that the strength of the original ground 6 to be improved is not uniform and varies. Therefore, the present applicant has previously proposed a method for changing either one or both of the pile diameter and strength of the sand pile 7 to be created according to the strength of the original ground 6 (Patent Document 1, Patent Document 2, Patent). Reference 3).
[0007]
For example, in the case where only the pile diameter is changed, this construction method will be described. In the compaction process, the piston cylinder mechanism 5 detects a pressing force pressing the sand pile 7 downward, and this pressing force reaches a predetermined installation value. Until the sand pile 7 is pressed. In the place where the original ground 6 is soft, the pressing force reaches a predetermined set value only when the sand pile 7 is greatly compressed and deformed in the direction of expanding the diameter, and the sand pile 7 having a large diameter is formed.
[0008]
Moreover, in the place where the original ground 6 is hard, the sand pile 7 does not expand so much, the pressing force reaches a predetermined set value, and the sand pile 7 having a relatively small diameter is formed. In this way, in the compaction process, the sand pile 7 with a constant pressing force of the piston cylinder mechanism 5 is created to reinforce the ground according to the softness of the original ground, thereby achieving a uniform ground improvement. Is.
[0009]
[Patent Document 1]
Japanese Patent Publication No. 61-25859 [0010]
[Patent Document 2]
Japanese Patent Publication No. 64-2725
[Patent Document 3]
US Pat. No. 4,487,524
[Problems to be solved by the invention]
However, in the conventional compacted pile construction method, if the original ground 6 is very soft, the diameter of the sand pile 7 becomes too large until the pressing force of the piston cylinder mechanism 5 reaches a predetermined set value. A large-diameter sand pile 8 as shown on the left side of FIG. 10 is formed. In the worst case, the pressing force of the piston / cylinder mechanism 5 does not reach a predetermined set value, and the operation is temporarily stopped. From the above, total construction time and total sand volume increased, and these increases led to an increase in construction costs.
[0013]
In particular, there was a high possibility that the above-described problems would occur in places where no sand piles 7 were formed around the beginning of the construction start.
[0014]
Therefore, the present invention has been made to solve the above-described problems, and a sand pile having a strength that does not cause any inconvenience in strength even when the original ground is very soft, and the total The object is to provide a compacted pile construction method that can reliably suppress the increase in construction time and total sand volume.
[0015]
[Means for Solving the Problems]
The invention according to claim 1 is a drawing step of drawing out the casing pipe while discharging the granular material from a lower end of the casing pipe after an initial penetration step of penetrating the casing pipe to a predetermined depth in the ground. In the compacted pile construction method in which a pile of granular material is formed in the ground by alternately repeating a compacting process of compacting the granular material discharged through re-penetration, in the compacting process, the casing pipe is powdered Always calculate the compaction force when compacting the granule and the pile cross-sectional area of the powder compacted by the casing pipe, and the pile cross-sectional area of the granular material is minimized by compacting the casing pipe When the compaction force reaches a predetermined set value before reaching the pile cross-sectional area, the compaction is completed when the pile cross-sectional area of the granular material reaches the minimum pile cross-sectional area, -If the compaction force reaches a preset value before the pile cross-sectional area of the granular material reaches the maximum pile cross-sectional area due to compaction of the singing pipe, the compaction is performed when the compaction force reaches the preset value. If the pile cross-sectional area of the granular material due to the compaction of the casing pipe reaches the maximum pile cross-sectional area before the compaction force reaches the predetermined set value, the pile cross-sectional area of the granular material is the maximum Compaction is completed when the pile cross-sectional area is reached.
[0016]
In this compacted pile construction method, the pile cross-sectional area does not exceed the maximum cross-sectional area even if the original ground is very soft, and the pile is not required to be compacted with the predetermined set-up force. Since the diameter has the maximum cross-sectional area, the necessary minimum strength is maintained. Therefore, a sand pile that does not cause any inconvenience in strength even when the original ground is very soft is created, and an increase in the total construction time and the total amount of sand is surely suppressed.
[0017]
Invention of Claim 2 is the compaction pile construction method of Claim 1, Comprising: In the said compaction process, while pressing the said casing pipe below and rotating the said casing pipe, the pile of a granular material is tightened The compaction force is characterized by a pressing force by which the casing pipe presses the powder pile and a rotational torque by which the casing pipe rotates with respect to the powder pile. .
[0018]
In this compacted pile construction method, in addition to the operation of the invention of claim 1, since the information in accordance with the compacted state, that is, the strength of the pile is obtained, a pile having a desired strength is created.
[0019]
Invention of Claim 3 is the compaction pile construction method of Claim 2, Comprising: The pressing force of the said casing pipe is P, The rotational torque of the casing pipe at the time of the said drawing process is T1, The casing at the time of the said compacting process Assuming that the rotational torque of the pipe is T2, the compaction time is t, and the coefficients obtained from the construction data are α and β, the compaction force F is calculated by the formula F = α · P · (T2 / T1) · t + β. It is characterized by having a value.
[0020]
In this compaction pile construction method, in addition to the effect of the invention of claim 2, since the relative rotational torque ratio between the immediately preceding drawing process and the subsequent compacting process is used as the rotational torque component, the difference in the depth of the ground The magnitude of the rotational torque excluding the friction resistance of the casing pipe due to the above becomes an element of the compaction force. Therefore, the compacted state, that is, the strength of the pile is grasped more accurately, and as a result, a pile having a desired strength is formed.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0022]
1 to 6 show an embodiment of the present invention, FIG. 1 is a side view of a compacted pile building device, FIG. 2 (a) is a front view of a rotating mechanism, and FIG. 2 (b) is FIG. 2 (a). 3 is a cross-sectional view taken along the line AA, FIG. 3 is a main circuit block diagram of the control system of the compacted pile forming device, FIG. 4 is a flowchart at the time of compacted pile construction, and FIG. 5 illustrates the compacted pile creating method. Process drawing, FIG. 6 is a figure which shows the minimum pile diameter and maximum pile diameter of a creation pile.
[0023]
As shown in FIG. 1, the compacted pile forming apparatus 10 has a leader 12 on the front surface of the construction machine main body 11, and the leader 12 is erected in a vertical direction at a position above the surface of the ground 6. A casing pipe 13 is arranged on the reader 12 so as to be movable up and down along the vertical direction.
[0024]
The casing pipe 13 has a cylindrical shape, and a hopper 14 is provided on the upper end side thereof. The sand 15 which is a granular material can be put into the casing pipe 13 from the hopper 14. The casing pipe 13 is provided with a sand surface sensor 16 (shown only in FIG. 3) for detecting the sand surface position of the sand 15 (shown only in FIG. 5) accumulated in the casing pipe 13.
[0025]
The elevating mechanism 17 includes an elevating motor (not shown) and power transmission means (not shown) that transmits the rotational force of the elevating motor to the casing pipe 13, and moves the casing pipe 13 up and down in the ground 6. Further, the elevating mechanism 17 is provided with a hydraulic pressure sensor 18 that detects the hydraulic pressure during the elevating operation of the casing pipe 13. Further, the elevating mechanism 17 is provided with a depth meter 19 that detects the depth of the lower end of the casing pipe 13.
[0026]
As shown in FIGS. 2A and 2B, the rotation mechanism 20 includes a pair of left and right rotation motors 21, 21, a first gear 22 fixed to the rotation shaft of each motor 21, and each of the first gears 22. The first gear 22 meshes with the second gear 23 fixed coaxially on the outer periphery of the casing pipe 13, and the casing pipe 13 is rotated in a certain direction. The rotation mechanism 20 is provided with a current sensor 24 that detects the current value of the rotation motor 21.
[0027]
As shown in FIG. 2A, the swivel joint 25 is provided in the casing pipe 13 below the rotation mechanism 20, and the air pipe 26 is connected via the swivel joint 25. An air compressor (not shown) is connected to the other end of the air pipe 26 so that pressurized air can be supplied to the casing pipe 13 through the air pipe 26.
[0028]
Next, a control system of the compacted pile building device 10 will be described. As shown in FIG. 3, the detection outputs of the sand surface sensor 16, the hydraulic sensor 18, the depth meter 19, and the current sensor 24 are input to the control unit 25, and the control unit 27 rotates the lifting mechanism 17 and the rotation based on these information and the like. The mechanism 20, the air compressor, and the like are controlled. Since the hydraulic pressure value detected by the hydraulic sensor 18 is proportional to the pressing force (reaction force from the sand pile 30) that presses the sand pile 30 at the lower end 13a of the casing pipe 13, the control unit 27 determines the hydraulic pressure value of the hydraulic sensor 18. More pressing force is obtained by calculation. Since the current value detected by the current sensor 24 is proportional to the rotational load of the casing pipe 13, the control unit 27 obtains the rotational torque of the casing pipe 13 by calculation from the current value of the current sensor 24.
[0029]
In addition, the detection information of various sensors is displayed on the instrument panel 28 provided at the driver's seat position of the construction machine main body 11 by the control unit 27. The driver can grasp and monitor the state of the compacting work from the instrument panel 28.
[0030]
Next, the compaction pile creation work by the compaction pile creation device 10 will be described based on the flow of FIG. 4 and the explanatory diagram of FIG.
[0031]
First, as shown in the state of (1) in FIG. 5, the compacted pile forming apparatus 10 is moved to a desired construction position, and sand 15 is put into the standing casing pipe 13 from the hopper 14. Next, as shown in the state of (2) in FIG. 5, an initial penetration process is started in which the elevating mechanism 17 and the rotating mechanism 20 are driven to lower the casing pipe 13 while rotating into the ground 6 (step S1). . The depth meter 19 constantly checks whether or not the lower end 13a of the casing pipe 13 has reached a predetermined depth L (step S2). As shown in the state of (3) in FIG. 5, the lower end 13a of the casing pipe 13 is When the predetermined depth L is reached, the initial penetration process is terminated (step S3).
[0032]
Next, as shown in the state of (4) in FIG. 5, the inside of the casing pipe 13 is pressurized with pressurized air, and the casing pipe 13 is discharged by a predetermined length L1 while the sand 15 is discharged from the lower end 13a of the casing pipe 13. A drawing process for drawing is started (step S4). The depth meter 19 constantly checks whether or not the casing pipe 13 has been pulled out by a predetermined pulling amount L1 (step S5). When the casing pipe 13 is pulled out by a predetermined length L1, the pressurized air in the casing pipe 13 is removed. The extraction and extraction process is terminated (step S6). By this drawing process, the sand 15 is filled in the space in the ground 6 from which the casing pipe 13 is drawn.
[0033]
Next, as shown in the state of (5) in FIG. 5, a compacting process for re-penetrating is started by driving the elevating mechanism 17 and the rotating mechanism 20 to lower the casing pipe 13 while rotating (step S7). ). In the compaction step, whether (step S8) compaction force F by the casing pipe 13 is a predetermined set value F 0 or more, when the compaction force F becomes the set value F 0 or Sunakui径minimum D value whether reaches D1 above (step S9), and if the compaction force F is less than the set value F 0 Sunakui径D it is checked whether or not reached the maximum value D2 (step S10).
[0034]
Here, the tightening force F is the pressing force of the casing pipe 13 as P, the rotational torque of the casing pipe 13 during the drawing process as T1, the rotational torque of the casing pipe 13 during the compacting process as T2, the compaction time as t, Assuming that the coefficients obtained from the construction data are α and β, the values are calculated by the equation F = α · P · (T2 / T1) · t + β.
[0035]
The pressing force P is calculated by multiplying the hydraulic value of the hydraulic sensor 18 by a predetermined coefficient, and the rotational torques T1 and T2 are calculated by multiplying the current value of the current sensor 24 by a predetermined coefficient. The minimum sand pile diameter D1 and the maximum sand pile diameter D2 are constructed with a fixed pile diameter, and the pressing force and preliminary boring data are compared for each soil layer, and determined with reference to past construction data. The sand pile diameter D is calculated by calculating the amount of sand discharged into the ground 6 by detecting the height difference between the sand surface position before the previous drawing process and the sand surface position after the drawing process from the sand surface sensor 16. The amount of sand and the compaction stroke S in the compaction process are calculated.
[0036]
And as shown in FIG. 6, before the pile diameter (pile cross-sectional area) of the sand pile 30 reaches the minimum pile diameter (minimum cross-sectional area) D1 by the compaction of the casing pipe 13, the compacting force F is a predetermined set value. when it reaches the F 0 complete compaction when the pile diameter D of Sunakui 30 reaches the minimum pile diameter D1 (step S11). Compaction force F in the case of the compaction force F before the pile diameter D of the sand pile 30 reaches the maximum pile diameter (maximum pile cross-sectional area) D2 by compaction of casing pipe 13 reaches a predetermined set value F 0 There completing the compaction at the time of reaching a predetermined set value F 0 (step S11). Further, when the compaction force F is pile diameter D of Sunakui 30 by compaction of the casing pipe 13 before reaching the predetermined set value F 0 is at the maximum pile diameter D2 is the Sunakui 30 pile diameter D When the maximum pile diameter D2 is reached, compaction is completed (step S11).
[0037]
Thereafter, the above-described drawing process and compacting process of the casing pipe 13 are repeated alternately. If the sand 15 in the casing pipe 13 decreases in these repeated processes, the air in the casing pipe 13 is extracted at that time and the sand 15 is replenished. And as shown to the state of (6) of FIG. 5, it complete | finishes when the depth of the lower end 13a of the casing pipe 13 reaches zero (step S12). Then, the sand pile 30 is created in the position where the casing pipe 13 is initially penetrated. The pile diameter D of the sand pile 30 to be created is in the range of D1 ≦ D ≦ D2.
[0038]
As described above, according to this compacted pile construction method, the pile diameter (pile cross-sectional area) of the sand pile 30 may exceed the maximum pile diameter (maximum cross-sectional area) D2 even if the raw ground 6 is a very soft spot. In addition, even if the pile diameter 30 is not compacted by a compaction force of a predetermined set value, the minimum necessary strength is maintained because the pile diameter 30 has the maximum pile diameter (maximum cross-sectional area) D2. Therefore, even if the original ground 6 is a very soft part, the sand pile 30 of the grade which does not generate | occur | produce an intensity | strength does not generate | occur | produce, and the increase in total construction time and total sand amount can be suppressed as much as possible. . In addition, even if the base ground 6 is very hard, the pile diameter (cross-sectional area) D of the sand pile 30 is not smaller than the minimum pile diameter (minimum cross-sectional area) D1, and the minimum necessary pile diameter (cut-off) Area) sand pile 30 is created.
[0039]
In the compacting process of the embodiment, the casing pipe 13 is pressed downward and the casing pipe 13 is rotated to compact the sand 15, and the compacting force F is a pressing force P at which the casing pipe 13 presses the sand 15. And the rotational torque T (= T2 / T1) at which the casing pipe 13 rotates with respect to the sand 13 is an element. In other words, when the columnar sand 15 is compacted, the pressing force P and the rotational torque T (= T2 / T1) are more reliably compacted than when only the pressing force P is applied from the casing pipe 13. . Accordingly, in order to grasp the compacted state of the sand 15, that is, the strength, the external force having the pressing force P and the rotational torque T (= T2 / T1) as elements is used as the compacting force, that is, the compacted state is accurate. The strength of the sand pile 30 can be grasped, and as a result, the sand pile 30 having a desired strength can be created.
[0040]
In the above embodiment, the pressing force of the casing pipe 13 is P, the rotational torque of the casing pipe 13 during the drawing process is T1, the rotational torque of the casing pipe 13 during the compacting process is T2, the compaction time is t, and the construction data When the obtained coefficients are α and β, the compaction force F is a value calculated by the equation F = α · P · (T2 / T1) · t + β. Accordingly, since the relative rotational torque ratio (T2 / T1) between the immediately preceding drawing process and the subsequent compacting process is used as the component of the rotational torque T, the friction resistance of the casing pipe 13 due to the difference in the depth of the ground 6 is excluded. The magnitude of the rotating torque T can be used as an element of compaction force. Therefore, the compacted state, that is, the strength of the sand pile 30 can be grasped more accurately, and as a result, the sand pile 30 having a desired strength can be created.
[0041]
FIG. 7 is a perspective view of a main part of a modification of the rotating mechanism. Although the rotating mechanism 20 of the above embodiment continuously rotates the casing pipe 13 in a fixed direction, the rotating mechanism (swinging mechanism) 31 of this modified example reciprocates alternately in the forward direction and the reverse direction. It is something to be made. That is, as shown in FIG. 7, the rotation mechanism (swing mechanism) 31 has a pair of hydraulic cylinder mechanisms 32, 32, and the tip of each piston rod 32 a of the pair of cylinder mechanisms 32, 32 is the casing pipe 13. Are connected to each connecting arm 33 projecting from a position facing substantially 180 degrees on the outer periphery of the outer periphery of the outer periphery of the outer periphery via a support pin 34.
[0042]
The pair of hydraulic cylinder mechanisms 32, 32 alternately advance and retreat their piston rods 32a, whereby the casing pipe 13 is alternately reciprocated in the forward direction and the reverse direction.
[0043]
Even when the rotation mechanism 31 of the modified example is applied to the compacting method of the present invention, the same operation and effect as in the above embodiment can be obtained. And since an air pipe etc. can be connected with casing pipe 13 without interposing swivel joint 25 compared with rotation mechanism 20 of the above-mentioned embodiment, there is an advantage that the mechanism of compaction pile creation device 10 becomes simple as a whole. .
[0044]
Moreover, as a compaction pile construction method, the sand pile 30 is replenished between the 1st stage which creates the sand pile 30 with a rough space | interval in the area which wants to improve ground, and the sand pile 30 with a rough space after this 1st stage. There is a two-step creation process in which the sand piles 30 are finally created by being divided into the second stage. In this construction method, the sand pile 30 to be created in the first stage does not always have to have a predetermined set strength, and it can be considered that there is only a certain level of strength. Therefore, the compacting construction method of the present invention is the first construction method. It can be said that the construction method is particularly excellent for the construction of the sand pile 30 on the stage. However, it is needless to say that the present invention can be applied to a construction method in which the sand piles 30 are sequentially formed at a close interval from the beginning.
[0045]
In addition, in the said embodiment, since the casing pipe 13 is cylindrical shape, it changes into the cross-sectional area of the sand pile 30, and uses a diameter dimension, and the sand pile diameter D is more than the minimum sand diameter D1 or more than the maximum sand diameter D2. It was determined. However, the case where the casing pipe 13 has a shape other than the cylindrical shape is also conceivable. In that case, the size of the sand pile 30 is controlled using the cross-sectional area. However, when the casing pipe 13 has a shape other than the cylindrical shape, it is difficult to rotate the casing pipe 13, so the sand pile 30 is compacted only by the pressing force P without rotating the casing pipe 13. . In this case, the compaction force F includes only the pressing force P not including the rotational torque T as an element.
[0046]
Moreover, in the said embodiment, although the sand 15 was used as a granular material which is a pile material, as a pile material, it is not restricted to the sand 15, Sand-like granular materials, solidification materials, such as gravel and a crushed stone, sand 15, gravel, etc. Of course, a mixture thereof including, for example, a mixture of crushed stone and iron powder may be used.
[0047]
【The invention's effect】
As described above, according to the invention of claim 1, in the compaction step, the compaction force when the casing pipe compacts the granular material and the pile breakage of the granular material compacted by the casing pipe. If the compaction force reaches a set value before the pile cross-sectional area of the granular material reaches the minimum pile cross-sectional area due to compaction of the casing pipe, the pile cross-sectional area of the granular material is calculated. When the minimum pile cross-sectional area is reached, the compaction is completed, and the compaction force reaches the set value before the pile cross-sectional area of the granular material reaches the maximum pile cross-sectional area due to the casing pipe compaction. When the compaction force reaches the specified set value, the compaction is completed, and before the compaction force reaches the specified set value, the pile cross-sectional area of the granular material due to compaction of the casing pipe is the maximum pile breakage. When the area is reached, the pile breaks Completing the compaction when the product has reached the maximum pile cross-sectional area. Since this compaction pile construction method is used, the pile cross-sectional area does not exceed the maximum cross-sectional area even if the ground is very soft, and the compaction force is set with a predetermined set value. Even if not, the minimum necessary strength is maintained because the pile diameter has the maximum cross-sectional area. Accordingly, it is possible to create a sand pile that does not cause any inconvenience in strength even if the original ground is very soft, and to reliably suppress an increase in total construction time and total sand amount.
[0048]
According to the invention of claim 2, in the compacting step, the casing pipe is pressed downward and the casing pipe is rotated to compact the pile of the granular material. Since the pressing force that presses and the rotational torque that the casing pipe rotates with respect to the pile of granular material is an element, it is possible to obtain information that is accurately compacted, that is, the strength of the pile, A pile having a desired strength can be created. That is, when the columnar powder is compacted, it is more reliably compacted when both the pressing force and the rotational force are applied than when only the pressing force is applied from the casing pipe. Therefore, in order to grasp the compacted state of the granular material, that is, the strength of the pile, more accurate information can be obtained if the external force with the pressing force and the rotational torque as elements is used as the compacting force.
[0049]
According to the invention of claim 3, the pressing force of the casing pipe is P, the rotational torque of the casing pipe during the drawing process is T1, the rotational torque of the casing pipe during the compacting process is T2, the compaction time is t, and the construction data Assuming that the coefficients obtained are α and β, the compaction force F is a value calculated by the equation F = α · P · (T2 / T1) · t + β. And a relative rotational torque ratio between the subsequent compaction process and the magnitude of the rotational torque excluding the friction resistance of the casing pipe due to the difference in the depth of the ground can be used as an element of the compaction force. Therefore, the compacted state, that is, the strength of the pile can be grasped more accurately, and as a result, a pile having a desired strength can be created.
[Brief description of the drawings]
FIG. 1 is a side view of a compaction pile forming apparatus according to an embodiment of the present invention.
2A and 2B show an embodiment of the present invention, in which FIG. 2A is a front view of a rotating mechanism, and FIG. 2B is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a main part circuit block diagram of a control system of the compaction pile forming apparatus according to the embodiment of the present invention.
FIG. 4 is a flowchart at the time of compaction pile construction showing an embodiment of the present invention.
FIG. 5 is a process diagram illustrating a compacted pile construction method according to an embodiment of the present invention.
FIG. 6 is a diagram showing a minimum pile diameter and a maximum pile diameter of a constructed pile according to an embodiment of the present invention.
FIG. 7 is a perspective view of a main part of a modification of the rotation mechanism.
FIG. 8 is a configuration diagram of a main part of a conventional compaction pile forming apparatus.
FIG. 9 is a cross-sectional view showing a sand pile created in the ground.
FIG. 10 is a cross-sectional view showing a sand pile formed on a very soft ground and a sand pile having a substantially standard diameter.
[Explanation of symbols]
10 Compaction pile creation device 13 Casing pipe 13a Lower end 15 Sand (powder)
30 Sand pile (pile of granular material)

Claims (3)

ケーシングパイプを地盤中の所定深度まで貫入する初期貫入工程の後に、前記ケーシングパイプの下端から粉粒体を排出しつつ前記ケーシングパイプを引き抜く引き抜き工程と、前記ケーシングパイプを再貫入して排出した粉粒体を締め固める締め固め工程とを交互に繰り返して地盤中に粉粒体の杭を造成する締め固め杭造成工法において、
前記締め固め工程では、前記ケーシングパイプが粉粒体を締め固めする際の締め固め力と、前記ケーシングパイプによって締め固められた粉粒体の杭断面積とを常時算出し、前記ケーシングパイプの締め固めによって粉粒体の杭断面積が最小杭断面積に達する前に締め固め力が所定の設定値に達した場合には粉粒体の杭断面積が最小杭断面積に達した時点で締め固めを完了し、前記ケーシングパイプの締め固めによって粉粒体の杭断面積が最大杭断面積に達する前に締め固め力が所定の設定値に達した場合には締め固め力が所定の設定値に達した時点で締め固めを完了し、締め固め力が所定の設定値に達する前に前記ケーシングパイプの締め固めによる粉粒体の杭断面積が最大杭断面積に達した場合には粉粒体の杭断面積が最大杭断面積に達した時点で締め固めを完了することを特徴とする締め固め杭造成工法。
After the initial penetration step of penetrating the casing pipe to a predetermined depth in the ground, a drawing step of pulling out the casing pipe while discharging powder particles from the lower end of the casing pipe, and powder discharged by re-penetrating the casing pipe In the compacted pile construction method of creating a pile of granular material in the ground by alternately repeating the compacting process of compacting the granular material,
In the compacting step, the compaction force when the casing pipe compacts the granular material and the pile cross-sectional area of the granular material compacted by the casing pipe are always calculated, and the casing pipe is compacted. If the compaction force reaches the set value before the pile cross-sectional area of the granular material reaches the minimum pile cross-sectional area due to compaction, tightening will be performed when the pile cross-sectional area of the granular material reaches the minimum pile cross-sectional area. When the compaction force reaches a predetermined set value before the pile cross-sectional area of the granular material reaches the maximum pile cross-sectional area by compaction of the casing pipe by compaction of the casing pipe, the compaction force is a predetermined set value. If the pile cross-sectional area of the granular material due to compaction of the casing pipe reaches the maximum pile cross-sectional area before the compaction force reaches a predetermined set value, The pile cross-sectional area of the body reaches the maximum pile cross-sectional area Compaction pile reclamation method, characterized in that to complete the compaction at the.
請求項1記載の締め固め杭造成工法であって、
前記締め固め工程では、前記ケーシングパイプを下方に押圧すると共に前記ケーシングパイプを回転して粉粒体の杭を締め固め、前記締め固め力は、前記ケーシングパイプが粉粒体の杭を押圧する押圧力と、前記ケーシングパイプが粉粒体の杭に対して回転する回転トルクとを要素とすることを特徴とする締め固め杭造成工法。
The compacted pile construction method according to claim 1,
In the compaction step, the casing pipe is pressed downward and the casing pipe is rotated to compact the powder pile. The compaction force is a pressure that the casing pipe presses the powder pile. A compacted pile construction method characterized by having pressure and rotational torque that the casing pipe rotates with respect to the pile of granular materials as elements.
請求項2記載の締め固め杭造成工法であって、
前記ケーシングパイプの押圧力をP、前記引き抜き工程時のケーシングパイプの回転トルクをT1、前記締め固め工程時のケーシングパイプの回転トルクをT2、締め固め時間をt、施工データより得られる係数をα、βとすると、締め固め力Fは、F=α・P・(T2/T1)・t+βの式で算出される値としたことを特徴とする締め固め杭造成工法。
The compacted pile construction method according to claim 2,
The pressing force of the casing pipe is P, the rotational torque of the casing pipe at the time of the drawing process is T1, the rotational torque of the casing pipe at the time of the compacting process is T2, the compaction time is t, and the coefficient obtained from the construction data is α , Β, the compaction force F is a value calculated by the formula F = α · P · (T2 / T1) · t + β.
JP2003174400A 2003-06-19 2003-06-19 Compaction pile construction method Expired - Lifetime JP4583730B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003174400A JP4583730B2 (en) 2003-06-19 2003-06-19 Compaction pile construction method
US10/624,930 US6881013B2 (en) 2003-06-19 2003-07-21 Sand pile driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003174400A JP4583730B2 (en) 2003-06-19 2003-06-19 Compaction pile construction method

Publications (2)

Publication Number Publication Date
JP2005009169A true JP2005009169A (en) 2005-01-13
JP4583730B2 JP4583730B2 (en) 2010-11-17

Family

ID=34097892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003174400A Expired - Lifetime JP4583730B2 (en) 2003-06-19 2003-06-19 Compaction pile construction method

Country Status (1)

Country Link
JP (1) JP4583730B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063803A (en) * 2013-09-24 2015-04-09 株式会社不動テトラ Construction management method in compacting sand pile construction method
JP2018028241A (en) * 2016-08-19 2018-02-22 株式会社 尾鍋組 Crushed stone pile formation device and manufacturing method of crushed stone pile
JP2019132793A (en) * 2018-02-02 2019-08-08 五洋建設株式会社 Sensor for scp method, casing pipe for scp method, sand pile shape evaluation method, and construction management method for scp method
JP2019157385A (en) * 2018-03-08 2019-09-19 三信建設工業株式会社 Compaction management method and compaction management device
CN114134879A (en) * 2021-12-02 2022-03-04 成都雅蓝特科技有限公司 Method for determining compaction current and vibration retention time of vibroflotation construction

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063803A (en) * 2013-09-24 2015-04-09 株式会社不動テトラ Construction management method in compacting sand pile construction method
JP2018028241A (en) * 2016-08-19 2018-02-22 株式会社 尾鍋組 Crushed stone pile formation device and manufacturing method of crushed stone pile
JP2019132793A (en) * 2018-02-02 2019-08-08 五洋建設株式会社 Sensor for scp method, casing pipe for scp method, sand pile shape evaluation method, and construction management method for scp method
JP7042635B2 (en) 2018-02-02 2022-03-28 五洋建設株式会社 Sensor for CP method, casing pipe for SCP method, sand pile shape evaluation method and construction management method for CP method
JP2019157385A (en) * 2018-03-08 2019-09-19 三信建設工業株式会社 Compaction management method and compaction management device
JP7112858B2 (en) 2018-03-08 2022-08-04 三信建設工業株式会社 Compaction management method and compaction management device
CN114134879A (en) * 2021-12-02 2022-03-04 成都雅蓝特科技有限公司 Method for determining compaction current and vibration retention time of vibroflotation construction

Also Published As

Publication number Publication date
JP4583730B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
US9207157B2 (en) System and method for determining a state of compaction
US10385530B1 (en) Method for compaction detection and control when compacting a soil with a deep vibrator
EP0539079B1 (en) Apparatus and method for constructing compacted granular or stone columns in soil masses
US6881013B2 (en) Sand pile driving method
JP4583730B2 (en) Compaction pile construction method
CN115012419B (en) Drilling pressure irrigation superfluid pile bidirectional full-length vibration construction method and device
JP2005009170A (en) Compaction pile formation method
CN212201919U (en) Construction method pile construction equipment
JP5959887B2 (en) Crushed stone pile formation control device and crushed stone pile formation method
JP4232952B2 (en) Ground improvement method and apparatus
DE4130339C2 (en) Process for improving a building site
CN208748647U (en) The construction equipment of impact holing stake
JP7093205B2 (en) Ground improvement method
JP2584402B2 (en) Construction method such as compacted sand pile
JP3754131B2 (en) Ground improvement method
JP3594121B2 (en) Ground improvement method
JPH0830331B2 (en) Soft ground improvement method
JP3759235B2 (en) Construction management equipment for medium digging method
JPS642725B2 (en)
CN217520854U (en) Gravel pile or sand pile forming device based on vibration table test
JPH09328985A (en) Auger drilling control method
JPS642726B2 (en)
JP3650958B2 (en) Sand pile construction method
JPH09125358A (en) Ground compaction method by particulate pile column and its device
JP4838036B2 (en) Thin layer high density compaction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090527

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090601

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Ref document number: 4583730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term