JP2005008981A - Nickel alloy powder, and its production method - Google Patents

Nickel alloy powder, and its production method Download PDF

Info

Publication number
JP2005008981A
JP2005008981A JP2003199488A JP2003199488A JP2005008981A JP 2005008981 A JP2005008981 A JP 2005008981A JP 2003199488 A JP2003199488 A JP 2003199488A JP 2003199488 A JP2003199488 A JP 2003199488A JP 2005008981 A JP2005008981 A JP 2005008981A
Authority
JP
Japan
Prior art keywords
alloy powder
nickel
silver
nickel alloy
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003199488A
Other languages
Japanese (ja)
Other versions
JP4546050B2 (en
Inventor
Kanenori Matsuki
謙典 松木
Kiyohito Ishida
清仁 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mineral Co Ltd filed Critical JFE Mineral Co Ltd
Priority to JP2003199488A priority Critical patent/JP4546050B2/en
Publication of JP2005008981A publication Critical patent/JP2005008981A/en
Application granted granted Critical
Publication of JP4546050B2 publication Critical patent/JP4546050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide nickel-silver alloy powder having excellent properties as nickel alloy powder for electroconductive paste having excellent oxidation resistance. <P>SOLUTION: In the nickel alloy powder consisting essentially of nickel, comprising 0.1 to 30 atomic% silver and having a mean particle diameter of 0.1 to 2 μm, silver is segregated in the vicinities of the surfaces of the particles, and it is used as the one for electroconductive paste having excellent oxidation resistance. The powder can be produced by charging the chloride 21 of nickel and the chloride 22 of silver into a reaction vessel 11, feeding a carrier gas 13 and a reducing gas 12 therein while being held in a high temperature atmosphere and causing chemical vapor phase reaction in an alloy powder production region 15. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル合金粉末及びその製造方法に関する。さらに詳しくは、導電性ペースト用途に特に適したニッケル合金粉末及びその製造方法に係るものである。
【0002】
【従来の技術】
積層セラミックコンデンサの内部電極にニッケル超微粉が使用されている。このようなニッケル超微粉は、有機バインダ等によってペースト化され、スクリーン印刷等によってセラミックグリーンシート上に薄層に印刷され、その積層体は、脱脂、焼結、焼成等を経て積層セラミックコンデンサとなる。ニッケル超微粉は安価で優れた特性を有するが、上記脱脂、焼結、焼成等の工程において、雰囲気中の酸素によって容易に酸化する問題がある。この酸化により、酸化物の混入を生じたり、焼結不良になったり、電気抵抗が増加する等の問題があり、その改善が望まれている。
【0003】
そこで、ニッケルよりも高温で焼結を開始し、その際に雰囲気により酸化されない粉末として、ニッケルを主体とし、V,Cr,Zr,Nb,Mo,Ta,Wなどを含み、平均粒径が0.1〜1μmである導電ペースト用ニッケル合金粉が開発されている(例えば、特許文献1参照。)。
【0004】
その技術は、ニッケルの焼結開始温度を高め、酸化量を低下させ、高温硬さを向上させる一方、電気比抵抗をあまり増加させない元素を添加するものである。V,Cr,Zr,Nb,Mo,Ta,Wなどは焼結温度を高める元素として、高融点であり、原子半径が大きく、拡散が困難な元素である。また合金化によって、活量低下と不働態の形成を図り、耐熱性を向上させることができる。
【0005】
【特許文献1】
特開2000−60877号公報(第2−4頁、図1)
【0006】
【発明が解決しようとする課題】
本発明者らはさらに、ニッケル合金粉末について研究を進め、ニッケルと銀の合金粉末が優れた特性を示すことを知見し、本発明を完成するに至った。
本発明は、このようなニッケル合金粉末を提供することを目的とするものである。また、その製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記実情に鑑み開発されたもので、ニッケルを主体とし、銀を0.1〜30原子%含有し、平均粒径が0.1〜5μmであることを特徴とするニッケル合金粉末である。
【0008】
この場合、前記ニッケル合金粉末の表層の銀濃度が平均の銀濃度よりも高いことが好適である。
【0009】
なお、電気抵抗に悪影響を与えない元素や、融点を低下させない元素や、Niに固溶しない元素や、耐酸化性に障害を与えない成分であれば他の元素の存在を否認するものではなく、ニッケルと銀以外の第三の成分を含んでもよい。この場合、ニッケルと銀の合計量が90原子%以上であると好ましい。
【0010】
特に第三の成分として、硫黄を0.0005〜5原子%含有することが一層好ましい。
【0011】
本発明は、銀とニッケルとの合金から成る粒子では、銀がニッケル粒子の表層近傍に濃化し易く、表面エネルギーを下げるという顕著な特性の知見に基づくもので、表層に濃化した銀がニッケル合金の耐酸化性向上に大きく寄与する。
【0012】
なお、ここに表層とは、ニッケル合金粉末粒子の表面ではなく、表面から該粒子の内部に向かってある程度の深さの範囲までをいう。具体的には粒子の粒径の数%程度までの範囲である。
また、ニッケル合金が硫黄を含有すると、ニッケル合金粒子の表層にいっそう銀が濃化し易くなるので、銀添加によるニッケル合金粉末の耐酸化性が向上し、好ましい。
【0013】
上記本発明のニッケル合金粉末を製造するための本発明の製造方法は、ニッケルの塩化物と銀乃至は銀の塩化物とを反応容器内に装入し、高温雰囲気に保持しつつキャリアガス及び還元ガスを送入して化学気相反応させ、銀含有ニッケル合金粉末を生成することを特徴とするニッケル合金粉末の製造方法である。
【0014】
さらに、ニッケル合金粉末に硫黄を含有させるには、反応容器内に装入する装入物中にS含有物質を含めるとよく、特にニッケルの硫化物ないしは硫酸化物またはSOないしSOないしHS等のガスであることが好ましい。これらの物質は、塩化ニッケルに所定比率で混合して装入するか、あるいはキャリアガスに混入すると、得られるニッケル合金粉末の組成のばらつきが少なくなり、好ましい。
【0015】
前記高温雰囲気は950〜1200℃とすればよい。また、前記生成した銀含有ニッケル合金粉末をさらに焼鈍すると、耐酸化性が一層向上するので好ましい。
【0016】
【発明の実施の形態】
本発明はニッケルを主体とし、銀を0.1〜30原子%含有するニッケル合金粉末で、耐酸化性に優れたものである。
銀含有量が0.1原子%未満ではニッケル合金粉末の耐酸化性の向上が見られず、改善効果がない。また、銀を多量に含有すると、導電性ペースト用に使用した場合に銀ペーストと同様の効果を期待することができ好ましいが、一方、銀は高価であるから、耐酸化性の向上と、合金粉末のコストアップと、焼結開始温度の低下とのバランスの観点から上限を30原子%に限定した。
【0017】
本発明のニッケル合金粉末の平均粒径は0.1〜5μmとする。高性能の薄膜から成る多重積層セラミックコンデンサを製造するためには、平均粒径0.1〜5μmのほぼ球形の粉末が好適である。このような平均粒径のニッケル合金粉末は化学気相反応(CVD)によって容易に得ることができる。また、粒径が小さい程積層セラミックコンデンサ用として好ましく、粒径が小さいと比表面積が増大するので、ニッケルの表面に濃化してネットワーク状の耐酸化層を形成する銀の作用効果が顕著になる。
【0018】
さらに、ニッケル合金粉末中に0.0005〜5原子%の硫黄を含有させるとニッケル合金粒子の表層にいっそう銀が濃化し易くなるので、銀添加によるニッケル合金粉末の耐酸化性が向上し、好ましい。硫黄の含有量が0.0005原子%未満では粒子表層への銀の濃化に対する硫黄の効果が乏しくなる。一方5原子%を超えると銀の硫化物やニッケルの硫化物の量が増大し、ニッケル合金粉末の導電性その他の性質を劣化させるので好ましくない。
【0019】
化学気相反応の具体的条件については、生産効率、成分範囲などに応じて原料配合比、反応温度、反応ガス流量等を設定することができる。
ここで、ニッケルと銀との合金粒子は、粒子の表層近傍に銀が濃化し、粒子全体が一様な合金組成でないことについて説明する。
【0020】
図11、図12はNi−13原子%Agの試作合金のスパッタリング時間(分)を横軸に、縦軸にDPH(デリバティブピーク高さ)をとって試験結果を図示したグラフである。横軸はスパッタリングがFe換算深さ2.7nm/minに相当し、表面から内部への深さを示す指標である。図11、図12中、曲線31、41はニッケルの量、曲線32、42は銀の量、曲線33、43は酸素の量、曲線44は硫黄の量をそれぞれ示している。銀の量を示す曲線32、42はニッケルの表層近傍に大部分が存在し、この銀が粒子の酸化を防止している。図11、図12から明らかなように銀を含有する本発明のニッケル合金粉末は表層近傍に銀が濃化していることが明らかである。
【0021】
次に、本発明の製造方法について説明する。図1は本発明の実施例の耐酸化性に優れた導電性ペースト用ニッケル合金粉末の製造方法を示すプロセスの工程図である。
【0022】
本発明の耐酸化性に優れた導電性ペースト用ニッケル合金粉末は、図1に示す化学気相反応(CVD)装置10によって製造することができる。図1(a)に示すように、反応容器11内に原料として塩化ニッケル21を収納したボート23と塩化銀乃至は銀22を収納したボート24を置き、反応容器11を例えば950〜1200℃に保ち、キャリアガス13を送入して塩化ニッケル21及び塩化銀22を蒸発させる。塩化ニッケル21と塩化銀22とを混合して1つのボートに装入してもよいし、ボート23とボート24の位置を入れ替えてもよい。
【0023】
また硫黄含有物質(硫化ニッケルないし硫酸ニッケル)は塩化ニッケルに混合するのがよい。
【0024】
一方、還元ガス12、例えば水素ガスを送入する。反応装置10の入口側から原料収納ボート23までの距離b、還元ガス送入位置までの距離a、温度条件、原料の量などは、反応装置の規模、製品粒子の大きさその他の条件に応じて定めることができる。
【0025】
図1(b)は蒸発した原料が合金粉生成域15で還元されると共に合金粉が生成される反応工程を示すものである。生成した合金粉はキャリアガス13と共に排出路14から排出される。
図1(c)に示すように、原料である塩化ニッケル21、塩化銀22が蒸発完了したとき、製造工程を終了する。
【0026】
【実施例】
図1に示すような実験室規模の気相化学反応装置10を用いて本発明のニッケル合金粉末を製造した。この装置10に、純度99.5質量%のNiClと純度99.5質量%のAgClとの混合物を、Ag/(Ni+Ag)の値が0.1〜30原子%となるように調整し、装置内に装入した。温度1100℃に加熱した状態において、窒素ガスをキャリアガスとして、上記NiCl及びAgClの蒸気を上記反応容器11内で反応させ、反応容器11の出側において、塩化物蒸気と水素ガスとを接触、混合させ、還元反応を起こさせて、ニッケル合金粉末を製造した。
【0027】
得られたニッケル合金粉末のSEMによる画像解析により求めた平均粒径D50、BET法で測定した比表面積、及び350℃×2時間大気中にさらしたときの酸化増量(TG増%)を表1〜表4に示した。
【0028】
比較例として、上記と同一の装置を用いて、NiClのみを原料とするニッケル粉末も製造した。得られたニッケル粉末の上記と同様の特性を表1〜表4に併せて示した。
【0029】
次に、銀が表層近傍に偏析したニッケル合金粉末を得るための試作実験を行った結果について説明する。この実験は、図1に示すような石英反応管を反応容器として用いたCVD装置10により行った。直径50mmφ長さ1000mmLの石英管を用い、使用原料としてNiCl及びAgClを用い、原料装入量20〜30g/ch(チャージ)、キャリアガスとして窒素3L/min、還元ガスとして水素1L/minを用い、炉設定温度1100℃で銀含有ニッケル合金粉末の製造を行った。
【0030】
表5、表6に各チャージごとのNi、Ag、Oの原子%、及びBET値を示した。また、表7に各チャージごとの原料装入量、反応管上流端より原料ボート上流端までの距離b(mm)、反応管上流端より水素ノズル下流端までの距離a(mm)を示した。なお、ボートの長さは120mmとした。
【0031】
図2〜図7は表5に示すch.No.WNA−01〜−04、−07、−09に対応する試作粉のSEM写真である。
【0032】
次に、図8は、図6に示すch.No.WNA−07と同様で、NiCl及びAgClを予め混合してボートに収納した原料を用いて製造した、ニッケル合金粉末のSEM写真である。このニッケル合金粉末のEDX像を調べた結果では、純ニッケル粉末と比較して大部分の粒子に銀が分布していると認められた。
【0033】
図9は、図7に示すch.No.WNA−09と同様で、原料NiCl及びAgClを個別にボートに入れて作成した、ニッケル合金粉末を示すSEM写真である。このニッケル合金粉末のEDX像を調べたところ、予め原料を混合したch.No.WNA−07と差が認められなかった。
【0034】
図10は純ニッケル粉末のSEM写真を示すもので、そのEDX像を調べたところ、ch.No.WNA−07とは異なり、何れの粒子においても銀は検出されなかった。
【0035】
次に、反応管の上流端より原料ボート上流端までの距離b、反応管上流端より水素ノズル下流端までの距離aを一定とし、ニッケルに対する銀含有率の異なるニッケル合金粉末を製造した。(ch.No.WNA−10〜−13)。その製品成分の原子%、空気中で350℃2時間保持後の酸化増量(ΔTg%)、平均粒径、比表面積を表8に示した。銀含有量が増加すると粒径が小さく、比表面積が大きくなる傾向があり、ΔTg%が比表面積増加に伴って漸増する傾向が見られたが、耐酸化性のレベルは従来より低いことがわかる。
【0036】
次に本発明の効果について説明する。
以上の実施例について、350℃、2時間空気中で保持したときの酸化増量(ΔTg:質量%)を調べた結果を図13に示す。図中、曲線51は昇温曲線、曲線52〜54はそれぞれ、平均粒径0.2μm(201)、0.3μm(301)、0.4μm(401)のニッケル粉末を示し、350℃で2時間経過後の酸化増量(ΔTg:質量%)はそれぞれ14.8%、12.1%、9.1%となっている。一方、曲線55は銀を7.5原子%を含み平均粒径0.2μmのニッケル合金粉末、曲線56は銀を13原子%を含み平均粒径0.42μmのニッケル合金粉末である。曲線55及び曲線55の酸化増量(ΔTg:質量%)はそれぞれ5.8%、5.3%であり、曲線52〜54で示したニッケル粉末に対して著しく改善されている。
【0037】
なお、図14はこれらの試作品の焼結挙動を比較するもので、横軸に温度をとり、縦軸に温度上昇に伴う圧粉体の高さ収縮率(TMA)%をとって示した。曲線62〜64はそれぞれ図13の曲線52〜54と対応する平均粒径0.2〜0.4μmの純ニッケル粉末について示したものである。曲線65は銀を4.6%含有し平均粒径0.46μmのニッケル合金粉末、曲線66は銀を2.9%含有し平均粒径0.55μmのニッケル合金粉末である。銀を含有した本発明のニッケル合金粉末(曲線65、66)では曲線62〜64で示すニッケル粉末に比べて低い焼結温度を示している。
【0038】
【表1】

Figure 2005008981
【0039】
【表2】
Figure 2005008981
【0040】
【表3】
Figure 2005008981
【0041】
【表4】
Figure 2005008981
【0042】
【表5】
Figure 2005008981
【0043】
【表6】
Figure 2005008981
【0044】
【表7】
Figure 2005008981
【0045】
【表8】
Figure 2005008981
【0046】
【発明の効果】
本発明の耐酸化性に優れた導電性ペースト用ニッケル合金粉末は以上のように構成されているので、耐酸化性に優れ、積層セラミックコンデンサ用の導電ペースト用として極めて好適な特性を示すという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施例の耐酸化性に優れた導電性ペースト用ニッケル合金粉末の製造方法を示すプロセスの工程図である。
【図2】実施例のニッケル合金粉末のSEM写真である。
【図3】実施例のニッケル合金粉末のSEM写真である。
【図4】実施例のニッケル合金粉末のSEM写真である。
【図5】実施例のニッケル合金粉末のSEM写真である。
【図6】実施例のニッケル合金粉末のSEM写真である。
【図7】実施例のニッケル合金粉末のSEM写真である。
【図8】実施例のニッケル合金粉末のSEM写真である。
【図9】実施例のニッケル合金粉末のSEM写真である。
【図10】純ニッケル粉末のSEM写真である。
【図11】実施例の試験結果を図示したグラフである。
【図12】実施例の試験結果を図示したグラフである。
【図13】本発明の効果である酸化増量を示すグラフである。
【図14】焼結による圧粉体の高さ収縮率を示すグラフである。
【符号の説明】
10 化学気相反応(CVD)装置
11 反応容器
12 還元ガス
13 キャリアガス
14 排出路
15 合金粉生成域
21 ニッケルの塩化物
22 銀の塩化物
23、24 原料収納ボート
31、32、33、41、42、43 曲線
51〜56 曲線
62〜66 曲線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nickel alloy powder and a method for producing the same. More specifically, the present invention relates to a nickel alloy powder particularly suitable for conductive paste applications and a method for producing the same.
[0002]
[Prior art]
Nickel ultrafine powder is used for the internal electrode of the multilayer ceramic capacitor. Such nickel ultrafine powder is pasted with an organic binder or the like, printed on a thin layer on a ceramic green sheet by screen printing or the like, and the laminate becomes a multilayer ceramic capacitor through degreasing, sintering, firing, etc. . Although nickel ultrafine powder is inexpensive and has excellent characteristics, there is a problem that it is easily oxidized by oxygen in the atmosphere in the steps of degreasing, sintering, firing and the like. Due to this oxidation, there are problems such as mixing of oxides, poor sintering, and an increase in electrical resistance, and improvements are desired.
[0003]
Therefore, sintering is started at a temperature higher than that of nickel, and as a powder that is not oxidized by the atmosphere at that time, nickel is mainly used, and V, Cr, Zr, Nb, Mo, Ta, W, etc. are included, and the average particle size is 0. A nickel alloy powder for conductive paste having a thickness of 1 to 1 μm has been developed (for example, see Patent Document 1).
[0004]
The technique increases the sintering start temperature of nickel, decreases the amount of oxidation, improves the high-temperature hardness, and adds an element that does not increase the electrical specific resistance. V, Cr, Zr, Nb, Mo, Ta, W, and the like are elements that have a high melting point, a large atomic radius, and are difficult to diffuse as elements that increase the sintering temperature. Further, the alloying can reduce the activity and form a passive state, thereby improving the heat resistance.
[0005]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2000-60877 (page 2-4, FIG. 1)
[0006]
[Problems to be solved by the invention]
The present inventors have further studied nickel alloy powders, and found that nickel and silver alloy powders have excellent characteristics, and have completed the present invention.
The object of the present invention is to provide such a nickel alloy powder. Moreover, it aims at providing the manufacturing method.
[0007]
[Means for Solving the Problems]
The present invention has been developed in view of the above circumstances, and is a nickel alloy powder characterized in that it is mainly composed of nickel, contains 0.1 to 30 atomic% of silver, and has an average particle size of 0.1 to 5 μm. It is.
[0008]
In this case, it is preferable that the silver concentration of the surface layer of the nickel alloy powder is higher than the average silver concentration.
[0009]
The element does not deny the presence of other elements as long as it does not adversely affect the electrical resistance, does not lower the melting point, does not dissolve in Ni, or does not impair the oxidation resistance. A third component other than nickel and silver may be included. In this case, the total amount of nickel and silver is preferably 90 atomic percent or more.
[0010]
In particular, it is more preferable to contain 0.0005 to 5 atomic% of sulfur as the third component.
[0011]
The present invention is based on the knowledge of remarkable characteristics that silver is easily concentrated in the vicinity of the surface layer of nickel particles and the surface energy is reduced in particles made of an alloy of silver and nickel. Greatly contributes to improving the oxidation resistance of alloys.
[0012]
Here, the surface layer refers not to the surface of the nickel alloy powder particles but to a range of a certain depth from the surface toward the inside of the particles. Specifically, the range is up to about several percent of the particle diameter.
In addition, when the nickel alloy contains sulfur, the silver alloy is more easily concentrated on the surface layer of the nickel alloy particles, which improves the oxidation resistance of the nickel alloy powder by adding silver, which is preferable.
[0013]
The production method of the present invention for producing the nickel alloy powder of the present invention comprises charging a nickel gas and silver or silver chloride into a reaction vessel and maintaining the carrier gas and a high temperature atmosphere. A method for producing a nickel alloy powder is characterized in that a reducing gas is introduced to cause a chemical vapor reaction to produce a silver-containing nickel alloy powder.
[0014]
Further, in order to contain sulfur in the nickel alloy powder, an S-containing material may be included in the charge charged in the reaction vessel, and in particular, nickel sulfide or sulfate or SO 2 to SO 3 to H 2. A gas such as S is preferred. When these materials are mixed with nickel chloride at a predetermined ratio and charged, or mixed in a carrier gas, variation in composition of the obtained nickel alloy powder is reduced, which is preferable.
[0015]
The high temperature atmosphere may be 950 to 1200 ° C. Further, it is preferable to further anneal the produced silver-containing nickel alloy powder because the oxidation resistance is further improved.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a nickel alloy powder mainly composed of nickel and containing 0.1 to 30 atomic% of silver, and is excellent in oxidation resistance.
When the silver content is less than 0.1 atomic%, the oxidation resistance of the nickel alloy powder is not improved and there is no improvement effect. In addition, when a large amount of silver is contained, the same effect as the silver paste can be expected when used for a conductive paste. On the other hand, since silver is expensive, an improvement in oxidation resistance and an alloy The upper limit was limited to 30 atomic% from the viewpoint of the balance between powder cost increase and sintering start temperature decrease.
[0017]
The average particle diameter of the nickel alloy powder of the present invention is 0.1 to 5 μm. In order to produce a multi-layer ceramic capacitor composed of a high-performance thin film, a substantially spherical powder having an average particle size of 0.1 to 5 μm is suitable. A nickel alloy powder having such an average particle diameter can be easily obtained by chemical vapor reaction (CVD). Also, the smaller the particle size, the more preferable for a multilayer ceramic capacitor, and the smaller the particle size, the greater the specific surface area. Therefore, the effect of silver forming a network-like oxidation-resistant layer by concentrating on the nickel surface becomes remarkable. .
[0018]
Furthermore, when 0.0005 to 5 atomic% of sulfur is contained in the nickel alloy powder, silver is more easily concentrated on the surface layer of the nickel alloy particles, so that the oxidation resistance of the nickel alloy powder by adding silver is improved, which is preferable. . If the sulfur content is less than 0.0005 atomic%, the effect of sulfur on the concentration of silver on the particle surface layer becomes poor. On the other hand, if it exceeds 5 atomic%, the amount of silver sulfide or nickel sulfide increases, which deteriorates the conductivity and other properties of the nickel alloy powder.
[0019]
As for the specific conditions of the chemical vapor phase reaction, the raw material blending ratio, reaction temperature, reaction gas flow rate, and the like can be set according to production efficiency, component range, and the like.
Here, the alloy particles of nickel and silver will be explained by the fact that silver is concentrated in the vicinity of the surface layer of the particles and the entire particles are not of a uniform alloy composition.
[0020]
FIG. 11 and FIG. 12 are graphs showing the test results with the sputtering time (minutes) of the trial alloy of Ni-13 atomic% Ag taken on the horizontal axis and DPH (derivative peak height) on the vertical axis. The horizontal axis corresponds to an Fe conversion depth of 2.7 nm / min and is an index indicating the depth from the surface to the inside. 11 and 12, curves 31 and 41 indicate the amount of nickel, curves 32 and 42 indicate the amount of silver, curves 33 and 43 indicate the amount of oxygen, and curve 44 indicates the amount of sulfur, respectively. The curves 32 and 42 indicating the amount of silver are mostly present in the vicinity of the nickel surface layer, and this silver prevents oxidation of the particles. As is clear from FIGS. 11 and 12, it is clear that silver is concentrated in the vicinity of the surface layer of the nickel alloy powder of the present invention containing silver.
[0021]
Next, the manufacturing method of this invention is demonstrated. FIG. 1 is a process diagram of a process showing a method for producing a nickel alloy powder for a conductive paste excellent in oxidation resistance according to an embodiment of the present invention.
[0022]
The nickel alloy powder for conductive paste excellent in oxidation resistance of the present invention can be produced by a chemical vapor reaction (CVD) apparatus 10 shown in FIG. As shown in FIG. 1A, a boat 23 containing nickel chloride 21 as a raw material and a boat 24 containing silver chloride or silver 22 are placed in a reaction vessel 11 as a raw material, and the reaction vessel 11 is kept at 950 to 1200 ° C., for example. Then, the carrier gas 13 is fed to evaporate the nickel chloride 21 and the silver chloride 22. Nickel chloride 21 and silver chloride 22 may be mixed and charged into one boat, or the positions of boat 23 and boat 24 may be interchanged.
[0023]
Sulfur-containing substances (nickel sulfide or nickel sulfate) are preferably mixed with nickel chloride.
[0024]
On the other hand, reducing gas 12, for example, hydrogen gas is fed. The distance b from the inlet side of the reactor 10 to the raw material storage boat 23, the distance a to the reducing gas feed position a, the temperature condition, the amount of raw material, etc., depend on the scale of the reactor, the size of the product particles, and other conditions Can be determined.
[0025]
FIG. 1 (b) shows a reaction process in which the evaporated raw material is reduced in the alloy powder production region 15 and alloy powder is produced. The produced alloy powder is discharged from the discharge path 14 together with the carrier gas 13.
As shown in FIG. 1C, when the nickel chloride 21 and the silver chloride 22 as the raw materials are completely evaporated, the manufacturing process is finished.
[0026]
【Example】
The nickel alloy powder of the present invention was manufactured using a laboratory-scale gas phase chemical reaction apparatus 10 as shown in FIG. In this apparatus 10, a mixture of NiCl 2 having a purity of 99.5% by mass and AgCl having a purity of 99.5% by mass is adjusted so that the value of Ag / (Ni + Ag) is 0.1 to 30 atomic%. Charged into the device. In a state heated to 1100 ° C., nitrogen gas is used as a carrier gas, the vapors of NiCl 2 and AgCl are reacted in the reaction vessel 11, and chloride vapor and hydrogen gas are brought into contact on the outlet side of the reaction vessel 11. The nickel alloy powder was manufactured by mixing and causing a reduction reaction.
[0027]
Table 1 shows the average particle diameter D50 obtained by image analysis by SEM of the obtained nickel alloy powder, the specific surface area measured by the BET method, and the oxidation increase (TG increase%) when exposed to the atmosphere at 350 ° C. for 2 hours. To Table 4.
[0028]
As a comparative example, nickel powder using only NiCl 2 as a raw material was also produced using the same apparatus as described above. The characteristic similar to the above of the obtained nickel powder was combined with Table 1-Table 4, and was shown.
[0029]
Next, the result of a trial experiment for obtaining a nickel alloy powder in which silver is segregated in the vicinity of the surface layer will be described. This experiment was performed by a CVD apparatus 10 using a quartz reaction tube as shown in FIG. 1 as a reaction vessel. A quartz tube having a diameter of 50 mm and a length of 1000 mmL is used, NiCl 2 and AgCl are used as raw materials, a raw material charging amount is 20 to 30 g / ch (charge), nitrogen is 3 L / min as a carrier gas, and hydrogen is 1 L / min as a reducing gas. The silver-containing nickel alloy powder was produced at a furnace set temperature of 1100 ° C.
[0030]
Tables 5 and 6 show the atomic percentages of Ni, Ag, and O and the BET values for each charge. Table 7 shows the raw material charging amount for each charge, the distance b (mm) from the upstream end of the reaction tube to the upstream end of the raw material boat, and the distance a (mm) from the upstream end of the reaction tube to the downstream end of the hydrogen nozzle. . The length of the boat was 120 mm.
[0031]
2 to 7 show ch. No. It is a SEM photograph of prototype powder corresponding to WNA-01--04, -07, and -09.
[0032]
Next, FIG. 8 shows ch. No. Similar to WNA-07, was prepared using the ingredients housed in boat premixed NiCl 2 and AgCl, which is an SEM photograph of the nickel alloy powder. As a result of examining the EDX image of the nickel alloy powder, it was recognized that silver was distributed in most of the particles as compared with the pure nickel powder.
[0033]
9 shows ch. No. Similar to WNA-09, was created material NiCl 2 and AgCl placed individually into the boat, is a SEM photograph showing a nickel alloy powder. When the EDX image of this nickel alloy powder was examined, ch. No. No difference was observed with WNA-07.
[0034]
FIG. 10 shows an SEM photograph of pure nickel powder. When the EDX image was examined, ch. No. Unlike WNA-07, no silver was detected in any of the particles.
[0035]
Next, the distance b from the upstream end of the reaction tube to the upstream end of the raw material boat and the distance a from the upstream end of the reaction tube to the downstream end of the hydrogen nozzle were constant, and nickel alloy powders having different silver contents relative to nickel were produced. (Ch. No. WNA-10 to -13). Table 8 shows the atomic percent of the product components, the amount of oxidation increase after holding at 350 ° C. for 2 hours in air, the average particle size, and the specific surface area. When the silver content increases, the particle size tends to be small and the specific surface area tends to increase, and ΔTg% tends to increase gradually as the specific surface area increases, but the level of oxidation resistance is lower than before. .
[0036]
Next, the effect of the present invention will be described.
FIG. 13 shows the results of examining the increase in oxidation (ΔTg: mass%) when held in the air at 350 ° C. for 2 hours for the above examples. In the figure, a curve 51 is a temperature rising curve, and curves 52 to 54 are nickel powders having an average particle diameter of 0.2 μm (201), 0.3 μm (301), and 0.4 μm (401), respectively. The increase in oxidation after the elapse of time (ΔTg: mass%) is 14.8%, 12.1%, and 9.1%, respectively. On the other hand, curve 55 is a nickel alloy powder containing 7.5 atomic% of silver and having an average particle diameter of 0.2 μm, and curve 56 is a nickel alloy powder containing 13 atomic% of silver and having an average particle diameter of 0.42 μm. The increase in oxidation (ΔTg: mass%) of curves 55 and 55 is 5.8% and 5.3%, respectively, which is a significant improvement over the nickel powders shown by curves 52-54.
[0037]
FIG. 14 compares the sintering behavior of these prototypes, and shows the temperature on the horizontal axis and the height shrinkage (TMA)% of the green compact as the temperature rises on the vertical axis. . Curves 62 to 64 show pure nickel powder having an average particle size of 0.2 to 0.4 μm corresponding to curves 52 to 54 in FIG. Curve 65 is a nickel alloy powder containing 4.6% silver and having an average particle size of 0.46 μm, and curve 66 is a nickel alloy powder containing 2.9% silver and having an average particle size of 0.55 μm. The nickel alloy powder (curves 65 and 66) of the present invention containing silver shows a lower sintering temperature than the nickel powders shown by the curves 62 to 64.
[0038]
[Table 1]
Figure 2005008981
[0039]
[Table 2]
Figure 2005008981
[0040]
[Table 3]
Figure 2005008981
[0041]
[Table 4]
Figure 2005008981
[0042]
[Table 5]
Figure 2005008981
[0043]
[Table 6]
Figure 2005008981
[0044]
[Table 7]
Figure 2005008981
[0045]
[Table 8]
Figure 2005008981
[0046]
【The invention's effect】
Since the nickel alloy powder for conductive paste excellent in oxidation resistance according to the present invention is configured as described above, it is excellent in oxidation resistance and exhibits extremely suitable characteristics as a conductive paste for multilayer ceramic capacitors. Has an effect.
[Brief description of the drawings]
FIG. 1 is a process diagram of a process showing a method for producing a nickel alloy powder for conductive paste having excellent oxidation resistance according to an embodiment of the present invention.
FIG. 2 is an SEM photograph of nickel alloy powder of an example.
FIG. 3 is an SEM photograph of nickel alloy powder of an example.
FIG. 4 is an SEM photograph of nickel alloy powder of an example.
FIG. 5 is an SEM photograph of nickel alloy powder of an example.
FIG. 6 is an SEM photograph of nickel alloy powder of an example.
FIG. 7 is an SEM photograph of nickel alloy powder of Example.
FIG. 8 is an SEM photograph of nickel alloy powder of Example.
FIG. 9 is an SEM photograph of nickel alloy powder of Example.
FIG. 10 is an SEM photograph of pure nickel powder.
FIG. 11 is a graph illustrating test results of examples.
FIG. 12 is a graph illustrating test results of examples.
FIG. 13 is a graph showing an increase in oxidation that is an effect of the present invention.
FIG. 14 is a graph showing the height shrinkage ratio of a green compact by sintering.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Chemical vapor reaction (CVD) apparatus 11 Reaction container 12 Reducing gas 13 Carrier gas 14 Discharge path 15 Alloy powder production | generation area 21 Nickel chloride 22 Silver chloride 23, 24 Raw material storage boats 31, 32, 33, 41, 42, 43 Curve 51-56 Curve 62-66 Curve

Claims (7)

ニッケルを主体とし、銀を0.1〜30原子%含有し、平均粒径が0.1〜5μmであることを特徴とするニッケル合金粉末。A nickel alloy powder comprising nickel as a main component, containing 0.1 to 30 atomic% of silver, and having an average particle size of 0.1 to 5 μm. 前記ニッケル合金粉末の表層の銀濃度が、平均の銀濃度よりも高いことを特徴とする請求項1記載のニッケル合金粉末。The nickel alloy powder according to claim 1, wherein a silver concentration of a surface layer of the nickel alloy powder is higher than an average silver concentration. ニッケルと銀の合計量が90原子%以上であることを特徴とする請求項1又は2記載のニッケル合金粉末。The nickel alloy powder according to claim 1 or 2, wherein the total amount of nickel and silver is 90 atomic% or more. 前記ニッケル合金粉末がさらに硫黄を0.0005〜5原子%含有することを特徴とする請求項1〜3のいずれかに記載のニッケル合金粉末。The nickel alloy powder according to any one of claims 1 to 3, wherein the nickel alloy powder further contains 0.0005 to 5 atomic% of sulfur. 前記ニッケル合金粉末が導電性ペーストに使用されるものであることを特徴とする請求項1〜4のいずれかに記載のニッケル合金粉末。The nickel alloy powder according to any one of claims 1 to 4, wherein the nickel alloy powder is used for a conductive paste. ニッケルの塩化物及と銀もしくは銀の塩化物とを反応容器内に装入し、高温雰囲気に保持しつつキャリアガス及び還元ガスを送入して化学気相反応させ、銀含有ニッケル合金粉末を生成することを特徴とするニッケル合金粉末の製造方法。A nickel chloride and silver or silver chloride are charged into a reaction vessel, and while maintaining a high temperature atmosphere, a carrier gas and a reducing gas are introduced to cause a chemical vapor reaction, and a silver-containing nickel alloy powder is obtained. A method for producing a nickel alloy powder, characterized by comprising: 前記反応容器内にさらに、硫黄含有物質を装入することを特徴とする請求項6記載のニッケル合金粉末の製造方法。The method for producing a nickel alloy powder according to claim 6, wherein a sulfur-containing substance is further charged into the reaction vessel.
JP2003199488A 2003-06-16 2003-06-16 Method for producing nickel alloy powder Expired - Fee Related JP4546050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003199488A JP4546050B2 (en) 2003-06-16 2003-06-16 Method for producing nickel alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003199488A JP4546050B2 (en) 2003-06-16 2003-06-16 Method for producing nickel alloy powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008116788A Division JP4829923B2 (en) 2008-04-28 2008-04-28 Nickel alloy powder

Publications (2)

Publication Number Publication Date
JP2005008981A true JP2005008981A (en) 2005-01-13
JP4546050B2 JP4546050B2 (en) 2010-09-15

Family

ID=34100381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199488A Expired - Fee Related JP4546050B2 (en) 2003-06-16 2003-06-16 Method for producing nickel alloy powder

Country Status (1)

Country Link
JP (1) JP4546050B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053409A (en) * 2008-08-28 2010-03-11 Sumitomo Electric Ind Ltd Method for producing metal powder, metal powder, electrically conductive paste, and multilayer ceramic capacitor
WO2013018462A1 (en) * 2011-07-29 2013-02-07 株式会社ノリタケカンパニーリミテド Conductive paste composition for solar cells
JP2013067865A (en) * 2012-11-12 2013-04-18 Sumitomo Electric Ind Ltd Metal powder, electroconductive paste and multilayer ceramic capacitor
JP2014091862A (en) * 2012-11-07 2014-05-19 Sumitomo Metal Mining Co Ltd Nickel powder and its manufacturing method
WO2020004105A1 (en) * 2018-06-28 2020-01-02 東邦チタニウム株式会社 Metal powder, production method therefor, and sintering temperature prediction method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282401A (en) * 1988-08-23 1990-11-20 Asahi Chem Ind Co Ltd Electrically conductive metal powder, manufacture and use thereof
JPH1180816A (en) * 1997-09-10 1999-03-26 Sumitomo Metal Mining Co Ltd Nickel powder for conductive paste and its production
JPH1180817A (en) * 1997-09-05 1999-03-26 Kawatetsu Mining Co Ltd Nickel ultrafine powder
JP2002025345A (en) * 2000-07-05 2002-01-25 Nisshin Steel Co Ltd Conductive particle with excellent migration resistance property
JP2002334614A (en) * 2001-05-07 2002-11-22 Kawakado Kimiko Conductive particles
JP2002348603A (en) * 2001-05-24 2002-12-04 Murata Mfg Co Ltd Method for manufacturing metal powder, metal powder, conductive paste, and laminated ceramic electronic component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282401A (en) * 1988-08-23 1990-11-20 Asahi Chem Ind Co Ltd Electrically conductive metal powder, manufacture and use thereof
JPH1180817A (en) * 1997-09-05 1999-03-26 Kawatetsu Mining Co Ltd Nickel ultrafine powder
JPH1180816A (en) * 1997-09-10 1999-03-26 Sumitomo Metal Mining Co Ltd Nickel powder for conductive paste and its production
JP2002025345A (en) * 2000-07-05 2002-01-25 Nisshin Steel Co Ltd Conductive particle with excellent migration resistance property
JP2002334614A (en) * 2001-05-07 2002-11-22 Kawakado Kimiko Conductive particles
JP2002348603A (en) * 2001-05-24 2002-12-04 Murata Mfg Co Ltd Method for manufacturing metal powder, metal powder, conductive paste, and laminated ceramic electronic component

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053409A (en) * 2008-08-28 2010-03-11 Sumitomo Electric Ind Ltd Method for producing metal powder, metal powder, electrically conductive paste, and multilayer ceramic capacitor
US9312045B2 (en) 2011-07-29 2016-04-12 Noritake Co., Limited Conductive paste composition for solar cells and solar cell
CN103797584B (en) * 2011-07-29 2016-01-20 株式会社则武 Conductive paste composition used for solar batteries and solar cell
WO2013018462A1 (en) * 2011-07-29 2013-02-07 株式会社ノリタケカンパニーリミテド Conductive paste composition for solar cells
CN103797584A (en) * 2011-07-29 2014-05-14 株式会社则武 Conductive paste composition for solar cells
TWI562169B (en) * 2011-07-29 2016-12-11 Noritake Co Ltd
JPWO2013018462A1 (en) * 2011-07-29 2015-03-05 株式会社ノリタケカンパニーリミテド Conductive paste composition for solar cell and solar cell
WO2013018408A1 (en) * 2011-07-29 2013-02-07 株式会社ノリタケカンパニーリミテド Conductive paste composition for solar cells
JP2014091862A (en) * 2012-11-07 2014-05-19 Sumitomo Metal Mining Co Ltd Nickel powder and its manufacturing method
JP2013067865A (en) * 2012-11-12 2013-04-18 Sumitomo Electric Ind Ltd Metal powder, electroconductive paste and multilayer ceramic capacitor
WO2020004105A1 (en) * 2018-06-28 2020-01-02 東邦チタニウム株式会社 Metal powder, production method therefor, and sintering temperature prediction method
KR20210019547A (en) * 2018-06-28 2021-02-22 도호 티타늄 가부시키가이샤 Metal powder, its manufacturing method, and sintering temperature prediction method
CN112423912A (en) * 2018-06-28 2021-02-26 东邦钛株式会社 Metal powder, method for producing same, and method for predicting sintering temperature
TWI720523B (en) * 2018-06-28 2021-03-01 日商東邦鈦股份有限公司 Metal powder and its manufacturing method
JPWO2020004105A1 (en) * 2018-06-28 2021-08-05 東邦チタニウム株式会社 Metal powder, its manufacturing method, and method for predicting sintering temperature
JP7193534B2 (en) 2018-06-28 2022-12-20 東邦チタニウム株式会社 Nickel powder and its production method
KR102484793B1 (en) 2018-06-28 2023-01-05 도호 티타늄 가부시키가이샤 Metal powder, manufacturing method thereof, and method for predicting sintering temperature

Also Published As

Publication number Publication date
JP4546050B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP2005505695A (en) Multilayer ceramic capacitor electrode internal powder
TWI442984B (en) Copper powder for conductive paste and conductive paste
JP5155743B2 (en) Copper powder for conductive paste and conductive paste
CN108367361A (en) Metal powder is atomized manufacturing method
JP5407495B2 (en) Metal powder, metal powder manufacturing method, conductive paste, and multilayer ceramic capacitor
CN1320104A (en) Method to partially reduce certain metal oxide and oxygen reduced metal oxides
JP2010013730A (en) Copper powder for conductive paste, and conductive paste
JP2010196105A (en) Copper powder for electroconductive paste, and electroconductive paste
JP2011149080A (en) Nickel powder and production method therefor
EP1255624A2 (en) Nickel powder for use as electrodes in base metal electrode multilayered ceramic capacitors
CN115206678A (en) Metal powder for use as electrode material in multilayer ceramic capacitors and methods of making and using the same
JP4546050B2 (en) Method for producing nickel alloy powder
Kan et al. 316L FFF binder development and debinding optimization
JPWO2011145378A1 (en) Copper powder for conductive paste and conductive paste
TWI229137B (en) Cu alloy powder for an electro-conductive paste
JP4829923B2 (en) Nickel alloy powder
CN105798319B (en) Preparation method of silver-tungsten electrical contact material, electrical contact material and electrical contact
JP2014185362A (en) Nickel powder and method for manufacturing the same
JP4085049B2 (en) Copper alloy powder for conductive paste, method for producing copper alloy powder for conductive paste excellent in oxidation resistance, copper alloy powder for inkjet, and method for producing the same
JP2016156055A (en) Thermal insulation material
JP4168773B2 (en) Method for producing nickel powder with excellent sinterability
JP6899275B2 (en) Silver alloy powder and its manufacturing method
JP5046110B2 (en) Method for producing metal oxide fiber material formed body
JP5003648B2 (en) Method for producing oxide-coated copper fine particles
JP2005008960A (en) Metal powder and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080716

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4546050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140709

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees