JP2005007404A - Scarfing method for steel billet - Google Patents

Scarfing method for steel billet Download PDF

Info

Publication number
JP2005007404A
JP2005007404A JP2003171626A JP2003171626A JP2005007404A JP 2005007404 A JP2005007404 A JP 2005007404A JP 2003171626 A JP2003171626 A JP 2003171626A JP 2003171626 A JP2003171626 A JP 2003171626A JP 2005007404 A JP2005007404 A JP 2005007404A
Authority
JP
Japan
Prior art keywords
height
cutting
mountain
scarfing
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003171626A
Other languages
Japanese (ja)
Other versions
JP4276478B2 (en
Inventor
Shuntaro Saito
俊太郎 齊藤
Hirofumi Nakajima
裕文 中島
Satoshi Yamada
智 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003171626A priority Critical patent/JP4276478B2/en
Publication of JP2005007404A publication Critical patent/JP2005007404A/en
Application granted granted Critical
Publication of JP4276478B2 publication Critical patent/JP4276478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gas Burners (AREA)
  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scarfing method which reduces unevenness occurring on the surface of a steel billet after scarfing using a scarfing device, does not require re-processing after the scarfing, and prevents the occurrence of surface defects of a product after rolling caused by the unevenness on the surface of the steel billet. <P>SOLUTION: The device has the following constitution. A ratio of the pressure of a fuel gas, which is discharged from a lower preheating block 5 of the scarfing device for scarfing the steel billet 10, and the pressure of scarfing oxygen discharged from a scarfing torch nozzle 6 is made as Rp. Regarding the uneven part on the surface of the steel billet after scarfing the surface by the scarfing device, the height of ridges of the unevenness is made as H, the width of the ridges as W, and the height H<SB>C</SB>of a critical ridge is preset as a function of the width W. When the height H of the ridges becomes larger than the height H<SB>C</SB>of the critical ridge, ΔRp is set corresponding to the values of H and W, and the ratio Rp is set to Rp+ΔRp or larger than it. By this, the height H of the ridges is reduced to the height lower than the height H<SB>C</SB>of the critical ridge. As a result, the surface quality of the steel billet after the scarfing can be always maintained in excellent quality. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鋼片表面に溶削酸素を吹き付けて溶削する鋼片の溶削方法に関するものである。
【0002】
【従来の技術】
分塊圧延又は連続鋳造されたスラブやブルーム等の鋼片の表面には、割れ疵、表層介在物などの有害な欠陥が存在することがある。このような欠陥を有したままで鋼片を圧延して鋼材を製造すると、鋼片表層のアルミナ介在物を原因とするスリバー疵や、鋳片表面欠陥が起因となるヘゲ疵と称される表面欠陥が発生することとなり、鋼材の表面品質を悪化させる場合がある。鋼片表面に存在する有害欠陥を除去する手段として、鋼片の表面にガスを吹き付け、該鋼片の表面を一定の深さまで溶削するための溶削装置が用いられている。
【0003】
溶削装置はノズルユニットを有する。ノズルユニット1は、図1に示すように、ヘッドブロック2、上方予熱ブロック4、下方予熱ブロック5、シュー3によって構成される。上方予熱ブロック4と下方予熱ブロック5との間に形成されるスリットが、溶削酸素14を吹き付けるための溶削火口6となる。上方予熱ブロック4の先端には、予熱酸素11と燃料ガス12を噴出するノズルが配置され、下方予熱ブロック5の先端には、燃料ガス13を噴出するノズルが配置されている。
【0004】
鋼片を溶削する際には、まず上方予熱ブロック4の先端より予熱酸素11と燃料ガス12を吐出して鋼片を予熱し、溶削火口6から鋼片に向けて溶削酸素14を吐出し、同時に溶削酸素14が外気と反応することにより溶削酸素14に乱れが発生することを防止するため、溶削酸素14をシールする目的で下方予熱ブロック5から燃料ガス13を、上方予熱ブロック4より燃料ガス12を吐出する。このようにガスを吐出しつつ、ノズルユニット1と鋼片とを相対的に移行し、溶削を進行させ、鋼片の表面を全面または部分的に溶削を行う。燃料ガスとしてはLPG(液化プロパンガス)が用いられる。
【0005】
下方予熱ブロック5から吐出する燃料ガス13が不足すると、溶削酸素14の燃焼によって形成される火炎の形状が不良となり、溶削後の鋼片表面に図2(a)に示すような凹凸形状21が発生することとなる。一方、燃料ガス13の増大は溶削コストの増大を招き、さらに燃料ガス13を増大しすぎると流れの不均一が発生することとなる。燃料ガス13の吐出量としては、溶削コストの削減を目的として、火炎の形状が安定している範囲内で最も少ない吐出量を採用する。
【0006】
下方予熱ブロック5から吐出する燃料ガス13の吐出量を調整するに際しては、下方予熱ブロック5から吐出する燃料ガス圧と溶削火口6から吐出する溶削酸素圧の比率をRpとし、Rpを所定の値とするように調整することができる。あるいは、下方予熱ブロック5から吐出する燃料ガス流速と溶削火口6から吐出する溶削酸素流速の比率をRvとし、Rvを所定の値とするように調整しても良い。
【0007】
溶削後の鋼片表面に、ノズルユニットの軌跡に平行な方向(即ち鋼片の長手方向22)に峰を有する凹凸形状21が生成した場合、凹凸の程度が激しくなると、鋼片を圧延した場合においても剥離せず、圧延後にヘゲ疵や模様状の欠陥としてそのまま残り、自動車溶鋼版等の表面品位要求の厳しい製品においては有害となることが知られている。
【0008】
溶削後の鋼片表面に発生する凹凸形状21における凹凸の程度が激しいときは、再度オフラインで人による溶削手入れを行って凹凸を低減する必要がある。そのためには一旦鋼片を冷却する必要があり、後工程での熱間圧延前の加熱炉での燃料を余分に要することや、手入れを行うための費用を要すること、さらに圧延後の再検査などの工程増を要し、コストアップや歩留り落ち等の原因となっていた。
【0009】
溶削後の表面凹凸形状21を低減する目的で、特許文献1に記載のように、火炎吐出口の配列を鋼片軸方向に対して所定の角度を持たせた状態で溶削する方法が知られている。
【0010】
【特許文献1】
特開平7−214302号公報
【0011】
【発明が解決しようとする課題】
特許文献1に記載の方法でも凹凸を完全に消失させることはできず、結果的に冷片での手入れやヘゲ疵の発生を抑制するには至っていない。
【0012】
本発明は、溶削装置を用いた溶削後の鋼片表面に発生する凹凸を低減し、溶削後の再手入れを必要とせず、鋼片表面の凹凸に起因する圧延後の製品表面欠陥を発生させない溶削方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
即ち、本発明の要旨とするところは以下の通りである。
(1)鋼片10を溶削する溶削装置の下方予熱ブロック5から吐出する燃料ガス圧と溶削火口6から吐出する溶削酸素圧の比率をRpとし、溶削装置による表面溶削後の鋼片表面の凹凸部について、凸部頂点と隣り合う凹部2つの最下点をもってひとつの山とし、頂点と隣り合う2つの凹部最下点の高低差を山の高さHとし、前記頂点と隣り合う2つの凹部最下点の鋼片幅方向の距離を山の幅Wとし、臨界山高さHを幅Wの関数として予め定め、山高さHが臨界山高さHより大きくなったときは、H及びWの値に応じてΔRpを定め、前記比率RpをRp+ΔRpあるいはそれ以上に大きくすることを特徴とする鋼片の溶削方法。
(2)鋼片10を溶削する溶削装置の下方予熱ブロック5から吐出する燃料ガス流速と溶削火口6から吐出する溶削酸素流速の比率をRvとし、溶削装置による表面溶削後の鋼片表面の凹凸部について、凸部頂点と隣り合う凹部2つの最下点をもってひとつの山とし、頂点と隣り合う2つの凹部最下点の高低差を山の高さHとし、前記頂点と隣り合う2つの凹部最下点の鋼片幅方向の距離を山の幅Wとし、臨界山高さHを幅Wの関数として予め定め、山高さHが臨界山高さHより大きくなったときは、H及びWの値に応じてΔRvを定め、前記比率RvをRv+ΔRvあるいはそれ以上に大きくすることを特徴とする鋼片の溶削方法。
(3)前記臨界山高さH(mm)を、幅W(mm)の関数として下記(1)式のHと同等あるいはそれ以上の値として定めることを特徴とする上記(1)又は(2)に記載の鋼片の溶削方法。
=0.06×W+0.25 (1)
(4)ΔRpを、H(mm)及びW(mm)の関数であって下記(2)式のΔRpと同等あるいはそれよりも大きな値として定めることを特徴とする上記(3)に記載の鋼片の溶削方法。ただし、Hは上記(1)式による。
ΔRp=(H−H)/H×0.3 (2)
(5)ΔRvを、H(mm)及びW(mm)の関数であって下記(3)式のΔRvと同等あるいはそれよりも大きな値として定めることを特徴とする上記(3)に記載の鋼片の溶削方法。ただし、Hは上記(1)式による。
ΔRv=(H−H)/H×0.5 (3)
【0014】
【発明の実施の形態】
鋼片10を溶削した後の表面に形成される種々の凹凸形状21について、熱間圧延後の鋼板表面疵の原因となるのはどのような凹凸形状であるのかについて調査を行った。その結果、溶削後の表面凹凸形状において、熱間圧延後にヘゲ疵となるものは山の形状として急峻なもの(即ち、山の勾配が大きいもの)であり、たとえ凹凸の山の高さが同じであっても山の勾配が小さいものはヘゲ疵には至らない傾向があることを見いだした。
【0015】
さらに詳細に、レーザー距離計を用いて溶削後の鋼片表面の凹凸を詳細に測定し、熱間圧延後にヘゲ疵となる凹凸形状21の特徴を調査した。表面溶削後の鋼片表面の凹凸部について、図2(b)に示すように、凸部23の頂点と隣り合う凹部(24a、24b)2つの最下点をもってひとつの山とし、頂点と隣り合う2つの凹部最下点のうち低い方との高低差を山の高さH(mm)とし、前記頂点と隣り合う2つの凹部最下点のうち低い方との鋼片幅方向の距離を山の幅W(mm)とする。図2(b)に示す例では、凹部(24a、24b)2つの最下点のうち、凹部24bの方が低いので、凸部23と凹部24bとの間の高低差が高さHとなり、幅方向の距離が幅Wとなる。
【0016】
ただし、図2(c)のように、凸部23頂点と凹部24b最下点の間に小さい凹凸の山が生成した複合山が生成する場合については、2つの山をひとつの山として、高い方の凸部の頂点と低い方の凹部の最下点より、山の高さHと山の幅Wを求めることとした。即ち、山の高さが0.1mm以下の小さい山の場合はその山を無視し、大きい山だけを形状判定対象とした。
【0017】
以上の考え方を基に、山の幅Wを横軸に、山の高さHを縦軸に取り、ヘゲ疵の有無を評価した結果、図3に示す結果が得られた。図3によれば、山の幅Wとの関係において、山の高さHが下記(4)式のH(mm)よりも低ければ熱間圧延後においてもヘゲ疵に至らないことが明らかになった。
=0.13×W+0.42 (4)
【0018】
溶削後鋼片表面の凹凸は、主に溶削装置の火口の詰まりや形状変化が原因となって発生する。山の高さHが上記(4)式のHよりも低いときは熱間圧延後のヘゲ疵には至らないが、HがHに近づくとその後急速に詰まりが進行し、最終的に山の高さHがHを超えて有害疵の原因となることが分かった。従って、HがHに近づいたときに何らかの対応を行い、山の高さHを低くすることができれば、詰まりの進行を停止させ、さらに長期間にわたって溶削火口を使い続けることができる。
【0019】
本発明は、山の高さHが上記(4)式のHよりも低い一定の高さ(臨界山高さH)に達したときに、下方予熱ブロック5から吐出する燃料ガス13の吐出量を増大することにより、山の高さHを低くすることができることを見いだした点に最大の特徴がある。
【0020】
本発明における下方予熱ブロック5から吐出する燃料ガス13の吐出量の調整は、下方予熱ブロック5から吐出する燃料ガス圧と溶削火口6から吐出する溶削酸素圧の比率をRpとし、このRpを調整することによって行うことができる。この場合、H及びWの値に応じてΔRpを定め、比率RpをRp+ΔRpあるいはそれ以上に大きくすることにより、溶削後表面の山の高さHを低減することができる。あるいは、下方予熱ブロック5から吐出する燃料ガス流速と溶削火口6から吐出する溶削酸素流速の比率をRvとし、このRvを調整することによって行うこととしても良い。この場合、H及びWの値に応じてΔRvを定め、比率RvをRv+ΔRvあるいはそれ以上に大きくすることにより、溶削後表面の山の高さHを低減することができる。
【0021】
ここで、下方予熱ブロック5から吐出する燃料ガス13の圧力は、下方予熱ブロック5に燃料ガス13を供給する直前の配管の圧力を測定することにより、溶削火口6から吐出する溶削酸素14の圧力は、ヘッドブロック2に溶削酸素14を供給する直前の配管の圧力を測定することにより、それぞれ得ることができる。なお、本発明において圧力はすべてゲージ圧を意味する。
【0022】
また、Rp=(下方予熱ブロック5から吐出する燃料ガス圧)/(溶削火口6から吐出する溶削酸素圧)であり、Rv=(下方予熱ブロック5から吐出する燃料ガス流速)/(溶削火口6から吐出する溶削酸素流速)である。
【0023】
溶削後鋼片表面の山の高さは、溶削枚数が増えるに従って高くなり、所要の枚数dを溶削したところで山の高さHが上記(4)式のHに到達する。そして、枚数dの75%となる枚数を溶削した時点での山の高さをHとして山の幅Wとの関係を調査したところ、下記(1)式が得られることが判明した。
=0.06×W+0.25 (1)
【0024】
逆に、山高さが(1)式のHに達するまでの溶削枚数(d’)を縦軸に、さらに同じ溶削装置を継続使用して山高さが(4)式のHに達するまでの溶削枚数(d)を横軸にとってグラフ化すると、図4に示すグラフが得られ、d’がdの約75%になっていることが裏付けられる。
【0025】
ここでは、臨界山高さH(mm)を、幅W(mm)の関数として上記(1)式のHと同等あるいはそれ以上の値として定義することができる。そして、山の高さHが上記Hより大きくしかも(4)式のHまでは至っていない時点において下方予熱ブロック5から吐出する燃料ガス13の吐出量を増大すれば、山の高さHを低くすることができることが明らかになった。溶削火口の詰まりなどの理由によって溶削酸素の乱れが発生し、それがために溶削後の山の高さが高くなった場合において、燃料ガス13の吐出量を増量することによって溶削酸素と外気との間のシール性を向上して溶削酸素の乱れが抑制され、溶削後の鋼片表面形状が安定するものと思われる。
【0026】
燃料ガス13の増量代を大きくするほど、山の高さの低減代も大きくなる。ここにおいて、燃料ガス13の増量後において山の高さHを(1)式のレベルまで低減することにより、その後の安定した溶削実施が継続できることがわかった。
【0027】
まず、下方予熱ブロック5から吐出する燃料ガス圧と溶削火口6から吐出する溶削酸素圧の比率Rpによって調整する場合を例にとって説明する。
【0028】
山高さHが臨界山高さHより大きくなったときは、H及びWの値に応じてΔRpを定める。そして比率RpをRp+ΔRpあるいはそれ以上の値に大きくすることによって燃料ガス13の吐出量を増量する。
【0029】
図5には、横軸にRp増加前の(H−H)/Hをとり、縦軸に山高さHをHと同等まで低減するために必要なRp増加代をとったグラフを示す。このグラフの傾きが約0.3になっている。即ち、ΔRpを、H(mm)及びW(mm)の関数であって下記(2)式のΔRpと同等として定めると、比率RpをΔRpだけ増大したときに、増大後における鋼片表面の山の高さHをHまで下げることができるので好ましい。ここで、Hは上記(1)式によって定められるものであり、Wの関数である。
ΔRp=(H−H)/H×0.3 (2)
【0030】
上記(2)式において、右辺の分子は(H−H)であり、即ちHからの山の高さHの偏差である。ΔRpを上記ΔRpと同等の値とすれば、燃料ガスの増量の程度をHからの山の高さHの偏差に基づいて定めることとなる。このため、燃料ガス13増量後の山の高さをHまで下げることができる。また、ΔRpを上記ΔRpよりも大きな値として定めれば、燃料ガス13増量後の山の高さをHよりさらに低い値まで下げることができる。
【0031】
本発明において、下方予熱ブロック5から吐出する燃料ガス流速と溶削火口6から吐出する溶削酸素流速の比率Rvによって調整する場合には、上記ΔRpをΔRvと置き換え、前記ΔRvを、H(mm)及びW(mm)の関数であって下記(3)式のΔRvと同等あるいはそれよりも大きな値として定めることにより、上記ΔRpによる調整と同等の効果を得ることができる。
ΔRv=(H−H)/H×0.5 (3)
【0032】
本発明においては、溶削装置のノズルユニットが健全である間は下方予熱ブロック5から吐出する燃料ガスを最小限として処理コストの低減を図り、溶削後の鋼片表面凹凸形状が増大し始めた傾向をとらえて燃料ガスの増量を図ることとしているので、燃料ガス使用量を常に必要最小限に留めることができる。一方で溶削後の鋼片表面凹凸形状が有害疵を発生させる限界に至る前に対応を行うことができるので、溶削後の鋼片品質を良好に保つことができる。燃料ガスの増量のみの対応により、ノズルユニットを交換せずに溶削後の鋼片表面品質を良好に保持することができるので、ノズルユニットを交換せずに長期間にわたって溶削装置を継続使用することが可能になる。
【0033】
【実施例】
連続鋳造した鋼片表面に溶削酸素を吹き付けて溶削する鋼片の溶削装置において、本発明の溶削方法を適用した。溶削装置には、図1に示すノズルユニットを用いている。表1に基づいて説明を行う。
【0034】
【表1】

Figure 2005007404
【0035】
表1において、本発明例No.1〜4は燃料ガス圧と溶削酸素ガス圧の比率Rpを制御することによって山高さHを制御し、本発明例No.5〜8は燃料ガス流速と溶削酸素ガス流速の比率Rvを制御することによって山高さを制御する。比較例No.1〜4は本発明の山高さ制御を行わない。
【0036】
下方予熱ブロック5から吐出する燃料ガス13の圧力は、下方予熱ブロック5に燃料ガス13を供給する直前の配管の圧力を測定し、溶削火口6から吐出する溶削酸素14の圧力は、ヘッドブロック2に溶削酸素14を供給する直前の配管の圧力を測定して定めた。また、下方予熱ブロック5から吐出する燃料ガス13の流速及び溶削火口6から吐出する溶削酸素14の流速は、双方とも供給する直前の配管の流量と吐出するブロック上の断面積より求め、流速=流量/吐出断面積、吐出断面積=鋳片幅×単位幅あたりの吐出断面積とした。
【0037】
Rp=(下方予熱ブロック5から吐出する燃料ガス圧)/(溶削火口6から吐出する溶削酸素圧)、Rv=(下方予熱ブロック5から吐出する燃料ガス流速)/(溶削火口6から吐出する溶削酸素流速)とした。
【0038】
本発明例No.1〜8及び比較例No.1〜4のいずれも、表1に示す溶削酸素圧、溶削酸素流速、初期燃料ガス圧、初期燃料ガス流速の値によって溶削処理を開始した。
【0039】
所定の溶削枚数を処理したところで、レーザー距離計を用いて溶削後の鋼片表面の凹凸を測定した。表面溶削後の鋼片表面の凹凸部について、図2(b)に示すように、凸部23の頂点と隣り合う凹部(24a、24b)2つの最下点をもってひとつの山とし、頂点と隣り合う2つの凹部最下点のうち低い方との高低差を山の高さH(mm)とし、前記頂点と隣り合う2つの凹部最下点のうち低い方との鋼片幅方向の距離を山の幅W(mm)とした。図2(c)のように、凸部23頂点と凹部24b最下点の間に小さい凹凸の山が生成した複合山が生成する場合については、2つの山をひとつの山として、高い方の凸部の頂点と低い方の凹部の最下点より、山の高さHと山の幅Wを求めることとした。
【0040】
ここでは、臨界山高さH(mm)として上記(1)式のHを採用した。鋼片表面で観察された山高さHと山の幅Wの組合せが複数存在する場合には、各組合せ毎に(1)式のHを計算し、山高さHがHを超えており、(H−H)/Hが最も大きな値を示す組合せを採用し、(1)式のH及び(4)式のHとともに表1に示した。
【0041】
上記採用した山高さHと山の幅W及びHの値に基づき、本発明例No.1〜4については、ΔRpとして(2)式に基づいて算出したΔRpを用い、比率RpをΔRpだけ増大した。変更後の圧力比Rp、変更後の燃料ガス圧を表1に示す。本発明例No.5〜8については、ΔRvとして(3)式に基づいて算出したΔRvを用い、比率RvをΔRvだけ増大した。変更後の流速比Rv、変更後の燃料ガス流速を表1に示す。比較例No.1〜4については燃料ガス圧、燃料ガス流量共に変更を行わなかった。
【0042】
本発明例No.1〜8、比較例No.1〜4とも、さらに50枚の溶削を行った後、再度レーザー距離計を用いて鋼片表面の凹凸を測定した。前回採用したと同じ山について、山高さHを表1の「結果 山高さH」に示す。本発明例No.1〜8については、いずれも山高さHがHよりも低い値となっている。一方、比較例については山高さがさらに高くなり、比較例No.3については熱間圧延後のヘゲ疵発生限界である(4)式のHを超える山高さとなっていた。
【0043】
【発明の効果】
本発明は、鋼片を溶削した後の表面に形成される凹凸形状の山の高さについて、山の高さHが有害疵発生限界であるHよりも低い一定の高さ(臨界山高さH)に達したときに、下方予熱ブロック5から吐出する燃料ガス13の吐出量を増大することにより、山の高さHを低くすることができる。これにより、有害疵を発生させずに、燃料ガスの流量を必要最小限に抑えつつ、長期間にわたって溶削装置を継続使用することが可能になる。
【図面の簡単な説明】
【図1】溶削装置におけるノズルユニットの断面を示す図である。
【図2】鋼片表面に形成される凹凸形状を説明する図であり、(a)は部分斜視断面図、(b)(c)は凹凸形状の拡大図である。
【図3】鋼片表面に形成される凹凸形状の山の幅Wと山の高さHとの関係におけるヘゲ疵発生有無状況を示す図である。
【図4】山高さがHに達するまでの溶削枚数と、山高さがHに達するまでの溶削枚数との関係を示す図である。
【図5】(H−H)/Hと、HをHと同等まで低減するために必要なΔRpとの関係を示す図である。
【符号の説明】
1 ノズルユニット
2 ヘッドブロック
3 シュー
4 上方予熱ブロック
5 下方予熱ブロック
6 溶削火口
10 鋼片
11 予熱酸素
12 燃料ガス
13 燃料ガス
14 溶削酸素
21 凹凸形状
22 長手方向
23 凸部
24 凹部[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for cutting a steel slab in which cutting oxygen is sprayed on the surface of the steel slab.
[0002]
[Prior art]
There may be harmful defects such as cracks and surface inclusions on the surface of steel pieces such as slabs and blooms that have been rolled or continuously cast. When a steel piece is produced by rolling a steel slab while having such a defect, it is called a sliver slag caused by alumina inclusions on the surface of the slab or a slag resulting from a slab surface defect. A surface defect will generate | occur | produce and the surface quality of steel materials may be deteriorated. As a means for removing harmful defects existing on the surface of a steel slab, a gas cutting apparatus for blowing gas to the surface of the steel slab and cutting the surface of the steel slab to a certain depth is used.
[0003]
The welding machine has a nozzle unit. As shown in FIG. 1, the nozzle unit 1 includes a head block 2, an upper preheating block 4, a lower preheating block 5, and a shoe 3. A slit formed between the upper preheating block 4 and the lower preheating block 5 serves as a cutting crater 6 for spraying the cutting oxygen 14. A nozzle for ejecting preheated oxygen 11 and fuel gas 12 is disposed at the tip of the upper preheat block 4, and a nozzle for ejecting fuel gas 13 is disposed at the tip of the lower preheat block 5.
[0004]
When cutting a steel slab, first, preheated oxygen 11 and fuel gas 12 are discharged from the tip of the upper preheating block 4 to preheat the steel slab, and the cutting oxygen 14 is supplied from the welding crater 6 toward the steel slab. In order to prevent the scrambled oxygen 14 from being disturbed by discharging and simultaneously reacting the swarf oxygen 14 with the outside air, the fuel gas 13 is moved upward from the lower preheating block 5 for the purpose of sealing the swarf oxygen 14. The fuel gas 12 is discharged from the preheating block 4. In this way, the nozzle unit 1 and the steel slab are relatively moved while gas is discharged, and the welding is advanced, and the surface of the steel slab is entirely or partially sliced. LPG (liquefied propane gas) is used as the fuel gas.
[0005]
When the fuel gas 13 discharged from the lower preheating block 5 is insufficient, the shape of the flame formed by the combustion of the cutting oxygen 14 becomes poor, and the uneven shape as shown in FIG. 21 will be generated. On the other hand, the increase in the fuel gas 13 causes an increase in the cutting cost, and if the fuel gas 13 is increased too much, the flow becomes uneven. As the discharge amount of the fuel gas 13, the smallest discharge amount within the range where the shape of the flame is stable is adopted for the purpose of reducing the cutting cost.
[0006]
When adjusting the discharge amount of the fuel gas 13 discharged from the lower preheating block 5, the ratio of the fuel gas pressure discharged from the lower preheating block 5 and the cutting oxygen pressure discharged from the welding crater 6 is Rp, and Rp is predetermined. It can be adjusted to be a value of. Alternatively, the ratio of the fuel gas flow rate discharged from the lower preheating block 5 and the cutting oxygen flow rate discharged from the cutting crater 6 may be adjusted to Rv, and Rv may be adjusted to a predetermined value.
[0007]
When the uneven shape 21 having a peak in the direction parallel to the trajectory of the nozzle unit (that is, the longitudinal direction 22 of the steel slab) is generated on the surface of the steel slab after the cutting, the steel slab was rolled when the degree of the unevenness becomes severe. In some cases, it does not peel off and remains as a baldness or a pattern-like defect after rolling, and is known to be harmful in products with severe surface quality requirements such as an automobile molten steel plate.
[0008]
When the degree of unevenness in the uneven shape 21 generated on the surface of the steel slab after cutting is severe, it is necessary to reduce the unevenness by performing a thermal cutting maintenance again by a person offline. In order to do so, it is necessary to cool the billet once, which requires extra fuel in the heating furnace before hot rolling in the subsequent process, costs for care, and re-inspection after rolling. This increased the number of processes and caused cost increase and yield loss.
[0009]
For the purpose of reducing the uneven surface shape 21 after the welding, as described in Patent Document 1, there is a method of performing the cutting in a state where the arrangement of the flame discharge ports has a predetermined angle with respect to the steel piece axis direction. Are known.
[0010]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-214302
[Problems to be solved by the invention]
Even with the method described in Patent Document 1, the unevenness cannot be completely eliminated, and as a result, it has not yet been possible to suppress the care of cold pieces and the occurrence of baldness.
[0012]
The present invention reduces the unevenness generated on the surface of a steel slab after cutting using a cutting machine, does not require re-care after the cutting, and the product surface defect after rolling due to the unevenness on the surface of the steel slab An object of the present invention is to provide a welding method that does not cause generation.
[0013]
[Means for Solving the Problems]
That is, the gist of the present invention is as follows.
(1) The ratio of the fuel gas pressure discharged from the lower preheating block 5 of the cutting apparatus for cutting the steel piece 10 to the cutting oxygen pressure discharged from the cutting crater 6 is Rp, and after surface surface cutting by the cutting apparatus With respect to the concavo-convex portion of the steel piece surface, the peak of the two concave portions adjacent to the vertex of the convex portion is defined as one peak, and the height difference between the two lowest points of the concave portions adjacent to the vertex is defined as the height H of the peak. the two distances of the steel strip width direction of the recess lowest point adjacent to a width W of the mountain, predetermined critical mountain height H C as a function of the width W, mountain height H is greater than the critical mountain height H C In some cases, ΔRp is determined according to the values of H and W, and the ratio Rp is increased to Rp + ΔRp or more.
(2) The ratio of the fuel gas flow rate discharged from the lower preheating block 5 of the cutting device for cutting the steel slab 10 to the cutting oxygen flow rate discharged from the cutting crater 6 is Rv, and after surface cutting by the cutting device With respect to the concavo-convex portion of the steel piece surface, the peak of the two concave portions adjacent to the vertex of the convex portion is defined as one peak, and the height difference between the two lowest points of the concave portions adjacent to the vertex is defined as the height H of the peak. the two distances of the steel strip width direction of the recess lowest point adjacent to a width W of the mountain, predetermined critical mountain height H C as a function of the width W, mountain height H is greater than the critical mountain height H C In some cases, ΔRv is determined according to the values of H and W, and the ratio Rv is increased to Rv + ΔRv or more.
(3) The above (1) or (1), wherein the critical mountain height H C (mm) is determined as a value equal to or greater than H 0 in the following equation (1) as a function of the width W (mm): The method of cutting a steel piece as described in 2).
H 0 = 0.06 × W + 0.25 (1)
(4) ΔRp is a function of H (mm) and W (mm), and is defined as a value equal to or greater than ΔRp 0 in the following equation (2). A method of cutting steel pieces. However, H 0 is according to the above equation (1).
ΔRp 0 = (H−H 0 ) /H×0.3 (2)
(5) ΔRv is a function of H (mm) and W (mm), and is defined as a value equal to or greater than ΔRv 0 in the following equation (3): A method of cutting steel pieces. However, H 0 is according to the above equation (1).
ΔRv 0 = (H−H 0 ) /H×0.5 (3)
[0014]
DETAILED DESCRIPTION OF THE INVENTION
About various uneven | corrugated shape 21 formed in the surface after steel piece 10 was cut, it investigated about what uneven | corrugated shape is the cause of the steel plate surface flaw after hot rolling. As a result, in the uneven surface shape after the hot-scraping, the one that becomes heald after hot rolling is a steep mountain shape (that is, a large mountain gradient), even if the uneven mountain height is high. We found that even if they are the same, those with small mountain slopes do not tend to reach Hege Pass.
[0015]
In more detail, the unevenness of the surface of the steel slab after the cutting was measured in detail using a laser distance meter, and the characteristics of the uneven shape 21 that became a ridge after hot rolling were investigated. As shown in FIG. 2 (b), the concave and convex portions (24a, 24b) adjacent to the apex of the convex portion 23 are taken as one peak with respect to the concavo-convex portion on the surface of the steel slab after surface melting, The difference in height from the lower one of the two adjacent concave bottom points is the height H (mm) of the peak, and the distance in the billet width direction from the lower of the two concave bottom points adjacent to the apex Is the width W (mm) of the mountain. In the example shown in FIG. 2B, of the two lowest points of the recesses (24a, 24b), the recess 24b is lower, so the height difference between the projection 23 and the recess 24b is the height H, The distance in the width direction is the width W.
[0016]
However, as shown in FIG. 2 (c), when a composite mountain in which a small uneven mountain is generated between the top of the convex portion 23 and the lowest point of the concave portion 24b is generated, The height H of the mountain and the width W of the mountain were determined from the apex of the convex portion on the side and the lowest point of the concave portion on the lower side. That is, in the case of a small mountain having a height of 0.1 mm or less, the mountain is ignored and only a large mountain is set as a shape determination target.
[0017]
On the basis of the above concept, the width W of the mountain is taken on the horizontal axis and the height H of the mountain is taken on the vertical axis, and the presence or absence of bald ridges was evaluated. As a result, the result shown in FIG. 3 was obtained. According to FIG. 3, in relation to the width W of the mountain, if the height H of the mountain is lower than H M (mm) in the following equation (4), it may not lead to a lash after hot rolling. It was revealed.
H M = 0.13 × W + 0.42 (4)
[0018]
The irregularities on the surface of the steel slab after the cutting are mainly caused by clogging of the crater or shape change of the cutting apparatus. Although when the height H of the mountain above (4) lower than the H M is not lead to scab defects after hot rolling, H is then rapidly clogging progresses approaches the H M, final mountain of the height H was found to be the cause of the harmful flaw beyond the H M to. Therefore, H performs some corresponding when approaching the H M, if it is possible to reduce the height H of the mountains, the progress of clogging is stopped, it is possible to continue to use the scarfing crater further long period of time.
[0019]
The present invention, when the mountain height H reaches the (4) equation H M certain lower height than (the critical mountain height H C), the discharge of the fuel gas 13 discharged from the lower preheat block 5 The greatest feature is that it has been found that the height H of the mountain can be lowered by increasing the amount.
[0020]
In the present invention, adjustment of the discharge amount of the fuel gas 13 discharged from the lower preheating block 5 is performed by setting the ratio of the fuel gas pressure discharged from the lower preheating block 5 and the cutting oxygen pressure discharged from the cutting crater 6 to Rp. Can be done by adjusting. In this case, ΔRp is determined according to the values of H and W and the ratio Rp is increased to Rp + ΔRp or higher, so that the height H of the ridges on the surface after cutting can be reduced. Alternatively, the ratio of the fuel gas flow rate discharged from the lower preheating block 5 and the cutting oxygen flow rate discharged from the cutting crater 6 may be Rv, and this Rv may be adjusted. In this case, ΔRv is determined in accordance with the values of H and W, and the ratio Rv is increased to Rv + ΔRv or more, whereby the height H of the crest on the surface after cutting can be reduced.
[0021]
Here, the pressure of the fuel gas 13 discharged from the lower preheating block 5 is determined by measuring the pressure of the pipe immediately before supplying the fuel gas 13 to the lower preheating block 5, thereby cutting oxygen 14 discharged from the cutting crater 6. Can be obtained by measuring the pressure in the pipe immediately before supplying the cutting oxygen 14 to the head block 2. In the present invention, all pressures refer to gauge pressures.
[0022]
Rp = (fuel gas pressure discharged from the lower preheating block 5) / (cutting oxygen pressure discharged from the cutting crater 6) and Rv = (fuel gas flow velocity discharged from the lower preheating block 5) / (melting) The cutting oxygen flow rate discharged from the crater 6).
[0023]
Mountain height of scarfing after the steel strip surface becomes higher as the scarfing number increases, the height H of the mountain was scarfing the required number d reaches H M of equation (4). Then, when the height of the peak at the time when the number of sheets corresponding to 75% of the number d was cut was H 0 and the relationship with the width W of the peak was investigated, it was found that the following equation (1) was obtained.
H 0 = 0.06 × W + 0.25 (1)
[0024]
Conversely, peak height is the (1) equation scarfing number to reach the H 0 (d ') on the vertical axis, further peak height the same scarfing apparatus continuously used (4) the formula H M When the number of the number of cuts (d) to reach is plotted on the horizontal axis, the graph shown in FIG. 4 is obtained, which confirms that d ′ is about 75% of d.
[0025]
Here, the critical mountain height H C (mm) can be defined as a value equal to or greater than H 0 in the above equation (1) as a function of the width W (mm). Then, when increasing the discharge amount of the fuel gas 13 mountain height H to be discharged from the lower preheat block 5 at the time that have yet to H M of the H C Moreover greater than (4), the mountain height H It became clear that can be lowered. In the case where the cutting oxygen turbulence occurs due to clogging of the cutting crater and the height of the mountain after the cutting becomes high, the cutting is performed by increasing the discharge amount of the fuel gas 13. It seems that the sealing property between oxygen and the outside air is improved, and the disturbance of the cutting oxygen is suppressed, and the surface shape of the steel slab after the cutting is stabilized.
[0026]
As the amount of increase in the fuel gas 13 increases, the amount of reduction in the height of the mountain also increases. Here, it was found that, after the increase in the amount of the fuel gas 13, the stable height of the subsequent cutting can be continued by reducing the height H of the ridge to the level of the expression (1).
[0027]
First, a case where the fuel gas pressure discharged from the lower preheating block 5 and the cutting oxygen pressure discharged from the cutting crater 6 are adjusted according to the ratio Rp will be described as an example.
[0028]
When mountain height H is greater than the critical mountain height H C defines a ΔRp according to the values of H and W. Then, the discharge amount of the fuel gas 13 is increased by increasing the ratio Rp to a value equal to or higher than Rp + ΔRp.
[0029]
FIG. 5 shows a graph in which the horizontal axis represents (H−H 0 ) / H before Rp increase, and the vertical axis represents the Rp increase margin required to reduce the peak height H to the same level as H 0. . The slope of this graph is about 0.3. That is, if ΔRp is a function of H (mm) and W (mm) and is set to be equivalent to ΔRp 0 in the following equation (2), when the ratio Rp is increased by ΔRp, the preferred since it is possible to reduce the mountain of the height H to H 0. Here, H 0 is determined by the above equation (1) and is a function of W.
ΔRp 0 = (H−H 0 ) /H×0.3 (2)
[0030]
In the above equation (2), the numerator on the right side is (H−H 0 ), that is, the deviation of the height H of the mountain from H 0 . If the .DELTA.Rp and equivalent to the value of the .DELTA.Rp 0, and thus determined based the degree of increase of the fuel gas to the deviation of the mountain height H from H 0. For this reason, the height of the mountain after the fuel gas 13 is increased can be lowered to H 0 . Further, if ΔRp is set to a value larger than the above ΔRp 0, the height of the mountain after the fuel gas 13 is increased can be lowered to a value lower than H 0 .
[0031]
In the present invention, when adjusting by the ratio Rv of the fuel gas flow rate discharged from the lower preheating block 5 and the cutting oxygen flow rate discharged from the cutting crater 6, ΔRp is replaced with ΔRv, and ΔRv is set to H (mm ) And W (mm), which are equal to or larger than ΔRv 0 in the following equation (3), an effect equivalent to the adjustment by ΔRp can be obtained.
ΔRv 0 = (H−H 0 ) /H×0.5 (3)
[0032]
In the present invention, while the nozzle unit of the fusing device is healthy, the fuel gas discharged from the lower preheating block 5 is minimized so as to reduce the processing cost, and the slab surface uneven shape after the fusing starts to increase. Therefore, the amount of fuel gas used can always be kept to the minimum necessary. On the other hand, since the slab surface unevenness shape after the welding can be dealt with before reaching the limit of generating harmful flaws, the quality of the steel slab after the welding can be kept good. Only by increasing the amount of fuel gas, it is possible to maintain the surface quality of the steel slab after cutting without changing the nozzle unit, so the cutting equipment can be used continuously for a long time without changing the nozzle unit. It becomes possible to do.
[0033]
【Example】
The cutting method of the present invention was applied to a steel piece lathe cutting apparatus in which the surface of a continuously cast steel slab is blown by blowing cutting oxygen. The nozzle unit shown in FIG. 1 is used for the welding machine. An explanation will be given based on Table 1.
[0034]
[Table 1]
Figure 2005007404
[0035]
In Table 1, Invention Example No. 1 to 4 control the height H by controlling the ratio Rp of the fuel gas pressure to the cutting oxygen gas pressure. 5-8 control the height of the mountain by controlling the ratio Rv of the fuel gas flow rate and the cutting oxygen gas flow rate. Comparative Example No. 1-4 do not perform the height control of the present invention.
[0036]
The pressure of the fuel gas 13 discharged from the lower preheating block 5 is the pressure of the piping immediately before supplying the fuel gas 13 to the lower preheating block 5, and the pressure of the cutting oxygen 14 discharged from the cutting crater 6 is the head pressure. The pressure in the pipe immediately before supplying the cutting oxygen 14 to the block 2 was measured and determined. Further, the flow rate of the fuel gas 13 discharged from the lower preheating block 5 and the flow rate of the cutting oxygen 14 discharged from the cutting crater 6 are both obtained from the flow rate of the pipe immediately before the supply and the sectional area on the discharging block, Flow velocity = flow rate / discharge sectional area, discharge sectional area = slab width × discharge sectional area per unit width.
[0037]
Rp = (fuel gas pressure discharged from the lower preheating block 5) / (cutting oxygen pressure discharged from the cutting crater 6), Rv = (fuel gas flow velocity discharged from the lower preheating block 5) / (from the cutting crater 6) Discharged cutting oxygen flow rate).
[0038]
Invention Example No. 1-8 and Comparative Example No. In all of 1-4, the cutting process was started with the values of the cutting oxygen pressure, the cutting oxygen flow rate, the initial fuel gas pressure, and the initial fuel gas flow rate shown in Table 1.
[0039]
When a predetermined number of slabs were processed, the unevenness on the surface of the slab after the slab was measured using a laser distance meter. As shown in FIG. 2 (b), the concave and convex portions (24a, 24b) adjacent to the apex of the convex portion 23 are taken as one peak with respect to the concavo-convex portion on the surface of the steel slab after surface melting, The difference in height from the lower one of the two adjacent concave bottom points is the height H (mm) of the peak, and the distance in the billet width direction from the lower of the two concave bottom points adjacent to the apex Was defined as the width W (mm) of the mountain. As shown in FIG. 2C, in the case where a composite mountain in which a small uneven mountain is generated between the vertex of the convex part 23 and the lowest point of the concave part 24b is generated, The peak height H and the peak width W were determined from the apex of the convex part and the lowest point of the lower concave part.
[0040]
Here, H 0 of the above formula (1) was adopted as the critical mountain height H C (mm). When there are multiple combinations of peak height H and peak width W observed on the surface of the steel slab, H 0 in equation (1) is calculated for each combination, and peak height H exceeds H 0. , (H-H 0) / H adopts a combination indicating the largest value, as shown in Table 1 together with H M of H 0 and (4) of the equation (1).
[0041]
Based on the value of the width W and H 0 the crest height H and mountains described above adopted, the present invention example No. For 1-4, ΔRp 0 calculated based on equation (2) was used as ΔRp, and the ratio Rp was increased by ΔRp. Table 1 shows the pressure ratio Rp after the change and the fuel gas pressure after the change. Invention Example No. For 5 to 8, ΔRv 0 calculated based on Equation (3) was used as ΔRv, and the ratio Rv was increased by ΔRv. Table 1 shows the changed flow rate ratio Rv and the changed fuel gas flow rate. Comparative Example No. For 1-4, neither the fuel gas pressure nor the fuel gas flow rate was changed.
[0042]
Invention Example No. 1-8, Comparative Example No. In each of 1-4, after further cutting 50 sheets, the unevenness on the surface of the steel slab was measured again using a laser distance meter. For the same mountain that was adopted last time, the mountain height H is shown in “Result Mountain Height H” in Table 1. Invention Example No. The 1-8, both peak height H becomes a value lower than the H 0. On the other hand, for the comparative example, the peak height is further increased. For 3 it had become peak height exceeding H M of a scab defect occurrence limit after hot rolling (4).
[0043]
【The invention's effect】
The present invention, the height of the mountain of the uneven shape formed on the surface after the scarfing a slab, mountain height H harmful flaw occurrence limit at which H M lower than a certain level (critical mountain height The height H of the mountain can be lowered by increasing the discharge amount of the fuel gas 13 discharged from the lower preheating block 5 when reaching ( Hc ). As a result, it is possible to continuously use the cutting apparatus over a long period of time without causing harmful flaws while minimizing the flow rate of the fuel gas.
[Brief description of the drawings]
FIG. 1 is a view showing a cross section of a nozzle unit in a welding apparatus.
FIGS. 2A and 2B are diagrams for explaining a concavo-convex shape formed on the surface of a steel piece, wherein FIG. 2A is a partial perspective cross-sectional view, and FIGS. 2B and 2C are enlarged views of the concavo-convex shape;
FIG. 3 is a diagram showing the presence / absence of occurrence of lashes in the relationship between the width W of the concavo-convex crest formed on the surface of the steel piece and the height H of the crest.
[Figure 4] and scarfing number to peak height reaches H 0, peak height is a diagram showing the relationship between scarfing number to reach H M.
FIG. 5 is a diagram showing a relationship between (H−H 0 ) / H and ΔRp necessary to reduce H to the same level as H 0 .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Nozzle unit 2 Head block 3 Shoe 4 Upper preheating block 5 Lower preheating block 6 Cutting crater 10 Steel piece 11 Preheating oxygen 12 Fuel gas 13 Fuel gas 14 Cutting oxygen 21 Uneven shape 22 Longitudinal direction 23 Convex part 24 Concave part

Claims (5)

鋼片を溶削する溶削装置の下方予熱ブロックから吐出する燃料ガス圧と溶削火口から吐出する溶削酸素圧の比率をRpとし、溶削装置による表面溶削後の鋼片表面の凹凸部について、凸部頂点と隣り合う凹部2つの最下点をもってひとつの山とし、頂点と隣り合う2つの凹部最下点の高低差を山の高さHとし、前記頂点と隣り合う2つの凹部最下点の鋼片幅方向の距離を山の幅Wとし、臨界山高さHを幅Wの関数として予め定め、山高さHが臨界山高さHより大きくなったときは、H及びWの値に応じてΔRpを定め、前記比率RpをRp+ΔRpあるいはそれ以上に大きくすることを特徴とする鋼片の溶削方法。Rp is the ratio of the fuel gas pressure discharged from the lower preheating block of the cutting apparatus for cutting the steel slab and the oxygen pressure of the cutting gas discharged from the welding crater. The concave portion adjacent to the top of the convex portion is defined as one peak, and the height difference between the two concave bottom points adjacent to the top is defined as the height H of the peak, and the two concave portions adjacent to the top. the distance of the steel strip width direction of the lowest point and the width W of the mountain, predetermined critical mountain height H C as a function of the width W, when the mountain height H is greater than the critical mountain height H C is, H and W ΔRp is determined in accordance with the value of R, and the ratio Rp is increased to Rp + ΔRp or more. 鋼片を溶削する溶削装置の下方予熱ブロックから吐出する燃料ガス流速と溶削火口から吐出する溶削酸素流速の比率をRvとし、溶削装置による表面溶削後の鋼片表面の凹凸部について、凸部頂点と隣り合う凹部2つの最下点をもってひとつの山とし、頂点と隣り合う2つの凹部最下点の高低差を山の高さHとし、前記頂点と隣り合う2つの凹部最下点の鋼片幅方向の距離を山の幅Wとし、臨界山高さHを幅Wの関数として予め定め、山高さHが臨界山高さHより大きくなったときは、H及びWの値に応じてΔRvを定め、前記比率RvをRv+ΔRvあるいはそれ以上に大きくすることを特徴とする鋼片の溶削方法。Rv is the ratio of the fuel gas flow velocity discharged from the lower preheating block of the cutting apparatus that slabs the slab to the cutting oxygen flow velocity discharged from the crater, and the irregularities on the surface of the slab after surface cutting by the cutting apparatus The concave portion adjacent to the top of the convex portion is defined as one peak, and the height difference between the two concave bottom points adjacent to the top is defined as the height H of the peak, and the two concave portions adjacent to the top. the distance of the steel strip width direction of the lowest point and the width W of the mountain, predetermined critical mountain height H C as a function of the width W, when the mountain height H is greater than the critical mountain height H C is, H and W .DELTA.Rv is determined according to the value of the above, and the ratio Rv is increased to Rv + .DELTA.Rv or more. 前記臨界山高さH(mm)を、幅W(mm)の関数として下記(1)式のHと同等あるいはそれ以上の値として定めることを特徴とする請求項1又は2に記載の鋼片の溶削方法。
=0.06×W+0.25 (1)
3. The steel according to claim 1, wherein the critical mountain height H C (mm) is determined as a value equal to or greater than H 0 in the following equation (1) as a function of the width W (mm). How to cut pieces.
H 0 = 0.06 × W + 0.25 (1)
前記ΔRpを、H(mm)及びW(mm)の関数であって下記(2)式のΔRpと同等あるいはそれよりも大きな値として定めることを特徴とする請求項3に記載の鋼片の溶削方法。ただし、Hは上記(1)式による。
ΔRp=(H−H)/H×0.3 (2)
The steel slab according to claim 3, wherein the ΔRp is a function of H (mm) and W (mm), and is set to a value equal to or greater than ΔRp 0 in the following equation (2). Welding method. However, H 0 is according to the above equation (1).
ΔRp 0 = (H−H 0 ) /H×0.3 (2)
前記ΔRvを、H(mm)及びW(mm)の関数であって下記(3)式のΔRvと同等あるいはそれよりも大きな値として定めることを特徴とする請求項3に記載の鋼片の溶削方法。ただし、Hは上記(1)式による。
ΔRv=(H−H)/H×0.5 (3)
The steel slab according to claim 3, wherein the ΔRv is a function of H (mm) and W (mm), and is set to a value equal to or greater than ΔRv 0 in the following equation (3). Welding method. However, H 0 is according to the above equation (1).
ΔRv 0 = (H−H 0 ) /H×0.5 (3)
JP2003171626A 2003-06-17 2003-06-17 Billet cutting method Expired - Fee Related JP4276478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003171626A JP4276478B2 (en) 2003-06-17 2003-06-17 Billet cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003171626A JP4276478B2 (en) 2003-06-17 2003-06-17 Billet cutting method

Publications (2)

Publication Number Publication Date
JP2005007404A true JP2005007404A (en) 2005-01-13
JP4276478B2 JP4276478B2 (en) 2009-06-10

Family

ID=34096020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003171626A Expired - Fee Related JP4276478B2 (en) 2003-06-17 2003-06-17 Billet cutting method

Country Status (1)

Country Link
JP (1) JP4276478B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025258A (en) * 2009-07-22 2011-02-10 Nippon Steel Corp Scarfing device and scarfing method
CN102209602A (en) * 2008-11-13 2011-10-05 新日本制铁株式会社 Steel piece hot scarfing device and nozzle clogging detection method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102209602A (en) * 2008-11-13 2011-10-05 新日本制铁株式会社 Steel piece hot scarfing device and nozzle clogging detection method thereof
CN102209602B (en) * 2008-11-13 2014-06-18 新日铁住金株式会社 Steel piece hot scarfing device and nozzle clogging detection method thereof
JP2011025258A (en) * 2009-07-22 2011-02-10 Nippon Steel Corp Scarfing device and scarfing method

Also Published As

Publication number Publication date
JP4276478B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
US4336078A (en) Process and apparatus for the separation of metallurgical products
KR100627486B1 (en) Device and method for cutting metal plate
JP5071206B2 (en) Gas cutting method and gas cutting machine for continuous casting material
JP4276478B2 (en) Billet cutting method
MX2008015067A (en) Method and device for producing a metal strip by continuous casting.
JP2005052867A (en) Flame scarfing device
JP5061630B2 (en) Gas cutting method for slabs being cast by vertical continuous casting machine
CA2522382A1 (en) Method and apparatus for treating cracks in slabs
KR20120087526A (en) Device for preventing crack of strand in continuous casting process and method therefor
JP5119483B2 (en) Gas cutting method for continuous cast slabs
JP2009220232A (en) Cutting method and cutting device for steel
KR101751280B1 (en) Slab processing appratus
JP2009233689A (en) Scarfing method for cast steel billet using scarfing device
JP2005313180A (en) Hot scarfing device and hot scarfing method for slab
JP5335812B2 (en) Billet cutting apparatus and billet cutting method
JP2010029911A (en) Scarfing apparatus and method for cast slab
JP2000015434A (en) Scarfing of steel product
JP7256392B2 (en) Steel cutting method
KR102207706B1 (en) Scarfing apparatus and scarfing method
JP2024014497A (en) Hot scarfing method of steel billet and hot scarfing apparatus of steel billet
CN207325899U (en) A kind of continuous casting cutting blows slag rifle online
JP2022118817A (en) Method and device for scarfing steel billet
JP3350448B2 (en) Removal method of cutting burrs
JPH11170020A (en) Method for cleaning surface of continuously cast thin slab
JP5609018B2 (en) Slab surface care apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R151 Written notification of patent or utility model registration

Ref document number: 4276478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees