JP2005007392A - Method for increasing cavitation bubble by introducing solid material - Google Patents

Method for increasing cavitation bubble by introducing solid material Download PDF

Info

Publication number
JP2005007392A
JP2005007392A JP2004160548A JP2004160548A JP2005007392A JP 2005007392 A JP2005007392 A JP 2005007392A JP 2004160548 A JP2004160548 A JP 2004160548A JP 2004160548 A JP2004160548 A JP 2004160548A JP 2005007392 A JP2005007392 A JP 2005007392A
Authority
JP
Japan
Prior art keywords
cavitation
increasing
liquid
particles
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004160548A
Other languages
Japanese (ja)
Other versions
JP4997407B2 (en
Inventor
Toru Tsujiuchi
亨 辻内
Kyuichi Yasui
久一 安井
Yasuo Iida
康夫 飯田
Akiyuki Kozuka
小塚  晃透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004160548A priority Critical patent/JP4997407B2/en
Publication of JP2005007392A publication Critical patent/JP2005007392A/en
Application granted granted Critical
Publication of JP4997407B2 publication Critical patent/JP4997407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for increasing cavitation bubbles by introducing solid materials and a means therefor, and the like. <P>SOLUTION: The method for increasing cavitation bubbles involves adding solid materials into a solution under ultrasonic irradiation. Furthermore, the above method is a method for promoting the generation of OH radicals and hydrogen peroxide by the above increased cavitation. A method for lowering a cavitation threshold is for lowering the cavitation threshold by increasing cavitation in a solution by the above method. An ultrasonic cleaning apparatus uses the above method. Accordingly, there can be provided the method for increasing cavitation by adding an optional solid material and a high-performance ultrasonic cleaning apparatus utilizing the method for increasing cavitation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、超音波照射時の液中のキャビテーション気泡を増加する方法に関するものであり、特に、液中へ粒子等の固体物質を添加することによりキャビテーションを増加させる方法に関するものである。
本発明は、超音波照射による液中でのキャビテーション気泡の形成とその応用の技術分野において、従来、固体物質の添加(導入)とキャビテーション気泡形成との関係及び固体物質添加によるキャビテーションの増加と化学反応量増大の相関についての科学的な検証が行われていないことをふまえ、それらの関係を解明すると共に、それに基づく新しい応用技術を開発、提供するものであり、例えば、化学反応系において、キャビテーション増加を任意に制御することにより化学反応サイトを増加させ、また、反応液中にOH(ヒドロキシ)ラジカルならびに過酸化水素を生成させることで化学反応速度を増加させる方法及び上記キャビテーション増加方法を使用した超音波洗浄装置を提供するものとして有用である。
The present invention relates to a method for increasing cavitation bubbles in a liquid at the time of ultrasonic irradiation, and particularly relates to a method for increasing cavitation by adding a solid substance such as particles into the liquid.
In the technical field of the formation of cavitation bubbles in a liquid by ultrasonic irradiation and its application, the present invention has hitherto been related to the relationship between the addition (introduction) of solid substances and the formation of cavitation bubbles and the increase in cavitation and chemistry caused by the addition of solid substances Based on the fact that there is no scientific verification of the correlation of reaction volume increase, we will elucidate the relationship and develop and provide new applied technology based on it. For example, cavitation in chemical reaction systems The method of increasing the chemical reaction site by arbitrarily controlling the increase, and increasing the chemical reaction rate by generating OH (hydroxy) radicals and hydrogen peroxide in the reaction solution, and the above cavitation increasing method were used. This is useful for providing an ultrasonic cleaning apparatus.

液体中へ超音波を照射すると、ある強さ(キャビテーション閾値)以上でキャビテーション気泡が発生することが知られている。このキャビテーションは、超音波の周期に応じて膨張収縮を繰り返すが、音圧振幅が1気圧を超えると圧縮破壊(圧壊)と呼ばれる急激な収縮を起こし、準断熱圧縮により数千度数百気圧もの高温高圧の極限環境が短時間かつ限られた気泡近傍の領域に生じる一方、マクロには常温常圧を保つ。この圧壊時にキャビテーション気泡は、水と反応してOH(ヒドロキシ)ラジカルならびに過酸化水素を生成する。これらにより種々の化学反応を効率よく短時間で行うことが可能である。   It is known that cavitation bubbles are generated at a certain strength (cavitation threshold) or more when ultrasonic waves are irradiated into a liquid. This cavitation repeats expansion and contraction according to the period of the ultrasonic wave, but when the sound pressure amplitude exceeds 1 atm, it causes a sudden contraction called compression fracture (crush), and it is several thousand degrees and several hundreds of atmosphere due to semi-adiabatic compression. While the extreme environment of high temperature and high pressure is generated in the region near the limited bubble for a short time, the macro maintains normal temperature and normal pressure. At the time of the collapse, the cavitation bubbles react with water to generate OH (hydroxy) radicals and hydrogen peroxide. As a result, various chemical reactions can be performed efficiently and in a short time.

それゆえに、このキャビテーション気泡は、汚染物質の分解あるいは無害化を図る環境浄化プロセスへの応用が期待できる。また、気泡周辺へ衝撃波が伝搬するため、物質輸送による溶解析出を促進し、従来法と比べて、省エネかつ低環境負荷の新規な物質創製方法としても注目されている。このように、キャビテーションは、効率よく短時間で有害物質の分解あるいは無害化、汚染物質の除去、悪性細胞の無害化、また材料創製を行うことが期待できることから、応用分野としては、例えば、環境浄化技術の他に、洗浄技術、癌治療等の医療技術、また粉体工業等が想定される。   Therefore, this cavitation bubble can be expected to be applied to an environmental purification process for decomposing or detoxifying pollutants. In addition, since the shock wave propagates to the periphery of the bubbles, it is attracting attention as a new material creation method that promotes dissolution and precipitation by material transport and is energy-saving and has a low environmental load compared to conventional methods. Thus, cavitation can be expected to efficiently and quickly decompose or detoxify harmful substances, remove pollutants, detoxify malignant cells, and create materials. In addition to purification technology, cleaning technology, medical technology such as cancer treatment, and powder industry are envisaged.

これまで、超音波照射下の液中への粒子添加効果については、次のような基礎的検討がなされてきた。Keckらは、水晶粒子の添加効果について検討し、3−5μmの大きさを持つ粒子が206kHzの超音波照射時に過酸化水素の生成に効果的であることを示している(非特許文献1)。また、SekiguchiとSaitaは、アルミナ添加について、粒子径増加に伴う表面積増大時にクロロベンゼンの分解の向上の効果が期待できることを示している(非特許文献2)。しかし、これらは、特定の成分の生成又は分解の効果を現象的に検討したものである。本発明者らのグループでは、超音波照射時に、液への添加粒子として、アルミナ、シリカ、二酸化チタン、鉄酸化物二酸化チタン、鉄酸化物シリカ含有二酸化チタンを用いて化学反応促進効果に関し、検証を行っており、とりわけ、粒径を変えたときのアルミナの添加効果について検討し、20μmの大きさを持つ粒子が42kHzの超音波照射時に化学反応に対し、効果的であるとの研究成果を得ている。   Until now, the following basic studies have been made on the effect of adding particles to the liquid under ultrasonic irradiation. Keck et al. Examined the effect of adding quartz particles, and showed that particles having a size of 3-5 μm are effective in producing hydrogen peroxide when irradiated with ultrasonic waves of 206 kHz (Non-patent Document 1). . Moreover, Sekiguchi and Saita have shown that the effect of improving the decomposition of chlorobenzene can be expected when alumina is added and the surface area is increased as the particle size increases (Non-patent Document 2). However, these are phenomenological studies of the effects of the generation or decomposition of specific components. The group of the present inventors verified the chemical reaction promoting effect using alumina, silica, titanium dioxide, iron oxide titanium dioxide, iron oxide silica-containing titanium dioxide as the additive particles to the liquid during ultrasonic irradiation. In particular, we examined the effect of adding alumina when the particle size was changed, and found that particles with a size of 20 μm are effective against chemical reactions when irradiated with ultrasonic waves at 42 kHz. It has gained.

また、先行技術については、以下のような例がある。すなわち、酸化物半導体触媒存在下で水中に超音波を照射することによりヒドロキシラジカルを発生させる方法(特許文献1)、超音波照射時のキャビテーション気泡により発生する高温高圧を用いた分解法であって、添加触媒として周期律表VIII族の金属又はその酸化物をゼオライト、多孔性酸化チタン、アルミナ及びシリカの少なくとも1 種からなる担体に担持したものを用いて、有機塩素化合物及び/又はイオン性イオウ化合物を分解する方法(特許文献2)、また、超音波により二酸化チタン触媒粒子を微粒化して分散させる方法(特許文献3)、がある。このように、従来、触媒を添加した化学反応系に超音波照射して反応効率の向上を図る方法は、いくつか提案されている。しかし、これらも、触媒粒子の分散性を向上させることで反応効率を向上させること等の効果を現象的にとらえたものであり、これまで、例えば、固体物質の添加(導入)とキャビテーション気泡形成との関係の検討及び固体物質添加によるキャビテーションの増加と化学反応量増大の相関に関する検討等については全くなされておらず、それらの関係は全く未知であった。   Further, examples of the prior art include the following. That is, a method for generating hydroxy radicals by irradiating ultrasonic waves in water in the presence of an oxide semiconductor catalyst (Patent Document 1), and a decomposition method using high-temperature and high-pressure generated by cavitation bubbles during ultrasonic irradiation. In addition, a catalyst in which a metal of Group VIII of the Periodic Table or an oxide thereof is supported on a support made of at least one of zeolite, porous titanium oxide, alumina, and silica is used as an additive catalyst, and an organic chlorine compound and / or ionic sulfur is used. There are a method of decomposing a compound (Patent Document 2) and a method of dispersing and dispersing titanium dioxide catalyst particles by ultrasonic waves (Patent Document 3). As described above, several methods for improving the reaction efficiency by irradiating a chemical reaction system to which a catalyst is added with ultrasonic waves have been proposed. However, these are also phenomena that capture the effects of improving the reaction efficiency by improving the dispersibility of the catalyst particles, and so far, for example, addition (introduction) of solid substances and formation of cavitation bubbles There has been no study on the relationship between the increase in cavitation due to the addition of solid substances and the correlation between the increase in the amount of chemical reaction, etc., and their relationship was completely unknown.

特開2003−26406号公報JP 2003-26406 A 特開2000−300982号公報Japanese Patent Laid-Open No. 2000-300982 特開2000−237771号公報JP 2000-237771 A Keck A, Gilbert E, Koster R, "Influence of particles on sonochemical reactions in aqueous solutions", ULTRASONICS 40 (1-8): 661-665 MAY 2002Keck A, Gilbert E, Koster R, "Influence of particles on sonochemical reactions in aqueous solutions", ULTRASONICS 40 (1-8): 661-665 MAY 2002 Sekiguchi H, Saita Y, "Effect of alumina particles on sonolysis degradation of chlorobenzene in aqueous solution", JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 34 (8): 1045-1048 AUG 2001Sekiguchi H, Saita Y, "Effect of alumina particles on sonolysis degradation of chlorobenzene in aqueous solution", JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 34 (8): 1045-1048 AUG 2001

このような状況の中で、本発明者らは、上記従来技術に鑑みて、固体物質(以下、固体と記載する。)添加(導入)によるキャビテーションの増加と化学反応量増大の相関について検討を重ねた結果、超音波照射下の液中に固体を存在させることによりキャビテーション気泡が増加することを見出し、本発明を完成するに至った。
本発明は、超音波照射時の液中へ粒子等の固体を添加(導入)し、超音波照射下の液中に固体を存在させ、キャビテーション気泡を増加させることによりキャビテーションを増加させる方法等を提供することを目的とするものである。
Under such circumstances, the present inventors examined the correlation between an increase in cavitation due to the addition (introduction) of a solid substance (hereinafter referred to as a solid) and an increase in the amount of chemical reaction in view of the above-described conventional technology. As a result of overlapping, it was found that the presence of solids in the liquid under ultrasonic irradiation increased cavitation bubbles, and the present invention was completed.
The present invention relates to a method of increasing cavitation by adding (introducing) solids such as particles into the liquid during ultrasonic irradiation, causing the solid to exist in the liquid under ultrasonic irradiation, and increasing cavitation bubbles. It is intended to provide.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)超音波照射下の液中に固体物質を存在させることによりキャビテーション気泡を増加させることを特徴とするキャビテーション増加方法。
(2)上記キャビテーションの増加によりOHラジカルならびに過酸化水素の生成を促進させることを特徴とする前記(1)記載の方法。
(3)上記OHラジカルならびに過酸化水素の生成を促進させることにより化学反応における反応サイトを増加させることを特徴とする前記(2)記載の方法。
(4)液中に金属イオンを存在させることを特徴とする前記(1)記載の方法。
(5)上記反応サイトを増加させることにより化学反応の反応速度を向上させることを特徴とする前記(2)記載の方法。
(6)前記(1)記載の方法による液中のキャビテーションの増加によりキャビテーション閾値を低下させることを特徴とするキャビテーション閾値の低下方法。
(7)上記固体物質の表面積を大きくすること又はその表面に凹凸を付することによりキャビテーション増加率を向上させることを特徴とする前記(1)記載の方法。
(8)所定の反応系の外的成分として反応液中へ固体物質として粒子を添加することを特徴とする前記(1)記載の方法。
(9)前記(1)記載の方法による液中のキャビテーションの増加により気泡収縮に伴う衝撃波ならびにマイクロジェットを増加させることを特徴とする液中の衝撃波ならびにマイクロジェットの増加方法。
(10)前記(1)記載の方法による液中のキャビテーションの増加により気泡周囲のマイクロストリーミングを増加させることを特徴とする液中のマイクロストリーミングの増加方法。
(11)前記(1)記載の方法による液中のキャビテーションの増加により液の分散又は乳化を促進することを特徴とする液の分散又は乳化の促進方法。
(12)前記(1)記載の方法による液中のキャビテーションの増加により液中の微粒子を分散させることを特徴とする微粒子の分散の促進方法。
(13)前記(1)に記載の、超音波照射下の液中に固体物質を存在させることによりキャビテーション気泡を増加させることからなるキャビテーションの増加方法を使用して、被洗浄対象物を超音波洗浄する手段であって、超音波振動可能に超音波振動子を備えた超音波洗浄用浴槽、処理液及び添加粒子を含む第1槽と処理液を含む第2槽を区分するためのキャビテーション気泡透過膜を備えた内槽、を構成要素として含み、上記処理液を含む第2槽に被洗浄対象物を入れて超音波洗浄するようにしたことを特徴とする超音波洗浄装置。
The present invention for solving the above-described problems comprises the following technical means.
(1) A cavitation increasing method characterized by increasing cavitation bubbles by causing a solid substance to be present in a liquid under ultrasonic irradiation.
(2) The method according to (1), wherein the generation of OH radicals and hydrogen peroxide is promoted by increasing the cavitation.
(3) The method according to (2), wherein the reaction sites in the chemical reaction are increased by promoting the generation of the OH radicals and hydrogen peroxide.
(4) The method according to (1), wherein metal ions are present in the liquid.
(5) The method according to (2), wherein the reaction rate of a chemical reaction is improved by increasing the number of reaction sites.
(6) A method for reducing a cavitation threshold, wherein the cavitation threshold is lowered by an increase in cavitation in the liquid according to the method described in (1).
(7) The method according to (1), wherein the cavitation increase rate is improved by increasing the surface area of the solid substance or by providing irregularities on the surface thereof.
(8) The method according to (1), wherein particles are added as a solid substance into the reaction solution as an external component of the predetermined reaction system.
(9) A method for increasing a shock wave and a microjet in a liquid, wherein the shock wave and the microjet associated with bubble contraction are increased by an increase in cavitation in the liquid according to the method described in (1) above.
(10) A method for increasing microstreaming in a liquid, comprising increasing microstreaming around bubbles by increasing cavitation in the liquid according to the method described in (1) above.
(11) A method for promoting dispersion or emulsification of a liquid, wherein the dispersion or emulsification of the liquid is promoted by increasing cavitation in the liquid by the method according to (1).
(12) A method for promoting dispersion of fine particles, comprising dispersing fine particles in a liquid by increasing cavitation in the liquid according to the method described in (1).
(13) The object to be cleaned is ultrasonicated using the method for increasing cavitation described in (1) above, which is to increase cavitation bubbles by causing a solid substance to exist in the liquid under ultrasonic irradiation. Cavitation bubbles for separating the ultrasonic cleaning bath having ultrasonic transducers capable of ultrasonic vibration, the first tank containing the treatment liquid and the additive particles, and the second tank containing the treatment liquid. An ultrasonic cleaning apparatus comprising: an inner tank provided with a permeable membrane as a constituent element; and an object to be cleaned is placed in a second tank containing the treatment liquid for ultrasonic cleaning.

次に、本発明について更に詳細に説明する。
本発明は、超音波照射下の液中へ固体を添加することにより液中のキャビテーションを増加させることを特徴とするキャビテーション増加方法に係るものである。従来、例えば、触媒粒子等の存在する反応溶液に超音波照射することは知られている。しかし、液中へ固体を添加することで液中のキャビテーションが増加するか否かは全く知られていない。本発明は、後記する実施例に具体的に示したように、超音波照射下の液中へ固体を添加することで液中のキャビテーションを増加するという新規知見に基づいて完成されたものである。本発明において、添加する固体としては、好適には、例えば、セラミック粒子、金属粒子、金属酸化物等の金属化合物粒子等が使用されるが、これらに限らず、これらと同効の固形(固体物質)であれば同様に使用できる。また、本発明において、超音波照射下の液中へ固体を添加する方法は、例えば、予め固体を添加した液中へ超音波照射する方法、あるいは超音波照射しつつ液中に固体を添加する方法により実施することが可能であり、固体の添加時期は特に制限されない。本発明では、好適には、例えば、所定の反応系の外的成分として、すなわち、当該反応系を構成する所定の成分以外の成分として固体を別途添加する方法が、例示されるが、これらに制限されるものではない。具体的には、例えば、所定の化学反応系において、この系を本来的に構成する所定の成分の他に、キャビテーション増加を目的として固体を導入する方法が例示される。
Next, the present invention will be described in more detail.
The present invention relates to a cavitation increasing method characterized by increasing cavitation in a liquid by adding a solid to the liquid under ultrasonic irradiation. Conventionally, for example, it is known to irradiate a reaction solution containing catalyst particles or the like with ultrasonic waves. However, it is not known at all whether or not cavitation in the liquid is increased by adding a solid to the liquid. The present invention has been completed based on the novel finding that cavitation in a liquid is increased by adding a solid to the liquid under ultrasonic irradiation, as specifically shown in the examples described later. . In the present invention, for example, ceramic particles, metal particles, metal compound particles such as metal oxides, and the like are preferably used as the solid to be added. (Substance) can be used similarly. In the present invention, the method of adding a solid into a liquid under ultrasonic irradiation is, for example, a method of applying ultrasonic waves into a liquid to which a solid has been added in advance, or a method of adding solids into a liquid while performing ultrasonic irradiation. It can be carried out by the method, and the addition timing of the solid is not particularly limited. In the present invention, for example, a method in which a solid is separately added as an external component of a predetermined reaction system, that is, as a component other than the predetermined component constituting the reaction system is exemplified. It is not limited. Specifically, for example, in a predetermined chemical reaction system, a method of introducing a solid for the purpose of increasing cavitation in addition to predetermined components that essentially constitute the system is exemplified.

超音波を照射する液としては、気体及び固体以外の液体であれば良く、例えば、各種の化学反応系等が例示されるが、これらに制限されない。すなわち、本発明の液中のキャビテーションの増加方法は、液体の種類、組成等にかかわらず、超音波照射の対象とされるあらゆる種類の液体中の超音波照射によるキャビテーション気泡の増加方法に適用し得るものである。本発明の方法において、液中に添加する固体の大きさ及び形態は、固体自体がキャビテーション核となり得るものであれば良く、特に制限されるものではないが、好適には、マイクロメートルオーダの粒子、表面に凹凸を有するもの、粒子表面に突起あるいは隙間が存在するもの、あるいは表面積の大きい粒子等が例示される。   The liquid to be irradiated with ultrasonic waves may be liquid other than gas and solid, and examples thereof include various chemical reaction systems, but are not limited thereto. That is, the method for increasing cavitation in a liquid of the present invention is applied to a method for increasing cavitation bubbles by ultrasonic irradiation in all types of liquids that are the targets of ultrasonic irradiation, regardless of the type and composition of the liquid. To get. In the method of the present invention, the size and form of the solid added to the liquid are not particularly limited as long as the solid itself can be a cavitation nucleus. Examples thereof include those having irregularities on the surface, those having protrusions or gaps on the particle surface, and particles having a large surface area.

液体中へ超音波を照射すると、キャビテーション閾値以上でキャビテーション気泡が発生するが、この際に、液体中へ固体を添加すると、キャビテーション気泡が増加する。そして、このキャビテーションの増加によりOHラジカルならびに過酸化水素の生成が促進され、それにより、化学反応系における反応サイトを増加させること、化学反応速度を向上させること、が可能となる。また、この場合、液中に鉄イオン等の金属イオンを存在させることにより、それらを一層促進する。更に、本発明では、キャビテーションの増加によりキャビテーション閾値を低下させることができ、それにより所定のキャビテーションを発生するのに要する超音波照射の照射条件を緩和することが可能となるので、超音波照射工程を省エネプロセスにすることができる。   When ultrasonic waves are radiated into the liquid, cavitation bubbles are generated at a cavitation threshold value or more. However, when solids are added to the liquid, cavitation bubbles increase. The increase in cavitation promotes the generation of OH radicals and hydrogen peroxide, thereby increasing the reaction sites in the chemical reaction system and improving the chemical reaction rate. In this case, the presence of metal ions such as iron ions in the liquid further promotes them. Furthermore, in the present invention, the cavitation threshold can be lowered by increasing the cavitation, thereby making it possible to relax the irradiation conditions of the ultrasonic irradiation required to generate the predetermined cavitation. Can be an energy saving process.

超音波存在下で水中マイクロホンにより受波される音波は、キャビテーションが液中で発生している場合、キャビテーション由来のノイズによりひずみを生ずる。これは音波の周期とキャビテーションの膨張収縮の周期の間にずれが生じるために起こる。このひずみを明確にするために、通常受波波形をフーリエ成分に分解し、音響インテンシティの周波数特性として示すのが一般的である。この周波数特性において、基本波の1/2、3/2、5/2,・・・n/2倍の周波数における成分(分調波成分)が存在すれば、キャビテーションの存在を証明できることが知られている(n:奇数)。キャビテーションが増加することで、これらの各成分が増加する。また、キャビテーション圧壊時に気泡の周りの液中へ放射される衝撃波の存在により、特定の周波数に限らず音響インテンシティが上昇することから、キャビテーションが増加する場合に全体的な上昇が生ずる。   A sound wave received by an underwater microphone in the presence of ultrasonic waves is distorted by cavitation-derived noise when cavitation occurs in the liquid. This occurs because of a shift between the period of sound waves and the period of expansion and contraction of cavitation. In order to clarify this distortion, it is general that the received waveform is decomposed into Fourier components and shown as frequency characteristics of acoustic intensity. In this frequency characteristic, it is known that the existence of cavitation can be proved if a component (subharmonic component) at a frequency 1/2, 3/2, 5/2,... N / 2 times the fundamental wave exists. (N: odd number). As cavitation increases, each of these components increases. In addition, due to the presence of the shock wave radiated into the liquid around the bubbles when the cavitation collapses, the sound intensity increases not only at a specific frequency, but when the cavitation increases, an overall increase occurs.

本発明において、化学反応速度の増加は、キャビテーション気泡の数の増加により実現できる。キャビテーション気泡を増加させる方法として、本発明では、例えば、粒子を添加するが、添加粒子が0.1μm程度の場合、粒子の存在自体がキャビテーション核となり、あるいはそれ以上の大きさを持つ場合でも、粒子表面に突起あるいは隙間が存在すればキャビテーション核となる。すなわち、粒子添加によりキャビテーション核が増加するため、粒子のない場合と比べてキャビテーション閾値を低下させることができる。   In the present invention, the chemical reaction rate can be increased by increasing the number of cavitation bubbles. As a method for increasing cavitation bubbles, in the present invention, for example, particles are added. When the added particles are about 0.1 μm, even if the presence of the particles becomes cavitation nuclei or has a size larger than that, If there are protrusions or gaps on the particle surface, it becomes a cavitation nucleus. That is, cavitation nuclei increase due to the addition of particles, so that the cavitation threshold can be lowered compared to the case without particles.

本発明では、後記する実施例に示されるように、超音波照射下の液中に固体を添加することによるキャビテーションの増加について、キャビテーションノイズの測定及びヨウ化カリウム水溶液からのヨウ素イオン析出反応に関する吸光度測定を行うことで検討を行った。ノイズ測定の結果、光触媒を含む粒子ならびに光触媒を含まないアルミナ単体、シリカ単体、テフロン(登録商標)、モレキュラーシーブ、マスクメロンD−50(セラミックス被覆二酸化チタン)等においてもキャビテーション増加効果が検出されたため、あらゆる固形物質の添加により同様の効果が期待できるといえる。また、化学反応においても同様に吸光度の増加が検出でき、固体添加によるキャビテーションの増加に起因する反応サイトの増加を裏付けるものである。それゆえに、超音波照射中の固体添加は、化学反応促進をもたらすので、環境浄化、洗浄、材料創製等の技術開発に資するものと考えられる。本発明では、液中のキャビテーション気泡の増加により、気泡収縮に伴う液中の衝撃波ならびにマイクロジェットを増加させること、気泡周囲のマイクロストリーミングを増加させること、例えば、不均一系の液の分散又は液の乳化を促進すること、及び液中の微粒子の分散を促進すること、ができる。   In the present invention, as shown in the examples described later, with respect to the increase in cavitation due to the addition of solids in the solution under ultrasonic irradiation, measurement of cavitation noise and absorbance related to iodine ion precipitation reaction from aqueous potassium iodide solution The study was conducted by measuring. As a result of noise measurement, the effect of increasing cavitation was also detected in particles containing photocatalyst and alumina alone, silica alone, Teflon (registered trademark), molecular sieve, Muskmelon D-50 (ceramics-coated titanium dioxide), etc. not containing photocatalyst It can be said that the same effect can be expected by adding any solid substance. Similarly, an increase in absorbance can be detected in a chemical reaction, confirming an increase in reaction sites due to an increase in cavitation due to solid addition. Therefore, solid addition during ultrasonic irradiation brings about chemical reaction promotion, which is considered to contribute to technological development such as environmental purification, cleaning, and material creation. In the present invention, by increasing the number of cavitation bubbles in the liquid, the shock wave and the microjet in the liquid accompanying the bubble contraction are increased, the microstreaming around the bubbles is increased, for example, the dispersion of the heterogeneous liquid or the liquid Can be emulsified, and dispersion of fine particles in the liquid can be promoted.

更に、本発明では、本発明の超音波照射下の液中に固体物質を存在させることによりキャビテーション気泡を増加させることからなるキャビテーションの増加方法を使用して、被洗浄対象物を超音波洗浄する手段であって、超音波振動可能に超音波振動子を備えた超音波洗浄用浴槽、処理液及び添加粒子を含む第1槽と処理液を含む第2槽を区分するためのキャビテーション気泡透過膜を備えた内槽、を構成要素として含み、上記処理液を含む第2槽に被洗浄対象物を入れて超音波洗浄するようにしたことを特徴とする超音波洗浄装置、が提供される。この場合、上記キャビテーション気泡透過膜は、キャビテーション気泡を透過させ、添加粒子を透過させない機能を有し、処理液を含む第2槽内へキャビテーション気泡を移行させることができ、添加粒子の移行を阻止できるものであればよく、その種類は特に制限されない。また、当該キャビテーション気泡透過膜の上記内槽への形成方法及び手段についても特に制限されない。また、被洗浄対象物としては、例えば、メガネ、宝飾品等が例示されるが、これらに制限されるものではなく、超音波洗浄が可能なものであればその全てが対象とされる。更に、本発明においては、上記超音波振動子、超音波洗浄用浴槽、キャビテーション気泡透過膜、内槽の種類、形状及び構造等は、特に制限されるものではなく、その使用目的に応じて、任意に設計することができる。   Furthermore, in the present invention, the object to be cleaned is ultrasonically cleaned using the cavitation increasing method comprising increasing the cavitation bubbles by the presence of a solid substance in the liquid under ultrasonic irradiation according to the present invention. A cavitation bubble permeable membrane for separating an ultrasonic cleaning bath having an ultrasonic transducer capable of ultrasonic vibration, a first tank containing a treatment liquid and additive particles and a second tank containing a treatment liquid. The ultrasonic cleaning apparatus is characterized in that an object to be cleaned is placed in a second tank containing the treatment liquid and ultrasonic cleaning is performed. In this case, the cavitation bubble permeable membrane has a function of permeating the cavitation bubbles and not allowing the additive particles to permeate, and can transfer the cavitation bubbles into the second tank containing the treatment liquid, thereby preventing the additive particles from moving. Any type can be used, and the type is not particularly limited. Also, the method and means for forming the cavitation bubble permeable membrane in the inner tank are not particularly limited. Further, examples of the objects to be cleaned include glasses, jewelry, and the like, but are not limited to these, and any object can be used as long as ultrasonic cleaning is possible. Furthermore, in the present invention, the type, shape and structure of the ultrasonic vibrator, ultrasonic cleaning bath, cavitation bubble permeable membrane, inner tank are not particularly limited, depending on the purpose of use, Can be designed arbitrarily.

本発明により、1)超音波照射下の液中のキャビテーション気泡を増加させることができる、2)キャビテーション気泡の増加により、OHラジカルならびに過酸化水素の生成を向上できる、3)キャビテーション気泡の増加により、化学反応における反応サイトが増加する、4)二酸化チタン含有粒子を添加すること、あるいは液中に鉄イオンを存在させることで反応サイトの顕著な増加が期待できる、5)キャビテーション気泡の増加により、気泡収縮に伴う衝撃波やマイクロジェットを増加でき、これらを利用した物質輸送の向上及び固体表面の洗浄作用の向上を実現できる、6)キャビテーション気泡の増加により、気泡周囲のマイクロストリーミングや衝撃波、OHラジカルならびに過酸化水素等の酸化剤生成による病原体細胞の死滅や殺菌等の生物学的諸作用の向上が期待できる、7)不均一媒体の分散及び乳化作用を向上でき、微粒子の分散作用を向上できる、8)上記キャビテーション増加方法を利用した高性能の超音波洗浄装置を提供できる、等の効果が奏される。   According to the present invention, 1) cavitation bubbles in the liquid under ultrasonic irradiation can be increased, 2) generation of OH radicals and hydrogen peroxide can be improved by increase of cavitation bubbles, and 3) increase of cavitation bubbles. The reaction sites in chemical reactions increase, 4) The addition of titanium dioxide-containing particles, or the presence of iron ions in the liquid can be expected to significantly increase the reaction sites. 5) The increase in cavitation bubbles Shock waves and micro jets associated with bubble contraction can be increased, and improvement of mass transport and solid surface cleaning using these can be achieved. 6) Increased cavitation bubbles increase micro-streaming, shock waves and OH radicals around bubbles. And pathogen cells produced by the production of oxidants such as hydrogen peroxide. It can be expected to improve various biological actions such as disinfection and sterilization, 7) can improve the dispersion and emulsification action of heterogeneous media, and can improve the dispersion action of fine particles, 8) high performance using the above cavitation increasing method The effect that an ultrasonic cleaning apparatus can be provided is produced.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

本実施例では、超音波照射下における液中への種々の固体添加によるキャビテーション増加効果を検証するため、キャビテーション増加率を見積もるためのキャビテーションノイズの測定を行い、また、ヨウ化カリウム水溶液からのヨウ素イオンの析出に関する吸光度測定を行った。図1に、本実施例で用いた装置のスキームを示す。超音波照射装置として、超音波洗浄用浴槽2(Branson,1510J−MT,42kHz,70W)を使用した。試験管3(IWAKI GLASS,13×100mm)に1mlの純水を入れて、浴槽水面のレベルにサンプル液の表面の高さを合わせて、浴槽の中央になるように固定した。図において、超音波振動子1から超音波を超音波洗浄浴槽2の中へ放射し、浴槽2に浸した試験管3の内側へ透過させ、固体を含む液中にキャビテーションを発生させた。照射時間は1分間で、浴槽の水温は20℃に合わせた。   In this example, in order to verify the effect of increasing cavitation due to the addition of various solids to the liquid under ultrasonic irradiation, cavitation noise was measured to estimate the rate of increase in cavitation, and iodine from an aqueous potassium iodide solution was measured. Absorbance measurements on ion precipitation were performed. FIG. 1 shows a scheme of the apparatus used in this example. As an ultrasonic irradiation device, an ultrasonic cleaning bath 2 (Branson, 1510J-MT, 42 kHz, 70 W) was used. 1 ml of pure water was put into the test tube 3 (IWAKI GLASS, 13 × 100 mm), and the height of the surface of the sample liquid was adjusted to the level of the bath water surface, and fixed to the center of the bath. In the figure, ultrasonic waves were radiated from the ultrasonic transducer 1 into the ultrasonic cleaning bath 2 and transmitted to the inside of the test tube 3 immersed in the bathtub 2 to generate cavitation in the liquid containing solids. The irradiation time was 1 minute, and the bath water temperature was adjusted to 20 ° C.

添加固体粒子として、アルミナAl23 研磨用(20μm)、アルミナAl23 球形アドマファイン(10μm)、テフロン(登録商標)、モレキュラーシーブ、マスクメロンD−50(2μm)、マスクメロンD−50(5μm)、マスクメロンD−50(40μm)、二酸化チタンp−25(10μm)、鉄酸化物含有二酸化チタンKMA042(10μm)、鉄酸化物シリカ含有二酸化チタンFe23 −SiO2 −TiO2 を用いた。各粒子添加量は40mgであった。 As additive solid particles, alumina Al 2 O 3 polishing (20 μm), alumina Al 2 O 3 spherical admafine (10 μm), Teflon (registered trademark), molecular sieve, mask melon D-50 (2 μm), mask melon D- 50 (5 μm), muskmelon D-50 (40 μm), titanium dioxide p-25 (10 μm), iron oxide-containing titanium dioxide KMA042 (10 μm), iron oxide silica-containing titanium dioxide Fe 2 O 3 —SiO 2 —TiO 2 was used. The amount of each particle added was 40 mg.

水中マイクロホン(RESON、TC4038、4mmφ)を液中に浸し、受信した音圧波形をスペクトルアナライザー(SONY Tektronix、3026、3GHz)でフーリエスペクトルに変換することで、キャビテーションの発生頻度に対応するノイズ(インテンシティ)を測定した。図2に、測定例として、添加固体粒子が鉄酸化物シリカ含有二酸化チタンFe23 −SiO2 −TiO2 の場合のノイズの周波数特性を示す。粒子ありの場合、粒子なしの場合に比べて、分調波成分が顕著となっているのがわかる。 An underwater microphone (RESON, TC4038, 4 mmφ) is immersed in the liquid, and the received sound pressure waveform is converted into a Fourier spectrum by a spectrum analyzer (SONY Tektronix, 3026, 3 GHz), thereby generating noise (intensity) corresponding to the frequency of occurrence of cavitation. City). FIG. 2 shows a frequency characteristic of noise when the added solid particles are iron oxide silica-containing titanium dioxide Fe 2 O 3 —SiO 2 —TiO 2 as a measurement example. It can be seen that the subharmonic component is more prominent in the case with particles than in the case without particles.

次に、固体粒子の有無によるノイズ増加率を見積もった。ノイズ増加率は、以下に定義する、測定範囲内のある周波数におけるa及びbを用いて表したIN の式で計算した。ここで、和Σは測定された周波数範囲について行った。
a={(粒子を入れていないときのノイズの値)−(粒子を入れていないときのノイズの最小値)}
b={(粒子を入れたときのノイズの値)−(粒子を入れていないときのノイズの最小値)}
N =Σb/Σa (1)
Next, the noise increase rate due to the presence or absence of solid particles was estimated. Noise growth rate, defined below, were calculated by the formula I N representing using a and b in the frequency with the measuring range. Here, the sum Σ was performed for the measured frequency range.
a = {(value of noise when no particles are included) − (minimum value of noise when particles are not included)}
b = {(value of noise when particles are included) − (minimum value of noise when particles are not included)}
I N = Σb / Σa (1)

表1に、ノイズ実測値を用いて式(1)により計算されたキャビテーションノイズ増加率を各添加固体粒子について示す。添加固体粒子のすべての場合に1より大きな値を示した。すべての場合にキャビテーションの増加が見られたため、固体粒子の種類によらず任意の固体粒子添加はキャビテーションの増加効果を有するといえる。また、表1の2段目に示すマスクメロン粒子の場合、粒径の増加に伴いノイズが増加する傾向があるが、これは表面積の増大に起因するものと考えられる。表1の3段目に示す二酸化チタンを含む場合、上2段の二酸化チタンを含まない場合と比べて増加率は比較的大きな値を示した。   Table 1 shows the cavitation noise increase rate calculated by Equation (1) using the measured noise value for each added solid particle. A value greater than 1 was shown in all cases of added solid particles. Since cavitation increased in all cases, it can be said that the addition of arbitrary solid particles has an effect of increasing cavitation regardless of the type of solid particles. Further, in the case of the mask melon particles shown in the second row of Table 1, noise tends to increase as the particle size increases, which is considered to be caused by an increase in surface area. When the titanium dioxide shown in the third stage of Table 1 was included, the increase rate was relatively large as compared with the case where the upper two stages of titanium dioxide were not included.

Figure 2005007392
Figure 2005007392

本実施例では、固体粒子添加時の超音波照射による化学反応量の定量化を検討するため、超音波照射されたヨウ化カリウム水溶液におけるヨウ素イオンI3 - の析出反応を用いて吸光度測定を行った。吸光度の測定には吸光度計(JASCO、V−530)を用いた。I3 - は350nmに特徴のあるピークを示す。超音波照射装置及び試験管は、実施例1と同じとした。試験管に1mlのサンプル溶液を入れて、浴槽水面のレベルにサンプル溶液の表面の高さを合わせて、浴槽の中央になるように固定した。照射時間は1分間で、浴槽の水温は20℃に合わせた。添加固体粒子としては、シリカSiO2 ナノ粒子、アルミナAl23 研磨用(20μm)、二酸化チタンp−25、鉄酸化物含有二酸化チタンKMA042、鉄酸化物シリカ含有二酸化チタンFe23 −SiO2 −TiO2 を用いた。 In this example, in order to examine the quantification of the amount of chemical reaction by ultrasonic irradiation at the time of adding solid particles, the absorbance measurement was performed using the precipitation reaction of iodine ion I 3 − in the ultrasonically irradiated potassium iodide aqueous solution. It was. An absorbance meter (JASCO, V-530) was used for measuring the absorbance. I 3 shows a characteristic peak at 350 nm. The ultrasonic irradiation apparatus and the test tube were the same as those in Example 1. 1 ml of the sample solution was put in a test tube, and the height of the surface of the sample solution was adjusted to the level of the water surface of the bath, so that the center of the bath was fixed. The irradiation time was 1 minute, and the bath water temperature was adjusted to 20 ° C. As the added solid particles, silica SiO 2 nanoparticles, alumina Al 2 O 3 polishing (20 μm), titanium dioxide p-25, iron oxide-containing titanium dioxide KMA042, iron oxide silica-containing titanium dioxide Fe 2 O 3 —SiO the 2 -TiO 2 was used.

本実施例ではUVランプは用いていないため、光触媒の効果はほとんどなく、主に超音波キャビテーションを由来とする効果に関する検討であった。吸光度測定前に遠心分離機(AS ONE、CN−1050)を用いて反応液の固液分離を行った。表2に、各粒子における反応液の吸光度の増加率を示す。ここでは、吸光度の増加率を粒子のない場合の超音波照射された反応液の吸光度(コントロール)に対する比率と定義した。表2に示す通り、すべての場合に1以上の増加率が検出された。これは粒子添加によるキャビテーションの増加に起因する反応サイトの増加を裏付けるものである。   In this example, since a UV lamp was not used, there was almost no effect of the photocatalyst, and the investigation was mainly related to the effect derived from ultrasonic cavitation. Prior to the absorbance measurement, the reaction solution was subjected to solid-liquid separation using a centrifuge (AS ONE, CN-1050). Table 2 shows the rate of increase in the absorbance of the reaction solution in each particle. Here, the rate of increase in absorbance was defined as the ratio of the reaction solution irradiated with ultrasound in the absence of particles to the absorbance (control). As shown in Table 2, an increase rate of 1 or more was detected in all cases. This confirms the increase in reaction sites due to the increase in cavitation due to the addition of particles.

ただし、本実施例では、比較的添加粒子量が少ないため、すべての例でキャビテーション増加が得られているが、添加量が多くなると粒子による音波の遮蔽が生じキャビテーションができにくくなるため、増加率が1を下回ると考えられる。二酸化チタンを含有するものは、他の場合と比べて比較的高い値を示したが、これはキャビテーションの増加に伴うOHラジカルの増加ならびに過酸化水素の増加による直接的な寄与だけでなく、過酸化チタンが粒子表面に生じることが影響していると思われる。更に、溶液中での鉄(イオン)の存在により鉄酸化物シリカ含有二酸化チタンFe23 −SiO2 −TiO2 で劇的な増加が観測されているが、この増加においては、II価の鉄イオンと過酸化水素とのフェントン反応によるOHラジカルが寄与し得ると考えられる(Yim BB, Yoo YG, Maeda Y, "Sonolysis of alkylphenols in aqueous solution with Fe(II) and Fe(III) ", CHEMOSPHERE 50 (8): 1015-1023 MAR 2003 )。 However, in this example, since the amount of added particles is relatively small, an increase in cavitation is obtained in all examples. However, when the added amount is large, sound waves are shielded by particles and cavitation becomes difficult, so the rate of increase Is considered to be less than 1. Those containing titanium dioxide showed relatively high values compared to the other cases, but this was not only a direct contribution due to an increase in OH radicals and an increase in hydrogen peroxide with an increase in cavitation, but also an excessive amount. It seems that titanium oxide is generated on the particle surface. In addition, a dramatic increase in iron oxide silica-containing titanium dioxide Fe 2 O 3 —SiO 2 —TiO 2 has been observed due to the presence of iron (ions) in the solution. It is thought that OH radicals by Fenton reaction between iron ions and hydrogen peroxide can contribute (Yim BB, Yoo YG, Maeda Y, "Sonolysis of alkylphenols in aqueous solution with Fe (II) and Fe (III)", CHEMOSPHERE 50 (8): 1015-1023 MAR 2003).

Figure 2005007392
Figure 2005007392

本実施例では、粒子添加時の超音波照射による化学反応量の定量化を検討するために、超音波照射されたヨウ化カリウム水溶液におけるヨウ素イオンI3 - の析出反応を用いて、吸光度測定を行った。添加粒子は、研磨用アルミナ粒子であり、1)粒子径を10μmに固定し、添加量を変化させたとき(図3)、2)添加量を20mgに固定し、粒子径を変化させたとき(図4)、について、それぞれ、粒子の有無による反応の増加率を測定した。その結果を、図3:粒子添加による化学反応増加率の粒子添加量依存性、及び図4:粒子添加による化学反応増加率の粒子径依存性、に示す。図3から、添加量が多すぎると逆に増加率が低下してしまうことがわかった。これは、過剰な粒子の存在により超音波の振幅を低下してしまうためと考えられる。図4から、粒子径が小さすぎると効果が見られないように思われるが、これは検出すべきI3 - イオンが粒子に吸着しているためと考えられる。適度な添加量の下では、粒子径にほとんど依存せず、増加率の向上効果が期待できることがわかった。 In this example, in order to examine the quantification of the amount of chemical reaction by ultrasonic irradiation at the time of particle addition, absorbance measurement was performed using the precipitation reaction of iodine ions I 3 − in an aqueous solution of potassium iodide irradiated with ultrasonic waves. went. The additive particles are abrasive alumina particles. 1) When the particle diameter is fixed at 10 μm and the addition amount is changed (FIG. 3), 2) When the addition amount is fixed at 20 mg and the particle diameter is changed About (FIG. 4), the increase rate of the reaction by the presence or absence of particle | grains was measured, respectively. The results are shown in FIG. 3: dependence of the chemical reaction increase rate due to the addition of particles on the amount of added particles, and FIG. 4: dependency of the chemical reaction increase rate due to the addition of particles on the particle diameter. From FIG. 3, it was found that if the amount added was too large, the rate of increase would decrease. This is presumably because the amplitude of the ultrasonic wave is lowered due to the presence of excessive particles. From FIG. 4, it seems that if the particle diameter is too small, the effect is not seen, but this is considered to be because I 3 ions to be detected are adsorbed on the particles. It was found that under an appropriate addition amount, the effect of increasing the increase rate can be expected almost independent of the particle size.

本実施例では、本発明のキャビテーション増加方法を使用して、被洗浄対象物の洗浄を行うための超音波洗浄装置を構築した。図5に、本実施例で構築した洗浄装置の一例を示す。この洗浄装置は、底部に超音波振動可能に超音波振動子1を設置した超音波洗浄用浴槽2、処理液及び添加粒子を含む第1槽4、処理液を含む第2槽5、これらの第1槽と第2槽を区分するためのキャビテーション気泡透過性膜を備えた内槽6、及び上記超音波振動子を作動させるための周辺装置(図示せず)、から構成されている。添加粒子として、粒子径10μmのアルミナ粒子を用いた。また、キャビテーション気泡透過膜は、キャビテーション気泡が透過し、上記アルミナ粒子が透過しない特定の網目構造を有するものを用いた。この装置の超音波振動子を振動させ、キャビテーション気泡を発生させ、処理液及び添加粒子を含む第1槽4でキャビテーション気泡を増加させ、これをキャビテーション気泡透過性膜を介して内槽6内へ移行させた。この状態で、この内槽6内へメガネを挿入し、メガネの洗浄試験を試みた結果、従来の超音波洗浄装置を使用して同様に試験した場合と比べて、洗浄時間を約半分以下に大幅に短縮できることがわかった。   In this example, an ultrasonic cleaning apparatus for cleaning an object to be cleaned was constructed using the cavitation increasing method of the present invention. FIG. 5 shows an example of the cleaning apparatus constructed in this example. This cleaning apparatus includes an ultrasonic cleaning bath 2 in which an ultrasonic vibrator 1 is installed at the bottom so as to be capable of ultrasonic vibration, a first tank 4 containing a processing liquid and additive particles, a second tank 5 containing a processing liquid, It is comprised from the inner tank 6 provided with the cavitation bubble permeable membrane for dividing a 1st tank and a 2nd tank, and the peripheral device (not shown) for operating the said ultrasonic transducer | vibrator. As the additive particles, alumina particles having a particle diameter of 10 μm were used. Further, the cavitation bubble permeable membrane used had a specific network structure through which cavitation bubbles permeated and the alumina particles did not permeate. The ultrasonic vibrator of this apparatus is vibrated to generate cavitation bubbles, the cavitation bubbles are increased in the first tank 4 containing the treatment liquid and the added particles, and this is introduced into the inner tank 6 through the cavitation bubble permeable membrane. I migrated. In this state, the glasses were inserted into the inner tub 6 and the eyeglass cleaning test was attempted. As a result, the cleaning time was reduced to about half or less compared to the case where the same test was performed using a conventional ultrasonic cleaning device. It was found that it can be greatly shortened.

以上詳述した通り、本発明は、固体導入によるキャビテーション気泡増加方法等に係るものであり、本発明により、超音波照射下の液中のキャビテーション気泡を増加させることができる。キャビテーション気泡の増加により、OHラジカルならびに過酸化水素の生成を向上できる。キャビテーション気泡の増加により、化学反応における反応サイトが増加する。二酸化チタン含有粒子を添加すること、あるいは液中に鉄イオンを存在させることで反応サイトの顕著な増加が期待できる。キャビテーション気泡の増加により、気泡収縮に伴う衝撃波やマイクロジェットを増加でき、これらを利用した物質輸送の向上及び固体表面の洗浄作用の向上を実現できる。キャビテーション気泡の増加により、気泡周囲のマイクロストリーミングや衝撃波、OHラジカルならびに過酸化水素等の酸化剤生成による病原体細胞の死滅や殺菌等の生物学的諸作用の向上が期待できる。不均一媒体の分散及び乳化作用を向上でき、微粒子の分散作用を向上できる。従来の超音波洗浄装置と比べて洗浄効果を大幅に向上させた高性能の超音波洗浄装置を提供できる。   As described above in detail, the present invention relates to a method for increasing cavitation bubbles by introducing solids, and the present invention can increase cavitation bubbles in a liquid under ultrasonic irradiation. The increase of cavitation bubbles can improve the generation of OH radicals and hydrogen peroxide. The increase of cavitation bubbles increases the reaction site in the chemical reaction. The addition of titanium dioxide-containing particles or the presence of iron ions in the liquid can be expected to significantly increase the reaction site. By increasing the number of cavitation bubbles, it is possible to increase shock waves and micro jets associated with the bubble contraction, and to improve the material transport and the solid surface cleaning action using these. The increase in cavitation bubbles can be expected to improve biological effects such as killing and sterilization of pathogen cells due to microstreaming around the bubbles, shock waves, OH radicals, and generation of oxidizing agents such as hydrogen peroxide. The dispersion and emulsifying action of the heterogeneous medium can be improved, and the dispersing action of the fine particles can be improved. It is possible to provide a high-performance ultrasonic cleaning apparatus that greatly improves the cleaning effect as compared with conventional ultrasonic cleaning apparatuses.

図1は、超音波照射装置のスキームを示す。FIG. 1 shows a scheme of an ultrasonic irradiation apparatus. 図2は、粒子の添加によるキャビテーションノイズ(インテンシティ)の増加を示す。FIG. 2 shows the increase in cavitation noise (intensity) due to the addition of particles. 粒子添加による化学反応増加率の粒子添加量依存性を示す。The dependence of the chemical reaction increase rate due to the addition of particles on the amount of added particles is shown. 粒子添加による化学反応増加率の粒子径依存性を示す。The particle diameter dependence of the chemical reaction increase rate by particle addition is shown. 超音波洗浄装置の一例を示す。An example of an ultrasonic cleaning apparatus is shown.

符号の説明Explanation of symbols

1:超音波振動子
2:超音波洗浄用浴槽
3:処理液及び添加粒子を含む試験管
4:処理液及び添加粒子を含む第1槽
5:処理液を含む第2槽
6:キャビテーション気泡透過膜を備えた内槽
7:被洗浄対象物

1: Ultrasonic vibrator 2: Ultrasonic cleaning bath 3: Test tube containing treatment liquid and additive particles 4: First tank containing treatment liquid and additive particles 5: Second tank containing treatment liquid 6: Cavitation bubble permeation Inner tank with membrane 7: Object to be cleaned

Claims (13)

超音波照射下の液中に固体物質を存在させることによりキャビテーション気泡を増加させることを特徴とするキャビテーション増加方法。   A cavitation increasing method characterized by increasing cavitation bubbles by causing a solid substance to exist in a liquid under ultrasonic irradiation. 上記キャビテーションの増加によりOHラジカルならびに過酸化水素の生成を促進させることを特徴とする請求項1記載の方法。   2. The method according to claim 1, wherein the generation of OH radicals and hydrogen peroxide is promoted by increasing the cavitation. 上記OHラジカルならびに過酸化水素の生成を促進させることにより化学反応における反応サイトを増加させることを特徴とする請求項2記載の方法。   3. The method according to claim 2, wherein reaction sites in a chemical reaction are increased by promoting generation of the OH radical and hydrogen peroxide. 液中に金属イオンを存在させることを特徴とする請求項1記載の方法。   2. The method according to claim 1, wherein metal ions are present in the liquid. 上記反応サイトを増加させることにより化学反応の反応速度を向上させることを特徴とする請求項2記載の方法。   The method according to claim 2, wherein the reaction rate of a chemical reaction is improved by increasing the number of reaction sites. 請求項1記載の方法による液中のキャビテーションの増加によりキャビテーション閾値を低下させることを特徴とするキャビテーション閾値の低下方法。   A method for lowering a cavitation threshold, wherein the cavitation threshold is lowered by an increase in cavitation in the liquid according to the method according to claim 1. 上記固体物質の表面積を大きくすること又はその表面に凹凸を付することによりキャビテーション増加率を向上させることを特徴とする請求項1記載の方法。   2. The method according to claim 1, wherein the cavitation increase rate is improved by increasing the surface area of the solid substance or by providing irregularities on the surface thereof. 所定の反応系の外的成分として反応液中へ固体物質として粒子を添加することを特徴とする請求項1記載の方法。   2. The method according to claim 1, wherein particles are added as a solid substance into the reaction solution as an external component of the predetermined reaction system. 請求項1記載の方法による液中のキャビテーションの増加により気泡収縮に伴う衝撃波ならびにマイクロジェットを増加させることを特徴とする液中の衝撃波ならびにマイクロジェットの増加方法。   A method for increasing a shock wave and a micro jet in a liquid, wherein the shock wave and the micro jet accompanying bubble contraction are increased by increasing cavitation in the liquid according to the method of claim 1. 請求項1記載の方法による液中のキャビテーションの増加により気泡周囲のマイクロストリーミングを増加させることを特徴とする液中のマイクロストリーミングの増加方法。   A method for increasing microstreaming in a liquid, comprising increasing the microstreaming around bubbles by increasing cavitation in the liquid according to the method of claim 1. 請求項1記載の方法による液中のキャビテーションの増加により液の分散又は乳化を促進することを特徴とする液の分散又は乳化の促進方法。   A method for promoting dispersion or emulsification of a liquid, wherein the dispersion or emulsification of the liquid is promoted by increasing cavitation in the liquid by the method according to claim 1. 請求項1記載の方法による液中のキャビテーションの増加により液中の微粒子を分散させることを特徴とする微粒子の分散の促進方法。   A method for promoting dispersion of fine particles, comprising dispersing fine particles in a liquid by increasing cavitation in the liquid according to the method according to claim 1. 請求項1に記載の、超音波照射下の液中に固体物質を存在させることによりキャビテーション気泡を増加させることからなるキャビテーションの増加方法を使用して、被洗浄対象物を超音波洗浄する手段であって、超音波振動可能に超音波振動子を備えた超音波洗浄用浴槽、処理液及び添加粒子を含む第1槽と処理液を含む第2槽を区分するためのキャビテーション気泡透過膜を備えた内槽、を構成要素として含み、上記処理液を含む第2槽に被洗浄対象物を入れて超音波洗浄するようにしたことを特徴とする超音波洗浄装置。


A means for ultrasonically cleaning an object to be cleaned using the cavitation increasing method comprising increasing a cavitation bubble by causing a solid substance to exist in a liquid under ultrasonic irradiation according to claim 1. An ultrasonic cleaning bath equipped with an ultrasonic transducer capable of ultrasonic vibration, a cavitation bubble permeable membrane for separating a first tank containing a treatment liquid and additive particles and a second tank containing a treatment liquid An ultrasonic cleaning apparatus characterized in that an inner tank is included as a component, and an object to be cleaned is placed in a second tank containing the treatment liquid to perform ultrasonic cleaning.


JP2004160548A 2003-05-29 2004-05-31 Method for increasing cavitation bubbles by introducing solids Expired - Fee Related JP4997407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004160548A JP4997407B2 (en) 2003-05-29 2004-05-31 Method for increasing cavitation bubbles by introducing solids

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003153545 2003-05-29
JP2003153545 2003-05-29
JP2004160548A JP4997407B2 (en) 2003-05-29 2004-05-31 Method for increasing cavitation bubbles by introducing solids

Publications (2)

Publication Number Publication Date
JP2005007392A true JP2005007392A (en) 2005-01-13
JP4997407B2 JP4997407B2 (en) 2012-08-08

Family

ID=34106804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004160548A Expired - Fee Related JP4997407B2 (en) 2003-05-29 2004-05-31 Method for increasing cavitation bubbles by introducing solids

Country Status (1)

Country Link
JP (1) JP4997407B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275694A (en) * 2006-04-03 2007-10-25 National Institute Of Advanced Industrial & Technology Liquid treatment method using ultrasonic chemical action by addition of bubble, and device therefor
JP2010221141A (en) * 2009-03-24 2010-10-07 Ngk Insulators Ltd Method for manufacturing ceramic powder with improved dispersibility, and method for manufacturing dispersion of ceramic powder
JP2014076440A (en) * 2012-10-12 2014-05-01 Honda Electronic Co Ltd Ultrasonic treatment apparatus
US8992958B2 (en) 2005-10-26 2015-03-31 Toto Ltd. Ultrasonic cancer treatment enhancer and cell killer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03504458A (en) * 1987-12-02 1991-10-03 シェアリング・アーゲー Composition for shock wave or ultrasound therapy
JPH05503252A (en) * 1990-11-01 1993-06-03 エス・アール・アイ・インターナシヨナル A method of treating an aqueous liquid in the presence of a photocatalyst using a combination of light energy and ultrasonic energy for the decomposition of halogenated organic compounds in the aqueous liquid.
JP2000124075A (en) * 1998-10-15 2000-04-28 Tdk Corp Manufacture of solid electrolytic capacitor
JP2001300299A (en) * 2000-02-17 2001-10-30 Kansai Tlo Kk Method for detoxifying harmful halogenated organic compound
JP2002001247A (en) * 2000-06-28 2002-01-08 Dainippon Screen Mfg Co Ltd Apparatus for treating substrate
WO2002022252A1 (en) * 2000-09-13 2002-03-21 Commonwealth Scientific And Industrial Research Organisation Process for treating a solid-liquid mixture
JP2002355551A (en) * 2001-03-28 2002-12-10 Fuji Electric Co Ltd Method and apparatus for decomposing environmental pollutant

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03504458A (en) * 1987-12-02 1991-10-03 シェアリング・アーゲー Composition for shock wave or ultrasound therapy
JPH05503252A (en) * 1990-11-01 1993-06-03 エス・アール・アイ・インターナシヨナル A method of treating an aqueous liquid in the presence of a photocatalyst using a combination of light energy and ultrasonic energy for the decomposition of halogenated organic compounds in the aqueous liquid.
JP2000124075A (en) * 1998-10-15 2000-04-28 Tdk Corp Manufacture of solid electrolytic capacitor
JP2001300299A (en) * 2000-02-17 2001-10-30 Kansai Tlo Kk Method for detoxifying harmful halogenated organic compound
JP2002001247A (en) * 2000-06-28 2002-01-08 Dainippon Screen Mfg Co Ltd Apparatus for treating substrate
WO2002022252A1 (en) * 2000-09-13 2002-03-21 Commonwealth Scientific And Industrial Research Organisation Process for treating a solid-liquid mixture
JP2004507360A (en) * 2000-09-13 2004-03-11 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Process for processing solid-liquid mixtures
JP2002355551A (en) * 2001-03-28 2002-12-10 Fuji Electric Co Ltd Method and apparatus for decomposing environmental pollutant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8992958B2 (en) 2005-10-26 2015-03-31 Toto Ltd. Ultrasonic cancer treatment enhancer and cell killer
JP2007275694A (en) * 2006-04-03 2007-10-25 National Institute Of Advanced Industrial & Technology Liquid treatment method using ultrasonic chemical action by addition of bubble, and device therefor
JP2010221141A (en) * 2009-03-24 2010-10-07 Ngk Insulators Ltd Method for manufacturing ceramic powder with improved dispersibility, and method for manufacturing dispersion of ceramic powder
JP2014076440A (en) * 2012-10-12 2014-05-01 Honda Electronic Co Ltd Ultrasonic treatment apparatus

Also Published As

Publication number Publication date
JP4997407B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
Ince et al. Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications
Pandit et al. Ultrasonic degradation of 2: 4: 6 trichlorophenol in presence of TiO2 catalyst
Tran et al. Sonochemical techniques to degrade pharmaceutical organic pollutants
Yang et al. Effective ultrasound electrochemical degradation of methylene blue wastewater using a nanocoated electrode
Iida et al. Sonochemically enhanced adsorption and degradation of methyl orange with activated aluminas
Asli et al. Sonophotocatalytic degradation of pollutants by ZnO‐based catalysts: a review
JP2008237950A (en) Production method for hydroxyl radical-containing water and hydroxyl radical-containing water
Liang et al. Recent trends in the decomposition of chlorinated aromatic hydrocarbons by ultrasound irradiation and Fenton's reagent
Rahimi et al. Experimental investigation on proper use of dual high-low frequency ultrasound waves—Advantage and disadvantage
Mohajerani et al. Recent achievements in combination of ultrasonolysis and other advanced oxidation processes for wastewater treatment
Wang et al. Comparison of enhancement of pentachlorophenol sonolysis at 20 kHz by dual-frequency sonication
JP2002172389A (en) Ultrasonic treatment apparatus for organic waste liquid
JP4997407B2 (en) Method for increasing cavitation bubbles by introducing solids
Choi et al. Air-water interfacial fluidic sonolysis in superhydrophobic silicon-nanowire-embedded system for fast water treatment
Kowalska et al. H2O2/UV enhanced degradation of pesticides in wastewater
JP2011189240A (en) Cyclone type water treatment device
KR20080050316A (en) Treatment method of refractory organic compounds in industrial liquid waste water and an apparatus of such a treatment therefor
JP4858957B2 (en) Liquid processing method and apparatus using ultrasonic chemical action by adding bubbles
Goncharuk et al. Use of ultrasound in water treatment
JP5239006B2 (en) Colloidal particle precipitation / floating method and processing apparatus using the method
JP2002192089A (en) Cleaning method
JP2012106213A (en) Treatment method of final remaining organic substance in drainage
JP6222555B2 (en) Water treatment method and water treatment apparatus
Suzuki et al. Utilization of ultrasonic energy in a photocatalytic oxidation process for treating waste water containing surfactants
US20150001164A1 (en) Submerged arc removal of contaminants from liquids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100723

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4997407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees