JP5239006B2 - Colloidal particle precipitation / floating method and processing apparatus using the method - Google Patents

Colloidal particle precipitation / floating method and processing apparatus using the method Download PDF

Info

Publication number
JP5239006B2
JP5239006B2 JP2007069670A JP2007069670A JP5239006B2 JP 5239006 B2 JP5239006 B2 JP 5239006B2 JP 2007069670 A JP2007069670 A JP 2007069670A JP 2007069670 A JP2007069670 A JP 2007069670A JP 5239006 B2 JP5239006 B2 JP 5239006B2
Authority
JP
Japan
Prior art keywords
solution
colloidal
ultrasonic waves
particles
colloidal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007069670A
Other languages
Japanese (ja)
Other versions
JP2008229427A (en
Inventor
浩一 大川
貴司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Original Assignee
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC filed Critical Akita University NUC
Priority to JP2007069670A priority Critical patent/JP5239006B2/en
Publication of JP2008229427A publication Critical patent/JP2008229427A/en
Application granted granted Critical
Publication of JP5239006B2 publication Critical patent/JP5239006B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、微粒子に関し、特にコロイド粒子の沈殿・浮遊方法及びその方法を利用した処理装置に関するものである。   The present invention relates to fine particles, and more particularly, to a colloidal particle precipitation / floating method and a processing apparatus using the method.

コロイド溶液中の粒子は、プラスか、マイナスに帯電しており、反発によって拡散している状態を保つ。粒子の帯電量がゼロになると、沈殿が起こる。これらの現象はゼータ電位の値によって、拡散、沈殿の起こりやすさを知ることができる。この値は、粒子の種類、形状、サイズおよび溶液のpH、濃度に起因するところが多い。コロイド溶液は、使用目的によって、溶液内のコロイド粒子を沈殿させたいか拡散させたいか異なる。たとえば泥水や微粉末金属溶液等の不要な微粉末を含有する溶液処理の場合はコロイド粒子の沈殿が望まれる。特に、鉱物等を採取した後は成形に水を利用するため石粉末のコロイド溶液が多量に生じる。その処理は、粒子の帯電量(ゼータ電位)をゼロにし、沈殿させる方法が利用され、pH調整剤や無機凝集剤を用いる。そのために、沈殿物は純粋な鉱石のみだけでなく、投入薬剤由来の化学元素が混合することとなり、廃棄や再利用に悪影響を及ぼす。沈殿させたくない場合とは、化粧水等が挙げられる。化学薬品やpH調整剤が利用され、使用時に有効成分であるコロイド粒子が均一に取り出せるよう、溶液内での均一分散が望まれる。
従来、超音波は主に物理的作用である振動、攪拌や粉砕等の効果を狙った利用が多く、汚泥等を超音波で破壊し、そのあと、酸性化剤を加えて沈殿させているケースがある(非特許文献1)。本発明はそれらと性質が異なり、超音波の高周波数域を水溶液に照射することで、キャビティ(高温高圧場)、ラジカル、過酸化水素、亜硝酸、硝酸といった化学反応を選択的に引き起こし、それ、もしくはそれらを利用して安定なコロイド溶液(懸濁液)を作成もしくは懸濁液中の浮遊物を沈殿させる方法である。また、化学的作用の補助として、高周波数により微粒子に微細振動を与える物理的作用による力が、ゼータ電位による粒子間の反発力に勝った場合は粒子が結合し、粒子塊となり沈殿をより起こしやすい状態にする。逆にコロイド溶液や懸濁液を作成する場合は、微細振動による攪拌作用が補助となり、均一に分散しやすい状態とする。
なお、公知技術として、水溶性有機物や微生物等のコロイド粒子を含む処理水に対して、高周波分離手段により高周波をかけて高周波電界による誘導プラズマを発生させて処理水を最適に共振させることで、水溶性有機物の吸着性を促進させるようになっており、この高周波電界による誘導プラズマによって水溶性有機物は水分子に再び溶け込むことがなくなり完全分離させるようになっていることが知られている(特許文献1,2を参照)。
The particles in the colloidal solution are positively or negatively charged, and remain in a diffuse state due to repulsion. Precipitation occurs when the charged amount of particles becomes zero. For these phenomena, the ease of diffusion and precipitation can be determined by the value of the zeta potential. This value is often due to the type, shape and size of the particles and the pH and concentration of the solution. Depending on the purpose of use, the colloidal solution depends on whether the colloidal particles in the solution are to be precipitated or diffused. For example, in the case of solution treatment containing unnecessary fine powder such as muddy water or fine powder metal solution, precipitation of colloidal particles is desired. In particular, after collecting minerals and the like, a large amount of stone powder colloidal solution is produced because water is used for molding. For the treatment, a method is used in which the charge amount (zeta potential) of particles is made zero and precipitation is performed, and a pH adjuster or an inorganic flocculant is used. For this reason, not only the pure ore but also chemical elements derived from the input drug are mixed in the precipitate, which adversely affects disposal and reuse. Examples of cases where it is not desired to precipitate include skin lotion. A chemical and a pH adjuster are used, and uniform dispersion in a solution is desired so that colloidal particles, which are active ingredients, can be taken out uniformly during use.
Conventionally, ultrasonic waves are mainly used for physical effects such as vibration, agitation and pulverization, and sludge is destroyed with ultrasonic waves, and then an acidifying agent is added for precipitation. (Non-Patent Document 1). The present invention is different in nature from the above, and by irradiating an aqueous solution with a high frequency range of ultrasonic waves, a chemical reaction such as a cavity (high temperature and high pressure field), radical, hydrogen peroxide, nitrous acid, nitric acid is selectively caused. Alternatively, it is a method of making a stable colloidal solution (suspension) using them or precipitating suspended matters in the suspension. In addition, as an aid to the chemical action, if the force due to the physical action that gives fine vibrations to the fine particles at a high frequency is greater than the repulsive force between the particles due to the zeta potential, the particles are combined and become a particle lump, causing more precipitation. Make it easy. On the other hand, when a colloidal solution or suspension is prepared, the stirring action by fine vibrations is assisted, and the mixture is easily dispersed uniformly.
In addition, as a known technique, for treated water containing colloidal particles such as water-soluble organic matter and microorganisms, by applying high frequency by a high-frequency separation means to generate induced plasma by a high-frequency electric field, the treated water is optimally resonated, It is known that the adsorptivity of water-soluble organic substances is promoted, and the water-soluble organic substances are not dissolved again in water molecules by the induction plasma by this high-frequency electric field, and are completely separated (patents) References 1 and 2).

特開2000−263056JP 2000-263056 A 特開2003−112186JP2003-112186A 第15回ソノケミストリー討論会講演論文集(2006) 汚染土壌中VOCの洗浄・無害化プロセス 香田忍ら pp31‐32Proceedings of the 15th Sonochemistry Discussion Meeting (2006) Cleaning and detoxification process of VOC in contaminated soil Shinobu Koda pp31-32

本発明は、超音波を水溶液に照射することで、生成する硝酸等を利用して酸性化剤等のpH調整剤や凝集剤を使用せずに、もしくは、削減して溶液中の微粒子を沈殿させるものである。また、超音波を水溶液に照射することで、pH調整剤を使用せずに、もしくは、削減して溶液中の微粒子をコロイド溶液として維持もしくは浮遊させるものである。泥水、切削粉末水、金属含有水からコロイドを沈殿採取できると共に、水の浄化が期待できる。超音波を水溶液へ照射することで硝酸が連続的に発生する。そのため、硝酸の連続添加作用が期待できる。外部から薬品投入する場合と違い、超音波照射時間で添加量をコントロールできる。また、高周波数特有の微粒子の微細振動による物理的作用が、ゼータ電位による粒子間の反発力に勝った場合は粒子の結着による沈殿を引き起こしやすい状態にする。   In the present invention, by irradiating an aqueous solution with ultrasonic waves, the generated nitric acid or the like is used to precipitate fine particles in the solution without using or reducing a pH adjusting agent such as an acidifying agent or a coagulant. It is something to be made. Further, by irradiating the aqueous solution with ultrasonic waves, the fine particles in the solution are maintained or suspended as a colloidal solution without using or reducing the pH adjuster. Colloidal precipitates can be collected from muddy water, cutting powder water, and metal-containing water, and water purification can be expected. Nitric acid is continuously generated by irradiating an aqueous solution with ultrasonic waves. Therefore, the continuous addition action of nitric acid can be expected. Unlike the case where chemicals are added from the outside, the amount added can be controlled by the ultrasonic irradiation time. Moreover, when the physical action by the micro vibration of the fine particles peculiar to the high frequency is superior to the repulsive force between the particles due to the zeta potential, the particles are likely to be precipitated due to the binding of the particles.

本発明は、コロイド粒子を含む溶液に、50kHz〜1000kHzの超音波を照射し、化学反応を引き起こすことにより、前記溶液中に硝酸、亜硝酸及び/又は過酸化水素を生成させ、前記溶液のpHを前記コロイド粒子の等電点のpHへと近づけることによって前記コロイド粒子を沈殿させる、コロイド粒子の沈殿方法である。
本発明において、超音波の照射時間を変更することにより溶液のpHを制御することが好ましい。
本発明においては、超音波の照射により、溶液中に、硝酸、亜硝酸及び/又は過酸化水素、並びに、ラジカルを連続的に生成させることができる。
本発明においては、さらに、超音波の出力及び周波数を変更することによりコロイド粒子を微細化せずに沈澱させることもできる。
本発明においては、化学反応の反応雰囲気を制御することにより硝酸、亜硝酸及び/又は過酸化水素の生成量を制御することもできる。
本発明の他の態様は、振動子を備えた超音波発生装置を用いて前記振動子から池に超音波を照射して池中のコロイド粒子を処理するシステムであって、上記のコロイド粒子の沈殿方法により、池中のコロイド粒子を沈殿させる、システムである。
The present invention irradiates a solution containing colloidal particles with ultrasonic waves of 50 kHz to 1000 kHz to cause a chemical reaction, thereby generating nitric acid, nitrous acid and / or hydrogen peroxide in the solution, and the pH of the solution The colloidal particles are precipitated by bringing the colloidal particles close to the pH of the isoelectric point of the colloidal particles.
In the present invention, it is preferable to control the pH of the solution by changing the ultrasonic wave irradiation time.
In the present invention, nitric acid, nitrous acid and / or hydrogen peroxide, and radicals can be continuously generated in the solution by ultrasonic irradiation.
In the present invention, colloidal particles can also be precipitated without being refined by changing the output and frequency of ultrasonic waves.
In the present invention, the production amount of nitric acid, nitrous acid and / or hydrogen peroxide can also be controlled by controlling the reaction atmosphere of the chemical reaction.
Another aspect of the present invention is a system for treating colloidal particles in a pond by irradiating the pond with ultrasonic waves from the vibrator using an ultrasonic generator equipped with the vibrator, This is a system for precipitating colloidal particles in a pond by a precipitation method.

本発明は、超音波を水溶液に照射することで得られる化学反応を利用するもので、pH調整剤や凝集剤を使用せずにもしくは、削減して溶液中の微粒子を沈殿させるものである。工業的利用、水溶液の浄化方法および、沈殿物の再利用を提供するものである。特に沈殿物の再利用においては、沈殿物や溶液に、凝集剤成分や酸化剤・還元剤の成分が残留することがなくなるため、沈殿物や溶液の再利用が容易になる。超音波による水の化学反応の利用以外にも、高周波数域における水溶液中での粒子の微細振動による物理的な力が粒子間に働くゼータ電位の反発力に勝ることで粒子結着がおき、沈殿をひき起こしやすい状態にする。
本発明は、超音波を水溶液に照射することで、水溶液中において水に化学反応を引き起こすことで、水溶液中のpHを変化させ、pH調整剤を使用せずにもしくは、削減して溶液中の微粉末を均一分散させるものである。
さらに超音波の水溶液中への照射時間、出力を変化させることで、微粒子(コロイド)をより細かくすることも可能で、微細化、安定分散化した溶液を提供できる。
The present invention uses a chemical reaction obtained by irradiating an ultrasonic wave to an aqueous solution, and precipitates fine particles in a solution without using or reducing a pH adjuster or a flocculant. The present invention provides industrial use, a method for purifying an aqueous solution, and reuse of a precipitate. In particular, in the reuse of the precipitate, the flocculant component, the oxidizing agent / reducing agent component does not remain in the precipitate or the solution, and the reuse of the precipitate or the solution becomes easy. In addition to using the chemical reaction of water by ultrasonic waves, particle binding occurs because the physical force due to fine vibration of particles in aqueous solution in the high frequency range exceeds the repulsive force of zeta potential acting between particles, Make it easy to cause precipitation.
The present invention irradiates an aqueous solution with ultrasonic waves to cause a chemical reaction in water in the aqueous solution, thereby changing the pH in the aqueous solution and without using or reducing the pH adjuster. The fine powder is uniformly dispersed.
Furthermore, by changing the irradiation time and output of the ultrasonic wave into the aqueous solution, the fine particles (colloid) can be made finer, and a finely and stably dispersed solution can be provided.

以下、本発明の超音波による水溶液中の微粒子の沈殿方法の実施例について説明するが、本発明はこれらの記述により限定されるものではない。
また、以下の実施例に記載された微粒子の種類、形状、溶液種類、超音波の種類および反応容器とその形態などに限定されるものではない。
本発明のコロイド溶液は、自然界のもの人工のものどちらでもかまわない。
本発明の超音波照射による微粒子の沈殿は、超音波を水溶液中に照射することにより生成される化学反応場を利用するものである。
超音波発生装置は50kHz‐1,000kHzの周波数で、出力は50‐1,000W程度を用いる。
水溶液への超音波照射により、水溶液中に定常波を発生させ、その力や急激な圧力変化で、さまざまな化学反応を得る。たとえば水が分解され過酸化酸素等の酸化還元剤を生成する。また、空気雰囲気においては水と空気が反応し亜硝酸、硝酸等の強酸が水溶液中に合成される。アルゴン雰囲気中では、これら強酸は合成されず過酸化水素のみ生成する。
まず、ゼータ電位を測定することで、各pHにおける粒子の電位を算出でき、沈殿させることのできるpH値(等電点)を見つける。
沈殿させたい場合はゼータ電位の等電点のpH値になるよう超音波を照射する。また、場合により反応雰囲気を変更する。逆に浮遊させたい場合はゼータ電位の等電点のpH値を避けるように超音波を照射する。
Hereinafter, although the Example of the precipitation method of the microparticles | fine-particles in the aqueous solution by the ultrasonic wave of this invention is demonstrated, this invention is not limited by these description.
Moreover, it is not limited to the kind of microparticles | fine-particles described in the following examples, a shape, the kind of solution, the kind of ultrasonic wave, reaction container, its form, etc.
The colloidal solution of the present invention may be either natural or artificial.
The precipitation of fine particles by ultrasonic irradiation of the present invention utilizes a chemical reaction field generated by irradiating an ultrasonic wave into an aqueous solution.
The ultrasonic generator uses a frequency of 50 kHz to 1,000 kHz and an output of about 50 to 1,000 W.
By irradiating the aqueous solution with ultrasonic waves, a standing wave is generated in the aqueous solution, and various chemical reactions are obtained by its force and rapid pressure change. For example, water is decomposed to produce a redox agent such as oxygen peroxide. In an air atmosphere, water and air react to synthesize strong acids such as nitrous acid and nitric acid in an aqueous solution. In an argon atmosphere, these strong acids are not synthesized and only hydrogen peroxide is produced.
First, by measuring the zeta potential, the potential of the particles at each pH can be calculated, and the pH value (isoelectric point) that can be precipitated is found.
When precipitation is desired, ultrasonic waves are irradiated so that the pH value is the isoelectric point of the zeta potential. In some cases, the reaction atmosphere is changed. Conversely, when it is desired to float, the ultrasonic wave is irradiated so as to avoid the pH value of the isoelectric point of the zeta potential.

図1はゼータ電位測定装置の概略図を示し、1はU字管、2は白金黒付き白金板、3は直流電源、4は電圧計、5は電流計、6はコロイド溶液、7は透析外液である。
採石場における、水処理を仮定して、コロイドとして0.5マイクロメートルの超微細な緑色凝灰岩を用いた。ゼータ電位は、界面移動法により測定した。U字管1に緑色凝灰岩のコロイド溶液6と透析外液7を入れ、一定の直流電圧を印加し、界面の移動速度よりコロイド粒子の時間に対する移動距離を求めた。また電流値、導電率も測定を行った。それら値をsmoluchowskiの式に代入し、ゼータ電位を算出した。
図2は、図1の実験装置を用いて、緑色凝灰岩のpHに対するゼータ電位の関係を求めたグラフ図である。(a)は試料1、(b)は試料2、(c)は試料3で、試料1,2,3は緑色凝灰岩コロイド溶液である。pH4付近でコロイドは反発力を失い、沈殿することがわかった。このコロイド溶液の沈殿処理を行うためには、pHを4付近にする操作が必要である。
FIG. 1 shows a schematic diagram of a zeta potential measuring device, where 1 is a U-shaped tube, 2 is a platinum plate with platinum black, 3 is a DC power source, 4 is a voltmeter, 5 is an ammeter, 6 is a colloidal solution, and 7 is dialysis. External liquid.
Assuming water treatment at the quarry, an ultrafine green tuff of 0.5 micrometers was used as a colloid. The zeta potential was measured by the interface transfer method. A colloidal solution 6 of green tuff and an outer dialysis solution 7 were placed in the U-tube 1, a constant DC voltage was applied, and the moving distance of the colloidal particles with respect to time was determined from the moving speed of the interface. The current value and conductivity were also measured. These values were substituted into the smoluchowski equation to calculate the zeta potential.
FIG. 2 is a graph showing the relationship of zeta potential to pH of green tuff using the experimental apparatus of FIG. (A) is Sample 1, (b) is Sample 2, (c) is Sample 3, and Samples 1, 2, and 3 are green tuff colloidal solutions. It was found that the colloid loses repulsive force and precipitates near pH 4. In order to perform the precipitation treatment of the colloidal solution, an operation for bringing the pH to around 4 is necessary.

図3は超音波合成装置の概略図を示し、8は多周波超音波発生装置、9は振動子、10はナス型フラスコ、11は撹拌器、12はガス注入口、13は水槽である。
図4は、本実験条件で純水に超音波を照射した時の、時間に対するpH変化と過酸化水素発生量を示したグラフ図である。(a)はpH変化、(b)はH2O2発生量である。
1マイクロメートル以下の超微細な緑色凝灰岩のコロイド溶液50ml(濃度が高いもの、濃度が低いもの)を、ナス型フラスコ10に入れ、大気中(もしくはガス注入口12から空気を注入し)、場合により撹拌器11で攪拌しながら、多周波超音波発生装置8に接続されている振動子9により200kHz, 200Wの超音波を2時間照射し、その後2時間静置することで、緑色凝灰岩の沈殿を得た。
図5は、本発明条件で緑色凝灰岩コロイド溶液(高濃度、低濃度)に超音波を照射したときの、時間に対するpH変化と導電率変化を示したグラフ図である。(a)はpH変化(高濃度)、(b)はpH変化(低濃度)、 (c) は導電率変化(高濃度)、 (d)は導電率変化(低濃度)である。沈殿させることができた理由として、図5に見られるように、pHは照射前のサンプルが8.4‐8.9であり、照射後のサンプルはpH4.0以下になることで、緑色凝灰岩の等電点のpH(図1によるゼータ電位測定においてpH4程度)に達した為と考えられる。
本発明は超音波の水への化学作用により発生する過酸化水素、硝酸、亜硝酸によるpHコントロールを主に利用して溶液内の浮遊微粒子を沈殿させることが可能である。
また本発明で沈殿させた微粒子は粒径1μm以下であったのでナノテクノロジー分野においても新しい手法として利用が可能であると考えられる。
超音波照射により、水と空気から過酸化水素、硝酸、亜硝酸が生成するので、pH操作により沈殿させることが可能な溶液中の浮遊微粒子に対して、凝集剤やpH調整剤の添加量をゼロもしくは減量できるため、コストや手間の削減につながる。また、超音波照射による過酸化水素、硝酸、亜硝酸は主に水と空気の反応から生成されるものであるため、化学凝集剤、pH調整剤や酸化還元剤を使用した場合、溶液中や沈殿物中にそれら化学薬品の成分が残留する問題がなく、溶液や沈殿物の再利用や処理を容易にする。
図6は、本発明装置で純水に超音波を照射したときの、空気雰囲気下における時間に対する硝酸発生量とアルゴン雰囲気下における時間に対する硝酸発生量を示したグラフ図である。(a)は空気雰囲気下、(b)はアルゴン雰囲気下である。図6に示すように雰囲気制御により、水溶液中の硝酸、亜硝酸の生成量を容易に制御できる為、過酸化水素やOHラジカル、Hラジカルの生成のみを望み、硝酸が不必要な反応にも効果的である。
FIG. 3 is a schematic diagram of an ultrasonic synthesizer, 8 is a multi-frequency ultrasonic generator, 9 is a vibrator, 10 is an eggplant flask, 11 is a stirrer, 12 is a gas inlet, and 13 is a water tank.
FIG. 4 is a graph showing the change in pH and the amount of hydrogen peroxide generated with time when pure water is irradiated with ultrasonic waves under the present experimental conditions. (A) is pH change, (b) is H 2 O 2 generation amount.
When 50 ml of ultrafine green tuff colloidal solution of 1 micrometer or less (high concentration, low concentration) is placed in eggplant type flask 10 and in the atmosphere (or air is injected from gas inlet 12) While stirring with the stirrer 11, the ultrasonic wave of 200 kHz, 200 W is irradiated for 2 hours by the vibrator 9 connected to the multi-frequency ultrasonic wave generator 8, and then left to stand for 2 hours, thereby precipitating the green tuff Got.
FIG. 5 is a graph showing the change in pH and the change in conductivity with time when a green tuff colloidal solution (high concentration, low concentration) is irradiated with ultrasonic waves under the conditions of the present invention. (A) is pH change (high concentration), (b) is pH change (low concentration), (c) is conductivity change (high concentration), and (d) is conductivity change (low concentration). As can be seen from FIG. 5, the pH of the sample before irradiation was 8.4-8.9, and the sample after irradiation was pH 4.0 or less, as shown in FIG. This is considered to be because the pH of the isoelectric point of (having a pH of about 4 in the zeta potential measurement in FIG. 1) was reached.
In the present invention, suspended fine particles in a solution can be precipitated mainly using pH control by hydrogen peroxide, nitric acid, and nitrous acid generated by the chemical action of ultrasonic waves on water.
Further, since the fine particles precipitated in the present invention have a particle size of 1 μm or less, it is considered that they can be used as a new technique in the nanotechnology field.
Ultrasonic irradiation produces hydrogen peroxide, nitric acid, and nitrous acid from water and air, so the amount of flocculant and pH adjuster added to suspended fine particles in the solution that can be precipitated by pH operation It can be reduced to zero or reduced, leading to cost and effort reduction. In addition, since hydrogen peroxide, nitric acid, and nitrous acid by ultrasonic irradiation are mainly produced from the reaction of water and air, when chemical flocculants, pH adjusters, and redox agents are used, There is no problem that these chemical components remain in the precipitate, and the solution and the precipitate can be easily reused and processed.
FIG. 6 is a graph showing the amount of nitric acid generated with respect to time in an air atmosphere and the amount of nitric acid generated with respect to time in an argon atmosphere when pure water is irradiated with pure water using the apparatus of the present invention. (A) is in an air atmosphere and (b) is in an argon atmosphere. As shown in FIG. 6, since the amount of nitric acid and nitrous acid in the aqueous solution can be easily controlled by controlling the atmosphere, only the generation of hydrogen peroxide, OH radicals, and H radicals is desired. It is effective.

化粧液で用いられる成分を仮定したコロイド粒子として酸化チタンTiO2を用いた。ゼータ電位は、大塚電子製ELS‐8000を用いて測定した。
図7は、酸化チタンのpHに対するゼータ電位の関係を求めたグラフ図である。(a)は▲TiO2溶液に対して超音波3時間照射後のゼータ電位を示す。(b)は◆TiO2溶液のpHを化学薬品で変化させた時のゼータ電位の値を示す。比較的中性付近であるpH5付近でコロイドは反発力を失い、沈殿することがわかった。また、pH4でゼータ電位の絶対値が大きな値を示していることから、この値に近づけることで粒子の沈殿を抑制し、粒子を溶液中に安定に保つことができるといえる。また、ゼータ電位測定結果よりアルカリ性側でも、コロイドを安定に保つことができるが、人間の肌は弱酸性であることから、pHを弱酸性側にして安定なコロイド溶液を得たほうが望ましいと考えられる。
Titanium oxide TiO 2 was used as colloidal particles assuming the components used in the cosmetic liquid. The zeta potential was measured using ELS-8000 manufactured by Otsuka Electronics.
FIG. 7 is a graph showing the relationship of zeta potential to pH of titanium oxide. (A) shows the zeta potential after irradiating the TiO 2 solution with ultrasonic waves for 3 hours. (B) shows the value of the zeta potential when the pH of the TiO 2 solution is changed with chemicals. It was found that the colloid loses repulsive force and precipitates around pH 5, which is relatively neutral. Further, since the absolute value of the zeta potential shows a large value at pH 4, it can be said that the particle precipitation can be suppressed by approaching this value, and the particles can be kept stable in the solution. Moreover, although the colloid can be kept stable even on the alkaline side from the zeta potential measurement result, since human skin is weakly acidic, it is desirable to obtain a stable colloid solution with the pH being weakly acidic. It is done.

酸化チタンのコロイド溶液50mlを、ナス型フラスコ10に入れ、大気中(もしくはガス注入口12から空気を注入し)、場合により撹拌器11で攪拌しながら、多周波超音波発生装置8に接続された振動子9により200kHz, 200Wの超音波を2時間照射することで、pHは4以下、ゼータ電位の値は約20mVとなり、TiO2コロイド粒子の沈殿を抑制した溶液を得た。溶液内のコロイド粒子は均一分散を維持した。 50 ml of a colloidal solution of titanium oxide is placed in an eggplant-shaped flask 10 and connected to the multi-frequency ultrasonic wave generator 8 in the atmosphere (or air is injected from the gas inlet 12) and optionally stirred with a stirrer 11. By irradiating ultrasonic waves of 200 kHz and 200 W with the vibrator 9 for 2 hours, a pH of 4 or less and a zeta potential value of about 20 mV were obtained, and a solution in which precipitation of TiO 2 colloid particles was suppressed was obtained. The colloidal particles in the solution maintained a uniform dispersion.

本発明は超音波により発生する化学反応場を利用して溶液内の微粉末を沈殿もしくは浮遊させることが可能である。
また本発明は、コロイドがpHコントロールで沈殿するものであれば、粒子の種類を問わないため、科学技術分野やナノテクノロジー分野においても新しい手法として利用できると考えられる。
超音波照射により、水のHラジカルとOHラジカルへの分解により酸化還元剤(主にH2O2)が生成するので、これらラジカルと溶液中の浮遊微細粒子が酸化還元、イオン交換などの化学反応を行い、ゼータ電位が小さくもしくは大きくなることが期待できる。また、超音波照射による硝酸、亜硝酸は水と空気の反応から生成されるものであるため、H,O,N以外の元素が溶液中や沈殿物中に残ることがなく、化学凝集剤や酸化還元剤に比べメリットが多く、溶液や沈殿物の再利用や処理を容易にする。
薬品の添加剤が不可能な工業過程において、利用メリットは大きい。
また、一般に高周波数超音波は物理的作用が弱く、微細粒子は砕かないため、粒子サイズが低下しないため沈殿後の処理が困難になることはない。
図8は、超音波(200kHz 200W)照射前後のコロイドの粉末X線回折結果のグラフ図である。(a)は照射前、(b)は照射後である。図8の粉末X線測定結果に示すように超音波照射前後により粒子の構造、成分に大きな変化が見られないことから、純粋なコロイド粒子をそのまま回収できる。
In the present invention, it is possible to precipitate or float fine powder in a solution using a chemical reaction field generated by ultrasonic waves.
In addition, the present invention can be used as a new technique in the science and technology field and the nanotechnology field because any kind of particles can be used as long as the colloid is precipitated under pH control.
Ultrasonic irradiation generates redox agents (mainly H 2 O 2 ) by decomposition of water into H radicals and OH radicals, and these radicals and suspended fine particles in solution are used for chemistry such as redox and ion exchange. It is expected that the zeta potential is reduced or increased after the reaction. In addition, since nitric acid and nitrous acid by ultrasonic irradiation are generated from the reaction of water and air, elements other than H, O, and N do not remain in the solution or in the precipitate. There are many advantages over redox agents, making it easier to reuse and process solutions and precipitates.
The merit of use is great in industrial processes where chemical additives are not possible.
In general, high frequency ultrasonic waves have a weak physical action and fine particles are not crushed, so that the particle size does not decrease, so that post-precipitation treatment does not become difficult.
FIG. 8 is a graph of powder X-ray diffraction results of colloid before and after irradiation with ultrasonic waves (200 kHz 200 W). (A) is before irradiation, (b) is after irradiation. As shown in the powder X-ray measurement result of FIG. 8, since the particle structure and components are not significantly changed before and after the ultrasonic irradiation, pure colloidal particles can be recovered as they are.

図9は本発明を利用した沈殿池の概略図を示し、14は池、15は振動子、16は超音波発振装置である。振動子15は池の中に投げ込んでも、池の淵に備え付けてもかまわない。振動子15は池下のみならず、周囲にも備え付けており、効率よく超音波が照射できるよう設置している。
池下から沈殿物を取り除ける構造で、池は連続してもかまわない。また、沈殿池を連続させることで処理がより効果的に行える。
また、沈殿とは逆に分散が必要なコロイド溶液の作成にこの装置を用いることも可能である。
FIG. 9 is a schematic view of a sedimentation basin using the present invention, wherein 14 is a pond, 15 is a vibrator, and 16 is an ultrasonic oscillator. The vibrator 15 may be thrown into the pond or provided on the pond. The vibrator 15 is provided not only in Ikeshita but also in the surroundings, and is installed so that ultrasonic waves can be efficiently irradiated.
The structure can remove sediment from the bottom of the pond, and the pond may be continuous. Moreover, a process can be performed more effectively by making a sedimentation basin continuous.
It is also possible to use this apparatus for preparing a colloidal solution that needs to be dispersed contrary to precipitation.

本発明に用いた緑色凝灰岩のゼータ電位を測定する為に用いた電気泳動測定装置の構成図である。It is a block diagram of the electrophoresis measuring apparatus used in order to measure the zeta potential of the green tuff used for this invention. 緑色凝灰岩のゼータ電位測定結果を示したグラフ図である。It is the graph which showed the zeta potential measurement result of the green tuff. 本発明で用いた超音波発生装置の概略図である。It is the schematic of the ultrasonic generator used by this invention. 本発明装置で純水に超音波を照射したときの、時間に対するpH変化と過酸化水素発生量を示したグラフ図である。It is the graph which showed pH change with respect to time, and hydrogen peroxide generation amount when ultrasonic waves were irradiated to pure water with the device of the present invention. 本発明条件で緑色凝灰岩コロイド溶液(高濃度、低濃度)に超音波を照射したときの、時間に対するpH変化と導電率変化を示したグラフ図である。It is the graph which showed the pH change and electrical conductivity change with respect to time when an ultrasonic wave was irradiated to the green tuff colloid solution (high concentration, low concentration) on the conditions of this invention. 本発明装置で純水に超音波を照射したときの、空気雰囲気下における時間に対する硝酸発生量とアルゴン雰囲気下における時間に対する硝酸発生量を示したグラフ図である。It is the graph which showed the nitric acid generation amount with respect to the time in an air atmosphere, and the nitric acid generation amount with respect to the time in argon atmosphere when an ultrasonic wave is irradiated to a pure water with this invention apparatus. ゼータ電位測定装置(大塚電子製ELS‐8000)で測定した酸化チタンのゼータ電位結果を示したグラフ図である。It is the graph which showed the zeta potential result of the titanium oxide measured with the zeta potential measuring device (Otsuka Electronics ELS-8000). 超音波(200kHz 200W)照射前後のコロイドの粉末X線回折結果を示したグラフ図である。It is the graph which showed the powder X-ray-diffraction result of the colloid before and behind ultrasonication (200 kHz 200W) irradiation. 本発明を用いた沈殿処理池の概略図である。It is the schematic of the sedimentation pond using this invention.

符号の説明Explanation of symbols

1 U字管
2 白金黒付き白金板
3 直流電源
4 電圧計
5 電流計
6 コロイド溶液
7 透析外液
8 多周波数超音波発生装置
9 振動子
10 ナス型フラスコ
11 攪拌器
12 ガス注入口
13 水槽
14 池
15 振動子
16 超音波発生装置
1 U-shaped tube 2 Platinum plate with platinum black 3 DC power supply 4 Voltmeter 5 Ammeter 6 Colloid solution 7 Dialysis outer fluid 8 Multifrequency ultrasonic generator 9 Vibrator 10 Eggplant type flask 11 Stirrer 12 Gas inlet 13 Water tank 14 Pond 15 Vibrator 16 Ultrasonic generator

Claims (6)

コロイド粒子を含む溶液に、50kHz〜1000kHzの超音波を照射し、化学反応を引き起こすことにより、前記溶液中に硝酸、亜硝酸及び/又は過酸化水素を生成させ、前記溶液のpHを前記コロイド粒子の等電点のpHへと近づけることによって前記コロイド粒子を沈殿させる、コロイド粒子の沈殿方法。 Nitrogen, nitrous acid and / or hydrogen peroxide is generated in the solution by irradiating a solution containing colloidal particles with ultrasonic waves of 50 kHz to 1000 kHz to cause a chemical reaction, and the pH of the solution is adjusted to the colloidal particles. A method for precipitating colloidal particles, wherein the colloidal particles are precipitated by being brought close to the pH of the isoelectric point . 前記超音波の照射時間を変更することにより前記溶液のpHを制御する、請求項1に記載のコロイド粒子の沈殿方法。   The colloidal particle precipitation method according to claim 1, wherein the pH of the solution is controlled by changing an irradiation time of the ultrasonic waves. 前記超音波の照射により、前記溶液中に、前記硝酸、前記亜硝酸及び/又は前記過酸化水素、並びに、ラジカルを連続的に生成させる、請求項1に記載のコロイド粒子の沈殿方法。   The colloidal particle precipitation method according to claim 1, wherein the nitric acid, the nitrous acid and / or the hydrogen peroxide, and radicals are continuously generated in the solution by the irradiation of the ultrasonic waves. さらに、前記超音波の出力及び周波数を変更することにより前記コロイド粒子を微細化せずに沈澱させる、請求項1に記載のコロイド粒子の沈澱方法。 Furthermore, the colloidal particle precipitation method according to claim 1, wherein the colloidal particles are precipitated without being refined by changing the output and frequency of the ultrasonic waves. 前記化学反応の反応雰囲気を制御することにより前記硝酸、前記亜硝酸及び/又は前記過酸化水素の生成量を制御する、請求項1に記載のコロイド粒子の沈殿方法。   The colloidal particle precipitation method according to claim 1, wherein the production amount of the nitric acid, the nitrous acid, and / or the hydrogen peroxide is controlled by controlling a reaction atmosphere of the chemical reaction. 振動子を備えた超音波発生装置を用いて前記振動子から池に超音波を照射して池中のコロイド粒子を処理するシステムであって、請求項1〜5のいずれかに記載のコロイド粒子の沈殿方法により、池中のコロイド粒子を沈殿させる、システム。   6. A system for treating colloidal particles in a pond by irradiating the pond with ultrasonic waves from the vibrator using an ultrasonic generator equipped with a vibrator, wherein the colloidal particles according to claim 1 are used. A system for precipitating colloidal particles in a pond by the precipitation method described above.
JP2007069670A 2007-03-17 2007-03-17 Colloidal particle precipitation / floating method and processing apparatus using the method Active JP5239006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007069670A JP5239006B2 (en) 2007-03-17 2007-03-17 Colloidal particle precipitation / floating method and processing apparatus using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007069670A JP5239006B2 (en) 2007-03-17 2007-03-17 Colloidal particle precipitation / floating method and processing apparatus using the method

Publications (2)

Publication Number Publication Date
JP2008229427A JP2008229427A (en) 2008-10-02
JP5239006B2 true JP5239006B2 (en) 2013-07-17

Family

ID=39902862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007069670A Active JP5239006B2 (en) 2007-03-17 2007-03-17 Colloidal particle precipitation / floating method and processing apparatus using the method

Country Status (1)

Country Link
JP (1) JP5239006B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106076648A (en) * 2016-06-29 2016-11-09 昆明理工大学 The beneficiation method that under a kind of ul-trasonic irradiation, Flotation of copper and sulphur separates

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101391394B1 (en) 2012-03-20 2014-05-07 주식회사 우진 Method for searching optimum dispersion condition and physical cohesion condition of water-base titanum-dioxide suspensions, method for manufacturing water-base titanum-dioxide sol by using that
RU2530041C1 (en) * 2013-04-17 2014-10-10 Дмитрий Валерьевич Кленовский Method of purifying industrial waste water
JP7200977B2 (en) * 2020-05-13 2023-01-10 Jfeスチール株式会社 Blast furnace gas dust collection method
CN115598180A (en) * 2022-10-09 2023-01-13 攀钢集团重庆钒钛科技有限公司(Cn) Method for detecting isoelectric point of titanium dioxide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2550953B1 (en) * 1977-04-12 1987-02-20 Commissariat Energie Atomique PROCESS FOR PRODUCING PERMEABLE MINERAL MEMBRANES
JPS5645792A (en) * 1979-09-20 1981-04-25 Yamazakigumi:Kk Purification and precipitation of mortar polluted water
JPS6019091A (en) * 1983-07-11 1985-01-31 Toshiba Corp Cooling water recirculating apparatus for electric machinery
JP2902511B2 (en) * 1991-12-24 1999-06-07 三菱電機株式会社 Ultrapure water production apparatus, production method, and production apparatus control method
JP2001300299A (en) * 2000-02-17 2001-10-30 Kansai Tlo Kk Method for detoxifying harmful halogenated organic compound
JP4043710B2 (en) * 2000-11-21 2008-02-06 株式会社オガタ Water treatment method and water treatment apparatus using the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106076648A (en) * 2016-06-29 2016-11-09 昆明理工大学 The beneficiation method that under a kind of ul-trasonic irradiation, Flotation of copper and sulphur separates

Also Published As

Publication number Publication date
JP2008229427A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
Drouiche et al. Study on the treatment of photovoltaic wastewater using electrocoagulation: Fluoride removal with aluminium electrodes—Characteristics of products
JP5239006B2 (en) Colloidal particle precipitation / floating method and processing apparatus using the method
ES2738703T3 (en) Procedure for treating a liquid that contains an organic pollutant
Ghosh et al. The characteristic study and sonocatalytic performance of CdSe–graphene as catalyst in the degradation of azo dyes in aqueous solution under dark conditions
Chou et al. Electrochemical removal of salicylic acid from aqueous solutions using aluminum electrodes
Katoch et al. Microflow synthesis and enhanced photocatalytic dye degradation performance of antibacterial Bi 2 O 3 nanoparticles
EP3765411B1 (en) An improved dewatering method and apparatus
Kitamura et al. Effect of ultrasound intensity on the size and morphology of synthesized scorodite particles
Panikulam et al. Electrocoagulation using an oscillating anode for kaolin removal
JP6771496B2 (en) Systems and methods for treating fluids by sonoelectrochemistry
Kandasamy et al. Treatment of tannery effluent using sono catalytic reactor
Al-Rubaiey et al. Ultrasonic technique in treating wastewater by electrocoagulation
JP3969114B2 (en) Organic halogen compound decomposition method and decomposition apparatus.
Kin et al. Treatment of chemical–mechanical planarization wastes by electrocoagulation/electro-Fenton method
US10280098B2 (en) Submerged arc removal of contaminants from liquids
Bößl et al. Synergistic sono-adsorption and adsorption-enhanced sonochemical degradation of dyes in water by additive manufactured PVDF-based materials
JP2012106214A (en) Method for producing organic substance sludge and organic substance produced by the producing method
CN203833745U (en) Plug-flow type dual-electrode electrolytic flotation device
Anh et al. Photoactivity of reducing graphene oxide and titanium dioxide composite for cinnamic acid degradation
JP6510903B2 (en) Powder dispersion method
Ayanda et al. Ultrasonic Degradation of Ciprofloxacin in the presence of Zinc Oxide Nanoparticles and Zinc Oxide/Acha Waste Composite
Mostafanezhad et al. Study of the effect of different Physico-Chemical factors on the mechanism of Crystal Violet adsorption by carbon nanotubes and grapheme oxide and their recyclability
JP2000237770A (en) Purifying method for water by powdery activated carbon and photocatalyst
RU2689487C1 (en) Method of extracting noble metals from ores and concentrates
RU2218308C1 (en) Process of water purification and disinfection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100121

A977 Report on retrieval

Effective date: 20110328

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20130228

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150