JP2005007218A - Ceramic honeycomb structure body and metal mold for ceramic honeycomb structure body - Google Patents

Ceramic honeycomb structure body and metal mold for ceramic honeycomb structure body Download PDF

Info

Publication number
JP2005007218A
JP2005007218A JP2003171351A JP2003171351A JP2005007218A JP 2005007218 A JP2005007218 A JP 2005007218A JP 2003171351 A JP2003171351 A JP 2003171351A JP 2003171351 A JP2003171351 A JP 2003171351A JP 2005007218 A JP2005007218 A JP 2005007218A
Authority
JP
Japan
Prior art keywords
honeycomb structure
outer peripheral
ceramic honeycomb
peripheral wall
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003171351A
Other languages
Japanese (ja)
Inventor
Shunji Okazaki
俊二 岡崎
Hirohisa Suwabe
博久 諏訪部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003171351A priority Critical patent/JP2005007218A/en
Publication of JP2005007218A publication Critical patent/JP2005007218A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily provide a ceramic honeycomb structure body making mechanical strengths, particularly isostatic strength and thermal impact-resistance compatible in order to prevent damage by gripping force and mechanical vibration and damage by thermal impact when it is used as a catalyst converter for cleaning exhaust gas and a filter for capturing fine particles. <P>SOLUTION: The ceramic honeycomb structure body has an outer peripheral wall integrally formed with a cell wall. The ceramic honeycomb structure body has a bore axially continuing and having a diameter in a vertical cross section in an axial direction of the ceramic honeycomb structure body of 0.1 mm or longer at at least a part of the outer peripheral wall. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はセラミックハニカム構造体の外周壁の構造に関するものである。
【0002】
【従来技術】
地域環境や地球環境の保全面から、自動車などのエンジンの排気ガスに含まれる有害物質を削減するため、セラミックハニカム構造体を使用した排気ガス浄化用の触媒コンバータや微粒子捕集用フィルターが使用されている。
【0003】
図2はセラミックハニカム構造体の斜視図である。図2に示すように、通常、セラミックハニカム構造体1は、外周壁3(括弧数字)と、この外周壁3の内周側に各々直交するセル壁4により形成された多数のセル5を有する。そして、セラミックハニカム構造体1は、金属製収納容器(図示せず)内に収納されて使用されるが、セラミックハニカム構造体が収納容器内で回転したり、軸方向に移動しないように、収納容器内周面とセラミックハニカム構造体の外周壁との間に配置された把持部材により強固に把持されて収納されている。
【0004】
最近の排気ガス規制の強化に伴い、ディーゼルエンジンの微粒子除去用に用いられているような、例えば外径が125mm以上の寸法を有し、セル壁の気孔率を50%以上とした大型、高気孔率セラミックハニカム構造体や、セル壁の厚さが0.2mm以下のいわゆる薄壁セラミックハニカム構造体が使用されるようになってきた。
【0005】
しかしながら、上記の大型、高気孔率セラミックハニカム構造体や、薄壁セラミックハニカム構造体は、セル壁が高気孔率であること或いは薄いことから、セル壁自体の強度が低くなるため、セラミックハニカム構造体の強度を示す指標であるアイソスタティック強度が低くなり、金属製容器内に把持部材を介して強固に把持する際に、セラミックハニカム構造体が破損するという場合があった。さらに、上記セラミックハニカム構造体が、金属製容器に把持部材を介して強固に把持できたとしても、実際に自動車に搭載して使用された際にエンジン振動や路面振動等の機械的振動により、セラミックハニカム構造体が破損するという場合があった。
【0006】
上記破損の問題を解決し、セラミックハニカム構造体のアイソスタティック強度を向上させる目的で、例えば、外周壁厚を厚くすることにより、外周壁自体の強度を向上する対策が考えられる。しかし、外周壁を厚く形成すると、使用時にはセラミックハニカム構造体の軸方向に形成されている多数のセルを高温の排気ガスが流通することから、特にエンジン始動時には、セラミックハニカム構造体の中心部と外周壁の間の温度差により発生する熱衝撃応力が大きくなるため、セラミックハニカム構造体の外周壁に熱衝撃による割れが発生し易くなるという問題があった。
【0007】
このような問題を解決し、セラミックハニカム構造体のアイソスタティック強度と耐熱衝撃性を両立させるために、セラミックハニカム構造体の外周壁の構造を最適化しようとする以下の技術が開示されている。
特許文献1には、セラミックハニカム構造体の外周に肉厚の外周壁を一体に形成し、前記外周壁に多数の溝又はスリットを設けた触媒担体に関する発明が開示されている。この従来の発明によれば、ハニカム構造を有する焼成体の外周壁を肉厚に形成するとともに、縁部(外周壁)に設けた溝又はスリットが熱変形を容易にして、急熱急冷の熱変化に対する破損を防ぎ、セラミックハニカム構造体の耐久性を高めることができるとしている。
【0008】
また、セラミックハニカム構造体のアイソスタティック強度を向上させるために、特許文献2には最外周部の不完全セルのみを選択的にセラミック材料により塞いだセラミックハニカム構造体に関する発明が開示されている。この従来の発明によれば、ハニカム構造体は、元来、完全に四角形状を有する中央部の完全セル及び、円筒状の外周壁のために四角形状を有さない最外周の不完全セルを有しているが、不完全セルを構成するセル壁は湾曲したり、セル壁同士が直交しないため、アイソスタティック強度が低下し、金属製容器に収納する際に破損したり、亀裂が入ったりする原因となるため、不完全セルをセラミック材料で塞ぐことにより、安定的な機械的強度、具体的にはアイソスタティック強度及び耐熱衝撃強度が得られるとしている。また、この発明において、不完全セルの閉塞部は、セラミック材料を充填する方法の他に、押出成形と同時に一体に成形する方法も採用できるとしている。
【0009】
【特許文献1】
実開昭53−51444号公報
【特許文献2】
特開平7−246341号公報
【0010】
【発明が解決しようとする課題】
上記の特許文献1に記載の発明のセラミックハニカム構造体を実際に排気ガス浄化用の触媒コンバータや微粒子捕集用フィルターとして使用した場合には、以下のような問題があった。
【0011】
外周壁にスリットを形成して用いる場合には、外周壁が円周方向で分断されているため、外周壁の補強効果が得られずアイソスタティック強度を高くすることが出来ない。さらに、外周壁のスリットに連通したセルに流入した排気ガスの一部が未浄化のままスリットを経由してハニカム構造体外に排出されることから、排気ガスの浄化効率が低下するという問題があった。
また、外周壁に溝を形成する場合には、外周壁外表面に開口した溝底部に機械的応力や熱応力が集中し易くなるため、セラミックハニカム構造体のアイソスタティック強度と耐熱衝撃性の両者を向上させるには限界があった。
【0012】
また、上記の特許文献2に記載の発明の不完全セルをセラミック材料で塞いだ完全セルのみからなるセラミックハニカム構造体において、特に0.6mm以上の厚肉の外周壁を有し、外周壁とセル壁を一体的に形成したセラミックハニカム構造体の場合には、外周壁が厚いが故に、乾燥、焼成工程で変形や割れが発生し易い。このため、不完全セルを有さず、かつ外周壁の厚さが0.6mm以上の外周壁とセル壁を一体的に形成したセラミックハニカム構造体は得られないという問題を有していた。これは、下記のような理由によると考えられる。
セラミックハニカム構造体は、従来、セラミックス原料粉末と、成形助剤、造孔剤と水を、混合、混練して得たセラミック坏土を特殊金型を通じて押出成形することにより、外周壁やセル壁が一体に形成されたセラミックハニカム構造を有する成形体を得た後に、乾燥炉で、成形体中の水分などを蒸発乾燥させ、更に焼成炉により、成形体中のバインダ等の成形助剤等を除去した後、所定温度下で焼成して得られていた。不完全セルを有しないセラミックハニカム構造体は、図3に模式的に示すような断面形状を有しており、外周壁の厚さは、セル壁と水平方向の外周壁厚さr1と、セル壁と45度方向の外周壁厚さr2とを比較すると、外周壁の円周方向の厚さに大きな違いがある。この外周壁の円周方向の厚さの不均一のために、乾燥工程において、外周壁の乾燥の程度に不均一が生じるため、外周壁に変形や、割れが発生しやすかった。同様に焼成工程においても、外周壁が厚いこと及び外周壁の壁厚の不均一により、ハニカム構造体内外の温度差により、焼成割れが発生しやすい。このため、従来技術では、このような厚肉の外周壁を有するとともに完全セルからなるセラミックハニカム構造体を外周壁とセル壁を一体的に形成して得ることは困難であった。
【0013】
従って、本発明の目的は、排気ガス浄化用の触媒コンバータや微粒子捕集用フィルターとして使用した場合の把持力、機械的振動による破損や、熱衝撃による破損を防止するために、機械的強度、特にアイソスタティック強度と耐熱衝撃性を両立させたセラミックハニカム構造体を容易に提供することにある。
【0014】
【課題を解決するための手段】
本発明者等は、ディーゼルエンジンの微粒子除去用に用いられているような、例えば外径が125mm以上のような大型であって、50%以上の気孔率を有する高気孔率セラミックハニカム構造体や、セル壁の厚さが0.2mm以下のいわゆる薄壁セラミックハニカム構造体のセル壁の強度が低く、アイソスタティック強度が低くなる問題については、外周壁を厚く形成して解決する一方、外周壁を厚く形成することにより生じる耐熱衝撃性の低下の問題や、製造上の問題に関して、鋭意検討を行った。
【0015】
その結果、本発明者らは、このような外周壁が厚肉の場合に発生しやすい熱衝撃応力に対して、外周壁のミクロ構造を最適化することにより、熱衝撃応力を緩和させれば、従来技術では達成出来なかったような厚肉の外周壁を有し、且つ優れた耐熱衝撃性を有するセラミックハニカム構造体が得られることを見出し本発明に想到した。本発明の特徴は、特に外径が125mm以上の大型であったり、気孔率が50%以上という高気孔率のセラミックハニカム構造体の場合には特に有効となる。
【0016】
すなわち、本発明のセラミックハニカム構造体は、セル壁と一体に形成された外周壁を有するセラミックハニカム構造体において、前記外周壁の少なくとも一部に、軸方向に連続し、且つセラミックハニカム構造体の軸方向垂直断面における径が0.1mm以上である孔を有することを特徴とする。
【0017】
また、本発明のセラミックハニカム構造体に形成された孔の軸方向長さが少なくとも、軸方向垂直断面における径の10倍以上であると良い。さらに本発明のセラミックハニカム構造体は、外周壁の厚さが0.6mm以上であると良い。
【0018】
また、本発明者らは上記で説明したような外周壁の少なくとも一部に、軸方向に連続し、セラミックハニカム構造体の軸方向垂直断面における径が0.1mm以上である孔を有する場合には、従来技術では、乾燥工程での変形、割れ、及び焼成工程での割れの問題により製造が困難であった厚肉の外周壁を有し、且つ、不完全セルを有しない、すなわち、セラミックハニカム構造体の軸方向垂直断面での最外周部のセル形状が、最外周部にあるセル数の90%以上のセルで略正方形であるようなセラミックハニカム構造体においても、外周壁の割れが生じにくくなり、安定して製造出来ることを見出した。
すなわち、本発明の別の発明のセラミックハニカム構造体は、セル壁と一体に形成された外周壁を有するセラミックハニカム構造体において、セラミックハニカム構造体の軸方向垂直断面での最外周部のセル形状が、最外周部にあるセル数の90%以上のセルで略正方形であり、外周壁の厚さが0.6mm以上であることを特徴とする。
このとき、外周壁の少なくとも一部に、軸方向に連続し、且つセラミックハニカム構造体の軸方向垂直断面における径が0.1mm以上である孔を有して良く、孔の軸方向長さが少なくとも、軸方向垂直断面における径の10倍以上あると良い。
また、本発明のセラミックハニカム構造体は、その外周壁の外周の少なくとも一部が加工により除去されてなると好適である。
【0019】
上記のような特徴を有する、厚肉の外周壁を有するセラミックハニカム構造体は、例えば押出成形を行う際に使用する金型を最適化することにより得られる。即ち、本発明のセラミックハニカム構造体用金型は、セラミック坏土を供給する複数の坏土供給孔と前記坏土供給孔に連通した坏土を排出する複数の成形溝を有する口金と、前記口金の外周縁部において前記クリアランスL(mm)を介して対向する当接面を有するガイドリングからなるセラミックハニカム構造体用金型において、前記口金の成形溝を有するセラミック坏土排出面のセラミックハニカム構造体のセル壁部を形成する本体成形部とセラミックハニカム構造体の外周壁を形成する外周成形部からなるとともに、前記本体成形部と外周成形部が段差H(mm)を有するように、前記本体成形部が前記外周成形部に対して、押出方向に突出しているとともに、クリアランス部L(mm)は下記式
H/3≦L≦H
を満たすことを特徴とする。また、前記口金の本体成形部の押出方向に垂直な断面形状がいずれも略正方形であると良い。
【0020】
また、本発明のセラミックハニカム構造体用金型は、前記ガイドリングの押出方向に開口した内周面と最外周に位置する本体成形部の押出方向に沿った面との間隔T(mm)が0.6mm以上であることが好ましい。
【0021】
本発明のセラミックハニカム構造体は、セラミック坏土を供給する複数の坏土供給孔と前記坏土供給孔に連通した坏土を排出する複数の成形溝を有する口金と、前記口金の外周縁部において前記成形溝とクリアランスL(mm)を介して対向する当接面を有するガイドリングからなるセラミックハニカム構造体用金型であって、前記口金の成形溝を有するセラミック坏土排出面がセラミックハニカム構造体のセル壁部を形成する本体成形部と、セラミックハニカム構造体の外周壁を形成する外周成形部からなり、前記本体成形部と前記外周成形部が段差H(mm)を有するように、前記本体成形部が前記外周成形部に対して、押出方向に突出し、クリアランスL(mm)が下記式
H/3≦L≦H
を満たすセラミックハニカム構造体用金型を用いて、セル壁と一体に押出形成される外周壁を有するセラミックハニカム構造体の外周壁の少なくとも一部に、軸方向に連続し、且つセラミックハニカム構造体の軸方向垂直断面における径が0.1mm以上である孔を有することを特徴とする。
このとき、本発明のセラミックハニカム構造体に形成された孔の軸方向長さが少なくとも、軸方向垂直断面における径の10倍以上であると良い。さらに本発明のセラミックハニカム構造体は、外周壁の厚さが0.6mm以上であると良い。
【0022】
また、本発明のセラミックハニカム構造体は、セラミック坏土を供給する複数の坏土供給孔と前記坏土供給孔に連通した坏土を排出する複数の成形溝を有する口金と、前記口金の外周縁部において前記成形溝とクリアランスL(mm)を介して対向する当接面を有するガイドリングからなるセラミックハニカム構造体用金型であって、前記口金の成形溝を有するセラミック坏土排出面がセラミックハニカム構造体のセル壁部を形成する本体成形部と、セラミックハニカム構造体の外周壁を形成する外周成形部からなり、前記本体成形部と前記外周成形部が段差H(mm)を有するように、前記本体成形部が前記外周成形部に対して、押出方向に突出し、クリアランスL(mm)が下記式
H/3≦L≦H
を満たすセラミックハニカム構造体用金型を用いて、セル壁と一体に押出形成される外周壁を有するセラミックハニカム構造体で、セラミックハニカム構造体の軸方向垂直断面での最外周部のセル形状が、最外周部にあるセル数の90%以上のセルで略正方形であり、前記外周壁の厚さが0.6mm以上であることを特徴とする
このとき、外周壁の少なくとも一部に、軸方向に連続し、且つセラミックハニカム構造体の軸方向垂直断面における径が0.1mm以上である孔を有して良く、孔の軸方向長さが少なくとも、軸方向垂直断面における径の10倍以上あると良い。
【0023】
また、本発明のセラミックハニカム構造体用金型は、セラミック坏土を供給する複数の坏土供給孔と前記坏土供給孔に連通した坏土を排出する複数の成形溝を有する口金と、前記口金の外周縁部において前記成形溝とクリアランスを介して対向する当接面を有するガイドリングからなるセラミックハニカム構造体用金型において、前記口金の成形溝を有するセラミック坏土排出面がセラミックハニカム構造体のセル壁部を形成する本体成形部と、セラミックハニカム構造体の外周壁を形成する外周成形部からなるとともに、前記本体成形部と前記外周成形部が段差部を有するように、前記本体成形部が前記外周成形部に対して押出方向に突出し、前記外周成形部から押出された成形材料は、前記ガイドリングに当接した後、前記段差部に当接してその進行方向を押出し方向と平行方向に変え、前記本体成形部から押出されているセル壁とセルを有するハニカム本体成形体の外周部に当接しながら押出されることを特徴とする。
【0024】
本発明のセラミックハニカム構造体を構成するセラミック材料としては、本発明が主に、自動車エンジンの排気ガス浄化用触媒の担体として或いはディーゼルエンジンの排気ガス中の微粒子を除去するためのフィルタとして用いられるため、耐熱性に優れた材料を使用することが好ましく、コージェライト、アルミナ、ムライト、窒化珪素、炭化珪素及びLASからなる群から選ばれた少なくとも1種を主結晶とするセラミック材料を用いることが好ましい。中でも、コージェライトを主結晶とするセラミックハニカム構造体は、安価で耐熱性、耐食性に優れ、また低熱膨張であることから最も好ましい。
【0025】
【作用】
次に本発明の構成要件について説明する。
本発明のセラミックハニカム構造体は、図1(a)及び(b)に模式図を示すように外周壁3の少なくとも一部に、軸方向に連続し、且つセラミックハニカム構造体の軸方向垂直断面における径が0.1mm以上である孔6を有することから、強度を確保するために厚肉化された外周壁においても、厚肉の外周壁の熱容量が小さくなることから、ハニカム構造体の中心部温度が急上昇しても、発生した熱が外周壁に伝わりやすくなり、熱衝撃に伴い発生するハニカム構造体中心部と外周壁の温度差が小さくなるため、例えば0.6mm以上の厚さの外周壁を有していても耐熱衝撃性に優れたセラミックハニカム構造体を得ることができる。ここで外周壁の厚さとは、セラミックハニカム構造体を軸方向垂直断面で観察した際に、中心から半径方向に測定した際に外周壁の最も薄い箇所を言う。
【0026】
この外周壁の少なくとも一部に設けた軸方向に連続した孔のハニカム構造体の軸方向垂直断面における直径が0.1mm以上であると、耐熱衝撃性の向上に対する効果が大きくなるが、1.0mmよりも孔の径が大きくなると外周壁中に対する孔の占める割合が大きくなり過ぎ、外周壁の機械的強度が低下するために、好ましい孔の直径は0.1mm〜1.0mmである。更に好ましくは、軸方向に連続した孔のハニカム構造体の軸方向垂直断面における径は、0.2mm〜0.8mmである。ここで、セラミックハニカム構造体の外周壁の孔は、軸方向垂直断面で観察した場合に、円形の孔もあるが、四角形、三角形等の多角形の孔や、不定形の孔であっても良い。セラミックハニカム構造体の外周壁中に存在する孔の、軸方向垂直断面における孔の径は、例えば実体顕微鏡により倍率10倍の写真を画像データとして取り込み、このデータを画像解析により求めることができる。ここで、孔の径は、孔の平均径のことを言い、具体的には、孔の重心を通る径を2°刻みで測定し、これを平均した値を用いることができる。
【0027】
また、本発明のセラミックハニカム構造体の外周壁に形成された、軸方向に連続し、且つセラミックハニカム構造体の軸方向垂直断面における径が0.1mm以上である孔は、セラミックハニカム構造体の全長に亘って連続していても良いし、孔が軸方向長さを持って不連続に並んでいても良いが、本発明の目的であるアイソスタティック強度と耐熱衝撃性を両立させるためには、孔の軸方向長さは、少なくとも軸方向垂直断面における径の10倍以上あると良い。
【0028】
従来の外周壁に軸方向に連通した孔を有しないセラミックハニカム構造体の外周壁が0.6mmを超えると耐熱衝撃性が著しく低下するのに対し、本発明の軸方向に連続した孔を外周壁に有するセラミックハニカム構造体の外周壁は0.6mm以上であっても耐熱衝撃性を大きく低下させずに使用することが出来る。また外周壁の厚さの範囲は0.6mm〜7mmが耐熱衝撃性を維持する為に好ましい。外周壁の厚さが7mmを超えるとセラミックハニカム構造体の耐熱衝撃性が著しく低下するばかりか、焼成時に外周壁にクラックが発生し易くなる。更に好ましくは、外周壁の厚さは1.0mm〜5.0mmである。更により好ましくは1.0〜3.0mmである。
【0029】
本発明のセラミックハニカム構造体の外周壁中に形成される孔は、セラミックハニカム構造体の軸方向垂直断面の外周壁断面積中、占有面積で0.3%以上であると良い。セラミックハニカム構造体の外周壁中に形成される孔が、セラミックハニカム構造体の軸方向垂直断面の外周壁断面積中、占有面積で0.3%以上であると、耐熱衝撃性の向上に対する効果が大きくなるからである。一方、セラミックハニカム構造体の外周壁中に形成される孔が、セラミックハニカム構造体の軸方向垂直断面の外周壁断面積中、占有面積で30%以上であると外周壁中に対する孔の占める割合が大きくなり過ぎ、外周壁の機械的強度が低下するため0.3%以上30%以下が好ましい。更に好ましくは1%〜10%である。
【0030】
さらに、本発明の別の発明のセラミックハニカム構造体は、セル壁と一体に形成された外周壁を有するセラミックハニカム構造体において、セラミックハニカム構造体の軸方向垂直断面での最外周部のセル形状が、最外周部にあるセル数の90%以上のセルで略正方形であり、前記外周壁の厚さが0.6mm以上であることから、高いアイソスタティック強度を耐熱衝撃性を併せ持つセラミックハニカム構造体を得ることが出来る。これは、厚い外周壁を有すると共に、セラミックハニカム構造体の軸方向垂直断面での最外周部のセル形状が、最外周部にあるセル数の90%以上のセルで略正方形であることから、図3の模式図に示すように外周壁3に隣接するセル壁4が外周壁の内側の面と直交することから、セラミックハニカム構造体が優れた機械的強度及び熱衝撃強度を有するようになるからである。外径が125mm以上の大型であったり、気孔率が50%以上という高気孔率のセラミックハニカム構造体の場合には特に有効となる。
ここで、セラミックハニカム構造体の軸方向垂直断面での最外周部のセル形状が、最外周部にあるセル数の90%未満のセルで略正方形であった場合は、機械的強度及び熱衝撃強度が低下するので、セラミックハニカム構造体の軸方向垂直断面での最外周部のセル形状が、最外周部にあるセル数の90%以上のセルで略正方形であることが好ましい。セラミックハニカム構造体の軸方向垂直断面での最外周部のセル形状が、最外周部にあるセル数の95%以上のセルで略正方形であることがさらに好ましい。
【0031】
従来、セル壁と一体に形成された外周壁を有するセラミックハニカム構造体において、セルの軸方向垂直断面の形状が略正方形であり、前記外周壁の厚さが0.6mm以上であるセラミックハニカム構造体は外周壁が厚いために、乾燥及び、焼成工程で変形、或いは割れが発生し易く健全な製品を製造できないという問題を有していた。
しかし、本発明のセラミックハニカム構造体の特徴である外周壁の少なくとも一部に軸方向に連続し、且つセラミックハニカム構造体の軸方向垂直断面における直径が0.1mm以上である孔を有している場合には、セラミックハニカム構造体の軸方向に形成されている孔が厚肉の外周壁内部の水分除去を効率的に行わせることから、乾燥時の外周壁の変形や割れの問題が生じにくい。さらに、厚肉の外周壁の熱容量が小さくなることから、焼成過程で供給された熱エネルギーが外周壁表面から中心部に伝わりやすく、ハニカム構造体の中心部と表面の温度差が大きくなりにくいため、焼成過程で外周壁が割れるという問題も防ぐことができる。このため、従来製造が困難であったセル壁と一体に形成された外周壁を有するセラミックハニカム構造体において、セラミックハニカム構造体の軸方向垂直断面での最外周部のセル形状が、最外周部にあるセル数の90%以上のセルで略正方形であり、前記外周壁の厚さが0.6mm以上であるセラミックハニカム構造体を製造できるようになった。
【0032】
また、本発明のセラミックハニカム構造体は、厚肉の外周壁を有していることから、目的とする製品外径よりも大きな外径のハニカム構造体を製造しておき、最終的に外周の少なくとも一部を加工除去することにより、外径の寸法精度の高いセラミックハニカム構造体を得ることが出来る。
【0033】
また従来、ハニカム構造体は、図9、10に示すような金型7を用いて押出し成形されていた。図9は金型7を坏土排出側から見た模式図、図10は図9のE−E部の矢視の模式図である。この金型7は、一方の面に坏土供給孔74が開口し、他方の面にはハニカム構造体の断面形状に対応する成形溝73が開口し、成形溝73が開口している面には、ハニカム構造体の外周壁を形成するためのガイドリング75が対向して設けられている。坏土供給孔74より導入された成形材料は、成形溝73より押出されてセル壁4とセル5を有するハニカム成形体が形成される。この時、外周側の成形溝731より押出された成形材料は、図10に矢印で示すようにガイドリング75の当接面75aに当接される。当接した成形材料は、クリアランス部76に充填された後、図10では右方向の内周側に押し出され、更にガイドリング75の内側ガイド部75bに沿ってハニカム構造体の軸方向に図10では上方向に方向転換されると同時に、軸方向に押出されているセル壁と一体化して外周壁を形成していた。この為、従来の金型で厚い外周壁を形成しようとすると、外周壁を形成する坏土が、軸方向に押出されているセル壁を変形させてしまうという問題があった。
【0034】
このような従来の金型に対して、本発明のセラミック坏土を供給する複数の坏土供給孔と前記坏土供給孔に連通した坏土を排出する複数の成形溝を有する口金と、前記口金の外周縁部において前記クリアランスL(mm)を介して対向する当接面を有するガイドリングからなるセラミックハニカム構造体用金型において、前記口金の成形溝を有するセラミック坏土排出面がセラミックハニカム構造体のセル壁部を形成する本体成形部とセラミックハニカム構造体の外周壁を形成する外周成形部からなるとともに、前記本体成形部と外周成形部が段差H(mm)を有するように、前記本体成形部が前記外周成形部に対して、押出方向に突出しているとともに、クリアランス部L(mm)は下記式
H/3≦L≦H を満たしていることから、外周成形部から押出された成形材料がクリアランス部に充填された後、求心方向に移動した際に、成形材料は成形部の段差に当接してその進行方向を押出し方向に変更して、同時に押出されているセル壁とセルを有するハニカム成形体本体と同方向に押出され、外周成形部から押出された成形材料は、ハニカム成形体に求心方向に力を加えることなく外周壁と一体化されて成形される。これにより、外周壁近傍のセル壁に変形のないハニカム構造体を成形することができる。
【0035】
クリアランス部LがL<H/3の場合、クリアランス部から坏土が排出され難く外周壁を形成するのが困難となり、L>Hの場合、クリアランス部から排出された坏土がハニカム成形体に求心方向の力を加える為に外周壁に接するセル壁を変形させてしまう為、H/3≦L≦Hが好ましい。
【0036】
また、口金の本体成形部の押出方向に垂直な断面形状がいずれも略正方形である場合には、軸方向垂直断面の形状が略正方形であるセルにより構成されるハニカム構造体を成形することができ、外周壁の強度にばらつきが生じず、アイソスタティック強度が向上したハニカム構造体を成形することができる。
【0037】
また、本発明のセラミックハニカム構造体用金型において、前記ガイドリングのセラミックハニカム構造体の外周壁を形成する内周面と前記口金の本体成形部の最外周部の押出し方向延長線との間隔T(mm)が、0.6mm以上であると、厚肉の外周壁を有し、且つ、前記外周壁の少なくとも一部に、軸方向に連続し、且つセラミックハニカム構造体の軸方向垂直断面における径が0.1mm以上である孔を有するセラミックハニカム構造体を成形することが出来る。
【0038】
図4、5は本発明の実施の形態に係るハニカム成形用金型の一例を示したものである。この金型7は、一方の面に坏土供給孔74が開口し、他方の面にはハニカム構造体の断面形状に対応する成形溝73が開口している。この成形溝73が開口している成形部71は、坏土排出側で本体成形部71−2と外周成形部71−1とが段差部76を形成し、段差Hをなしている。そして、外周成形部71−1には、ハニカム構造体の外周壁を形成するためのガイドリング75が口金の外周成形部71−1からクリアランスLを介して形成されている。
また、図7、8は本発明の実施の形態に係るハニカム成形用金型の別の一例を示したものである。この金型7は、一方の面に坏土供給孔74が開口し、他方の面にはハニカム構造体の断面形状に対応する成形溝73が開口している。この成形溝73が開口している成形部71は、坏土排出側で本体成形部71−2と外周成形部71−1とが段差部76を形成し、段差Hをなしている。そして、外周成形部71−1には、ハニカム構造体の外周壁を形成するためのガイドリング75が口金の外周成形部71−1からクリアランスLを介して形成されている。更に本体成形部71−2は、押出方向に垂直な断面形状がいずれも略正方形に形成されている。
次に、図7、8に示す金型を押出し成形装置に装着し、坏土供給孔74より成形材料を押出し、成形溝73よりハニカム構造の成形体を押出した例を示す。外周成形部71−1の成形溝731より押出された成形材料は、ガイドリング75に当接した後、成形材料は段差部76に当接してその進行方向を押出し方向と平行方向に変え、本体成形部71−2から押出されているセル壁とセルを有するハニカム本体成形体の外周部に当接しながら押出され、外周壁が形成されため、外周壁に接するセル壁の変形が少なく、且つ軸方向垂直断面の形状が略正方形であるセルにより構成されるセラミックハニカム構造体が得られる。このため外周壁の強度にばらつきが生じず、アイソスタティック強度が向上したハニカム構造体を得ることができる。更にこの金型において、前記ガイドリングのセラミックハニカム構造体の外周壁を形成する内周面と前記口金の本体成形部の最外周部の押出し方向延長線との間隔T(mm)が、0.6mm以上であると、厚肉の外周壁を有し、且つ、前記外周壁の少なくとも一部に、軸方向に連続し、且つセラミックハニカム構造体の軸方向垂直断面における径が0.1mm以上である孔を有するセラミックハニカム構造体を成形することが出来る。
また、外周壁成形部に流入する坏土の量をマスク等の遮蔽板を用いて制限することにより、外周壁を形成する坏土の密度を疎にすることができるため、外周壁の密着は抑制され、外周壁の金型の外周壁成形部セル位置に相当した箇所に、軸方向に連通し、且つ軸方向垂直断面における径が0.1mm以上である孔を確実に設けることができる。
また、別の手段として、図6に示すように外周成形部の坏土排出面に直接ピン77を立てて押出成形することでも連通した孔を得ることができる。
【0039】
【発明の実施の形態】
以下、本発明の実施の形態につき説明する。
(実施例1〜2)
カオリン、タルク、シリカ、アルミナなどの粉末を調整して、質量比で、SiO :48〜52%、Al:33〜37%、MgO:12〜15%を含むようなコージェライト生成原料粉末とし、これにメチルセルロース、ヒドロキシプロピルメチルセルロース等のバインダー、潤滑剤、造孔材としてグラファイトを適量添加し、乾式で十分混合した後、規定量の水を添加、十分な混練を行って可塑化したセラミック杯土を作成した。
【0040】
次いで、図7、8に記載の金型を用いて成形を行った。この金型7は、一方の面に坏土供給孔74が開口し、他方の面にはハニカム構造体の断面形状に対応する成形溝73が開口している。この成形溝73が開口している成形部71は、坏土排出側で本体成形部71−2と外周成形部71−1とが段差76(Hmm)をなしている。そして、外周成形部71−1には、ハニカム構造体の外周壁を形成するためのガイドリング75を有している。また、本体成形部71−2はセラミックハニカム構造体のセルの軸方向垂直断面の形状が略正方形であるセル壁を形成する部分のみとしている。本実施例1及び2では、本体成形部と外周成形部の段差Hを2.5mmとし、クリアランスL及びガイドリングの内周面と本体成形部の最外周部との間隔Tは、表1に示す通りとした。
前記のようにして得られた坏土を、この押出成形用金型7を通過させることにより、外周壁3とセル壁4とが一体に形成され、外周壁内の一部に軸方向に連通した孔を有するハニカム構造を有する成形体とした後、乾燥、焼成操作を加えることにより、セル壁厚0.3mm、セル壁のピッチ1.5mm、外径寸法280mm、全長300mmの外周壁3とセル壁4とが一体に形成された、実施例1及び2のコージェライト質セラミックハニカム焼成体を得た。このセラミックハニカム構造体はその外周壁に図1(a)に模式図で示すように、軸方向に連続した孔を有するとともに、セラミックハニカム構造体の軸方向垂直断面での最外周部のセル形状が、最外周部にあるセル数の90%以上のセルで略正方形である構造となっていた。
【0041】
まず、セラミックハニカム構造体に対して、社団法人自動車技術会発行の自動車規格(JASO)M505−87に基づき、アイソスタティック破壊強度の測定を行った。セラミックハニカム構造体の上下端面に、セラミックハニカム構造体と同一断面形状のウレタンシートを介して、20mmのアルミニウム板を当て、さらに側面をウレタンチューブで包み密封し、水を満たした圧力容器に入れ、徐々に圧力を上げて破壊音が生じたときの圧力を測定した。結果を表1に示す。
次にセラミックハニカム構造体に対して、耐熱衝撃性の評価を行った。耐熱衝撃性の評価試験は、一定温度に加熱された電気炉中にセラミックハニカム構造体を挿入して1時間以上保持し、その後室温に急冷し、目視観察でクラックが発見された温度差(加熱温度−室温)を耐熱衝撃温度とした。また、目視による判定でクラックが発見されない場合は、10℃温度を上昇させ同様の試験を行い、クラックが発生するまで繰り返した。なお、試験数は各3個とし、それらの平均で示した。結果を表1に示す。
上記アイソスタティック破壊強度及び耐熱衝撃性評価結果から、セラミックハニカム構造体の総合判定を行った。アイソスタティック破壊強度については1MPa以上の場合を合格(○)、更に好ましい1.5MPa以上の場合を(◎)、1.0MPa未満を不合格(×)と判定し、耐熱衝撃温度については500℃以上の場合を合格(○)、更に好ましい550℃以上の場合を(◎)、500℃未満の場合を不合格(×)と判定を行った上で、両者とも合格の場合を合格(○)、両者とも更に好ましい(◎)の場合を(◎)、どちらか一方が不合格の場合を不合格(×)として判定した。
次に、上記アイソスタティック破壊強度試験が終了後のハニカム構造体の隔壁から試験片を作成し、水銀圧入法にて平均細孔径及び気孔率を測定した。得られたセラミックハニカム構造体のセル壁の気孔率は65%、平均細孔径は20μmであった。また、ハニカム構造体端面を軸方向に垂直に切断し、外周壁断面の10倍の実体顕微鏡写真を撮影し、得られた写真に対して、画像解析を行い、外周壁中に存在する孔の径、及び孔の面積率を求めた。孔の径は、孔の平均径のことを言い、具体的には、孔の重心を通る径を2°刻みで測定し、これを平均した値を用いた。この画像解析は、5視野分測定し、平均孔径、孔の占有面積率とも5視野の平均値を求めた結果を表1に記載した。また、外周壁厚については、ハニカム構造体端面を軸方向に垂直に切断し、8ケ所(45°刻み)測定し、平均値を求めた結果を、表1に示す。
【0042】
【表1】

Figure 2005007218
【0043】
表1から、本発明例のセラミックハニカム構造体によれば、外周壁厚さが厚く、且つ外周壁に軸方向に連続し、且つセラミックハニカム構造体の軸方向垂直断面における径が0.1mm以上である孔を有し、更には、セラミックハニカム構造体の軸方向断面での最外周部のセル形状が、最外周部にあるセル数の90%以上のセルで略正方形であることから、耐熱衝撃性及びアイソスタティック強度が高く、総合判定が合格の(○)及び(◎)のセラミックハニカム構造体が得られることがわかる。
【0044】
(比較例1〜2)
実施例1〜2と同様の方法により、コージェライト生成原料からなるセラミック坏土を作製し、図7、8に記載の金型を用いて成形を行った。この際、金型7における、ハニカム構造体の外周壁を形成するためのガイドリングのLの寸法を表1に示すように、実施例1〜2とは、変更した。得られた、成形体に対して、乾燥、焼成を行うことにより、セル壁厚0.3mm、セル壁のピッチ1.5mm、外形寸法約280mm、全長300mmの比較例1及び2のコージェライト質セラミックハニカム構造体を得た。その後、実施例1〜2と同様に、アイソスタティック破壊強度、及び耐熱衝撃性の評価をおこなった結果を、表1に示す。
【0045】
比較例1のセラミックハニカム構造体は、金型のクリアランスLが、金型の本体成形部と外周成形部の段差Hより大きく、H<Lであることから、クリアランス部から排出された坏土がハニカム構造の成形体のセル壁に押出方向と垂直方向の力を加えることから、外周壁近傍のセル壁が変形していた。更に、外周壁を形成するためにクリアランス部から供給される坏土量が多くなるため、
外周壁中に軸方向に連通した孔が形成されなかった。このような外周壁の構造を有する比較例1のセラミックハニカム構造体は、外周壁厚が1.2mmであるものの、セル壁の変形が大きいことからアイソスタティック強度の評価が不合格(×)となり、外周壁中に軸方向に連通した孔が形成されなかったため、熱衝撃の評価も、不合格となり、総合判定は不合格(×)であった。
【0046】
一方、比較例2のセラミックハニカム構造体は、金型のクリアランスLが、金型の本体成形部と外周成形部の段差Hに対して小さく、L<H/3であることから、クリアランス部から排出される坏土量が外周壁を形成するためには不足したため、外周壁が形成されなかった。このような比較例2のセラミックハニカム構造体は、外周壁がないことから、熱衝撃の評価は合格(◎)となったものの、アイソスタティック強度の評価が不合格(×)であったため、総合判定は不合格(×)であった。
【0047】
(実施例3〜18)
実施例1と同様の方法で、可塑化したセラミック杯土を作成し、図4、5に記載の金型を用いて成形を行った。この金型7は、一方の面に坏土供給孔74が開口し、他方の面にはハニカム構造体の断面形状に対応する成形溝73が開口している。この成形溝73が開口している成形部71は、坏土排出側で本体成形部71−2と外周成形部71−1とが段差76をなしている。そして、外周成形部71−1には、ハニカム構造体の外周壁を形成するためのガイドリング75を有している。更に成形においては図6に示すように外周成形部に外周壁内に軸方向に連通した孔の大きさ、面積率を調整するためのピン77を有する構造とした。本実施例3〜18では、本体成形部と外周成形部の段差Hを2.5mm及び3.0mmとし、クリアランスL及びガイドリングの内周面と本体成形部の最外周部との間隔Tは、表2に示す通りとした。
【0048】
次に、この金型を押出し成形装置に装着し、坏土供給孔74より成形材料を押出し、成形溝73よりハニカム構造の成形体が押出される。この時、外周成形部71−1の成形溝731より押出された成形材料は、ガイドリング75に当接した後、成形材料は段差部76に当接してその進行方向を押出し方向と平行方向に変え、本体成形部71−2から同時に押出されているセル壁とセルを有するハニカム成形体の外周部に当接しながら押出され、外周壁3とセル壁4とが一体に形成され、外周壁内の一部に軸方向に連通した孔を有するセラミックハニカム構造成形体とした。
【0049】
その後、乾燥、焼成操作を加えることにより、セル壁厚0.3mm、セル壁のピッチ1.5mm、外径寸法280mm、全長300mmの外周壁3とセル壁4とが一体に形成された実施例3〜18のコージェライト質セラミックハニカム焼成体を得た。セル壁の気孔率は65%、平均細孔径は20μmであった。このコージェライト質セラミックハニカム構造体はその外周壁に図1(b)に模式図で示すような軸方向に連続した孔を有していた。
この実施例3〜18のセラミックハニカム構造体について実施例1及び2と同様にアイソスタティック破壊強度及び耐熱衝撃性の評価を行った。結果を表2に示す。
【0050】
【表2】
Figure 2005007218
【0051】
表2から、本発明例のセラミックハニカム構造体によれば、外周壁厚さが厚く、且つ外周壁に軸方向に連続し、且つセラミックハニカム構造体の軸方向垂直断面における径が0.1mm以上である孔を有していることから、耐熱衝撃性及びアイソスタティック強度の高いセラミックハニカム構造体が得られることがわかる。
【0052】
(従来例1〜3)
実施例1及び2と同様の方法で、可塑化したセラミック杯土を作成し、図9、10に示す公知の金型を通過させることにより、外周壁3とセル壁4とが一体に形成されたセラミックハニカム構造を有する成形体とした後、乾燥、焼成操作を加えることにより、セル壁厚0.3mm、セル壁のピッチ1.5mm、外径寸法280mm、全長300mmの外周壁3とセル壁4とが一体に形成されたコージェライト質セラミックハニカム焼成体を得た。セル壁の気孔率は65%、平均細孔径は20μmであった。この金型は、図10に示すとおり、本体成形部と外周成形部の段差H及び、ガイドリングの内周面と本体成形部の最外周部との間隔Tが存在しない。このため、外周壁と接する隔壁の変形が大きく、コージェライト質セラミックハニカム構造体はその外周壁には連続した孔を有していなかった。
この従来例1〜3の外周壁厚は表2に示す通りであった。この従来例のセラミックハニカム構造体を実施例3〜18と同様にアイソスタティック破壊強度及び耐熱衝撃性の評価を行った。結果を表2に示す。従来例1〜3のセラミックハニカム構造体は、外周壁が厚く、外周壁中に軸方向に連続した孔を有していなかったため、耐熱衝撃温度が低くなったのと共に、外周壁に接するセルの変形が大きかったためアイソスタティック強度も低くなり、総合判定は(×)であった。
【0053】
【発明の効果】
以上、説明のとおり、本発明のセラミックハニカム構造体によれば、外周壁の形態を適切に選択することで、排気ガス浄化用の触媒コンバータや微粒捕集用フィルター,特に排気ガス浄化用の触媒コンバータとして使用した場合に熱衝撃応力に伴う割れが発生しにくく且つ、機械的強度に優れたセラミックハニカム構造体を得ることが出来る。
【図面の簡単な説明】
【図1】(a)軸方向に連続した孔を有するセラミックハニカム構造体の断面形状を示す模式図である。
(b)軸方向に連続した孔を有するセラミックハニカム構造体の断面形状を示す模式図である。
【図2】セラミックハニカム構造体の斜視図である。
【図3】不完全セルを有しないセラミックハニカム構造体の断面形状を示す模式図である。
【図4】本発明の実施形態に係るハニカム構造体成形用金型を示す模式図である。
【図5】(a)本発明の実施形態に係るハニカム構造体成形用金型を示す模式図である。(図4の矢視AA)
(b)本発明の実施形態に係るハニカム構造体成形用金型を示す模式図である。(図5(a)での矢視BB)
【図6】外周成形部に外周壁内に軸方向に連通した孔を形成する為のピンを示す模式図である。
【図7】本発明の実施形態に係る不完全セルを形成しないハニカム構造体成形用金型を示す模式図である。
【図8】(a)本発明の実施形態に係る不完全セルを形成しないハニカム構造体成形用金型を示す模式図である。(図7の矢視CC)
(b)本発明の実施形態に係る不完全セルを形成しないハニカム構造体成形用金型を示す模式図である。(図8(a)の矢視DD)
【図9】従来のハニカム構造体成形用金型を示す模式図である。
【図10】従来のハニカム構造体成形用金型を示す模式図である(図9の矢視EE)
【符号の説明】
1:セラミックハニカム構造体
3:外周壁
4:セル壁
5:セル
6:孔
7:セラミックハニカム構造体成形用金型
71:成形部
71−1:外周成形部
71−2:本体成形部
72:坏土供給部
73:成形溝
731:外周側成形溝
74:坏土供給孔
75:ガイドリング
75a:当接面
75b:内側ガイド部
76:段差
77:ピン
H:段差
L:クリアランス
T:間隔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the structure of the outer peripheral wall of a ceramic honeycomb structure.
[0002]
[Prior art]
In order to reduce the harmful substances contained in the exhaust gas of engines such as automobiles from the aspect of the preservation of the local environment and the global environment, catalytic converters for exhaust gas purification using ceramic honeycomb structures and filters for collecting particulates are used. ing.
[0003]
FIG. 2 is a perspective view of the ceramic honeycomb structure. As shown in FIG. 2, the ceramic honeycomb structure 1 usually has a large number of cells 5 formed by an outer peripheral wall 3 (parenthesized numerals) and cell walls 4 orthogonal to the inner peripheral side of the outer peripheral wall 3. . The ceramic honeycomb structure 1 is stored and used in a metal storage container (not shown), but is stored so that the ceramic honeycomb structure does not rotate or move in the axial direction in the storage container. The container is firmly held and stored by a holding member disposed between the inner peripheral surface of the container and the outer peripheral wall of the ceramic honeycomb structure.
[0004]
With the recent tightening of exhaust gas regulations, for example, a large-sized, high-sized one with an outer diameter of 125 mm or more and a cell wall porosity of 50% or more, such as used for diesel engine particulate removal Porous ceramic honeycomb structures and so-called thin wall ceramic honeycomb structures having a cell wall thickness of 0.2 mm or less have come to be used.
[0005]
However, the large-sized, high-porosity ceramic honeycomb structure and the thin-walled ceramic honeycomb structure have a ceramic honeycomb structure because the cell wall itself has low strength because the cell wall has high porosity or is thin. In some cases, the isostatic strength, which is an index indicating the strength of the body, is low, and the ceramic honeycomb structure is damaged when firmly gripped in the metal container via the gripping member. Furthermore, even if the ceramic honeycomb structure can be firmly held in a metal container via a holding member, mechanical vibration such as engine vibration and road surface vibration when actually mounted and used in an automobile, In some cases, the ceramic honeycomb structure was damaged.
[0006]
In order to solve the above-mentioned problem of breakage and improve the isostatic strength of the ceramic honeycomb structure, for example, a measure to improve the strength of the outer peripheral wall itself by increasing the outer peripheral wall thickness can be considered. However, when the outer peripheral wall is formed thick, high temperature exhaust gas flows through many cells formed in the axial direction of the ceramic honeycomb structure during use. Since the thermal shock stress generated by the temperature difference between the outer peripheral walls is increased, there is a problem that cracks due to thermal shock are likely to occur on the outer peripheral wall of the ceramic honeycomb structure.
[0007]
In order to solve such problems and achieve both the isostatic strength and the thermal shock resistance of the ceramic honeycomb structure, the following techniques for optimizing the structure of the outer peripheral wall of the ceramic honeycomb structure have been disclosed.
Patent Document 1 discloses an invention relating to a catalyst carrier in which a thick outer peripheral wall is integrally formed on the outer periphery of a ceramic honeycomb structure and a plurality of grooves or slits are provided on the outer peripheral wall. According to this conventional invention, the outer peripheral wall of the fired body having a honeycomb structure is formed thick, and the groove or slit provided in the edge (outer peripheral wall) facilitates thermal deformation, thereby rapidly and rapidly cooling heat. It is said that the damage to the change can be prevented and the durability of the ceramic honeycomb structure can be enhanced.
[0008]
In order to improve the isostatic strength of the ceramic honeycomb structure, Patent Document 2 discloses an invention relating to a ceramic honeycomb structure in which only incomplete cells in the outermost peripheral portion are selectively closed with a ceramic material. According to this conventional invention, the honeycomb structure originally has a complete cell in the center portion having a completely rectangular shape and an incomplete cell in the outermost periphery that does not have a rectangular shape because of the cylindrical outer peripheral wall. However, the cell walls that constitute incomplete cells are curved or the cell walls do not cross each other, so the isostatic strength is reduced, and they are damaged or cracked when stored in a metal container. Therefore, it is said that a stable mechanical strength, specifically isostatic strength and thermal shock strength can be obtained by closing the imperfect cell with a ceramic material. In the present invention, the closed portion of the incomplete cell can adopt a method of forming integrally with the extrusion in addition to the method of filling the ceramic material.
[0009]
[Patent Document 1]
Japanese Utility Model Publication No. 53-51444
[Patent Document 2]
JP 7-246341 A
[0010]
[Problems to be solved by the invention]
When the ceramic honeycomb structure according to the invention described in Patent Document 1 is actually used as a catalytic converter for purifying exhaust gas or a filter for collecting fine particles, there are the following problems.
[0011]
When slits are used in the outer peripheral wall, the outer peripheral wall is divided in the circumferential direction, so that the reinforcing effect of the outer peripheral wall cannot be obtained and the isostatic strength cannot be increased. Furthermore, since a part of the exhaust gas flowing into the cells communicating with the slits on the outer peripheral wall is discharged out of the honeycomb structure through the slits without being purified, there is a problem that the exhaust gas purification efficiency is lowered. It was.
In addition, when grooves are formed on the outer peripheral wall, mechanical stress and thermal stress tend to concentrate on the bottom of the groove opened on the outer surface of the outer peripheral wall. Therefore, both isostatic strength and thermal shock resistance of the ceramic honeycomb structure are required. There was a limit to improving
[0012]
Further, in the ceramic honeycomb structure composed of only complete cells in which the incomplete cells of the invention described in Patent Document 2 are closed with a ceramic material, the outer peripheral wall has a particularly thick outer peripheral wall of 0.6 mm or more. In the case of the ceramic honeycomb structure in which the cell walls are integrally formed, the outer peripheral wall is thick, so that deformation and cracking are likely to occur in the drying and firing processes. For this reason, there has been a problem that a ceramic honeycomb structure in which the outer peripheral wall and the cell wall having an incomplete cell and an outer peripheral wall thickness of 0.6 mm or more are integrally formed cannot be obtained. This is considered due to the following reasons.
A ceramic honeycomb structure has conventionally been manufactured by extruding a ceramic clay obtained by mixing and kneading a ceramic raw material powder, a forming aid, a pore former and water through a special mold, and thereby forming an outer peripheral wall and a cell wall. After obtaining a molded body having a ceramic honeycomb structure formed integrally, moisture and the like in the molded body are evaporated and dried in a drying furnace, and further, a molding aid such as a binder in the molded body is removed by a firing furnace. After removal, it was obtained by firing at a predetermined temperature. The ceramic honeycomb structure having no imperfect cells has a cross-sectional shape as schematically shown in FIG. 3, and the thickness of the outer peripheral wall is the cell wall and the outer peripheral wall thickness r1 in the horizontal direction, the cell Comparing the wall with the outer peripheral wall thickness r2 in the 45 degree direction, there is a great difference in the circumferential thickness of the outer peripheral wall. Due to the non-uniform thickness of the outer peripheral wall in the circumferential direction, the outer peripheral wall is likely to be deformed or cracked in the drying process because the outer peripheral wall is unevenly dried. Similarly, in the firing step, firing cracks are likely to occur due to the temperature difference between the inside and outside of the honeycomb structure due to the thick outer peripheral wall and the uneven wall thickness of the outer peripheral wall. For this reason, in the prior art, it has been difficult to obtain such a ceramic honeycomb structure having a thick outer peripheral wall and a complete cell by integrally forming the outer peripheral wall and the cell wall.
[0013]
Therefore, the object of the present invention is to prevent mechanical damage, damage due to mechanical vibration, thermal shock, and mechanical strength, when used as a catalytic converter for exhaust gas purification and a filter for collecting particulates. In particular, it is an object to easily provide a ceramic honeycomb structure having both isostatic strength and thermal shock resistance.
[0014]
[Means for Solving the Problems]
The present inventors have used a high-porosity ceramic honeycomb structure having a porosity of 50% or more, such as a large one having an outer diameter of 125 mm or more, for example, used for particulate removal of diesel engines. The problem that the cell wall strength of the so-called thin-walled ceramic honeycomb structure having a cell wall thickness of 0.2 mm or less is low and the isostatic strength is low is solved by forming the outer peripheral wall thicker. The present inventors have made extensive studies on the problem of thermal shock resistance degradation caused by forming a thick film and the manufacturing problem.
[0015]
As a result, the present inventors can reduce the thermal shock stress by optimizing the microstructure of the outer peripheral wall against the thermal shock stress that is likely to occur when the outer peripheral wall is thick. The present inventors have found that a ceramic honeycomb structure having a thick outer peripheral wall that cannot be achieved by the prior art and having excellent thermal shock resistance can be obtained. The characteristics of the present invention are particularly effective in the case of a large-sized ceramic honeycomb structure having an outer diameter of 125 mm or more or a high porosity of 50% or more.
[0016]
That is, the ceramic honeycomb structure of the present invention is a ceramic honeycomb structure having an outer peripheral wall formed integrally with a cell wall, and is continuous with at least a part of the outer peripheral wall in the axial direction, and It has a hole having a diameter of 0.1 mm or more in the vertical cross section in the axial direction.
[0017]
In addition, the axial length of the holes formed in the ceramic honeycomb structure of the present invention is preferably at least 10 times the diameter in the axial vertical cross section. Furthermore, in the ceramic honeycomb structure of the present invention, the outer peripheral wall thickness is preferably 0.6 mm or more.
[0018]
Further, the present inventors have a case where at least a part of the outer peripheral wall as described above has a hole that is continuous in the axial direction and has a diameter of 0.1 mm or more in the axial vertical cross section of the ceramic honeycomb structure. Has a thick outer peripheral wall that is difficult to manufacture due to deformation, cracking in the drying process, and cracking in the firing process in the prior art, and does not have imperfect cells, that is, ceramic. Even in a ceramic honeycomb structure in which the cell shape of the outermost peripheral part in the vertical cross section in the axial direction of the honeycomb structure is approximately square with 90% or more of the number of cells in the outermost peripheral part, the outer peripheral wall is cracked. It has been found that it is difficult to occur and can be manufactured stably.
That is, the ceramic honeycomb structure of another invention of the present invention is a ceramic honeycomb structure having an outer peripheral wall integrally formed with the cell wall, and the cell shape of the outermost peripheral portion in the axial vertical cross section of the ceramic honeycomb structure However, 90% or more of the number of cells in the outermost peripheral part is substantially square, and the thickness of the outer peripheral wall is 0.6 mm or more.
At this time, at least a part of the outer peripheral wall may have a hole which is continuous in the axial direction and has a diameter of 0.1 mm or more in the vertical cross section in the axial direction of the ceramic honeycomb structure. At least 10 times as large as the diameter in the axially vertical cross section is preferable.
Moreover, it is preferable that at least a part of the outer periphery of the outer peripheral wall of the ceramic honeycomb structure of the present invention is removed by processing.
[0019]
A ceramic honeycomb structure having a thick outer peripheral wall having the above-described characteristics can be obtained, for example, by optimizing a mold used for extrusion molding. That is, the mold for the ceramic honeycomb structure of the present invention includes a plurality of clay supply holes for supplying ceramic clay, a die having a plurality of forming grooves for discharging the clay communicated with the clay supply holes, In a ceramic honeycomb structure mold comprising a guide ring having an abutting surface facing the clearance L (mm) at the outer peripheral edge of the die, the ceramic honeycomb of the ceramic clay discharge surface having the die forming groove The main body forming portion forming the cell wall portion of the structure and the outer peripheral forming portion forming the outer peripheral wall of the ceramic honeycomb structure, and the main body forming portion and the outer peripheral forming portion have a step H (mm). The main body molding part projects in the extrusion direction with respect to the outer peripheral molding part, and the clearance part L (mm) is represented by the following formula:
H / 3 ≦ L ≦ H
It is characterized by satisfying. Moreover, it is preferable that the cross-sectional shape perpendicular to the extrusion direction of the body molding part of the die is substantially square.
[0020]
Further, the mold for the ceramic honeycomb structure of the present invention has an interval T (mm) between the inner peripheral surface opened in the extrusion direction of the guide ring and the surface along the extrusion direction of the main body molding portion located at the outermost periphery. It is preferable that it is 0.6 mm or more.
[0021]
The ceramic honeycomb structure of the present invention includes a plurality of clay supply holes for supplying ceramic clay, a die having a plurality of forming grooves for discharging the clay communicated with the clay supply holes, and an outer peripheral edge portion of the die In the ceramic honeycomb structure mold comprising a guide ring having an abutting surface facing the molding groove with a clearance L (mm), wherein the ceramic clay discharge surface having the die molding groove is a ceramic honeycomb. The main body forming portion that forms the cell wall portion of the structure and the outer peripheral forming portion that forms the outer peripheral wall of the ceramic honeycomb structure, and the main body forming portion and the outer peripheral forming portion have a step H (mm), The main body molded part protrudes in the extrusion direction with respect to the outer peripheral molded part, and the clearance L (mm) is expressed by the following formula.
H / 3 ≦ L ≦ H
A ceramic honeycomb structure that is continuous in the axial direction with at least a part of the outer peripheral wall of the ceramic honeycomb structure having an outer peripheral wall that is integrally formed with the cell wall by using a mold for the ceramic honeycomb structure satisfying It has a hole with a diameter of 0.1 mm or more in the vertical cross section in the axial direction.
At this time, the axial length of the holes formed in the ceramic honeycomb structure of the present invention is preferably at least 10 times the diameter in the axial vertical cross section. Furthermore, in the ceramic honeycomb structure of the present invention, the outer peripheral wall thickness is preferably 0.6 mm or more.
[0022]
The ceramic honeycomb structure of the present invention includes a plurality of clay supply holes for supplying ceramic clay, a die having a plurality of forming grooves for discharging the clay communicated with the clay supply holes, and an outer side of the die. A ceramic honeycomb structure mold comprising a guide ring having a contact surface facing the forming groove with a clearance L (mm) at a peripheral edge portion, wherein the ceramic clay discharge surface having the forming groove of the die is formed. The main body forming portion forming the cell wall portion of the ceramic honeycomb structure and the outer peripheral forming portion forming the outer peripheral wall of the ceramic honeycomb structure, and the main body forming portion and the outer peripheral forming portion have a step H (mm). In addition, the main body molding part projects in the extrusion direction with respect to the outer peripheral molding part, and the clearance L (mm) is expressed by the following formula.
H / 3 ≦ L ≦ H
A ceramic honeycomb structure having an outer peripheral wall that is integrally formed with a cell wall by using a mold for a ceramic honeycomb structure that satisfies the above conditions, and the cell shape of the outermost peripheral portion in the axial vertical cross section of the ceramic honeycomb structure is The cell is 90% or more of the number of cells in the outermost periphery and is substantially square, and the thickness of the outer peripheral wall is 0.6 mm or more.
At this time, at least a part of the outer peripheral wall may have a hole which is continuous in the axial direction and has a diameter of 0.1 mm or more in the vertical cross section in the axial direction of the ceramic honeycomb structure. At least 10 times as large as the diameter in the axially vertical cross section is preferable.
[0023]
The mold for the ceramic honeycomb structure of the present invention includes a plurality of clay supply holes for supplying ceramic clay, a die having a plurality of forming grooves for discharging the clay communicated with the clay supply holes, In a die for a ceramic honeycomb structure comprising a guide ring having a contact surface facing the forming groove through a clearance at the outer peripheral edge of the die, the ceramic clay discharge surface having the die forming groove is a ceramic honeycomb structure. The main body molding includes a main body forming portion forming a cell wall portion of the body and an outer peripheral forming portion forming an outer peripheral wall of the ceramic honeycomb structure, and the main body forming portion and the outer peripheral forming portion have a stepped portion. The part protrudes in the extrusion direction with respect to the outer periphery molded part, and the molding material extruded from the outer periphery molded part contacts the guide ring and then contacts the stepped part. Its traveling direction changed to the extrusion direction and parallel, characterized in that it is extruded while in contact with the outer peripheral portion of the honeycomb green body having the body extruded by which cell walls and the cell from the molding portion Te.
[0024]
As the ceramic material constituting the ceramic honeycomb structure of the present invention, the present invention is mainly used as a carrier for an exhaust gas purification catalyst of an automobile engine or as a filter for removing particulates in exhaust gas of a diesel engine. Therefore, it is preferable to use a material having excellent heat resistance, and it is preferable to use a ceramic material whose main crystal is at least one selected from the group consisting of cordierite, alumina, mullite, silicon nitride, silicon carbide, and LAS. preferable. Among these, a ceramic honeycomb structure having cordierite as a main crystal is most preferable because it is inexpensive, excellent in heat resistance and corrosion resistance, and has low thermal expansion.
[0025]
[Action]
Next, the constituent features of the present invention will be described.
1A and 1B, the ceramic honeycomb structure of the present invention is axially continuous with at least a part of the outer peripheral wall 3 and is perpendicular to the axial direction of the ceramic honeycomb structure. Since the hole 6 having a diameter of 0.1 mm or more at the center has a heat capacity of the thick outer peripheral wall even in the thick outer peripheral wall to ensure strength, the center of the honeycomb structure Even if the temperature of the part increases rapidly, the generated heat is easily transmitted to the outer peripheral wall, and the temperature difference between the central part of the honeycomb structure and the outer peripheral wall generated due to thermal shock is reduced. Even if it has an outer peripheral wall, a ceramic honeycomb structure having excellent thermal shock resistance can be obtained. Here, the thickness of the outer peripheral wall refers to the thinnest portion of the outer peripheral wall when measured in the radial direction from the center when the ceramic honeycomb structure is observed in the vertical cross section in the axial direction.
[0026]
When the diameter of the honeycomb structure of the axially continuous pores provided in at least a part of the outer peripheral wall in the axial vertical cross section is 0.1 mm or more, the effect of improving the thermal shock resistance is increased. When the diameter of the hole is larger than 0 mm, the ratio of the hole to the outer peripheral wall becomes too large, and the mechanical strength of the outer peripheral wall is lowered. Therefore, the preferable hole diameter is 0.1 mm to 1.0 mm. More preferably, the diameter in the axially vertical cross section of the honeycomb structure having pores continuous in the axial direction is 0.2 mm to 0.8 mm. Here, the hole in the outer peripheral wall of the ceramic honeycomb structure has a circular hole when observed in the vertical cross section in the axial direction, but may be a polygonal hole such as a rectangle or a triangle, or an irregular hole. good. The diameter of the hole in the vertical cross section in the axial direction of the hole existing in the outer peripheral wall of the ceramic honeycomb structure can be obtained by taking a photograph with a magnification of 10 times as image data using, for example, a stereomicroscope and analyzing this data. Here, the diameter of the hole refers to the average diameter of the holes. Specifically, the diameter passing through the center of gravity of the hole is measured in increments of 2 °, and an average value thereof can be used.
[0027]
In addition, the hole formed in the outer peripheral wall of the ceramic honeycomb structure of the present invention that is continuous in the axial direction and has a diameter of 0.1 mm or more in the vertical cross section in the axial direction of the ceramic honeycomb structure is formed in the ceramic honeycomb structure. It may be continuous over the entire length, or the holes may be discontinuously arranged with an axial length, but in order to achieve both the isostatic strength and the thermal shock resistance, which is the object of the present invention. The length of the hole in the axial direction is preferably at least 10 times the diameter of the vertical cross section in the axial direction.
[0028]
When the outer peripheral wall of the ceramic honeycomb structure having no hole communicating with the conventional outer peripheral wall in the axial direction exceeds 0.6 mm, the thermal shock resistance is remarkably deteriorated. Even if the outer peripheral wall of the ceramic honeycomb structure on the wall is 0.6 mm or more, it can be used without greatly degrading the thermal shock resistance. Further, the thickness range of the outer peripheral wall is preferably 0.6 mm to 7 mm in order to maintain the thermal shock resistance. When the thickness of the outer peripheral wall exceeds 7 mm, not only the thermal shock resistance of the ceramic honeycomb structure is remarkably lowered, but cracks are easily generated on the outer peripheral wall during firing. More preferably, the thickness of the outer peripheral wall is 1.0 mm to 5.0 mm. More preferably, it is 1.0-3.0 mm.
[0029]
The holes formed in the outer peripheral wall of the ceramic honeycomb structure of the present invention are preferably 0.3% or more in the occupied area in the outer peripheral wall cross-sectional area of the vertical cross section in the axial direction of the ceramic honeycomb structure. When the hole formed in the outer peripheral wall of the ceramic honeycomb structure has an occupation area of 0.3% or more in the outer peripheral wall cross-sectional area of the vertical cross section in the axial direction of the ceramic honeycomb structure, an effect for improving the thermal shock resistance This is because it becomes larger. On the other hand, if the holes formed in the outer peripheral wall of the ceramic honeycomb structure have an occupied area of 30% or more in the outer peripheral wall cross-sectional area of the vertical cross section in the axial direction of the ceramic honeycomb structure, the ratio of the hole to the outer peripheral wall Is too large, and the mechanical strength of the outer peripheral wall is reduced. More preferably, it is 1% to 10%.
[0030]
Further, the ceramic honeycomb structure of another invention of the present invention is a ceramic honeycomb structure having an outer peripheral wall integrally formed with the cell wall, and the cell shape of the outermost peripheral portion in the axial vertical cross section of the ceramic honeycomb structure However, since the thickness of the outer peripheral wall is 0.6 mm or more because of 90% or more of the number of cells in the outermost peripheral part, the ceramic honeycomb structure having both high isostatic strength and thermal shock resistance You can get a body. This is because it has a thick outer peripheral wall, and the cell shape of the outermost peripheral part in the vertical cross section in the axial direction of the ceramic honeycomb structure is substantially square with 90% or more of the number of cells in the outermost peripheral part. As shown in the schematic diagram of FIG. 3, since the cell wall 4 adjacent to the outer peripheral wall 3 is orthogonal to the inner surface of the outer peripheral wall, the ceramic honeycomb structure has excellent mechanical strength and thermal shock strength. Because. This is particularly effective in the case of a ceramic honeycomb structure having a large outer diameter of 125 mm or more or a high porosity of 50% or more.
Here, when the cell shape of the outermost peripheral portion in the axial vertical cross section of the ceramic honeycomb structure is substantially square with less than 90% of the number of cells in the outermost peripheral portion, mechanical strength and thermal shock Since the strength is reduced, it is preferable that the cell shape of the outermost peripheral portion in the vertical cross section in the axial direction of the ceramic honeycomb structure is substantially square with 90% or more of the number of cells in the outermost peripheral portion. It is further preferable that the cell shape of the outermost peripheral portion in the axially vertical cross section of the ceramic honeycomb structure is substantially square with 95% or more of the number of cells in the outermost peripheral portion.
[0031]
Conventionally, in a ceramic honeycomb structure having an outer peripheral wall integrally formed with a cell wall, the shape of the vertical cross section in the axial direction of the cell is substantially square, and the thickness of the outer peripheral wall is 0.6 mm or more Since the body has a thick outer peripheral wall, it has a problem that it cannot easily produce a sound product because it tends to be deformed or cracked in the drying and firing processes.
However, at least part of the outer peripheral wall, which is a feature of the ceramic honeycomb structure of the present invention, has a hole that is continuous in the axial direction and has a diameter of 0.1 mm or more in the axial vertical cross section of the ceramic honeycomb structure. In this case, the holes formed in the axial direction of the ceramic honeycomb structure efficiently remove the moisture inside the thick outer peripheral wall, which causes the problem of deformation and cracking of the outer peripheral wall during drying. Hateful. Furthermore, since the heat capacity of the thick outer peripheral wall is reduced, the thermal energy supplied during the firing process is easily transferred from the outer peripheral wall surface to the central part, and the temperature difference between the central part and the surface of the honeycomb structure is less likely to increase. The problem that the outer peripheral wall breaks during the firing process can also be prevented. Therefore, in the ceramic honeycomb structure having an outer peripheral wall formed integrally with the cell wall, which has been difficult to manufacture conventionally, the cell shape of the outermost peripheral portion in the axial vertical cross section of the ceramic honeycomb structure is the outermost peripheral portion. It is now possible to produce a ceramic honeycomb structure in which 90% or more of the number of cells in FIG. 1 is approximately square and the outer peripheral wall has a thickness of 0.6 mm or more.
[0032]
Further, since the ceramic honeycomb structure of the present invention has a thick outer peripheral wall, a honeycomb structure having an outer diameter larger than the target product outer diameter is manufactured, and finally the outer peripheral wall By processing and removing at least a part, a ceramic honeycomb structure having a high dimensional accuracy of the outer diameter can be obtained.
[0033]
Conventionally, the honeycomb structure has been extruded using a mold 7 as shown in FIGS. FIG. 9 is a schematic view of the mold 7 as seen from the clay discharge side, and FIG. 10 is a schematic view taken along the line E-E in FIG. In this mold 7, a clay supply hole 74 is opened on one surface, a molding groove 73 corresponding to the cross-sectional shape of the honeycomb structure is opened on the other surface, and a surface where the molding groove 73 is opened. Is provided with a guide ring 75 facing the outer peripheral wall of the honeycomb structure. The molding material introduced from the clay supply hole 74 is extruded from the molding groove 73 to form a honeycomb molded body having the cell walls 4 and the cells 5. At this time, the molding material extruded from the molding groove 731 on the outer peripheral side comes into contact with the contact surface 75a of the guide ring 75 as shown by an arrow in FIG. The contacted molding material is filled in the clearance portion 76, and then pushed out to the inner peripheral side in the right direction in FIG. 10, and further in the axial direction of the honeycomb structure along the inner guide portion 75b of the guide ring 75 in FIG. In this case, the outer peripheral wall is formed by being integrated with the cell wall extruded in the axial direction at the same time as the direction is changed. For this reason, when it was going to form a thick outer peripheral wall with the conventional metal mold | die, there existed a problem that the clay which forms an outer peripheral wall will deform | transform the cell wall extruded in the axial direction.
[0034]
For such a conventional mold, a plurality of clay supply holes for supplying the ceramic clay of the present invention, a die having a plurality of molding grooves for discharging the clay communicated with the clay supply holes, In a die for a ceramic honeycomb structure comprising a guide ring having a contact surface facing the clearance L (mm) at the outer peripheral edge of the die, the ceramic clay discharge surface having the die forming groove is a ceramic honeycomb. The main body forming portion forming the cell wall portion of the structure and the outer peripheral forming portion forming the outer peripheral wall of the ceramic honeycomb structure, and the main body forming portion and the outer peripheral forming portion have a step H (mm). The main body molding part projects in the extrusion direction with respect to the outer peripheral molding part, and the clearance part L (mm) is represented by the following formula:
Since H / 3 ≦ L ≦ H is satisfied, when the molding material extruded from the outer peripheral molding portion is filled in the clearance portion and then moves in the centripetal direction, the molding material contacts the step of the molding portion. The direction of travel is changed to the extrusion direction, and the molding material extruded in the same direction as the main body of the honeycomb molded body having cell walls and cells that are extruded at the same time and extruded from the outer peripheral molded portion is centripetal to the honeycomb molded body. It is formed integrally with the outer peripheral wall without applying a force in the direction. Thereby, a honeycomb structure without deformation can be formed in the cell wall in the vicinity of the outer peripheral wall.
[0035]
When the clearance L is L <H / 3, it is difficult to discharge the clay from the clearance, making it difficult to form the outer peripheral wall. When L> H, the clay discharged from the clearance is transferred to the honeycomb formed body. Since the cell wall in contact with the outer peripheral wall is deformed in order to apply a force in the centripetal direction, H / 3 ≦ L ≦ H is preferable.
[0036]
Further, when the cross-sectional shape perpendicular to the extrusion direction of the body forming part of the die is substantially square, it is possible to form a honeycomb structure composed of cells whose axial vertical cross-sectional shape is substantially square. Thus, the honeycomb structure with improved isostatic strength can be formed without variation in the strength of the outer peripheral wall.
[0037]
Further, in the mold for the ceramic honeycomb structure of the present invention, the distance between the inner peripheral surface forming the outer peripheral wall of the ceramic honeycomb structure of the guide ring and the extension line in the extrusion direction of the outermost peripheral portion of the main body molding portion of the die When T (mm) is 0.6 mm or more, a thick outer peripheral wall is provided, and at least a part of the outer peripheral wall is continuous in the axial direction, and the vertical cross section in the axial direction of the ceramic honeycomb structure A ceramic honeycomb structure having holes having a diameter of 0.1 mm or more can be formed.
[0038]
4 and 5 show an example of a honeycomb forming die according to an embodiment of the present invention. In this mold 7, a clay supply hole 74 is opened on one surface, and a molding groove 73 corresponding to the cross-sectional shape of the honeycomb structure is opened on the other surface. In the molding part 71 in which the molding groove 73 is open, the main body molding part 71-2 and the outer peripheral molding part 71-1 form a stepped portion 76 on the clay discharge side, thereby forming a step H. And the guide ring 75 for forming the outer peripheral wall of a honeycomb structure is formed in the outer periphery shaping | molding part 71-1 via the clearance L from the outer periphery shaping | molding part 71-1 of a nozzle | cap | die.
7 and 8 show another example of the honeycomb forming die according to the embodiment of the present invention. In this mold 7, a clay supply hole 74 is opened on one surface, and a molding groove 73 corresponding to the cross-sectional shape of the honeycomb structure is opened on the other surface. In the molding part 71 in which the molding groove 73 is open, the main body molding part 71-2 and the outer peripheral molding part 71-1 form a stepped portion 76 on the clay discharge side, thereby forming a step H. And the guide ring 75 for forming the outer peripheral wall of a honeycomb structure is formed in the outer periphery shaping | molding part 71-1 via the clearance L from the outer periphery shaping | molding part 71-1 of a nozzle | cap | die. Furthermore, as for the main body shaping | molding part 71-2, all the cross-sectional shapes perpendicular | vertical to an extrusion direction are formed in substantially square.
Next, an example is shown in which the mold shown in FIGS. 7 and 8 is mounted on an extrusion molding apparatus, a molding material is extruded from the clay supply hole 74, and a honeycomb structure molded body is extruded from the molding groove 73. After the molding material extruded from the molding groove 731 of the outer peripheral molding portion 71-1 comes into contact with the guide ring 75, the molding material comes into contact with the stepped portion 76 and changes its traveling direction to a direction parallel to the extrusion direction. Since the outer peripheral wall is formed while being in contact with the outer peripheral portion of the honeycomb body molded body having the cell wall and the cells extruded from the forming portion 71-2, the deformation of the cell wall in contact with the outer peripheral wall is small, and the shaft A ceramic honeycomb structure composed of cells having a substantially square cross section in the direction is obtained. Therefore, there is no variation in the strength of the outer peripheral wall, and a honeycomb structure with improved isostatic strength can be obtained. Further, in this mold, the distance T (mm) between the inner peripheral surface forming the outer peripheral wall of the ceramic honeycomb structure of the guide ring and the extension line in the extrusion direction of the outermost peripheral part of the main body forming part of the die is 0. When it is 6 mm or more, it has a thick outer peripheral wall, is continuous in at least a part of the outer peripheral wall in the axial direction, and has a diameter in the axial vertical section of the ceramic honeycomb structure of 0.1 mm or more. A ceramic honeycomb structure having a certain hole can be formed.
In addition, by restricting the amount of clay flowing into the outer peripheral wall molding portion using a shielding plate such as a mask, the density of the clay forming the outer peripheral wall can be reduced, so that the adhesion of the outer peripheral wall is It is possible to reliably provide a hole communicating with the axial direction and having a diameter of 0.1 mm or more in the axial vertical cross section at a location corresponding to the outer peripheral wall molding portion cell position of the outer peripheral wall mold.
Further, as another means, as shown in FIG. 6, a continuous hole can be obtained by standing the pin 77 directly on the clay discharge surface of the outer peripheral molding portion and performing extrusion molding.
[0039]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
(Examples 1-2)
Adjust the powder of kaolin, talc, silica, alumina, etc. 2 : 48-52%, Al 2 O 3 : A cordierite-producing raw material powder containing 33 to 37% and MgO: 12 to 15%, and an appropriate amount of graphite as a binder, a lubricant, and a pore former such as methylcellulose and hydroxypropylmethylcellulose are added to the powder. After mixing, a specified amount of water was added, and sufficient kneading was performed to create a plasticized ceramic clay.
[0040]
Subsequently, it shape | molded using the metal mold | die as described in FIG. In this mold 7, a clay supply hole 74 is opened on one surface, and a molding groove 73 corresponding to the cross-sectional shape of the honeycomb structure is opened on the other surface. In the molding portion 71 in which the molding groove 73 is open, the main body molding portion 71-2 and the outer peripheral molding portion 71-1 form a step 76 (Hmm) on the clay discharge side. And the outer periphery forming part 71-1 has a guide ring 75 for forming the outer peripheral wall of the honeycomb structure. The main body forming portion 71-2 is only a portion that forms a cell wall in which the shape of the vertical cross section in the axial direction of the cells of the ceramic honeycomb structure is substantially square. In Examples 1 and 2, the step H between the main body molded portion and the outer peripheral molded portion is 2.5 mm, and the clearance T and the distance T between the inner peripheral surface of the guide ring and the outermost peripheral portion of the main body molded portion are as shown in Table 1. As shown.
By allowing the clay obtained as described above to pass through the extrusion mold 7, the outer peripheral wall 3 and the cell wall 4 are integrally formed, and a part of the outer peripheral wall communicates in the axial direction. After forming a formed body having a honeycomb structure having pores, drying and firing operations are performed to obtain an outer peripheral wall 3 having a cell wall thickness of 0.3 mm, a cell wall pitch of 1.5 mm, an outer diameter of 280 mm, and a total length of 300 mm. The cordierite-type ceramic honeycomb fired bodies of Examples 1 and 2 in which the cell walls 4 were integrally formed were obtained. As shown in the schematic diagram of FIG. 1A, this ceramic honeycomb structure has holes that are continuous in the axial direction and has a cell shape at the outermost peripheral portion of the ceramic honeycomb structure in the vertical cross section in the axial direction. However, 90% or more of the number of cells in the outermost peripheral portion is a substantially square structure.
[0041]
First, with respect to the ceramic honeycomb structure, isostatic fracture strength was measured based on the automobile standard (JASO) M505-87 issued by the Japan Society for Automotive Engineers. The 20 mm aluminum plate is applied to the upper and lower end surfaces of the ceramic honeycomb structure through a urethane sheet having the same cross-sectional shape as the ceramic honeycomb structure, and the side surface is wrapped and sealed with a urethane tube, and placed in a pressure vessel filled with water. The pressure when the pressure was gradually increased and a breaking sound was generated was measured. The results are shown in Table 1.
Next, the thermal shock resistance of the ceramic honeycomb structure was evaluated. In the thermal shock resistance evaluation test, the ceramic honeycomb structure was inserted into an electric furnace heated to a certain temperature and held for 1 hour or more, then rapidly cooled to room temperature, and the temperature difference (heating) where cracks were found by visual observation. Temperature-room temperature) was defined as the thermal shock temperature. Moreover, when a crack was not found by visual judgment, the temperature was increased by 10 ° C., and the same test was performed until the crack was generated. The number of tests was 3 for each test, and the average was shown. The results are shown in Table 1.
From the above-mentioned isostatic fracture strength and thermal shock resistance evaluation results, the ceramic honeycomb structure was comprehensively evaluated. As for isostatic fracture strength, a case of 1 MPa or more is judged as acceptable (◯), a case of more preferable 1.5 MPa or more is judged as (未 満), and a value less than 1.0 MPa is judged as unacceptable (x). The above case is determined to be acceptable (◯), more preferably 550 ° C. or higher (◎), and the case of less than 500 ° C. is determined to be unacceptable (×). The case where both are more preferable (好 ま し い) was judged as (◎), and the case where either one was rejected was judged as reject (x).
Next, a test piece was prepared from the partition walls of the honeycomb structure after the isostatic fracture strength test was completed, and the average pore diameter and the porosity were measured by a mercury intrusion method. The resulting ceramic honeycomb structure had a cell wall porosity of 65% and an average pore diameter of 20 μm. Further, the end face of the honeycomb structure was cut perpendicular to the axial direction, and a stereoscopic micrograph of 10 times the outer peripheral wall cross section was taken. Image analysis was performed on the obtained photograph, and the holes existing in the outer peripheral wall were analyzed. The diameter and the area ratio of the holes were determined. The diameter of the hole refers to the average diameter of the holes. Specifically, the diameter passing through the center of gravity of the holes was measured in increments of 2 °, and the average value was used. In this image analysis, five visual fields were measured, and the average pore diameter and the occupied area ratio of the pores were obtained as the average values of the five visual fields. As for the outer peripheral wall thickness, the end face of the honeycomb structure was cut perpendicularly to the axial direction, measured at 8 points (in 45 ° increments), and the average value was obtained.
[0042]
[Table 1]
Figure 2005007218
[0043]
From Table 1, according to the ceramic honeycomb structure of the example of the present invention, the outer peripheral wall thickness is thick and continuous with the outer peripheral wall in the axial direction, and the diameter in the axial vertical cross section of the ceramic honeycomb structure is 0.1 mm or more. Furthermore, the cell shape of the outermost peripheral portion in the axial cross section of the ceramic honeycomb structure is substantially square with 90% or more of the number of cells in the outermost peripheral portion. It can be seen that the ceramic honeycomb structures of (◯) and (◎) that have high impact properties and isostatic strength and pass the overall judgment can be obtained.
[0044]
(Comparative Examples 1-2)
A ceramic clay made of cordierite-producing raw material was produced by the same method as in Examples 1 and 2, and was molded using the molds shown in FIGS. At this time, as shown in Table 1, the dimensions of the guide ring L for forming the outer peripheral wall of the honeycomb structure in the mold 7 were changed from those in Examples 1 and 2. The obtained molded body is dried and fired to obtain a cordierite quality of Comparative Examples 1 and 2 having a cell wall thickness of 0.3 mm, a cell wall pitch of 1.5 mm, an outer dimension of about 280 mm, and a total length of 300 mm. A ceramic honeycomb structure was obtained. Thereafter, as in Examples 1 and 2, the results of evaluation of isostatic fracture strength and thermal shock resistance are shown in Table 1.
[0045]
In the ceramic honeycomb structure of Comparative Example 1, since the clearance L of the mold is larger than the step H between the main body molding portion and the outer peripheral molding portion of the mold and H <L, the clay discharged from the clearance portion is Since a force in the direction perpendicular to the extrusion direction is applied to the cell wall of the formed body having the honeycomb structure, the cell wall near the outer peripheral wall has been deformed. Furthermore, since the amount of clay supplied from the clearance portion to form the outer peripheral wall increases,
No hole communicating in the axial direction was formed in the outer peripheral wall. Although the ceramic honeycomb structure of Comparative Example 1 having such an outer peripheral wall structure has an outer peripheral wall thickness of 1.2 mm, the evaluation of isostatic strength is rejected (x) due to large deformation of the cell wall. In addition, since a hole communicating in the axial direction was not formed in the outer peripheral wall, the thermal shock evaluation was also rejected, and the overall judgment was rejected (x).
[0046]
On the other hand, in the ceramic honeycomb structure of Comparative Example 2, the clearance L of the mold is smaller than the step H between the main body molded portion and the outer peripheral molded portion of the mold, and L <H / 3. Since the amount of dredged clay was insufficient to form the outer peripheral wall, the outer peripheral wall was not formed. Since the ceramic honeycomb structure of Comparative Example 2 does not have an outer peripheral wall, the thermal shock evaluation was acceptable ()), but the isostatic strength evaluation was unacceptable (×). The judgment was rejected (x).
[0047]
(Examples 3 to 18)
A plasticized ceramic clay was produced in the same manner as in Example 1, and molded using the molds shown in FIGS. In this mold 7, a clay supply hole 74 is opened on one surface, and a molding groove 73 corresponding to the cross-sectional shape of the honeycomb structure is opened on the other surface. In the molding portion 71 in which the molding groove 73 is open, the main body molding portion 71-2 and the outer peripheral molding portion 71-1 form a step 76 on the clay discharge side. And the outer periphery forming part 71-1 has a guide ring 75 for forming the outer peripheral wall of the honeycomb structure. Further, in the molding, as shown in FIG. 6, the outer peripheral molding portion has a pin 77 for adjusting the size and area ratio of the hole communicating in the axial direction in the outer peripheral wall. In Examples 3 to 18, the step H between the main body molded portion and the outer peripheral molded portion is 2.5 mm and 3.0 mm, and the clearance L and the interval T between the inner peripheral surface of the guide ring and the outermost peripheral portion of the main body molded portion are As shown in Table 2.
[0048]
Next, the mold is mounted on an extrusion molding apparatus, a molding material is extruded from the clay supply hole 74, and a honeycomb structured molded body is extruded from the molding groove 73. At this time, after the molding material extruded from the molding groove 731 of the outer peripheral molding part 71-1 comes into contact with the guide ring 75, the molding material comes into contact with the stepped part 76, and its traveling direction is parallel to the extrusion direction. In other words, the outer wall 3 and the cell wall 4 are integrally formed by contacting the outer wall of the honeycomb molded body having cells and the cell wall that are simultaneously extruded from the main body molding unit 71-2. A formed part of the ceramic honeycomb structure having a hole communicating in the axial direction.
[0049]
Thereafter, drying and baking operations were performed, so that the outer peripheral wall 3 and the cell wall 4 having a cell wall thickness of 0.3 mm, a cell wall pitch of 1.5 mm, an outer diameter of 280 mm, and a total length of 300 mm were integrally formed. 3-18 cordierite ceramic honeycomb fired bodies were obtained. The cell wall had a porosity of 65% and an average pore diameter of 20 μm. This cordierite-type ceramic honeycomb structure had holes that were continuous in the axial direction as shown in the schematic view of FIG.
The ceramic honeycomb structures of Examples 3 to 18 were evaluated for isostatic fracture strength and thermal shock resistance in the same manner as in Examples 1 and 2. The results are shown in Table 2.
[0050]
[Table 2]
Figure 2005007218
[0051]
From Table 2, according to the ceramic honeycomb structure of the example of the present invention, the outer peripheral wall thickness is thick and continuous with the outer peripheral wall in the axial direction, and the diameter in the vertical cross section of the ceramic honeycomb structure in the axial direction is 0.1 mm or more. Therefore, it can be seen that a ceramic honeycomb structure having high thermal shock resistance and high isostatic strength can be obtained.
[0052]
(Conventional examples 1 to 3)
The outer peripheral wall 3 and the cell wall 4 are integrally formed by preparing a plasticized ceramic clay in the same manner as in Examples 1 and 2 and passing it through a known mold shown in FIGS. After forming a molded body having a ceramic honeycomb structure, drying and firing operations are performed to obtain an outer peripheral wall 3 and a cell wall having a cell wall thickness of 0.3 mm, a cell wall pitch of 1.5 mm, an outer diameter of 280 mm, and a total length of 300 mm As a result, a cordierite-type ceramic honeycomb fired body formed integrally with 4 was obtained. The cell wall had a porosity of 65% and an average pore diameter of 20 μm. In this mold, as shown in FIG. 10, there is no step H between the main body molded portion and the outer peripheral molded portion, and no gap T between the inner peripheral surface of the guide ring and the outermost peripheral portion of the main body molded portion. For this reason, the deformation of the partition walls in contact with the outer peripheral wall was large, and the cordierite ceramic honeycomb structure did not have continuous holes in the outer peripheral wall.
The outer peripheral wall thicknesses of the conventional examples 1 to 3 are as shown in Table 2. This conventional ceramic honeycomb structure was evaluated for isostatic fracture strength and thermal shock resistance in the same manner as in Examples 3-18. The results are shown in Table 2. Since the ceramic honeycomb structures of the conventional examples 1 to 3 have a thick outer peripheral wall and have no axially continuous holes in the outer peripheral wall, the thermal shock temperature is lowered and the cell in contact with the outer peripheral wall Since the deformation was large, the isostatic strength was also low, and the overall judgment was (x).
[0053]
【The invention's effect】
As described above, according to the ceramic honeycomb structure of the present invention, by appropriately selecting the form of the outer peripheral wall, a catalytic converter for purifying exhaust gas, a filter for collecting particulates, particularly a catalyst for purifying exhaust gas. When used as a converter, it is possible to obtain a ceramic honeycomb structure that is less likely to crack due to thermal shock stress and that has excellent mechanical strength.
[Brief description of the drawings]
FIG. 1 (a) is a schematic diagram showing a cross-sectional shape of a ceramic honeycomb structure having pores continuous in the axial direction.
(B) It is a schematic diagram which shows the cross-sectional shape of the ceramic honeycomb structure which has a hole continuous in the axial direction.
FIG. 2 is a perspective view of a ceramic honeycomb structure.
FIG. 3 is a schematic diagram showing a cross-sectional shape of a ceramic honeycomb structure having no incomplete cells.
Fig. 4 is a schematic view showing a honeycomb structure forming mold according to an embodiment of the present invention.
Fig. 5 (a) is a schematic view showing a honeycomb structure forming mold according to an embodiment of the present invention. (View AA in FIG. 4)
(B) It is a schematic diagram which shows the metal mold | die for honeycomb structure shaping | molding which concerns on embodiment of this invention. (Arrow BB in FIG. 5A)
FIG. 6 is a schematic view showing a pin for forming an axially communicating hole in the outer peripheral wall in the outer peripheral molded portion.
FIG. 7 is a schematic view showing a honeycomb structure forming mold that does not form incomplete cells according to an embodiment of the present invention.
Fig. 8 (a) is a schematic diagram showing a honeycomb structure forming mold that does not form imperfect cells according to an embodiment of the present invention. (View CC in FIG. 7)
(B) It is a schematic diagram which shows the metal mold | die for honeycomb structure formation which does not form the incomplete cell which concerns on embodiment of this invention. (View DD in FIG. 8A)
Fig. 9 is a schematic view showing a conventional mold for forming a honeycomb structure.
Fig. 10 is a schematic view showing a conventional mold for forming a honeycomb structure (see arrow EE in Fig. 9).
[Explanation of symbols]
1: Ceramic honeycomb structure
3: Outer wall
4: Cell wall
5: Cell
6: Hole
7: Mold for forming ceramic honeycomb structure
71: Molding part
71-1: Peripheral molding part
71-2: Main body molding part
72: dredged soil supply department
73: Molding groove
731: Outer peripheral side forming groove
74: Dredging hole
75: Guide ring
75a: contact surface
75b: Inner guide part
76: Step
77: Pin
H: Level difference
L: Clearance
T: Interval

Claims (12)

セル壁と一体に形成された外周壁を有するセラミックハニカム構造体において、前記外周壁の少なくとも一部に、軸方向に連続し、且つセラミックハニカム構造体の軸方向垂直断面における径が0.1mm以上である孔を有することを特徴とするセラミックハニカム構造体。In the ceramic honeycomb structure having an outer peripheral wall integrally formed with the cell wall, at least a part of the outer peripheral wall is continuous in the axial direction, and the diameter in the axial vertical cross section of the ceramic honeycomb structure is 0.1 mm or more A ceramic honeycomb structure characterized by having the pores. 前記孔の軸方向長さが、少なくとも軸方向垂直断面における径の10倍以上であることを特徴とする請求項1に記載のセラミックハニカム構造体。2. The ceramic honeycomb structure according to claim 1, wherein the axial length of the hole is at least 10 times the diameter of the vertical cross section in the axial direction. 前記外周壁の厚さが0.6mm以上であることを特徴とする請求項1又は請求項2に記載のセラミックハニカム構造体。The ceramic honeycomb structure according to claim 1 or 2, wherein a thickness of the outer peripheral wall is 0.6 mm or more. セル壁と一体に形成された外周壁を有するセラミックハニカム構造体において、セラミックハニカム構造体の軸方向垂直断面での最外周部のセル形状が、最外周部にあるセル数の90%以上のセルで略正方形であり、前記外周壁の厚さが0.6mm以上であることを特徴とするセラミックハニカム構造体。In a ceramic honeycomb structure having an outer peripheral wall integrally formed with a cell wall, the cell shape of the outermost peripheral portion in the axial vertical cross section of the ceramic honeycomb structure is 90% or more of the number of cells in the outermost peripheral portion. A ceramic honeycomb structure having a substantially square shape and a thickness of the outer peripheral wall of 0.6 mm or more. セル壁と一体に形成された外周壁を有するセラミックハニカム構造体において、セラミックハニカム構造体の軸方向垂直断面での最外周部のセル形状が、最外周部にあるセル数の90%以上のセルで略正方形であり、前記外周壁の厚さが0.6mm以上であることを特徴とする請求項1乃至請求項2に記載のセラミックハニカム構造体。In a ceramic honeycomb structure having an outer peripheral wall integrally formed with a cell wall, the cell shape of the outermost peripheral portion in the axial vertical cross section of the ceramic honeycomb structure is 90% or more of the number of cells in the outermost peripheral portion. The ceramic honeycomb structure according to claim 1, wherein the outer peripheral wall has a thickness of 0.6 mm or more. 前記外周壁の外周の少なくとも一部が加工除去されてなることを特徴とする請求項1乃至5の何れかに記載のセラミックハニカム構造体。The ceramic honeycomb structure according to any one of claims 1 to 5, wherein at least a part of the outer periphery of the outer peripheral wall is processed and removed. セラミック坏土を供給する複数の坏土供給孔と前記坏土供給孔に連通した坏土を排出する複数の成形溝を有する口金と、前記口金の外周縁部において前記成形溝とクリアランスL(mm)を介して対向する当接面を有するガイドリングからなるセラミックハニカム構造体用金型において、前記口金の成形溝を有するセラミック坏土排出面がセラミックハニカム構造体のセル壁部を形成する本体成形部と、セラミックハニカム構造体の外周壁を形成する外周成形部からなるとともに、前記本体成形部と前記外周成形部が段差H(mm)を有するように、前記本体成形部が前記外周成形部に対して、押出方向に突出しているとともに、クリアランスL(mm)は下記式
H/3≦L≦H
を満たすことを特徴とするセラミックハニカム構造体用金型。
A plurality of clay supply holes for supplying ceramic clay, a die having a plurality of molding grooves for discharging the clay communicated with the clay supply holes, and a clearance L (mm) between the molding groove at an outer peripheral edge of the die ) For forming a ceramic honeycomb structure comprising a guide ring having a contact surface facing each other, and a ceramic clay discharge surface having a die forming groove forming a cell wall portion of the ceramic honeycomb structure And the outer peripheral molded portion forming the outer peripheral wall of the ceramic honeycomb structure, and the main body molded portion is formed on the outer peripheral molded portion so that the main body molded portion and the outer peripheral molded portion have a step H (mm). On the other hand, while projecting in the extrusion direction, the clearance L (mm) is expressed by the following formula H / 3 ≦ L ≦ H.
A mold for a ceramic honeycomb structure characterized by satisfying
前記口金の本体成形部の押出方向に垂直な断面形状がいずれも略正方形であることを特徴とする請求項7に記載のセラミックハニカム構造体用金型。The die for a ceramic honeycomb structure according to claim 7, wherein each of the cross-sectional shapes perpendicular to the extrusion direction of the main body molding portion of the die is substantially square. 前記ガイドリングのセラミックハニカム構造体の外周壁を形成する内周面と前記口金の本体成形部の最外周部の押出し方向延長線との間隔が0.6mm以上であることを特徴とする請求項7乃至8に記載のセラミックハニカム構造体用金型。The distance between the inner peripheral surface forming the outer peripheral wall of the ceramic honeycomb structure of the guide ring and the extension line in the extrusion direction of the outermost peripheral portion of the main body forming portion of the die is 0.6 mm or more. A mold for a ceramic honeycomb structure according to 7 to 8. セラミック坏土を供給する複数の坏土供給孔と前記坏土供給孔に連通した坏土を排出する複数の成形溝を有する口金と、前記口金の外周縁部において前記成形溝とクリアランスL(mm)を介して対向する当接面を有するガイドリングからなるセラミックハニカム構造体用金型であって、前記口金の成形溝を有するセラミック坏土排出面がセラミックハニカム構造体のセル壁部を形成する本体成形部と、セラミックハニカム構造体の外周壁を形成する外周成形部からなり、前記本体成形部と前記外周成形部が段差H(mm)を有するように、前記本体成形部が前記外周成形部に対して、押出方向に突出し、クリアランスL(mm)が下記式
H/3≦L≦H
を満たすセラミックハニカム構造体用金型を用いて、セル壁と一体に押出形成される外周壁を有するセラミックハニカム構造体の外周壁の少なくとも一部に、軸方向に連続し、且つセラミックハニカム構造体の軸方向垂直断面における径が0.1mm以上である孔を有することを特徴とするセラミックハニカム構造体。
A plurality of clay supply holes for supplying ceramic clay, a die having a plurality of molding grooves for discharging the clay communicated with the clay supply holes, and a clearance L (mm) between the molding groove at an outer peripheral edge of the die ), And a ceramic clay discharge surface having a die forming groove forms a cell wall portion of the ceramic honeycomb structure. The main body forming portion comprises the main body forming portion and the outer peripheral forming portion forming the outer peripheral wall of the ceramic honeycomb structure, and the main body forming portion has the step H (mm). On the other hand, it projects in the extrusion direction, and the clearance L (mm) is expressed by the following formula H / 3 ≦ L ≦ H
A ceramic honeycomb structure that is continuous in the axial direction with at least a part of the outer peripheral wall of the ceramic honeycomb structure having an outer peripheral wall that is integrally formed with the cell wall by using a mold for the ceramic honeycomb structure satisfying A ceramic honeycomb structure having holes having a diameter of 0.1 mm or more in a vertical cross section in the axial direction.
セラミック坏土を供給する複数の坏土供給孔と前記坏土供給孔に連通した坏土を排出する複数の成形溝を有する口金と、前記口金の外周縁部において前記成形溝とクリアランスL(mm)を介して対向する当接面を有するガイドリングからなるセラミックハニカム構造体用金型であって、前記口金の成形溝を有するセラミック坏土排出面がセラミックハニカム構造体のセル壁部を形成する本体成形部と、セラミックハニカム構造体の外周壁を形成する外周成形部からなり、前記本体成形部と前記外周成形部が段差H(mm)を有するように、前記本体成形部が前記外周成形部に対して、押出方向に突出し、クリアランスL(mm)が下記式
H/3≦L≦H
を満たすセラミックハニカム構造体用金型を用いて、セル壁と一体に押出形成される外周壁を有するセラミックハニカム構造体で、セラミックハニカム構造体の軸方向垂直断面での最外周部のセル形状が、最外周部にあるセル数の90%以上のセルで略正方形であり、前記外周壁の厚さが0.6mm以上であることを特徴とするセラミックハニカム構造体。
A plurality of clay supply holes for supplying ceramic clay, a die having a plurality of molding grooves for discharging the clay communicated with the clay supply holes, and a clearance L (mm) between the molding groove at an outer peripheral edge of the die ), And a ceramic clay discharge surface having a die forming groove forms a cell wall portion of the ceramic honeycomb structure. The main body forming portion comprises the main body forming portion and the outer peripheral forming portion forming the outer peripheral wall of the ceramic honeycomb structure, and the main body forming portion has the step H (mm). On the other hand, it projects in the extrusion direction, and the clearance L (mm) is expressed by the following formula H / 3 ≦ L ≦ H
A ceramic honeycomb structure having an outer peripheral wall that is integrally formed with a cell wall by using a mold for a ceramic honeycomb structure that satisfies the above conditions, and the cell shape of the outermost peripheral portion in the axial vertical cross section of the ceramic honeycomb structure is A ceramic honeycomb structure characterized in that 90% or more of the number of cells in the outermost peripheral portion is substantially square, and the thickness of the outer peripheral wall is 0.6 mm or more.
セラミック坏土を供給する複数の坏土供給孔と前記坏土供給孔に連通した坏土を排出する複数の成形溝を有する口金と、前記口金の外周縁部において前記成形溝とクリアランスを介して対向する当接面を有するガイドリングからなるセラミックハニカム構造体用金型において、前記口金の成形溝を有するセラミック坏土排出面がセラミックハニカム構造体のセル壁部を形成する本体成形部と、セラミックハニカム構造体の外周壁を形成する外周成形部からなるとともに、前記本体成形部と前記外周成形部が段差部を有するように、前記本体成形部が前記外周成形部に対して押出方向に突出し、前記外周成形部から押出された成形材料は、前記ガイドリングに当接した後、前記段差部に当接してその進行方向を押出し方向と平行方向に変え、前記本体成形部から押出されているセル壁とセルを有するハニカム本体成形体の外周部に当接しながら押出されることを特徴とするセラミックハニカム構造体用金型。A plurality of clay supply holes for supplying ceramic clay, a die having a plurality of molding grooves for discharging the clay communicated with the clay supply holes, and an outer peripheral edge portion of the base via the molding grooves and clearances In a ceramic honeycomb structure mold comprising guide rings having opposing contact surfaces, a ceramic molding discharge surface having a molding groove for the die forms a cell wall portion of the ceramic honeycomb structure, and a ceramic The main body molded portion protrudes in the extrusion direction with respect to the outer peripheral molded portion so that the main body molded portion and the outer peripheral molded portion have a stepped portion, and the outer peripheral molded portion forms an outer peripheral wall of the honeycomb structure. After the molding material extruded from the outer peripheral molding portion abuts on the guide ring, the molding material abuts on the step portion and changes its traveling direction to a direction parallel to the extrusion direction. Ceramic honeycomb structure mold, characterized in that it is extruded while contact with the outer peripheral portion of the honeycomb green body having cell walls and the cell that is extruded from the body molding portion.
JP2003171351A 2003-06-16 2003-06-16 Ceramic honeycomb structure body and metal mold for ceramic honeycomb structure body Pending JP2005007218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003171351A JP2005007218A (en) 2003-06-16 2003-06-16 Ceramic honeycomb structure body and metal mold for ceramic honeycomb structure body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003171351A JP2005007218A (en) 2003-06-16 2003-06-16 Ceramic honeycomb structure body and metal mold for ceramic honeycomb structure body

Publications (1)

Publication Number Publication Date
JP2005007218A true JP2005007218A (en) 2005-01-13

Family

ID=34095850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003171351A Pending JP2005007218A (en) 2003-06-16 2003-06-16 Ceramic honeycomb structure body and metal mold for ceramic honeycomb structure body

Country Status (1)

Country Link
JP (1) JP2005007218A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239603A (en) * 2005-03-04 2006-09-14 Ngk Insulators Ltd Honeycomb structural body
WO2008093760A1 (en) * 2007-02-01 2008-08-07 Ngk Insulators, Ltd. Die for extrusion forming of honeycomb formed body, method of forming honeycomb formed body, and honeycomb formed body
WO2008126307A1 (en) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. Catalyst support and process for producing the same
JP2010024073A (en) * 2008-07-16 2010-02-04 Tokyo Yogyo Co Ltd Honeycomb structure
JP2011121252A (en) * 2009-12-10 2011-06-23 Kyocera Corp Long-sized hollow ceramic member
WO2011117965A1 (en) * 2010-03-23 2011-09-29 イビデン株式会社 Honeycomb structure
JP2012030219A (en) * 2010-06-28 2012-02-16 Kyocera Corp Honeycomb structure and gas treatment apparatus using the same
JP2012170935A (en) * 2011-02-24 2012-09-10 Denso Corp Honeycomb structure
WO2013141244A1 (en) * 2012-03-19 2013-09-26 京セラ株式会社 Honeycomb structure body and gas-processing apparatus provided with same
US8883286B2 (en) 2010-03-23 2014-11-11 Ibiden Co., Ltd. Honeycomb structure
CN107224997A (en) * 2016-03-25 2017-10-03 日本碍子株式会社 Honeycomb structured body
CN108214832A (en) * 2016-12-15 2018-06-29 日本碍子株式会社 The manufacturing method of honeycomb structure
EP3202546A4 (en) * 2014-09-30 2018-11-07 Hitachi Metals, Ltd. Ceramic honeycomb structure, manufacturing method therefor, and honeycomb molding mold
CN110302844A (en) * 2018-03-27 2019-10-08 日本碍子株式会社 Honeycomb structure
CN114433789A (en) * 2022-01-27 2022-05-06 清华大学 Ceramic core easy to remove core and preparation method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239603A (en) * 2005-03-04 2006-09-14 Ngk Insulators Ltd Honeycomb structural body
US8851877B2 (en) 2007-02-01 2014-10-07 Ngk Insulators, Ltd. Die for extrusion forming of honeycomb formed body, and method of forming honeycomb formed body
WO2008093760A1 (en) * 2007-02-01 2008-08-07 Ngk Insulators, Ltd. Die for extrusion forming of honeycomb formed body, method of forming honeycomb formed body, and honeycomb formed body
WO2008126307A1 (en) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. Catalyst support and process for producing the same
JP2010024073A (en) * 2008-07-16 2010-02-04 Tokyo Yogyo Co Ltd Honeycomb structure
JP2011121252A (en) * 2009-12-10 2011-06-23 Kyocera Corp Long-sized hollow ceramic member
US8883286B2 (en) 2010-03-23 2014-11-11 Ibiden Co., Ltd. Honeycomb structure
WO2011117965A1 (en) * 2010-03-23 2011-09-29 イビデン株式会社 Honeycomb structure
JP2012030219A (en) * 2010-06-28 2012-02-16 Kyocera Corp Honeycomb structure and gas treatment apparatus using the same
JP2012170935A (en) * 2011-02-24 2012-09-10 Denso Corp Honeycomb structure
WO2013141244A1 (en) * 2012-03-19 2013-09-26 京セラ株式会社 Honeycomb structure body and gas-processing apparatus provided with same
EP3202546A4 (en) * 2014-09-30 2018-11-07 Hitachi Metals, Ltd. Ceramic honeycomb structure, manufacturing method therefor, and honeycomb molding mold
US11007672B2 (en) 2014-09-30 2021-05-18 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method, and honeycomb-molding die
CN107224997A (en) * 2016-03-25 2017-10-03 日本碍子株式会社 Honeycomb structured body
CN107224997B (en) * 2016-03-25 2021-04-09 日本碍子株式会社 Honeycomb structure
CN108214832A (en) * 2016-12-15 2018-06-29 日本碍子株式会社 The manufacturing method of honeycomb structure
CN110302844A (en) * 2018-03-27 2019-10-08 日本碍子株式会社 Honeycomb structure
CN110302844B (en) * 2018-03-27 2023-07-14 日本碍子株式会社 Honeycomb structure
CN114433789A (en) * 2022-01-27 2022-05-06 清华大学 Ceramic core easy to remove core and preparation method thereof
CN114433789B (en) * 2022-01-27 2023-08-25 清华大学 Ceramic core easy to take off core and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4246475B2 (en) Manufacturing method of honeycomb structure
JP2005007218A (en) Ceramic honeycomb structure body and metal mold for ceramic honeycomb structure body
EP1316686B1 (en) Ceramic honeycomb filter
JP5315997B2 (en) Ceramic honeycomb structure and method for manufacturing ceramic honeycomb structure
US9101865B2 (en) Honeycomb structure and manufacturing method of the same
JP5375600B2 (en) Method for manufacturing ceramic honeycomb structure
JP4673035B2 (en) Ceramic honeycomb structure
US20070105707A1 (en) Method for manufacturing honeycomb structure
JPWO2008078748A1 (en) Ceramic honeycomb structure and manufacturing method thereof
JP4373177B2 (en) Honeycomb structure, manufacturing method thereof and canning structure
JP4161292B2 (en) Ceramic honeycomb structure
JP4288644B2 (en) Ceramic honeycomb structure and manufacturing method thereof
JP2003236322A (en) Ceramic honeycomb filter
JP5188436B2 (en) Honeycomb structure
JP6673209B2 (en) Ceramic honeycomb structure, method for manufacturing the same, and honeycomb molding die
JP4474633B2 (en) Method for manufacturing ceramic honeycomb structure
JP4457338B2 (en) Ceramic honeycomb structure, manufacturing method thereof, and coating material therefor
JP3935159B2 (en) Ceramic honeycomb filter
JP2008100408A (en) Ceramic honeycomb structure
JP2019171244A (en) Honeycomb filter
US11046621B2 (en) Honeycomb structure
JP7274275B2 (en) honeycomb structure
JP2019198819A (en) Honeycomb structure
JP7334737B2 (en) Ceramic honeycomb structure and honeycomb mold
JP4066316B2 (en) Method for manufacturing ceramic honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090522