JP4474633B2 - Method for manufacturing ceramic honeycomb structure - Google Patents

Method for manufacturing ceramic honeycomb structure Download PDF

Info

Publication number
JP4474633B2
JP4474633B2 JP2002355022A JP2002355022A JP4474633B2 JP 4474633 B2 JP4474633 B2 JP 4474633B2 JP 2002355022 A JP2002355022 A JP 2002355022A JP 2002355022 A JP2002355022 A JP 2002355022A JP 4474633 B2 JP4474633 B2 JP 4474633B2
Authority
JP
Japan
Prior art keywords
ceramic honeycomb
honeycomb structure
firing
dried
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002355022A
Other languages
Japanese (ja)
Other versions
JP2004148791A (en
Inventor
博久 諏訪部
靖彦 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002355022A priority Critical patent/JP4474633B2/en
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to CNB038000806A priority patent/CN100341623C/en
Priority to CN2007100063015A priority patent/CN101058049B/en
Priority to EP03736233A priority patent/EP1533032A4/en
Priority to EP20090015440 priority patent/EP2189216B1/en
Priority to EP20070010893 priority patent/EP1837077A3/en
Priority to EP20090003918 priority patent/EP2077154B1/en
Priority to EP20090015645 priority patent/EP2186562B1/en
Priority to US10/517,866 priority patent/US7727613B2/en
Priority to CN2007100063072A priority patent/CN101053974B/en
Priority to CN2007101409665A priority patent/CN101147882B/en
Priority to PCT/JP2003/007686 priority patent/WO2003106028A1/en
Priority to EP20090003919 priority patent/EP2077155B1/en
Publication of JP2004148791A publication Critical patent/JP2004148791A/en
Priority to US11/689,880 priority patent/US7591918B2/en
Application granted granted Critical
Publication of JP4474633B2 publication Critical patent/JP4474633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はセラミックハニカム構造体の製造方法に関する。
【0002】
【従来技術】
地域環境や地球環境の保全面から、自動車などのエンジンの排気ガスに含まれる有害物質を削減するため、排気ガス浄化用の触媒コンバータが用いられている。最近は、ディーゼルエンジンからの排気ガスに含まれる黒鉛微粒子などを捕集するために多孔質なセラミックハニカム構造体(以下、「セラミックハニカム構造体」を略して「ハニカム構造体」という)を用い、このハニカム構造体のセル開口部の両端を交互に目封じした排気ガス浄化フィルタが使用されてきている。
【0003】
図2はハニカム構造体の斜視図である。図2に示すように、通常、ハニカム構造体1は、外皮2とその内周側に各々直交する隔壁4により形成された多数のセル5を有する。そして、ハニカム構造体1は、金属製収納容器(図示せず)内で動かないように、収納容器内周面とハニカム構造体の外周面との間に配置された把持部材により強固に把持されて収納されている。
【0004】
ハニカム構造体1は、従来、以下の工程で製造されている。
コージェライト生成原料粉末と、成形助剤、造孔剤と水を、混合、混練して得たセラミック坏土を特殊金型を通じて押出成形することにより、外皮2や隔壁4が形成されたハニカム構造を有する成形体を得る。次に、乾燥炉で、成形体中の水分などを蒸発乾燥させ、更に焼成炉により、成形体中のバインダ等の成形助剤等を除去した後、所定温度下で焼成して、所定の形状と強度を持ち、隔壁4に微細な細孔を持つハニカム構造体1を得ていた。
【0005】
さて、ディーゼルエンジン用の、例えば、外径が150mm以上で長さが150mm以上の大型セラミックハニカム構造体や、セル壁4の厚さが0.2mm以下と薄いハニカム構造体1を製造する場合、押出成形時に、成形体の自重が大きすぎたり、成形体自身の強度が不十分であったりすることから、自重を支えきれず、外皮2の周縁部の隔壁4が潰れたり変形し、焼成後に所定の強度が得られないという問題があった。
【0006】
この問題に対して、セラミック杯土を押出成形、乾燥、焼成してハニカム構造を有する焼成体とした後、このハニカム構造を有する焼成体の外皮2とその周縁部を研削加工によって所定直径寸法より小さくする除去加工を行い、除去加工した外周面にコーティング材を塗布、乾燥、硬化させて外皮を形成する発明の記載がある(例えば、特許文献1参照)。この特開平3−275309号公報に記載の発明によれば、ハニカム構造を有する焼成体の外皮2とその周縁部を研削加工で除去しているので、周縁部の変形したセルを除くことができ、機械的強度を高くできる。また、ハニカム構造を有する焼成体全体の真円度が悪い場合にも、研削加工により真円度を高めた後に外皮を形成することにより、寸法精度が向上される、としている。
【0007】
【特許文献1】
特開平3−275309号公報
【0008】
【発明が解決しようとする課題】
しかしながら、前記特開平3−275309号公報に記載の発明では、以下のような問題点があった。
外径が150mm以上長さが150mm以上の大型ハニカム構造体や、隔壁の厚さが0.15mm以下の薄壁ハニカム構造体の押出成形時に発生する成形体周縁部のセルの潰れや、変形等の不具合を有する成形体は、成形、乾燥に伴う残留応力を有することになるため、これら不具合を持ったまま焼成を行うと、残留応力を開放しようと、不具合箇所から亀裂が進展し、焼成体全体に割れが進展することがあった。この割れは焼成体の周縁部を除去加工しても完全に除去できない場合もあり、製造歩留まりを低下させるという問題点があった。
また、セラミックハニカム焼成体の周縁部を除去加工する際に、焼成体は硬く脆いので、周縁部除去加工後の拡大図を図3に示すように、外周面の最外周に位置し、外部との間の隔壁を有しない外部に開口する凹溝31を構成する隔壁34は、カケが生じ易く隔壁の一部が欠損した不完全な凹溝31aのような形状になり易く、このような凹溝に外皮を形成しても、隔壁と外皮との接着面積が小さくなり、外皮強度(アイソスタティック強度)が低下したり、外皮がハニカム本体から剥離し易くなるという問題があった。このようなハニカム構造体を触媒コンバーターや微粒子捕集用フィルターとして使用した場合、エンジン振動や路面振動により、外皮がハニカム構造体から剥離し、収納容器内で適切な把持力が確保されなくなるため、ハニカム構造体が収納容器内で動き、場合によってはハニカム構造体が破損することがある。
さらに、前記特開平3−275309号公報に記載の発明では、セラミックハニカム焼成体の周縁部を除去する加工方法については、研削加工が好ましいとされ、その加工条件は周速750〜2100m/分で高速回転する砥石を用い、加工速度は0.7〜0.9mm/分が好ましい範囲とされている。そして、ハニカム構造体のような隔壁構造の場合は、隔壁が加工工具と断続的に衝突する所謂断続加工となることから、送りや切り込みなどの加工量を小さく押さえざるを得ず、加工時間が膨大になるという問題点があった。また、焼成体は硬くて脆いため研削加工に使用する研削砥石はダイヤモンド砥石のような高価な砥石を使う必要があった。
【0009】
従って、本発明の課題は、ハニカム構造体の成形時に外皮及びその近傍に発生する変形したセルを除去する工程を適切に選択することで、焼成時に割れが進展しにくく、ハニカム構造体の外周面に、外部との間の隔壁を有しない外部に開口する凹溝を確実に形成し、そのために外皮とハニカム本体とが剥離し難く、優れたアイソスタティック強度を有し、かつ周縁部の除去加工の効率が向上できるハニカム構造体の製造方法を得ることにある。
【0010】
【課題を解決するための手段】
本発明のセラミック杯土を押出成形し、乾燥、焼成し、隔壁により形成される多数のセルを有するセラミックハニカム構造体とするセラミックハニカム構造体の製造方法において、前記押出成形で外皮と隔壁が形成されたハニカム構造を有する成形体を得、前記成形体を乾燥した後のセラミックハニカム乾燥体の周縁部を切削加工で除去加工した後、該セラミックハニカム乾燥体を焼成して得たセラミックハニカム焼成体の外周面に外皮を形成することを特徴とする。
【0011】
本発明のセラミックハニカム構造体の製造方法において、前記セラミックハニカム乾燥体の焼成を行うにあたり、セラミックハニカム乾燥体の開口端面を焼成台の上に載せて焼成した後、セラミックハニカム焼成体の焼成台と当接した開口端面を除去加工することが好ましい。
また、本発明のセラミックハニカム構造体の製造方法において前記セラミックハニカム乾燥体周縁部の除去加工は、焼成操作によりハニカム乾燥体からハニカム焼成体に至る寸法変化の程度を予測し、該予測された寸法に従ってセラミックハニカム乾燥体周縁部の除去加工を行うことが好ましい。
そして、焼成後に、外皮の少なくとも一部を除去することが好ましい。
【0012】
次に本発明の作用効果について説明する。
本発明において、外皮と接するハニカム構造体の周縁部の一部は、焼成前に除去加工されていることから、押出成形時に生じた外皮及びその近傍のセルの変形部分が焼成前に除去されるので、焼成時に、これらを起点として亀裂がハニカム構造体に進展する恐れが少なくなり、焼成時に発生する割れを少なくすることが出来、製造歩留まりを向上させることができるのである。
また、外皮と接するハニカム構造体の周縁部は、焼成前の乾燥体の状態で除去加工されているため、乾燥体は有機バインダー等の成形助剤により強化されていることから、焼成体の周縁部を除去加工する際に発生していた、外周部の最外周に位置し、外部との間の隔壁を有しない外部に開口する凹溝を構成する隔壁のカケの問題が生じ難く、隔壁の一部が欠損した不完全な凹溝31aに成り難いため、隔壁と外皮との接着面積が十分確保でき、外皮強度(アイソスタティック強度)が低下したり、外皮がハニカム本体から剥離し易くなるという問題が発生し難くなるのである。
さらに、外皮と接するハニカム構造体の周縁部は、焼成前の乾燥体の状態で除去加工されているので、焼成体の周縁部を除去加工する際のように研削加工の必要がなく、切削加工が可能となるため、加工に要する時間を短縮できる。また、ダイヤモンド砥石を使用する必要がなく、超硬バイト等を使用することができるため、加工費用を低減することが可能となる。
【0013】
本発明において、乾燥後のセラミックハニカム乾燥体の周縁部が除去加工された後、該セラミックハニカム乾燥体を焼成して得たセラミックハニカム焼成体の外周面に外皮が形成されている場合には、セラミックハニカム乾燥体の周縁部の除去加工によって形成された、乾燥体の外周面に位置し、外部との間に隔壁を有しない外部に開口する凹溝が、焼成後の焼成体の外周面においても凹溝を構成し、この凹溝に外皮を形成するための塗布材を塗布、必要に応じて乾燥、焼成を施し、外皮と凹溝を構成する隔壁を一体化せしめることで、隔壁と外皮との接着面積が大きくなるため、外皮がハニカム本体から剥離し難くなり、優れたアイソスタティック強度が得られる。
ここで、周縁部とは、ハニカム構造体の外皮とそれよりも内周側の隔壁のことを指し、除去加工する際に少なくとも外周面から2セル分以上除去することが好ましく、3から4セル分除去すると更に好ましい。
ここで、外皮を形成するために塗布する塗布材としては、コージェライト、シリカ、アルミナ、ムライト、炭化珪素、窒化珪素等の耐熱性セラミックス骨材粒子にセラミックファイバー、セメント、無機バインダー等を単独で或いは混合して用いることが好ましく、更に必要に応じて有機バインダー等を混合しても良いが、これらに限定されるものではない。上記セラミックハニカム構造体を構成する材料と同材質の骨材を選定すると、外皮と隔壁の熱膨張係数差を小さく押さえられることからより好ましい。
尚、本発明において、セラミックハニカム乾燥体の周縁部を除去加工した後、該セラミックハニカム乾燥体を焼成して得たセラミックハニカム焼成体の外周面を仕上げ加工した後に、外皮を形成しても良い。また、本発明において、セラミックハニカム乾燥体の周縁部を除去加工した後、該セラミックハニカム乾燥体を焼成して得たセラミックハニカム焼成体の外周面に外皮を形成した後は、用途に応じてこの外皮の外周面を再度加工しても良い。
【0014】
更に、本発明において、前記セラミックハニカム乾燥体の焼成を行う際に、セラミックハニカム乾燥体の開口端面が焼成台の上に当接するように載せて焼成された後、セラミックハニカム焼成体の焼成台と当接した開口端面を除去加工することにより、ハニカム構造体の外皮厚さの均一化が図れる。
上記の理由について、セラミックハニカム乾燥体の周縁部が除去加工された後、焼成して得たセラミックハニカム焼成体の外周面に外皮を形成する例を用いて説明する。
一般に、セラミックスの焼成操作により乾燥体から焼成体に至る過程で、セラミックスの焼成反応が進むことから、寸法変化が発生する。この寸法変化はハニカム構造体全体に亘って一様に起こる場合は問題ないが、ディーゼルエンジンの排ガス浄化に使用されるような外径150mm以上、長さ150mm以上の大型セラミックハニカム構造体の場合は、セラミックスの材質選定にもよるがセラミックスハニカム構造体の各所で寸法変化の程度が異なる場合がある。例えば、焼成の際にハニカム乾燥体を載置する焼成台と当接する開口端面が、焼成台による拘束で、寸法変化の程度に影響を受ける場合がある。図4に一例の概略図を示すように、図4(a)に示す乾燥体加工終了の段階では乾燥体各所の外径が一様であったのに対し、(b)に示す焼成後の段階では、焼成台に当接する開口端面が、焼成台による拘束を受け、外径が大きくなったり、真円度が悪くなる場合があった。一方、外皮形成の方法は、図6(a)に概略図を示すように、乾燥体で周縁部を除去加工された後に焼成されたセラミックハニカム焼成体の外径より大きく、外皮形成後のハニカム構造体と同一の外径を有する2個の円盤状挟持用部材51で、セラミックハニカム焼成体46の両端面を挟み込み、挟持用部材とセラミックハニカム焼成体の外周面の間50を埋めるように外皮形成用の塗布剤を充填する方法で行う。このとき、このセラミックハニカム焼成体の外径寸法が各所で異なる、図4(b)に示すセラミックハニカム焼成体42のような場合、図6(b)に示すように、外皮52の厚さが、セラミックハニカム構造体の中で不均一となり、このような外皮厚さの不均一を有するハニカム構造体は、外皮厚さの厚いところで、熱衝撃による亀裂が発生し易いといった問題の発生することがあった。
このため、図4(c)に示すように焼成台に当接する開口端面を除去加工することによりセラミックハニカム焼成体の外径の均一化が図れ、ひいては均一厚さの外皮が得られるのである。
【0015】
更に本発明において前記セラミックハニカム乾燥体周縁部の除去加工を、焼成操作によりハニカム乾燥体からハニカム焼成体に至る寸法変化の程度を予測し、該予測された寸法に従ってセラミックハニカム乾燥体周縁部の除去加工を行うことによっても、ハニカム構造体の外皮厚さの均一化を図ることができる。
例えば、同一条件で成形した成形ロットの中から、乾燥体を抜き取り、先行試験による焼成を行い、図4(a)に示す乾燥体の形状が図4(b)に示すような焼成体の形状へと寸法変化の程度があることが判った場合は、ハニカム構造体の各部の寸法変化率を求め、これに従い乾燥体を図5(a)に示す乾燥体45形状に加工を行うことにより、図5(b)に示す焼成後の寸法精度の良好な焼成体46を得ることが可能になるのと共に、焼成台との当接面を除去加工する必要もないので、材料歩留まりが向上するのでより好ましい。この焼成体に図6に示す円盤状挟持部材51を用いて外皮を形成することにより外皮厚さの均一なハニカム構造体が得られる。
以上は、乾燥体から焼成体に至る外形寸法の変化の程度がハニカム構造体の流路方向で異なる例について概略図を用いて説明したが、ハニカム構造体の断面形状が隔壁の方向で異なる様な場合、例えば乾燥体断面の外周縁が円形状であったものが焼成後に略楕円形状に変化するような場合についても、3次元測定器で求めた乾燥体から、焼成体に至る寸法変化の程度に基づき、乾燥体の除去加工寸法を決定し、この決定された寸法に従い、3次元加工機等を使用することによって乾燥体を加工できることは言うまでもない。
【0016】
本発明において、セラミックハニカム構造体のアイソスタティック強度が1.0MPa以上の場合には、外皮とハニカム構造体とが剥離し難く、収納容器内で適切な把持力が確保され、ハニカム構造体が収納容器内で動き、場合によってはハニカム構造体が破損することが少なくなる。アイソスタティック強度は1.5MPa以上あれば好ましい。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を実施例を基に詳細に説明する。
(実施例1)
図1(a)に示す工程図、及び図2に基づき説明する。
先ず、カオリン、タルク、シリカ、アルミナなどの粉末を調整して、質量比で、SiO2:48〜52%、Al23:33〜37%、MgO:12〜15%を含むようなコージェライト生成原料粉末とした。また、コージェライト生成原料粉末には、成形助剤としてメチルセルロース及びヒドロキシプロピルメチルセルロースをコージェライト化原料100質量部に対して総量で7質量部配合添加し、また、造孔剤としてグラファイトを適量添加し、乾式で十分混合した。次に、規定量の水を添加して更に十分な混練を行って坏土を生成した。
【0018】
次に、坏土を押出成形用金型で押出成形し、更に切断して、外皮2と隔壁4とが一体に形成されたハニカム構造を有する成形体とした。次に、この成形体について、誘電乾燥炉で加熱して乾燥を行い成形体中の水分を蒸発させて乾燥体とした。
【0019】
次に、旋盤上の加工治具に乾燥体を把持して回転数260rpmで回転させ、刃物台に取り付けた超硬バイトで乾燥体の外周面周縁部を切込み5mm、送り1.0mm/秒の条件で除去加工し、外皮2とその周縁部の変形したセルがある3セル分を除去した。この周縁部を除去加工された乾燥体の外周部の最外周に位置し、外部との間の隔壁を有しない外部に開口する凹溝が形成される。
【0020】
次に、周縁部を加工除去された乾燥体を、一方の開口端面がハニカム構造の焼成台に当接するように載置し、焼成炉に入れて、室温から500℃までの昇温速度5℃/時間、500℃〜1425℃までの昇温速度20℃/時間で昇温して最高温度で10時間保持することにより焼成を行い、その後、徐々に冷却を行った。その結果、焼成後、外径264.7〜265.7mmで長さ300mm、隔壁4の厚さ0.3mm、セル5のピッチ1.5mm、細孔の気孔率が65%であるハニカム焼成体を得た。
【0021】
そして、外皮用の材料として、コージェライト骨材とバインダーからなるコーティング材料を準備した。コーティング材料に使用したコージェライト骨材には、平均粒径10μmのコージェライト粒子を使用し、無機バインダーには、コロイダルシリカを使用し、コージェライト粒子100質量部に対して、コロイダルシリカを7質量部の割合に調整した。これに有機バインダー、水を加え、ペースト状のコーティング材料として使用した。そして、周縁部を加工除去されたハニカム乾燥体を焼成して得たハニカム焼成体を図6に示す挟持部材で挟み込み、外周面に外径が266.7mmとなるように塗布した。その後、120℃2時間の条件で塗布材中の水分を乾燥させ、850℃2時間の条件で外皮を焼成させた。このときの、外皮厚さは0.5mm〜1.5mmであった。
【0022】
上記作成されたハニカム構造体のアイソスタティック強度を測定した。アイソスタティック強度は、社団法人自動車技術会発行の自動車規格(JASO)M505−87に基づき、セラミックハニカム構造体1の上下面に厚さ10mmのアルミ板を当てて両端を密閉すると共に側面外周を厚さ2mmゴムで密着し試料とした。そして、この試料を圧力容器内に入れ、圧力容器内に水を導入し、圧力容器内の圧力を増加して試料を破壊させ、破壊時の圧力(MPa)を測定した。この破壊時の圧力が1.0MPa以上であったものを合格とし、1.0MPa以上1.5MPa未満であったものを○、1.5MPa以上であったものを◎、1.0MPa未満であったものをNGとして×で評価した結果を表1に示す。
また、得られたセラミックハニカム構造体に対して、耐熱衝撃性の評価を行った。耐熱衝撃性の評価試験は、一定温度(室温+450℃)に加熱された電気炉中にセラミックハニカム構造体を挿入して30分間保持し、その後室温に急冷し、目視観察でクラックの有無を確認した。また、クラックが発見されない場合は、電気炉の温度を25℃温度を上昇させ同様の試験を行い、クラックが発生するまで繰り返した。そしてクラックが発見されなかった最高温度差温度差(加熱温度−室温)を耐熱衝撃温度とした。このときの耐熱衝撃温度差が500℃以上であったものを合格として○、550℃以上であったものを特に優れているとして◎、500℃未満であったものをNGとして×で評価した結果を表1に示す。
【0023】
参考例
図1(b)に示す工程図、及び図2に基づき説明する。
実施例1と同様に、原料混合・混練・坏土調整、押出成形、乾燥し周縁部加工を行った。
【0024】
次に、外皮用の材料として、カオリン、タルク、シリカ、アルミナなどの粉末を調整して、質量比で、SiO2:48〜52%、Al23:33〜37%、MgO:12〜15%を含むようなコージェライト生成原料粉末とし、この粉末100質量部にメチルセルロースを0.5質量部添加し、これに分散剤、水を加えて塗布可能なペースト状の塗布材を準備した。そして、周縁部を加工除去されたハニカム乾燥体を図6に示す挟持部材で挟み込み、乾燥体の外周面に、焼成後の外皮厚さが約1.6mmとなるよう塗布、乾燥させ、外皮2を形成した。
【0025】
次に、外皮2をコーティングした乾燥体を、一方の開口端面がハニカム構造の焼成台に当接するように載置し、焼成炉に入れ、実施例1と同様の条件で1425℃まで昇温して焼成を行い、その後、徐々に冷却を行った。そして、焼成後、外径266.7〜267.7mmで長さ300mm、隔壁4の厚さ0.3mm、セル5のピッチ1.5mm、細孔の気孔率が65%のハニカム焼成体とした。ここで外皮材塗布後の焼成時に寸法変化に伴い、外径寸法が266.7〜267.7mmとなったため、外径の大きい箇所を除去加工することにより、外径が266.7mmと成るようにした。このときの外皮の厚さは0.6mm〜1.6mmであった。
【0026】
上記作成されたハニカム構造体のアイソスタティック強度及び耐熱衝撃温度を実施例1と同様に測定した結果を表1に示す。
【0027】
(比較例)
従来技術である乾燥後に周縁部を除去することなしに、焼成後に周縁部を除去加工した例を示す。
カオリン、タルク、シリカ、アルミナなどの粉末を調整して、質量比で、SiO2:48〜52%、Al23:33〜37%、MgO:12〜15%を含むようなコージェライト生成原料粉末とした。また、コージェライト生成原料粉末には、成形助剤としてメチルセルロース及びヒドロキシプロピルメチルセルロースをコージェライト化原料100質量部に対して総量で7質量部配合添加し、また、造孔剤としてグラファイトを適量添加し、乾式で十分混合した。次に、規定量の水を添加して更に十分な混練を行って坏土を生成した。
【0028】
次に、坏土を押出成形用金型で押出成形し、更に切断して、外皮2と隔壁4とが一体に形成されたハニカム構造を有する成形体とした。尚、成形体周縁部には成形体の自重の影響により変形したセル壁が存在していた。
【0029】
次に、この成形体について、誘電乾燥炉で加熱して乾燥を行い成形体中の水分を蒸発させて乾燥体とした。
【0030】
この乾燥体を、一方の開口端面がハニカム構造の焼成台に当接するように載置し、焼成炉に入れ、実施例1と同様の条件で1425℃まで昇温して焼成を行い、その後、徐々に冷却を行った。そして、外径274.7mmで長さ300mm、隔壁4の厚さ0.3mm、セル5のピッチ1.5mm、細孔の気孔率65%のハニカム構造体1が得られたが、成形体周縁部の変形したセルの影響により焼成体に割れの発生するものが多かった。
【0031】
次に、上記焼成工程で割れの発生の無かった焼成体を、外周研削盤に取り付け、焼成体の周縁部を約4.5mm(3セル分)除去し、外径265.7mmになるまで研削加工を行い、外皮とその周縁部の変形した隔壁を除去した。このとき使用したダイヤモンド砥石の周速は2000m/分、送り速度は0.5mm/分であった。この周縁部を除去加工された乾燥体の外周部の最外周に位置し、外部との間の隔壁を有しない外部に開口する凹溝が形成されるが、凹溝を構成する隔壁には、除去加工時にカケの発生するものが多かった。
【0032】
そして、実施例1と同様外皮用の材料として、コージェライト骨材とバインダーからなるコーティング材料を準備した。コーティング材料に使用したコージェライト骨材には、平均粒径10μmのコージェライト粒子を使用し、無機バインダーには、コロイダルシリカを使用し、コージェライト粒子100質量部に対して、コロイダルシリカを7質量部の割合に調整した。これに有機バインダー、水を加え、ペースト状のコーティング材料として使用した。そして、周縁部を加工除去されたハニカム乾燥体を焼成して得たハニカム焼成体の外周面に0.8〜1.2mmの厚さで塗布した。その後、120℃2時間の条件で塗布材中の水分を乾燥させ、850℃2時間の条件で外皮を焼成させた。
上記作成されたハニカム構造体のアイソスタティック強度及び耐熱衝撃温度を実施例1と同様に測定した結果を表1に示す。
【0033】
(実施例
実施例1と同様の方法により、原料混合・混練・坏土調整、押出成形、乾燥を行い、コージェライト質セラミックハニカム乾燥体を得た。
次に、実施例1と同様に乾燥体の外周面周縁部を除去加工し、外皮2とその周縁部の変形したセルがある3セル分を除去し、乾燥体の外周部の最外周に位置し、外部との間の隔壁を有しない外部に開口する凹溝が形成された乾燥体を得た。尚、このとき乾燥体の長さは、実施例1に対して、焼成体長さに換算して50mm長く加工した。
【0034】
次に、周縁部を加工除去された乾燥体を、実施例1と同様に一方の開口端面がハニカム構造の焼成台に当接するように載置し、焼成炉に入れて、室温から500℃までの昇温速度5℃/時間、500℃〜1425℃までの昇温速度20℃/時間で昇温して最高温度で10時間保持することにより焼成を行い、その後、徐々に冷却を行った。その結果、焼成後、外径264.7〜265.7mmで長さ350mm、隔壁4の厚さ0.3mm、セル5のピッチ1.5mm、細孔の気孔率が65%であるハニカム焼成体を得た。その後、ハニカム焼成体の焼成台に当接していた端面から50mmの長さで端部を切断除去することにより、外径265.5〜265.9mmで長さ300mmのハニカム焼成体とした。
【0035】
そして、外皮用の材料として、実施例1と同様の平均粒径10μmのコージェライト骨材100質量部にコロイダルシリカを7質量部の割合に調整したペースト状のコーティング材料を準備し、周縁部を加工除去されたハニカム乾燥体を焼成して得たハニカム焼成体の外周面に外径が266.7mmとなるように塗布した。その後、120℃2時間の条件で塗布材中の水分を乾燥させ、850℃2時間の条件で外皮を焼成させた。このときの、外皮厚さは0.8mm〜1.2mmであった。
【0036】
上記作成されたハニカム構造体のアイソスタティック強度及び耐熱衝撃温度を実施例1と同様に測定した結果を表1に示す。
【0037】
(実施例
実施例1と同様の方法により、原料混合・混練・坏土調整、押出成形、乾燥を行い、コージェライト質セラミックハニカム乾燥体を得た。
次に、実施例1と同様に乾燥体の周縁部を除去加工し、外皮2とその周縁部の変形したセルがある3セル分を除去し、乾燥体の外周面の最外周に位置し、外部との間の隔壁を有しない外部に開口する凹溝が形成された乾燥体を得た。尚、このとき乾燥体の外径寸法は、実施例1の結果に基づき、図5(a)に示すように、乾燥体から焼成体への寸法変化の程度を予め把握した上で、決定した。
【0038】
次に、周縁部を加工除去された乾燥体を、実施例1と同様に一方の開口端面がハニカム構造の焼成トチに当接するように載置し、焼成炉に入れて、室温から500℃までの昇温速度5℃/時間、500℃〜1425℃までの昇温速度20℃/時間で昇温して最高温度で10時間保持することにより焼成を行い、その後、徐々に冷却を行った。その結果、焼成後、外径265.4〜265.9mmで長さ300mm、隔壁4の厚さ0.3mm、セル5のピッチ1.5mm、細孔の気孔率が65%であるハニカム焼成体を得た。
【0039】
そして、外皮用の材料として、実施例1と同様の平均粒径10μmのコージェライト骨材100質量部にコロイダルシリカを5質量部の割合に調整したペースト状のコーティング材料を準備し、周縁部を加工除去されたハニカム乾燥体を焼成して得たハニカム焼成体の外周面に外径が266.7mmとなるように塗布した。その後、120℃2時間の条件で塗布材中の水分を乾燥させ、850℃2時間の条件で外皮を焼成させた。このときの、外皮厚さは0.8mm〜1.2mmであった。
【0040】
上記作成されたハニカム構造体のアイソスタティック強度及び耐熱衝撃温度を実施例1と同様に測定した結果を表1に示す。
【0041】
(実施例
実施例1と同様の方法により、原料混合・混練・坏土調整、押出成形、乾燥を行い、コージェライト質セラミックハニカム乾燥体を得た。次いで、セラミックハニカム乾燥体の周縁部を除去加工し、外皮とその周縁部の変形した3セル分を除去し、実施例1と同様に焼成を行うことにより、外周面の最外周に位置し、外部との間の隔壁を有しない外部に開口する凹溝が形成されたセラミックハニカム焼成体を得た。この焼成体は、外径264.7〜265.7mm、長さ300mm、隔壁厚さ0.3mm、セルのピッチ1.5mmで、気孔率62%であった。
そして、外皮用の材料として、平均粒径14μmの非晶出シリカ骨材粒子100質量部に対してコロイダルシリカ7質量部の割合に調整し、更に有機バインダー、水を加え、ペースト状にしたコーティング材料を準備し、周縁部を加工除去されたハニカム乾燥体を焼成して得たハニカム焼成体を図6に示す挟持部材で挟み込み、外周面に外径が266.7mmとなるように塗布した。その後、120℃2時間の条件で塗布材中の水分を乾燥させ、850℃2時間の条件で外皮を焼成させた。このときの、外皮厚さは0.5mm〜1.5mmであった。
上記作成されたハニカム構造体のアイソスタティック強度及び耐熱衝撃温度を実施例1と同様に測定した結果を表1に示す。
【0042】
【表1】

Figure 0004474633
【0043】
表1から、本発明例のセラミックハニカム構造体の製造方法によれば、アイソスタティック強度及び耐熱衝撃性に優れたハニカム構造体が得られることがわかる。また、本発明の実施例及びの、外皮の厚さの不均一を小さくしたハニカム構造体によれば、特に耐熱衝撃性に優れたハニカム構造体の得られることが判る。
【0044】
【発明の効果】
以上、説明のとおり、本発明のハニカム構造体及びその製造方法によれば、成形時に外皮及びその近傍に発生する変形したセルを除去する工程を適切に選択することで、焼成時に割れが進展しにくく、ハニカム構造体の外周面に、外部との間の隔壁を有しない外部に開口する凹溝を確実に形成し、そのために外皮とハニカム本体とが剥離し難く、優れたアイソスタティック強度を有し、かつ周縁部の除去加工の効率が向上できるハニカム構造体を得ることができる。
【図面の簡単な説明】
【図1】 (a)本発明の実施の形態1に係る工程図である。
(b)本発明の参考例に係る工程図である。
【図2】 ハニカム構造体の斜視図である。
【図3】 従来の技術における周縁部除去加工後の周縁部隔壁のカケを示す模式図である。
【図4】 本発明の実施の形態に係わるハニカム焼成体の焼成台と当接した開口端面が除去されたハニカム構造体を示す概略図である。
(a)ハニカム乾燥体を焼成台に載置した状態を示す概略図。
(b)焼成台に載置されたハニカム焼成体を示す概略図。
(c)ハニカム焼成体の焼成台と当接した開口端面が除去されたハニカム構造体を示す概略図である。
【図5】 本発明の実施の形態に係わるハニカム乾燥体からハニカム焼成体に至る寸法変化の程度を予測し、該予測された寸法に従ってセラミックハニカム乾燥体周縁部の除去加工を行ったことを示す概略図である。
(a)予測された寸法に従って除去加工されたハニカム乾燥体を焼成台に載置したことを示す概略図。
(b)上記、乾燥体が焼成された状態を示す概略図。
【図6】本発明における外皮形成法を示す概略図である。
【符号の説明】
1:ハニカム構造体
2:外皮
4、34:隔壁
5、35:セル
31、31a:凹溝
40:ハニカム構造の焼成台
41:セラミックハニカム乾燥体
42:セラミックハニカム焼成体
43:焼成台に当接した端面が除去されたセラミックハニカム焼成体
44:焼成台に当接した開口端面
45:予測された寸法に従って周縁部が除去加工されたハニカム乾燥体
46:セラミックハニカム焼成体
51:円盤状挟持用部材
52:外皮[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a method for manufacturing a ceramic honeycomb structure.
[0002]
[Prior art]
  In order to reduce the harmful substances contained in the exhaust gas of engines such as automobiles, the catalytic converter for exhaust gas purification is used from the viewpoint of the preservation of the local environment and the global environment. Recently, a porous ceramic honeycomb structure (hereinafter referred to as “honeycomb structure” for short) is used to collect graphite fine particles contained in exhaust gas from diesel engines. An exhaust gas purification filter in which both ends of cell openings of this honeycomb structure are alternately sealed has been used.
[0003]
  FIG. 2 is a perspective view of the honeycomb structure. As shown in FIG. 2, the honeycomb structure 1 usually has a large number of cells 5 formed by outer skins 2 and partition walls 4 orthogonal to the inner peripheral side thereof. The honeycomb structure 1 is firmly held by a holding member disposed between the inner peripheral surface of the storage container and the outer peripheral surface of the honeycomb structure so as not to move in a metal storage container (not shown). Are stored.
[0004]
  The honeycomb structure 1 is conventionally manufactured by the following steps.
  A honeycomb structure in which the outer skin 2 and the partition walls 4 are formed by extruding a ceramic clay obtained by mixing and kneading a cordierite-forming raw material powder, a molding aid, a pore former and water through a special mold. A molded body having Next, the moisture in the molded body is evaporated and dried in a drying furnace, and further, a molding aid such as a binder in the molded body is removed by a firing furnace, and then fired at a predetermined temperature to have a predetermined shape. And a honeycomb structure 1 having fine pores in the partition walls 4 was obtained.
[0005]
  Now, for example, when manufacturing a large-sized ceramic honeycomb structure having an outer diameter of 150 mm or more and a length of 150 mm or more for a diesel engine, or a thin honeycomb structure 1 having a cell wall 4 having a thickness of 0.2 mm or less, At the time of extrusion molding, the weight of the molded body is too large or the strength of the molded body itself is insufficient, so that the weight of the molded body cannot be supported, and the partition wall 4 at the peripheral edge of the outer skin 2 is crushed or deformed, and after firing There was a problem that a predetermined strength could not be obtained.
[0006]
  To solve this problem, the ceramic clay is extruded, dried, and fired to obtain a fired body having a honeycomb structure, and then the outer skin 2 and the peripheral edge of the fired body having the honeycomb structure are ground from a predetermined diameter. There is a description of an invention in which a removal process is performed to make it smaller, and a coating material is applied to the removed outer peripheral surface, dried and cured to form an outer skin (see, for example, Patent Document 1). According to the invention described in Japanese Patent Laid-Open No. 3-275309, since the outer skin 2 of the fired body having a honeycomb structure and the peripheral portion thereof are removed by grinding, cells in which the peripheral portion is deformed can be removed. The mechanical strength can be increased. Further, even when the roundness of the entire fired body having a honeycomb structure is poor, the dimensional accuracy is improved by forming the outer skin after increasing the roundness by grinding.
[0007]
[Patent Document 1]
          JP-A-3-275309
[0008]
[Problems to be solved by the invention]
  However, the invention described in JP-A-3-275309 has the following problems.
  Crushing or deformation of cells at the periphery of a molded body that occurs during extrusion molding of a large honeycomb structure having an outer diameter of 150 mm or more and a length of 150 mm or more, or a thin wall honeycomb structure having a partition wall thickness of 0.15 mm or less Since a molded body having the above defects will have residual stress accompanying molding and drying, if firing is performed with these defects, cracks will develop from the defective portion to release the residual stress, and the fired body Cracks may develop throughout. This crack may not be completely removed even if the peripheral portion of the fired body is removed, and there is a problem that the manufacturing yield is lowered.
  Further, when the peripheral portion of the ceramic honeycomb fired body is removed, the fired body is hard and brittle. Therefore, an enlarged view after the peripheral portion removal processing is located at the outermost periphery of the outer peripheral surface as shown in FIG. The partition wall 34 that forms the recessed groove 31 that opens to the outside that does not have a partition wall between them is likely to be chipped, and is likely to be shaped like an incomplete recessed groove 31a in which a part of the partition wall is missing. Even if the skin is formed in the groove, there is a problem that the adhesion area between the partition walls and the skin is reduced, the skin strength (isostatic strength) is reduced, and the skin is easily peeled from the honeycomb body. When such a honeycomb structure is used as a catalytic converter or a filter for collecting particulates, the outer skin peels off from the honeycomb structure due to engine vibration or road surface vibration, and an appropriate gripping force cannot be secured in the storage container. The honeycomb structure moves in the storage container, and in some cases, the honeycomb structure may be damaged.
  Furthermore, in the invention described in JP-A-3-275309, the processing method for removing the peripheral portion of the ceramic honeycomb fired body is preferably ground, and the processing condition is a peripheral speed of 750 to 2100 m / min. A grindstone that rotates at high speed is used, and the processing speed is preferably in the range of 0.7 to 0.9 mm / min. In the case of a partition structure such as a honeycomb structure, since the partition wall intermittently collides with a processing tool, so-called intermittent processing is performed, so that a processing amount such as feeding and cutting must be reduced, and processing time is reduced. There was a problem of becoming enormous. Further, since the fired body is hard and brittle, it is necessary to use an expensive grindstone such as a diamond grindstone for the grinding process.
[0009]
  Therefore, an object of the present invention is to appropriately select a process for removing the outer skin and the deformed cells generated in the vicinity thereof when forming the honeycomb structure, so that cracks hardly progress during firing, and the outer peripheral surface of the honeycomb structure. In addition, a groove that opens to the outside that does not have a partition wall between the outside and the outside is surely formed, so that the outer shell and the honeycomb body are difficult to peel off, have an excellent isostatic strength, and a peripheral edge removal process. Honeycomb structure with improved efficiencyManufacturing methodThere is in getting.
[0010]
[Means for Solving the Problems]
  The present inventionExtruded, dried and fired ceramic clayHaving a large number of cells formed by barrier ribsIn the method for manufacturing a ceramic honeycomb structure as a ceramic honeycomb structure,Obtaining a molded body having a honeycomb structure in which an outer skin and partition walls are formed by the extrusion molding,AboveMolded bodyDrydidThe periphery of the dried ceramic honeycombBy cuttingAfter the removal processing, an outer skin is formed on the outer peripheral surface of the ceramic honeycomb fired body obtained by firing the ceramic honeycomb dried body.
[0011]
  The present inventionIn the method for manufacturing the ceramic honeycomb structure, the ceramic honeycomb dried body is fired by placing the open end face of the ceramic honeycomb dried body on the firing table and firing the ceramic honeycomb dried body. It is preferable to remove the opened end face.
  Also,The present inventionIn the method for manufacturing the ceramic honeycomb structure of the present invention, the removal processing of the peripheral portion of the ceramic honeycomb dried body is performed by predicting the degree of dimensional change from the honeycomb dried body to the honeycomb fired body by a firing operation, and drying the ceramic honeycomb according to the predicted dimensions. It is preferable to perform removal processing of the peripheral part of the body.
  And it is preferable to remove at least a part of the outer skin after firing.
[0012]
  Next, the function and effect of the present invention will be described.
  The present inventionIn this case, since a part of the peripheral portion of the honeycomb structure in contact with the outer skin is removed before firing, the outer skin generated at the time of extrusion and the deformed portion of the cell in the vicinity thereof are removed before firing. At the time of firing, there is less fear that cracks will develop into the honeycomb structure starting from these, so that the cracks generated at the time of firing can be reduced, and the production yield can be improved.
  In addition, since the peripheral portion of the honeycomb structure in contact with the outer skin is removed and processed in the state of the dried body before firing, the dried body is reinforced with a molding aid such as an organic binder. The problem of chipping of the partition wall, which is located at the outermost periphery of the outer peripheral portion and is formed in the outer groove that does not have a partition wall between the outside and hardly forms, is generated when the part is removed. Since it is difficult to form an incomplete groove 31a partially missing, it is possible to secure a sufficient bonding area between the partition wall and the outer skin, and the outer skin strength (isostatic strength) is reduced or the outer skin is easily peeled off from the honeycomb body. Problems are less likely to occur.
  Furthermore, since the peripheral portion of the honeycomb structure in contact with the outer skin is removed and processed in the state of a dry body before firing, there is no need for grinding as in the case of removing the peripheral portion of the fired body, and cutting processing is performed. Therefore, the time required for processing can be shortened. Further, it is not necessary to use a diamond grindstone, and a carbide tool or the like can be used, so that the processing cost can be reduced.
[0013]
  The present inventionIn the case where the outer peripheral surface of the ceramic honeycomb fired body obtained by firing the ceramic honeycomb dried body after removing the peripheral portion of the dried ceramic honeycomb dried body, A groove formed on the outer peripheral surface of the dry body, which is formed by removing the peripheral edge of the dry body, and is open to the outside without a partition wall between the outer and the outer surface of the fired body after firing. By forming a groove and applying a coating material for forming the outer skin to this concave groove, drying and firing as necessary, and integrating the outer wall and the partition wall constituting the concave groove, Since the adhesion area is increased, the outer skin is difficult to peel from the honeycomb body, and an excellent isostatic strength can be obtained.
  Here, the peripheral portion refers to the outer skin of the honeycomb structure and the partition wall on the inner peripheral side, and it is preferable to remove at least two cells from the outer peripheral surface during the removal processing. More preferably, it is removed.
  Here, as the coating material to be applied to form the outer skin, ceramic fiber, cement, inorganic binder, etc. are singly added to heat-resistant ceramic aggregate particles such as cordierite, silica, alumina, mullite, silicon carbide, silicon nitride, etc. Alternatively, it is preferable to use a mixture, and an organic binder or the like may be further mixed if necessary, but is not limited thereto. It is more preferable to select an aggregate of the same material as the material constituting the ceramic honeycomb structure because the difference in the thermal expansion coefficient between the outer skin and the partition wall can be suppressed small.
  still,The present inventionIn this case, after the peripheral portion of the ceramic honeycomb dried body is removed, the outer surface of the ceramic honeycomb fired body obtained by firing the ceramic honeycomb dried body is finished and then the outer skin may be formed. Also,The present inventionThen, after the outer peripheral surface of the ceramic honeycomb dried body obtained by firing the ceramic honeycomb dried body after removing the peripheral portion of the ceramic honeycomb dried body, May be processed again.
[0014]
  Furthermore, in the present invention, when the ceramic honeycomb dried body is fired, after the ceramic honeycomb dried body is placed and fired so that the opening end surface of the ceramic honeycomb dried body is in contact with the fired stand, By removing the contacted opening end face, the outer skin thickness of the honeycomb structure can be made uniform.
  The above reason will be described using an example in which a skin is formed on the outer peripheral surface of a ceramic honeycomb fired body obtained by firing after the peripheral portion of the ceramic honeycomb dried body is removed.
  In general, in the process from the dried body to the fired body due to the firing operation of the ceramic, the firing reaction of the ceramic proceeds, so that a dimensional change occurs. This dimensional change is not a problem when it occurs uniformly over the entire honeycomb structure, but in the case of a large ceramic honeycomb structure having an outer diameter of 150 mm or more and a length of 150 mm or more used for exhaust gas purification of a diesel engine. Depending on the material selection of the ceramic, the degree of dimensional change may be different at various locations of the ceramic honeycomb structure. For example, the open end surface that comes into contact with the firing table on which the honeycomb dried body is placed during firing may be affected by the degree of dimensional change due to the restraint by the firing table. As shown in a schematic diagram of an example in FIG. 4, the outer diameter of each part of the dried body was uniform at the stage of finishing the dried body shown in FIG. In the stage, the opening end surface that is in contact with the baking table is restricted by the baking table, and the outer diameter may increase or the roundness may deteriorate. On the other hand, as shown in the schematic diagram of FIG. 6 (a), the outer skin formation method is larger than the outer diameter of the ceramic honeycomb fired body fired after removing the peripheral portion with a dry body, and the honeycomb after the skin formation is performed. Two disc-shaped sandwiching members 51 having the same outer diameter as the structure are sandwiched between both end faces of the ceramic honeycomb fired body 46 so that the space 50 between the sandwiching member and the outer peripheral surface of the ceramic honeycomb fired body is filled. It is performed by a method of filling a forming coating agent. At this time, in the case of the ceramic honeycomb fired body 42 shown in FIG. 4B, where the outer diameter size of the ceramic honeycomb fired body is different in various places, as shown in FIG. The honeycomb structure having non-uniform thickness of the ceramic honeycomb structure may cause a problem that cracks due to thermal shock are likely to occur at the thick thickness of the skin. there were.
  For this reason, as shown in FIG. 4C, the outer diameter of the ceramic honeycomb fired body can be made uniform by removing the opening end face in contact with the firing table, so that a skin having a uniform thickness can be obtained.
[0015]
  Further, in the present invention, the removal processing of the peripheral portion of the dried ceramic honeycomb body is performed by predicting the degree of dimensional change from the dried honeycomb body to the honeycomb fired body by a firing operation, and removing the peripheral edge portion of the ceramic honeycomb dried body according to the predicted dimensions. By performing the processing, the outer skin thickness of the honeycomb structure can be made uniform.
  For example, a dry body is extracted from a molding lot molded under the same conditions, fired by a prior test, and the shape of the dry body shown in FIG. 4 (a) is the shape of the fired body as shown in FIG. 4 (b). When it is found that there is a degree of dimensional change, the dimensional change rate of each part of the honeycomb structure is obtained, and the dried body is processed into the shape of the dried body 45 shown in FIG. Since it becomes possible to obtain a fired body 46 with good dimensional accuracy after firing as shown in FIG. 5B and it is not necessary to remove the contact surface with the firing table, the material yield is improved. More preferred. A honeycomb structure having a uniform skin thickness can be obtained by forming a skin on the fired body using the disc-shaped sandwiching member 51 shown in FIG.
  In the above, an example in which the degree of change in the outer dimensions from the dried body to the fired body differs in the flow direction of the honeycomb structure has been described using schematic diagrams. However, the cross-sectional shape of the honeycomb structure differs in the direction of the partition walls. In such a case, for example, when the outer peripheral edge of the cross section of the dry body changes to a substantially elliptic shape after firing, the dimensional change from the dry body obtained by the three-dimensional measuring device to the fired body It goes without saying that the dry body can be processed by determining the removal processing size of the dry body based on the degree, and using a three-dimensional processing machine or the like according to the determined size.
[0016]
  The present inventionIn the case where the isostatic strength of the ceramic honeycomb structure is 1.0 MPa or more, the outer shell and the honeycomb structure are difficult to peel off, and an appropriate gripping force is secured in the storage container. In some cases, the honeycomb structure is less likely to be damaged. The isostatic strength is preferably 1.5 MPa or more.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, embodiments of the present invention will be described in detail based on examples.
Example 1
  A description will be given based on the process diagram shown in FIG.
  First, adjust the powder of kaolin, talc, silica, alumina, etc.2: 48-52%, Al2OThree: A cordierite-forming raw material powder containing 33-37% and MgO: 12-15%. Also, in the cordierite-forming raw material powder, 7 parts by mass of methylcellulose and hydroxypropylmethylcellulose as a molding aid are added in total to 100 parts by mass of the cordierite-forming raw material, and an appropriate amount of graphite is added as a pore-forming agent. , Dry and mixed well. Next, a specified amount of water was added and further kneading was performed to produce a clay.
[0018]
  Next, the kneaded material was extruded with an extrusion mold and further cut to obtain a formed body having a honeycomb structure in which the outer skin 2 and the partition walls 4 were integrally formed. Next, this molded body was dried by heating in a dielectric drying furnace to evaporate water in the molded body to obtain a dried body.
[0019]
  Next, the dry body is gripped by a processing jig on a lathe and rotated at a rotation speed of 260 rpm, and the peripheral edge of the outer peripheral surface of the dry body is cut with a carbide tool attached to the tool post at 5 mm and the feed is 1.0 mm / second. Removal processing was carried out under conditions, and 3 cells with the outer skin 2 and the deformed cells at the peripheral edge thereof were removed. A concave groove is formed which is located on the outermost periphery of the outer peripheral portion of the dried body from which the peripheral portion has been removed and opens to the outside without having a partition wall between the outer periphery.
[0020]
  Next, the dried body whose peripheral portion has been processed and removed is placed so that one opening end face is in contact with the firing table of the honeycomb structure, and is placed in a firing furnace, and the temperature rising rate from room temperature to 500 ° C. is 5 ° C. The baking was carried out by heating at a heating rate of 20 ° C./hour from 500 ° C. to 1425 ° C./hour and holding at the maximum temperature for 10 hours, and then gradually cooling. As a result, the fired honeycomb body having an outer diameter of 264.7 to 265.7 mm, a length of 300 mm, a partition wall thickness of 0.3 mm, a cell 5 pitch of 1.5 mm, and a pore porosity of 65% after firing. Got.
[0021]
  And the coating material which consists of a cordierite aggregate and a binder was prepared as a material for outer skin. The cordierite aggregate used for the coating material uses cordierite particles having an average particle size of 10 μm, the inorganic binder uses colloidal silica, and 7 mass of colloidal silica with respect to 100 mass parts of cordierite particles. The ratio of parts was adjusted. An organic binder and water were added to this and used as a paste-like coating material. Then, the honeycomb fired body obtained by firing the dried honeycomb body whose peripheral portion was processed and removed was sandwiched between the sandwiching members shown in FIG. 6 and applied to the outer peripheral surface so that the outer diameter was 266.7 mm. Then, the water | moisture content in a coating material was dried on conditions of 120 degreeC for 2 hours, and the outer skin was baked on conditions of 850 degreeC for 2 hours. At this time, the outer skin thickness was 0.5 mm to 1.5 mm.
[0022]
  The isostatic strength of the prepared honeycomb structure was measured. The isostatic strength is based on the automobile standard (JASO) M505-87 issued by the Japan Automobile Engineers Association, and 10 mm thick aluminum plates are applied to the upper and lower surfaces of the ceramic honeycomb structure 1 to seal both ends and thicken the outer periphery of the side. A sample was adhered with 2 mm rubber. And this sample was put in the pressure vessel, water was introduced into the pressure vessel, the pressure in the pressure vessel was increased to break the sample, and the pressure (MPa) at the time of breakage was measured. The pressure at the time of fracture was 1.0 MPa or more was accepted, ○ was 1.0 MPa or more and less than 1.5 MPa, ○ was 1.5 MPa or more, ◎ was less than 1.0 MPa. Table 1 shows the results of evaluation with x as NG.
  Moreover, the thermal shock resistance of the obtained ceramic honeycomb structure was evaluated. In the thermal shock resistance evaluation test, the ceramic honeycomb structure was inserted into an electric furnace heated to a constant temperature (room temperature + 450 ° C), held for 30 minutes, then rapidly cooled to room temperature, and visually observed for cracks. did. Moreover, when a crack was not discovered, the temperature of the electric furnace was raised to 25 ° C., the same test was performed, and the test was repeated until the crack was generated. And the maximum temperature difference temperature difference (heating temperature-room temperature) in which the crack was not discovered was made into the thermal shock temperature. When the thermal shock temperature difference at this time was 500 ° C. or higher, the result was evaluated as “Excellent” when the temperature was 550 ° C. or higher. Is shown in Table 1.
[0023]
(Reference example)
  A description will be given based on the process diagram shown in FIG.
  As in Example 1, raw material mixing, kneading, clay adjustment, extrusion molding, drying and peripheral edge processing were performed.
[0024]
  Next, powders such as kaolin, talc, silica, and alumina are prepared as materials for the outer skin, and in terms of mass ratio, SiO2: 48-52%, Al2OThree: Cordierite-producing raw material powder containing 33 to 37%, MgO: 12 to 15%, 0.5 parts by mass of methylcellulose is added to 100 parts by mass of the powder, and a dispersant and water can be added to the powder. A paste-like coating material was prepared. Then, the honeycomb dried body whose peripheral portion has been processed and removed is sandwiched between the sandwiching members shown in FIG. 6, and applied to the outer peripheral surface of the dried body so that the thickness of the outer skin after firing is about 1.6 mm. Formed.
[0025]
  Next, the dried body coated with the outer skin 2 is placed so that one opening end surface is in contact with the firing table having the honeycomb structure, and is placed in a firing furnace, and heated to 1425 ° C. under the same conditions as in Example 1. The mixture was fired and then gradually cooled. After firing, a honeycomb fired body having an outer diameter of 266.7 to 267.7 mm, a length of 300 mm, a partition wall thickness of 0.3 mm, a cell 5 pitch of 1.5 mm, and a pore porosity of 65% was obtained. . Here, since the outer diameter became 266.7 to 267.7 mm along with the dimensional change at the time of firing after the coating of the outer skin material, the outer diameter becomes 266.7 mm by removing the portion having the larger outer diameter. I made it. The thickness of the outer skin at this time was 0.6 mm to 1.6 mm.
[0026]
  Table 1 shows the results obtained by measuring the isostatic strength and the thermal shock temperature of the honeycomb structure produced in the same manner as in Example 1.
[0027]
(Comparative example)
  The example which removed the peripheral part after baking without removing a peripheral part after drying which is a prior art is shown.
  Adjust the powder of kaolin, talc, silica, alumina, etc.2: 48-52%, Al2OThree: A cordierite-forming raw material powder containing 33-37% and MgO: 12-15%. Also, in the cordierite-forming raw material powder, 7 parts by mass of methylcellulose and hydroxypropylmethylcellulose as a molding aid are added in total to 100 parts by mass of the cordierite-forming raw material, and an appropriate amount of graphite is added as a pore-forming agent. , Dry and mixed well. Next, a specified amount of water was added and further kneading was performed to produce a clay.
[0028]
  Next, the kneaded material was extruded with an extrusion mold and further cut to obtain a formed body having a honeycomb structure in which the outer skin 2 and the partition walls 4 were integrally formed. In addition, the cell wall which deform | transformed by the influence of the dead weight of the molded object existed in the peripheral part of the molded object.
[0029]
  Next, this molded body was dried by heating in a dielectric drying furnace to evaporate water in the molded body to obtain a dried body.
[0030]
  This dried body was placed so that one open end face was in contact with the firing table having the honeycomb structure, placed in a firing furnace, heated to 1425 ° C. under the same conditions as in Example 1, and then fired. Cooling was performed gradually. A honeycomb structure 1 having an outer diameter of 274.7 mm, a length of 300 mm, a partition wall thickness of 0.3 mm, a cell 5 pitch of 1.5 mm, and a pore porosity of 65% was obtained. Many of the fired bodies were cracked by the influence of the deformed cell.
[0031]
  Next, the fired body that was not cracked in the firing step is attached to an outer peripheral grinding machine, and the periphery of the fired body is removed by about 4.5 mm (for 3 cells) and ground until the outer diameter becomes 265.7 mm. Processing was performed to remove the deformed partition walls of the outer skin and the peripheral edge thereof. Of the diamond wheel used at this timePeripheral speedWas 2000 m / min, and the feed rate was 0.5 mm / min. The outer peripheral portion of the dried body that has been processed to remove the peripheral edge is located on the outermost periphery, and a concave groove that opens to the outside not having a partition wall with the outside is formed. Many scraps were generated during removal processing.
[0032]
  And the coating material which consists of a cordierite aggregate and a binder was prepared as a material for an outer skin like Example 1. The cordierite aggregate used for the coating material uses cordierite particles with an average particle size of 10 μm, the inorganic binder uses colloidal silica, and 7 parts of colloidal silica is used for 100 parts by weight of the cordierite particles. The ratio of parts was adjusted. An organic binder and water were added to this and used as a paste-like coating material. And it apply | coated to the outer peripheral surface of the honeycomb calcination body obtained by baking the honeycomb dried body from which the peripheral part was processed and removed by thickness of 0.8-1.2 mm. Then, the water | moisture content in a coating material was dried on condition of 120 degreeC for 2 hours, and the outer skin was baked on condition of 850 degreeC for 2 hours.
  Table 1 shows the results obtained by measuring the isostatic strength and the thermal shock temperature of the honeycomb structure produced in the same manner as in Example 1.
[0033]
(Example2)
  In the same manner as in Example 1, raw material mixing, kneading, clay adjustment, extrusion molding, and drying were performed to obtain a cordierite ceramic honeycomb dried body.
  Next, the outer peripheral surface peripheral edge portion of the dry body is removed in the same manner as in Example 1, and the outer skin 2 and three cells with deformed cells on the peripheral edge portion are removed, and the outer peripheral portion of the dry body is positioned at the outermost peripheral portion. As a result, a dried body in which a concave groove opened to the outside without a partition wall between the outside and the outside was formed was obtained. At this time, the length of the dried body was processed to be 50 mm longer than that of Example 1 in terms of the length of the fired body.
[0034]
  Next, the dried body from which the peripheral edge portion was processed and removed was placed so that one of the opening end faces abuts on the honeycomb structure firing table in the same manner as in Example 1, and was placed in a firing furnace, from room temperature to 500 ° C. The temperature was raised at a rate of 5 ° C./hour, a temperature rise rate of 20 ° C./hour from 500 ° C. to 1425 ° C. and held at the maximum temperature for 10 hours, and then gradually cooled. As a result, after firing, a honeycomb fired body having an outer diameter of 264.7 to 265.7 mm, a length of 350 mm, a partition wall thickness of 0.3 mm, a cell 5 pitch of 1.5 mm, and a pore porosity of 65%. Got. Thereafter, the end portion was cut and removed at a length of 50 mm from the end face in contact with the firing table of the honeycomb fired body to obtain a honeycomb fired body having an outer diameter of 265.5 to 265.9 mm and a length of 300 mm.
[0035]
  Then, as a material for the skin, a paste-like coating material prepared by adjusting colloidal silica to a ratio of 7 parts by mass to 100 parts by mass of cordierite aggregate having an average particle diameter of 10 μm as in Example 1 is prepared, and the peripheral part is prepared. It was applied to the outer peripheral surface of the honeycomb fired body obtained by firing the processed and dried honeycomb body so that the outer diameter was 266.7 mm. Then, the water | moisture content in a coating material was dried on conditions of 120 degreeC for 2 hours, and the outer skin was baked on conditions of 850 degreeC for 2 hours. At this time, the skin thickness was 0.8 mm to 1.2 mm.
[0036]
  Table 1 shows the results obtained by measuring the isostatic strength and the thermal shock temperature of the honeycomb structure produced in the same manner as in Example 1.
[0037]
(Example3)
  In the same manner as in Example 1, raw material mixing, kneading, clay adjustment, extrusion molding, and drying were performed to obtain a cordierite ceramic honeycomb dried body.
  Next, the peripheral edge of the dry body is removed in the same manner as in Example 1, 3 cells with the outer skin 2 and the deformed cells of the peripheral edge are removed, and the outer peripheral surface of the dry body is located on the outermost periphery. A dried body in which a concave groove opened to the outside having no partition wall between the outside and the outside was formed was obtained. At this time, the outer diameter of the dried body was determined based on the result of Example 1 after grasping in advance the degree of dimensional change from the dried body to the fired body, as shown in FIG. .
[0038]
  Next, the dried body from which the peripheral edge portion was processed and removed was placed so that one opening end face was in contact with the firing torch of the honeycomb structure in the same manner as in Example 1, and placed in a firing furnace, from room temperature to 500 ° C. The temperature was raised at a rate of 5 ° C./hour, a temperature rise rate of 20 ° C./hour from 500 ° C. to 1425 ° C. and held at the maximum temperature for 10 hours, and then gradually cooled. As a result, a fired honeycomb body having an outer diameter of 265.4 to 265.9 mm, a length of 300 mm, a partition wall thickness of 0.3 mm, a cell 5 pitch of 1.5 mm, and a pore porosity of 65% after firing. Got.
[0039]
  Then, as a material for the outer skin, a paste-like coating material prepared by adjusting colloidal silica to a ratio of 5 parts by mass to 100 parts by mass of cordierite aggregate having an average particle diameter of 10 μm as in Example 1 is prepared. It was applied to the outer peripheral surface of the honeycomb fired body obtained by firing the processed honeycomb dried body so that the outer diameter was 266.7 mm. Then, the water | moisture content in a coating material was dried on conditions of 120 degreeC for 2 hours, and the outer skin was baked on conditions of 850 degreeC for 2 hours. At this time, the outer skin thickness was 0.8 mm to 1.2 mm.
[0040]
  Table 1 shows the results obtained by measuring the isostatic strength and the thermal shock temperature of the honeycomb structure produced in the same manner as in Example 1.
[0041]
(Example4)
  In the same manner as in Example 1, raw material mixing, kneading, clay adjustment, extrusion molding, and drying were performed to obtain a cordierite ceramic honeycomb dried body. Next, the peripheral part of the ceramic honeycomb dried body is removed, the outer skin and the deformed three cells of the peripheral part are removed, and firing is performed in the same manner as in Example 1 to locate the outermost peripheral surface, A ceramic honeycomb fired body in which a concave groove opened to the outside without having a partition wall between the outside and the outside was formed. This fired body had an outer diameter of 264.7 to 265.7 mm, a length of 300 mm, a partition wall thickness of 0.3 mm, a cell pitch of 1.5 mm, and a porosity of 62%.
Then, as a material for the outer skin, it is adjusted to a ratio of 7 parts by mass of colloidal silica to 100 parts by mass of amorphous silica aggregate particles having an average particle diameter of 14 μm, and further, an organic binder and water are added to form a paste-like coating The material was prepared, and the honeycomb fired body obtained by firing the honeycomb dried body whose peripheral portion was processed and removed was sandwiched between the sandwiching members shown in FIG. 6 and applied to the outer peripheral surface so that the outer diameter was 266.7 mm. Then, the water | moisture content in a coating material was dried on conditions of 120 degreeC for 2 hours, and the outer skin was baked on conditions of 850 degreeC for 2 hours. At this time, the outer skin thickness was 0.5 mm to 1.5 mm.
  Table 1 shows the results obtained by measuring the isostatic strength and the thermal shock temperature of the honeycomb structure produced in the same manner as in Example 1.
[0042]
[Table 1]
Figure 0004474633
[0043]
  From Table 1, it can be seen that according to the method for manufacturing a ceramic honeycomb structure of the present invention example, a honeycomb structure excellent in isostatic strength and thermal shock resistance can be obtained. Examples of the present invention2as well as3It can be seen that according to the honeycomb structure in which the nonuniformity of the thickness of the outer skin is reduced, a honeycomb structure having particularly excellent thermal shock resistance can be obtained.
[0044]
【The invention's effect】
  As described above, according to the honeycomb structure of the present invention and the manufacturing method thereof, cracks develop during firing by appropriately selecting a process of removing the deformed cells generated in the outer skin and the vicinity thereof during molding. It is difficult to form a concave groove that opens to the outside without having a partition wall between the outside and the outer surface of the honeycomb structure. Therefore, the outer skin and the honeycomb body are difficult to peel off and have excellent isostatic strength. And the honeycomb structure which can improve the efficiency of the removal process of a peripheral part can be obtained.
[Brief description of the drawings]
FIG. 1A is a process diagram according to a first embodiment of the present invention.
  (B) of the present inventionReference exampleIt is process drawing concerning.
Fig. 2 is a perspective view of a honeycomb structure.
FIG. 3 is a schematic diagram showing chipping of a peripheral edge partition wall after peripheral edge removal processing in a conventional technique.
Fig. 4 is a schematic view showing a honeycomb structure in which an opening end face in contact with a firing table of the honeycomb fired body according to the embodiment of the present invention is removed.
(A) Schematic which shows the state which mounted the honeycomb dried body on the baking stand.
(B) Schematic showing the honeycomb fired body placed on the firing table.
(C) It is the schematic which shows the honeycomb structure from which the opening end surface contacted with the baking stand of the honeycomb fired body was removed.
FIG. 5 shows that the degree of dimensional change from the honeycomb dried body to the honeycomb fired body according to the embodiment of the present invention was predicted, and the peripheral edge of the ceramic honeycomb dried body was removed according to the predicted dimensions. FIG.
(A) Schematic which shows having mounted the honeycomb dried body removed according to the estimated dimension on the baking stand.
(B) The schematic which shows the state by which the said dried body was baked.
FIG. 6 is a schematic view showing a skin forming method in the present invention.
[Explanation of symbols]
  1: Honeycomb structure
  2: Outer skin
  4, 34: Bulkhead
  5, 35: Cell
  31, 31a: concave groove
  40: Firing stand with honeycomb structure
  41: Ceramic honeycomb dried body
  42: Ceramic honeycomb fired body
  43: Ceramic honeycomb fired body from which the end face contacting the firing table is removed
  44: Open end face in contact with firing table
  45: Dried honeycomb body with peripheral edge removed according to predicted dimensions
  46: Ceramic honeycomb fired body
  51: Disc-shaped clamping member
  52: Hull

Claims (4)

セラミック杯土を押出成形し、乾燥、焼成し、隔壁により形成される多数のセルを有するセラミックハニカム構造体とするセラミックハニカム構造体の製造方法において、前記押出成形で外皮と隔壁が形成されたハニカム構造を有する成形体を得、前記成形体を乾燥した後のセラミックハニカム乾燥体の周縁部を切削加工で除去加工した後、該セラミックハニカム乾燥体を焼成して得たセラミックハニカム焼成体の外周面に外皮を形成することを特徴とするセラミックハニカム構造体の製造方法。In the method for manufacturing a ceramic honeycomb structure, which is obtained by extruding a ceramic clay, drying and firing, and forming a ceramic honeycomb structure having a large number of cells formed by partition walls. to obtain a molded product having a structure, the outer peripheral surface of said after a peripheral portion of the ceramic honeycomb dried body after the molded body is dried to remove machining by cutting, a ceramic honeycomb fired body obtained by firing the ceramic honeycomb dried body A method for manufacturing a ceramic honeycomb structure, wherein an outer skin is formed on the ceramic honeycomb structure. 前記セラミックハニカム乾燥体の焼成を行うにあたり、セラミックハニカム乾燥体の開口端面を焼成台の上に載せて焼成した後、セラミックハニカム焼成体の焼成台と当接した開口端面を除去加工することを特徴とする請求項記載のセラミックハニカム構造体の製造方法。When firing the ceramic honeycomb dried body, the opening end face of the ceramic honeycomb dried body is placed on the firing table and fired, and then the opening end face contacting the firing table of the ceramic honeycomb fired body is removed. The method for manufacturing a ceramic honeycomb structure according to claim 1 . 前記セラミックハニカム乾燥体周縁部の除去加工は、焼成操作によりハニカム乾燥体からハニカム焼成体に至る寸法変化の程度を予測し、該予測された寸法に従ってセラミックハニカム乾燥体周縁部の除去加工を行うことを特徴とする請求項1又は2に記載のセラミックハニカム構造体の製造方法。The removal process of the peripheral part of the ceramic honeycomb dried body is performed by predicting the degree of dimensional change from the dried honeycomb body to the honeycomb fired body by a firing operation, and removing the peripheral part of the ceramic honeycomb dried body according to the predicted dimensions. A method for manufacturing a ceramic honeycomb structure according to claim 1 or 2 . 前記焼成後に、外皮の少なくとも一部を除去することを特徴とする請求項乃至3のいずれかに記載のセラミックハニカム構造体の製造方法。The method for manufacturing a ceramic honeycomb structure according to any one of claims 1 to 3, wherein at least a part of the outer skin is removed after the firing.
JP2002355022A 2002-06-01 2002-12-06 Method for manufacturing ceramic honeycomb structure Expired - Lifetime JP4474633B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2002355022A JP4474633B2 (en) 2002-06-17 2002-12-06 Method for manufacturing ceramic honeycomb structure
CN2007101409665A CN101147882B (en) 2002-06-17 2003-06-17 A ceramic honeycomb structure and its manufacturing method, and using coating material in manufacturing
EP03736233A EP1533032A4 (en) 2002-06-17 2003-06-17 Ceramic honeycomb structure, process for producing the same and coat material for use in the production
EP20090015440 EP2189216B1 (en) 2002-06-17 2003-06-17 Method for producing a ceramic honeycomb structure
EP20070010893 EP1837077A3 (en) 2002-06-17 2003-06-17 Method for producing a ceramic honeycomb structure
EP20090003918 EP2077154B1 (en) 2002-06-17 2003-06-17 Method for producing a ceramic honeycomb structure
EP20090015645 EP2186562B1 (en) 2002-06-17 2003-06-17 Ceramic honeycomb structure
US10/517,866 US7727613B2 (en) 2002-06-17 2003-06-17 Ceramic honeycomb structure, process for producing the same and coat material for use in the production
CNB038000806A CN100341623C (en) 2002-06-17 2003-06-17 Ceramic honeycomb structure, process for producing same and coat material for use in the production
CN2007100063015A CN101058049B (en) 2002-06-17 2003-06-17 Ceramic honeycomb structure, manufacturing method thereof, and coating used for the manufacture
PCT/JP2003/007686 WO2003106028A1 (en) 2002-06-01 2003-06-17 Ceramic honeycomb structure, process for producing the same and coat material for use in the production
EP20090003919 EP2077155B1 (en) 2002-06-17 2003-06-17 Ceramic honeycomb structure
CN2007100063072A CN101053974B (en) 2002-06-17 2003-06-17 Method for producing a ceramic honeycomb structure
US11/689,880 US7591918B2 (en) 2002-06-17 2007-03-22 Ceramic honeycomb structure and its production method and coating material used therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002175372 2002-06-17
JP2002262088 2002-09-06
JP2002355022A JP4474633B2 (en) 2002-06-17 2002-12-06 Method for manufacturing ceramic honeycomb structure

Publications (2)

Publication Number Publication Date
JP2004148791A JP2004148791A (en) 2004-05-27
JP4474633B2 true JP4474633B2 (en) 2010-06-09

Family

ID=32475158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355022A Expired - Lifetime JP4474633B2 (en) 2002-06-01 2002-12-06 Method for manufacturing ceramic honeycomb structure

Country Status (1)

Country Link
JP (1) JP4474633B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004078674A1 (en) * 2003-03-05 2006-06-08 日本碍子株式会社 Honeycomb structure and manufacturing method thereof
JP4528153B2 (en) * 2005-02-23 2010-08-18 日本碍子株式会社 Method for manufacturing plugged honeycomb structure
WO2006095835A1 (en) * 2005-03-10 2006-09-14 Ngk Insulators, Ltd. Honeycomb structure and method of manufacturing the same
EP2098497B1 (en) * 2006-12-27 2018-07-25 Hitachi Metals, Ltd. Ceramic honeycomb structure and process for producing the same
JP4571989B2 (en) * 2008-02-28 2010-10-27 日本碍子株式会社 Manufacturing method of ceramic honeycomb structure and coating material used therefor
JP4998346B2 (en) * 2008-03-25 2012-08-15 株式会社デンソー Method for manufacturing ceramic honeycomb structure
JP4896171B2 (en) * 2009-03-13 2012-03-14 日本碍子株式会社 Manufacturing method of honeycomb filter
JP5773716B2 (en) * 2011-04-08 2015-09-02 京セラ株式会社 Method for firing honeycomb structure
EP2767527B1 (en) * 2011-10-11 2019-12-25 Hitachi Metals, Ltd. Method for producing ceramic honeycomb structure, and ceramic honeycomb structure
KR102013760B1 (en) 2012-04-02 2019-08-23 히타치 긴조쿠 가부시키가이샤 Ceramic honeycomb body fabrication method
JP5872504B2 (en) * 2012-06-27 2016-03-01 日本碍子株式会社 Method for manufacturing ceramic honeycomb structure
JP6224637B2 (en) * 2015-02-24 2017-11-01 日本碍子株式会社 Honeycomb structure manufacturing method and honeycomb formed body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2613729B2 (en) * 1992-01-30 1997-05-28 日本碍子株式会社 Ceramic honeycomb structure, method of manufacturing the same, and coating material therefor
JP3777895B2 (en) * 1999-08-11 2006-05-24 株式会社デンソー Ceramic honeycomb structure

Also Published As

Publication number Publication date
JP2004148791A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
EP2077154B1 (en) Method for producing a ceramic honeycomb structure
JP4474633B2 (en) Method for manufacturing ceramic honeycomb structure
JP6011613B2 (en) Method for manufacturing ceramic honeycomb body
JP5877622B2 (en) Honeycomb structure
EP2105274B1 (en) Manufacturing method of honeycomb structure
WO2007132530A1 (en) End face dressing apparatus for honeycomb molding, method of sealing honeycomb molding and process for producing honeycomb structure
WO2005099865A1 (en) Honeycomb structure, method of manufacturing honeycomb structure, and exhaust emission control device
JP5532606B2 (en) Ceramic honeycomb structure and manufacturing method thereof
CN108582434B (en) Method for manufacturing ceramic honeycomb structure and ceramic honeycomb structure
EP2008987A1 (en) Honeycomb structure body
JP4288644B2 (en) Ceramic honeycomb structure and manufacturing method thereof
JP4457338B2 (en) Ceramic honeycomb structure, manufacturing method thereof, and coating material therefor
JP2004261623A (en) Honeycomb structure
JP4632125B2 (en) Method for manufacturing ceramic honeycomb structure
JP2005007218A (en) Ceramic honeycomb structure body and metal mold for ceramic honeycomb structure body
JP2004075524A (en) Ceramic honeycomb structure, its manufacturing process and coating material
JP5345371B2 (en) Manufacturing method of honeycomb structure
JP3529051B1 (en) Ceramic honeycomb structure
CN101058049B (en) Ceramic honeycomb structure, manufacturing method thereof, and coating used for the manufacture
JP5667346B2 (en) Manufacturing method of honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100225

R150 Certificate of patent or registration of utility model

Ref document number: 4474633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

EXPY Cancellation because of completion of term