JP2005005519A - Cooling mechanism for semiconductor device - Google Patents

Cooling mechanism for semiconductor device Download PDF

Info

Publication number
JP2005005519A
JP2005005519A JP2003167998A JP2003167998A JP2005005519A JP 2005005519 A JP2005005519 A JP 2005005519A JP 2003167998 A JP2003167998 A JP 2003167998A JP 2003167998 A JP2003167998 A JP 2003167998A JP 2005005519 A JP2005005519 A JP 2005005519A
Authority
JP
Japan
Prior art keywords
semiconductor device
cooling mechanism
conductive material
screw hole
mounting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003167998A
Other languages
Japanese (ja)
Inventor
Katsuhiko Konno
克彦 金野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003167998A priority Critical patent/JP2005005519A/en
Publication of JP2005005519A publication Critical patent/JP2005005519A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling mechanism for a semiconductor device which can easily and surely prevent flowing into the screw hole of a pasted thermoconductive material at the time of fixing a cooling mechanism with a screw to a semiconductor device as a heat generating body in order to cool the same. <P>SOLUTION: Screw holes 16a to 16d are formed to the four corners of a fitting surface 14 of a base 12 forming the cooling mechanism 10 for semiconductor device. The screw holes 16a to 16d allow screwing of the screw 60 for fixing the cooling mechanism 10 for semiconductor device to the semiconductor device 40. In the periphery of the screw holes 16a to 16d, grooves 18a to 18d are formed to have the surface of almost L-shape and to have the cross-section of almost U-shape, and are respectively formed to prevent flowing into the screw holes 16a to 16d of an extra heat conducting material 52 when the cooling mechanism 10 for semiconductor device is joined with the semiconductor device 40. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体デバイス用冷却機構に関し、一層詳細には半導体デバイスにおいてヒートシンクに対して発熱体を取着する際に用いられる熱伝導性材料を好適に設けることが可能な半導体デバイス用冷却機構に関する。
【0002】
【従来の技術】
半導体デバイスにおいて、特に、高速化、高集積化されたCPU(Central Processing Unit)、インバータ装置向けのパワーデバイス、例えば、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxide Semiconductor Field Effect Transistor:MOS電界効果型トランジスタ)は、駆動時にかなりの高温となる。そこで、熱による破壊あるいは誤動作を回避すべく、冷却部材を用いて前記半導体デバイスを冷却している。
【0003】
前記冷却部材として、例えば、ヒートシンクを挙げることができる。通常、ヒートシンクは、ベース部とフィン部とから構成され、前記ベース部は半導体デバイスに形成されたヒートスプレッダ等に取り付けられる。すなわち、半導体デバイスで発生した熱は、ヒートスプレッダ、ベース部を介してフィン部から空気中に放出され、半導体デバイスが冷却されるに至る。
【0004】
ところで、ヒートシンクを半導体デバイスに取り付ける際、両者の接合部には微少な空隙が形成されてしまい、この空隙に存在する空気によって熱伝導率が低下してしまう。この結果、ヒートシンクによる冷却効率はさほどに高くならないという不都合がある。
【0005】
そこで、特許文献1には、駆動時に高温となるIGBTチップを搭載した電力変換装置を効率よく冷却すべく、該電力変換装置を銅材からなる金属板(ヒートスプレッダ)及びシリコングリース(熱伝導性材料)を介して冷却フィン(ヒートシンク)に圧接保持する技術的思想が開示されている。シリコングリースは熱伝導率が高く、しかも粘性を有するため空隙に流れ込んで空気層を除去することができる。従って、電力変換装置と冷却フィンとの間の熱伝導性を向上させることができる。
【0006】
ところで、特許文献1では、前記電力変換装置とヒートシンクとを螺子によって固定している。しかしながら、ヒートシンクを電力変換装置に取り付ける際、粘性を有する前記シリコングリースが螺子穴に流入する可能性がある。該シリコングリースが螺子穴に流入すると、螺子の螺入時に螺子穴との間の摩擦係数が減少し、螺回し易くなり締付力が増加して螺子が破断したり、あるいは、締め付け不足によるゆるみや疲労破壊が発生してしまう。従って、特許文献1の場合、シリコングリースが螺子穴に流入するのを阻止すべく、シリコングリースの塗布位置や塗布量を厳密に管理する必要があり、ヒートシンクを電力変換装置に取り付ける作業が非常に面倒であり、且つ一定の品質を保持することが困難となる。
【0007】
一方、特許文献2には、工作物を作業面に接合する際に、接合時の余分な接着剤を収容する溝を前記作業面に形成した工作物固定装置が開示されている。
【0008】
【特許文献1】
特開平9−8224号公報(段落[0014]〜[0019])
【特許文献2】
特開2002−52430号公報(段落[0027]、[0028])
【0009】
【発明が解決しようとする課題】
しかしながら、特許文献2における前記溝は、接着剤を作業面に短時間で、しかも薄く且つ均一に塗布することを目的とするものであって、特定の部位、すなわち、前述した固定用の螺子穴等にシリコングリースや接着剤等のペースト状組成物が流入するのを防ぐことを目的とするものではない。
【0010】
本発明は、上記の問題を解決するためになされたものであり、前記熱伝導性材料の塗布位置や塗布量を厳密に管理することなく、発熱体である半導体デバイスにそれを冷却するための冷却機構を螺子止めする際のペースト状熱伝導性材料の螺子穴への流入を容易且つ確実に阻止することができ、この結果、冷却機構の半導体デバイスへの組付作業を効率化することが可能な半導体デバイス用冷却機構を提供することを目的とする。
【0011】
【課題を解決するための手段】
前記の課題を解決するために、本発明は、ペースト状の熱伝導性材料を介して発熱体である半導体デバイスに取り付けられるベース部と、該ベース部と一体的に形成され、前記熱伝導性材料及び前記ベース部を介して伝導した前記半導体デバイスの熱を空気中に放出するフィン部とから構成される半導体デバイス用冷却機構において、
前記ベース部は、
前記フィン部が形成される面と反対側の面であって、前記半導体デバイスとの間で前記熱伝導性材料が塗布される取付面と、
前記半導体デバイス用冷却機構を前記半導体デバイスに固定するための螺子穴と、
少なくとも前記螺子穴の周囲に形成され、前記熱伝導性材料の一部が前記螺子穴に流入するのを防ぐための溝部と、
を備えることを特徴とする(請求項1記載の発明)。
【0012】
本発明によれば、半導体デバイス用冷却機構を前記半導体デバイスに螺子止めする際、両者の間に介装される熱伝導性材料の一部は、螺子穴の周囲に形成された溝部に収容されて螺子穴に流れ込むことがない。すなわち、熱伝導性材料の塗布位置や塗布量を厳密に管理することなく、容易且つ確実に熱伝導性材料の螺子穴への流入を阻止することができる。この結果、螺子が締付過重によって破断することなく、また、締め付け不足によるゆるみや疲労破壊も発生せず、品質に優れる半導体デバイスが得られるとともに半導体デバイス用冷却機構の半導体デバイスへの組付作業を効率化させることができる。
【0013】
この場合、前記溝部を、前記螺子穴側に形成され且つ前記取付面に対して略垂直に形成される第1壁部と、前記螺子穴側とは反対側に形成され且つ傾斜した第2壁部とで構成すると(請求項2記載の発明)、半導体デバイス用冷却機構を前記半導体デバイスに螺子止めする際、両者の間に介装される熱伝導性材料の一部を溝部に円滑に導くことができるとともに、溝部に流れ込んだ熱伝導性材料の前記螺子穴への流入を好適に阻止することができる。
【0014】
さらに、前記第1壁部の上部に前記取付面に沿って前記第2壁部側に延在する突出部を形成し(請求項3記載の発明)、あるいは、前記取付面における前記溝部で囲まれた領域の高さを前記取付面における前記熱伝導性材料が塗布される領域の高さよりも高く設定すると(請求項4記載の発明)、溝部に流れ込んだ熱伝導性材料の前記螺子穴への流入をより一層好適に阻止することができる。
【0015】
さらに、前記溝部の底部に前記ベース部を貫通してフィン部側から外部に連通する貫通孔を形成すると(請求項5記載の発明)、仮に、溝部にその容積を超える量の熱伝導性材料が流入した場合であっても、溝部に流入した熱伝導性材料は前記貫通孔を介してフィン部の外部に排出されるので、溝部から溢れ出て前記螺子穴へ流れ込むことがない。さらに、この場合、前記貫通孔は、半導体デバイス用冷却機構を前記半導体デバイスに密着して組み付けようとするときに取付面に生じる空気を抜くための空気抜き孔としても機能する。さらに、前記貫通孔は、半導体デバイスの作動中に外部との熱交換に資することができる。
【0016】
またさらに、前記溝部を前記取付面における前記熱伝導性材料が塗布される領域全体を囲繞する形状とすると(請求項6記載の発明)、半導体デバイス用冷却機構を半導体デバイスに螺子止めする際、両者の間に介装される熱伝導性材料の一部は、半導体デバイス用冷却機構の外部に漏れることなくすべてこの溝部に収容される。従って、請求項6記載の発明は、前記請求項1〜5に記載の発明の効果に加えて半導体デバイス用冷却機構の外部に漏れた熱伝導性材料を拭き取る等の作業を不要とする効果を奏する。
【0017】
【発明の実施の形態】
本発明に係る半導体デバイス用冷却機構について、好適な実施の形態を挙げ、添付の図面を参照しながら以下説明する。
【0018】
本発明の第1の実施の形態に係る半導体デバイス用冷却機構10を図1に示す。半導体デバイス用冷却機構10は、ベース部12を有し、該ベース部12の図1において上面側には、後述する半導体デバイス40が取り付けられる取付面14が形成される。取付面14の四隅部には、半導体デバイス用冷却機構10を半導体デバイス40に固定するための螺子60が螺入する螺子穴16a〜16dが夫々形成される。螺子穴16a〜16dの周囲には、平面略L字形状(図1参照)で且つ断面略コ字形状(図2参照)の溝部18a〜18dが夫々形成される。
【0019】
図1において、ベース部12の下面側には、該ベース部12と一体的に形成されて半導体デバイス40の熱を空気中に放出する櫛歯状のフィン部20が形成される。
【0020】
次いで、発熱体であり、前記半導体デバイス用冷却機構10による冷却対象である半導体デバイス40の構成について説明する。半導体デバイス40としては、例えば、CPU、IGBTあるいはMOSFET等の駆動時に高温となるデバイスを挙げることができる。
【0021】
図1において、半導体デバイス40の下面側の略中央部には、前記取付面14に指向してヒートスプレッダ42が形成される。ヒートスプレッダ42は、熱伝導率が高い金属材料等で形成されるとともに、半導体デバイス40の内部回路と熱的に接続されている。前記半導体デバイス40の直方体状の隅角部には、前記螺子穴16a〜16dに対応して貫通孔44a〜44dが形成されている。この貫通孔44a〜44dには、前記螺子60が挿入される。
【0022】
なお、図1〜図3に示すように、半導体デバイス40と半導体デバイス用冷却機構10との間には、熱伝導性を高めるためのペースト状の熱伝導性材料50が介装される。前記熱伝導性材料50としては、例えば、非硬化タイプの放熱グリース(例えば、シリコングリース)や、あるいは、塗布時はペースト状態でありながらその後のプロセスで加熱硬化させてエラストマー化させる放熱ゲル等を挙げることができる。
【0023】
次いで、以上のように構成される半導体デバイス40に前記半導体デバイス用冷却機構10を取り付ける手順について説明する。
【0024】
まず、図1及び図2に示すように、半導体デバイス用冷却機構10の取付面14の略中央部に熱伝導性材料50を適量塗布する。次いで、半導体デバイス40の貫通孔44a〜44dと、半導体デバイス用冷却機構10の螺子穴16a〜16dとの位置が合うように、半導体デバイス40と半導体デバイス用冷却機構10の位置合わせを行う。そして、半導体デバイス40の貫通孔44a〜44dを介して各螺子穴16a〜16dに螺子60を夫々螺入して、半導体デバイス40と半導体デバイス用冷却機構10とを接合する(図3の状態)。
【0025】
上記接合時において、取付面14の略中央部に塗布された熱伝導性材料50は、半導体デバイス40と半導体デバイス用冷却機構10との圧着に伴い、取付面14上を中央部から周囲へと拡散していく(図1矢印参照)。この場合、前記熱伝導性材料50は、熱伝導性を高めるべく多めに塗布されているため、接合時には余分な熱伝導性材料(余剰熱伝導性材料ともいう)52が生じるに至る(図3参照)。しかしながら、この余剰熱伝導性材料52は、各溝部18a〜18dに収容されるため、螺子穴16a〜16dに流れ込むことはない。すなわち、熱伝導性材料50の塗布位置や塗布量を厳密に管理することなく、容易且つ確実に前記余剰熱伝導性材料52の螺子穴16a〜16dへの流入を阻止することができる。この結果、螺子60が締付過重によって破断することなく、また、締め付け不足によるゆるみや疲労破壊も発生せず、品質に優れる半導体デバイス40が得られるとともに、半導体デバイス用冷却機構10の半導体デバイス40への組付作業を効率化させることができる。
【0026】
図1〜図3に示す溝部18a〜18dの変形例としての溝部70a〜70dを図4に示す。この溝部70a〜70dの特徴は、螺子穴16a〜16d側に形成され且つ取付面14に対して略垂直に形成される第1壁部72と、螺子穴16a〜16dとは反対側に形成され且つ傾斜した第2壁部74とから構成される点にある。すなわち、このように構成することにより、半導体デバイス用冷却機構10を半導体デバイス40に螺子止めする際の余剰熱伝導性材料52を溝部70a〜70dに円滑に導くことができるとともに、この溝部70a〜70dに流れ込んだ余剰熱伝導性材料52の前記螺子穴16a〜16dへの流入を好適に阻止することができる。
【0027】
さらに、図4に示す溝部70a〜70dは、図5に示すような溝部80a〜80dとすることもできる。溝部80a〜80dの特徴は、略垂直に形成される第1壁部72の上部に前記取付面14に沿って前記第2壁部74側に突出する突出部82を形成した点にある。すなわち、このように構成することにより、溝部80a〜80dへ流入した余剰熱伝導性材料52が溢れ出て螺子穴16a〜16dへ流れ込むことを、より一層好適に阻止することができる。
【0028】
本発明の第2の実施の形態に係る半導体デバイス用冷却機構90を図6に示す。この半導体デバイス用冷却機構90の特徴は、取付面14における溝部18a〜18dの外側の領域A(図1において二点鎖線で囲まれた領域)を、溝部18a〜18dの内側の領域Bよりも高さdだけ低く設定する点にある。すなわち、このように構成することにより、溝部18a〜18dへ流入した前記余剰熱伝導性材料52の螺子穴16a〜16dへの流れ込みをより一層好適に阻止することができる。前記高さdは熱伝導性材料50の使用量等に応じて適宜選択すればよい。
【0029】
なお、図6では、以上説明した第2の実施の形態の構成を図1〜図3に示す第1の実施の形態の構成、すなわち、断面略コ字形状の溝部18a〜18dに適用した場合を示しているが、第2の実施の形態は、図4に示す溝部70a〜70d、あるいは図5に示す溝部80a〜80dにも適用できることはいうまでもない。
【0030】
本発明の第3の実施の形態に係る半導体デバイス用冷却機構100を図7及び図8に示す。この半導体デバイス用冷却機構100の特徴は、溝部18a〜18dにベース部12を貫通して外部に連通する貫通孔102を形成する点にある。すなわち、このように構成することにより、溝部18a〜18dにその容積を超える量の余剰熱伝導性材料52が流入した場合であっても、流入した前記余剰熱伝導性材料52は前記貫通孔102を介してフィン部20の外部に排出されるので、溝部18a〜18dから溢れ出て螺子穴16a〜16dへ流れ込むことはない。この場合、前記貫通孔102は、半導体デバイス40に半導体デバイス用冷却機構100を密着して組み付けようとするとき、前記取付面14に生じる空気を抜くための空気抜き孔としても機能する。さらに、前記貫通孔102は、半導体デバイス40の作動中に外部との熱交換に資することができる。
【0031】
なお、図7及び図8では、以上説明した第3の実施の形態の構成を図1〜図3に示す第1の実施の形態の構成、すなわち、断面略コ字形状の溝部18a〜18dに適用した場合を示しているが、第3の実施の形態は、図4に示す溝部70a〜70d、図5に示す溝部80a〜80d、あるいは図6に示す半導体デバイス用冷却機構90(第2の実施の形態)に適用できることはいうまでもない。
【0032】
本発明の第4の実施の形態に係る半導体デバイス用冷却機構110を図9に示す。この半導体デバイス用冷却機構110の特徴は、図1〜図3に示す第1の実施の形態の半導体デバイス用冷却機構10の如く溝部18a〜18dを個別に設けるのではなく、取付面14における熱伝導性材料50が塗布される領域(図9参照)全体を溝部112で囲繞した点にある。この場合、前記溝部112の深さは前記溝部18a〜18dと同一か、場合によってはそれよりも浅くてもよい。このように構成することにより、熱伝導性材料50が取付面14に多量に塗布された場合であっても、前記余剰熱伝導性材料52は半導体デバイス用冷却機構110の外部に漏れることなくすべてこの溝部112に収容される。従って、半導体デバイス用冷却機構110の外部に漏れた余剰熱伝導性材料52を拭き取る等の手間も生じない。
【0033】
なお、以上説明した第4の実施の形態の溝部112の形状を図4あるいは図5に示す溝部形状とすることもできる。さらに、第4の実施の形態は、前記第2の実施の形態、あるいは前記第3の実施の形態の構成と適宜組み合わせて使用することができる。
【0034】
【発明の効果】
以上のように、本発明によれば、半導体デバイス用冷却機構を半導体デバイスに螺子止めする際、両者の間に介装される熱伝導性材料の一部は、螺子穴の周囲に形成された溝部に収容されて螺子穴に流れ込むことがない。すなわち、熱伝導性材料の塗布位置や塗布量を厳密に管理することなく、容易且つ確実に熱伝導性材料の螺子穴への流入を阻止することができる。この結果、螺子が締付過重によって破断することがなく、また、締め付け不足によるゆるみや疲労破壊も発生せず、品質に優れる半導体デバイスが得られるとともに半導体デバイス用冷却機構の半導体デバイスへの組付作業を効率化させることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る半導体デバイス用冷却機構の構成、及び該半導体デバイス用冷却機構と冷却対象である半導体デバイスとの接合関係を説明する斜視図である。
【図2】図1に示す半導体デバイス用冷却機構のII−II線縦断面図であり、取付面の略中央部に熱伝導性材料を塗布した状態を示す。
【図3】図1に示す半導体デバイス用冷却機構のII−II線縦断面図であり、半導体デバイス用冷却機構と半導体デバイスとを螺子止めして接合した状態を示す。
【図4】図1〜図3に示す溝部の変形例の構造を説明する半導体デバイス用冷却機構の部分縦断面図である。
【図5】図4に示す溝部の変形例の構造を説明する半導体デバイス用冷却機構の部分縦断面図である。
【図6】本発明の第2の実施の形態に係る半導体デバイス用冷却機構の要部構造を説明する部分縦断面図である。
【図7】本発明の第3の実施の形態に係る半導体デバイス用冷却機構の要部構造を説明する部分平面図である。
【図8】図7に示す半導体デバイス用冷却機構のVII−VII線縦断面図である。
【図9】本発明の第4の実施の形態に係る半導体デバイス用冷却機構の溝部の形状を説明する平面図である。
【符号の説明】
10、90、100、110…半導体デバイス用冷却機構
12…ベース部 14…取付面
16a〜16d…螺子穴
18a〜18d、70a〜70d、80a〜80d、112…溝部
20…フィン部 40…半導体デバイス
42…ヒートスプレッダ 44a〜44d…貫通孔
50…熱伝導性材料 52…余剰熱伝導性材料
60…螺子 72…第1壁部
74…第2壁部 82…突出部
102…貫通孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling mechanism for a semiconductor device, and more particularly to a cooling mechanism for a semiconductor device that can be suitably provided with a heat conductive material used when a heating element is attached to a heat sink in the semiconductor device. .
[0002]
[Prior art]
In semiconductor devices, in particular, high-speed and highly-integrated CPU (Central Processing Unit), power devices for inverter devices, for example, IGBT (Insulated Gate Bipolar Transistor) and MOSFET (Metal Oxide Semiconductor Field Transistor Effect: The type transistor) has a considerably high temperature during driving. Therefore, in order to avoid destruction or malfunction due to heat, the semiconductor device is cooled using a cooling member.
[0003]
An example of the cooling member is a heat sink. Usually, a heat sink is comprised from a base part and a fin part, and the said base part is attached to the heat spreader etc. which were formed in the semiconductor device. That is, the heat generated in the semiconductor device is released from the fin portion into the air through the heat spreader and the base portion, and the semiconductor device is cooled.
[0004]
By the way, when attaching a heat sink to a semiconductor device, a minute gap is formed at the joint between the two, and the thermal conductivity is lowered by the air present in the gap. As a result, there is a disadvantage that the cooling efficiency by the heat sink is not so high.
[0005]
Therefore, in Patent Document 1, in order to efficiently cool a power conversion device equipped with an IGBT chip that becomes high temperature during driving, the power conversion device is made of a metal plate (heat spreader) made of a copper material and silicon grease (thermally conductive material). ) Is technically held in pressure contact with the cooling fin (heat sink). Silicon grease has a high thermal conductivity and has a viscosity, so that it can flow into the gap and remove the air layer. Therefore, the thermal conductivity between the power converter and the cooling fin can be improved.
[0006]
By the way, in patent document 1, the said power converter device and a heat sink are being fixed with the screw. However, when the heat sink is attached to the power conversion device, the viscous silicone grease may flow into the screw holes. When the silicone grease flows into the screw hole, the coefficient of friction with the screw hole decreases when the screw is screwed in, and it becomes easy to screw and the tightening force increases to cause the screw to break or loosen due to insufficient tightening. And fatigue failure will occur. Therefore, in the case of Patent Document 1, it is necessary to strictly manage the application position and the application amount of silicon grease in order to prevent the silicon grease from flowing into the screw holes, and the work of attaching the heat sink to the power converter is very difficult. It is troublesome and it is difficult to maintain a certain quality.
[0007]
On the other hand, Patent Document 2 discloses a workpiece fixing device in which a groove for accommodating an excess adhesive at the time of joining is formed on the work surface when the work is joined to the work surface.
[0008]
[Patent Document 1]
JP-A-9-8224 (paragraphs [0014] to [0019])
[Patent Document 2]
JP 2002-52430 A (paragraphs [0027] and [0028])
[0009]
[Problems to be solved by the invention]
However, the groove in Patent Document 2 is intended to apply the adhesive to the work surface in a short time, and in a thin and uniform manner, and the specific groove, that is, the fixing screw hole described above. It is not intended to prevent a paste-like composition such as silicon grease or adhesive from flowing into the liquid.
[0010]
The present invention has been made in order to solve the above-described problems, and is intended to cool a semiconductor device as a heating element without strictly managing the application position and application amount of the heat conductive material. It is possible to easily and reliably prevent the paste-like thermally conductive material from flowing into the screw hole when the cooling mechanism is screwed, and as a result, the assembly work of the cooling mechanism to the semiconductor device can be made efficient. An object of the present invention is to provide a semiconductor device cooling mechanism that can be used.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a base part attached to a semiconductor device as a heating element via a paste-like heat conductive material, and is formed integrally with the base part, and In a cooling mechanism for a semiconductor device comprising a material and a fin portion that releases heat of the semiconductor device conducted through the base portion into the air,
The base portion is
A mounting surface on which the thermally conductive material is applied between the semiconductor device and the surface opposite to the surface on which the fin portion is formed;
A screw hole for fixing the semiconductor device cooling mechanism to the semiconductor device;
A groove portion that is formed at least around the screw hole and prevents a part of the thermally conductive material from flowing into the screw hole;
(Invention of Claim 1).
[0012]
According to the present invention, when the semiconductor device cooling mechanism is screwed to the semiconductor device, a part of the heat conductive material interposed therebetween is accommodated in the groove formed around the screw hole. Will not flow into the screw hole. That is, it is possible to easily and reliably prevent the heat conductive material from flowing into the screw hole without strictly managing the application position and the application amount of the heat conductive material. As a result, the screw does not break due to excessive tightening, and does not cause loosening or fatigue failure due to insufficient tightening, so that a semiconductor device with excellent quality can be obtained and the semiconductor device cooling mechanism can be assembled to the semiconductor device. Can be made more efficient.
[0013]
In this case, the groove portion includes a first wall portion formed on the screw hole side and substantially perpendicular to the mounting surface, and an inclined second wall formed on the opposite side of the screw hole side. When the semiconductor device cooling mechanism is screwed to the semiconductor device, a part of the thermally conductive material interposed between them is smoothly guided to the groove portion. In addition, the heat conductive material that has flowed into the groove can be suitably prevented from flowing into the screw hole.
[0014]
Furthermore, a protruding portion extending toward the second wall portion along the mounting surface is formed on the upper portion of the first wall portion (the invention according to claim 3), or surrounded by the groove portion on the mounting surface. If the height of the formed region is set higher than the height of the region where the heat conductive material is applied on the mounting surface (the invention according to claim 4), the screw hole of the heat conductive material flowing into the groove is provided. Can be more suitably prevented.
[0015]
Furthermore, if a through-hole is formed in the bottom of the groove portion so as to penetrate the base portion and communicate with the outside from the fin portion side (the invention according to claim 5), the heat conductive material in an amount exceeding the volume is assumed in the groove portion. Even when inflowing, the thermally conductive material that has flowed into the groove portion is discharged to the outside of the fin portion through the through hole, so that it does not overflow from the groove portion and flow into the screw hole. Furthermore, in this case, the through-hole also functions as an air vent hole for venting air generated on the mounting surface when the semiconductor device cooling mechanism is attached to the semiconductor device in close contact. Further, the through hole can contribute to heat exchange with the outside during operation of the semiconductor device.
[0016]
Still further, when the groove portion has a shape surrounding the entire region of the mounting surface to which the thermally conductive material is applied (invention of claim 6), when the semiconductor device cooling mechanism is screwed to the semiconductor device, Part of the thermally conductive material interposed between the two is accommodated in the groove without leaking to the outside of the semiconductor device cooling mechanism. Therefore, in addition to the effects of the inventions according to the first to fifth aspects, the invention according to the sixth aspect has an effect of eliminating work such as wiping off the thermally conductive material leaked to the outside of the semiconductor device cooling mechanism. Play.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of a semiconductor device cooling mechanism according to the present invention will be described below with reference to the accompanying drawings.
[0018]
FIG. 1 shows a semiconductor device cooling mechanism 10 according to a first embodiment of the present invention. The semiconductor device cooling mechanism 10 includes a base portion 12, and a mounting surface 14 to which a semiconductor device 40 described later is attached is formed on the upper surface side of the base portion 12 in FIG. 1. Screw holes 16 a to 16 d into which screws 60 for fixing the semiconductor device cooling mechanism 10 to the semiconductor device 40 are respectively formed at the four corners of the mounting surface 14. Around the screw holes 16a to 16d, groove portions 18a to 18d having a substantially plane L shape (see FIG. 1) and a substantially U-shaped cross section (see FIG. 2) are formed, respectively.
[0019]
In FIG. 1, a comb-like fin portion 20 that is integrally formed with the base portion 12 and releases the heat of the semiconductor device 40 into the air is formed on the lower surface side of the base portion 12.
[0020]
Next, the configuration of the semiconductor device 40 that is a heating element and is a cooling target by the semiconductor device cooling mechanism 10 will be described. As the semiconductor device 40, for example, a device that becomes high temperature when driving a CPU, IGBT, MOSFET or the like can be cited.
[0021]
In FIG. 1, a heat spreader 42 is formed at a substantially central portion on the lower surface side of the semiconductor device 40 so as to face the mounting surface 14. The heat spreader 42 is formed of a metal material having a high thermal conductivity and is thermally connected to the internal circuit of the semiconductor device 40. Through holes 44a to 44d are formed in the rectangular corners of the semiconductor device 40 corresponding to the screw holes 16a to 16d. The screw 60 is inserted into the through holes 44a to 44d.
[0022]
As shown in FIGS. 1 to 3, a paste-like thermally conductive material 50 for increasing thermal conductivity is interposed between the semiconductor device 40 and the semiconductor device cooling mechanism 10. Examples of the heat conductive material 50 include non-curing type heat dissipating grease (for example, silicon grease), or heat dissipating gel that is in a paste state at the time of application and is heat-cured in a subsequent process to become an elastomer. Can be mentioned.
[0023]
Next, a procedure for attaching the semiconductor device cooling mechanism 10 to the semiconductor device 40 configured as described above will be described.
[0024]
First, as shown in FIGS. 1 and 2, an appropriate amount of a heat conductive material 50 is applied to a substantially central portion of the mounting surface 14 of the semiconductor device cooling mechanism 10. Next, the semiconductor device 40 and the semiconductor device cooling mechanism 10 are aligned so that the through holes 44a to 44d of the semiconductor device 40 and the screw holes 16a to 16d of the semiconductor device cooling mechanism 10 are aligned. Then, the screws 60 are respectively screwed into the screw holes 16a to 16d through the through holes 44a to 44d of the semiconductor device 40, and the semiconductor device 40 and the semiconductor device cooling mechanism 10 are joined (state of FIG. 3). .
[0025]
At the time of joining, the thermally conductive material 50 applied to the substantially central portion of the mounting surface 14 is moved from the central portion to the periphery on the mounting surface 14 as the semiconductor device 40 and the semiconductor device cooling mechanism 10 are pressure-bonded. It diffuses (see arrow in FIG. 1). In this case, since the thermal conductive material 50 is applied in a large amount so as to increase the thermal conductivity, an extra thermal conductive material (also referred to as surplus thermal conductive material) 52 is generated at the time of joining (FIG. 3). reference). However, since this surplus heat conductive material 52 is accommodated in each of the grooves 18a to 18d, it does not flow into the screw holes 16a to 16d. That is, it is possible to easily and reliably prevent the surplus heat conductive material 52 from flowing into the screw holes 16a to 16d without strictly managing the application position and the application amount of the heat conductive material 50. As a result, the screw 60 does not break due to overtightening, and neither loosening nor fatigue failure due to insufficient tightening occurs, and a semiconductor device 40 with excellent quality is obtained and the semiconductor device 40 of the semiconductor device cooling mechanism 10 is obtained. Assembling work can be made more efficient.
[0026]
FIG. 4 shows groove portions 70a to 70d as modified examples of the groove portions 18a to 18d shown in FIGS. The groove portions 70a to 70d are characterized by a first wall portion 72 formed on the screw hole 16a to 16d side and substantially perpendicular to the mounting surface 14, and on the opposite side of the screw holes 16a to 16d. And it is in the point comprised from the 2nd wall part 74 inclined. That is, by configuring in this way, the surplus heat conductive material 52 when the semiconductor device cooling mechanism 10 is screwed to the semiconductor device 40 can be smoothly guided to the grooves 70a to 70d, and the grooves 70a to 70d. It is possible to suitably prevent the surplus heat conductive material 52 that has flowed into 70d from flowing into the screw holes 16a to 16d.
[0027]
Furthermore, the groove portions 70a to 70d shown in FIG. 4 may be groove portions 80a to 80d as shown in FIG. The groove portions 80a to 80d are characterized in that a protruding portion 82 that protrudes toward the second wall portion 74 along the mounting surface 14 is formed on the upper portion of the first wall portion 72 that is formed substantially vertically. That is, by comprising in this way, it can prevent further more that the excess heat conductive material 52 which flowed into the groove parts 80a-80d overflows, and flows into screw hole 16a-16d.
[0028]
FIG. 6 shows a semiconductor device cooling mechanism 90 according to a second embodiment of the present invention. The semiconductor device cooling mechanism 90 is characterized in that the region A on the mounting surface 14 outside the grooves 18a to 18d (the region surrounded by the two-dot chain line in FIG. 1) is more than the region B inside the grooves 18a to 18d. The point is to set the height d low. That is, by comprising in this way, the surplus heat conductive material 52 which flowed into groove part 18a-18d can flow in into screw holes 16a-16d more suitably. The height d may be appropriately selected according to the amount of heat conductive material 50 used.
[0029]
In FIG. 6, the configuration of the second embodiment described above is applied to the configuration of the first embodiment shown in FIGS. 1 to 3, that is, the grooves 18 a to 18 d having a substantially U-shaped cross section. However, it goes without saying that the second embodiment can be applied to the groove portions 70a to 70d shown in FIG. 4 or the groove portions 80a to 80d shown in FIG.
[0030]
7 and 8 show a semiconductor device cooling mechanism 100 according to a third embodiment of the present invention. The semiconductor device cooling mechanism 100 is characterized in that a through hole 102 that penetrates the base portion 12 and communicates with the outside is formed in the groove portions 18a to 18d. That is, by configuring in this way, even if the surplus heat conductive material 52 in an amount exceeding the volume flows into the grooves 18a to 18d, the surplus heat conductive material 52 that has flowed into the through holes 102 Since it is discharged to the outside of the fin portion 20 through the groove portion 18a to 18d, it does not overflow and flow into the screw holes 16a to 16d. In this case, the through hole 102 also functions as an air vent hole for venting air generated on the mounting surface 14 when the semiconductor device cooling mechanism 100 is to be closely attached to the semiconductor device 40 and assembled. Further, the through hole 102 can contribute to heat exchange with the outside during the operation of the semiconductor device 40.
[0031]
7 and 8, the configuration of the third embodiment described above is replaced with the configuration of the first embodiment shown in FIGS. 1 to 3, that is, the grooves 18 a to 18 d having a substantially U-shaped cross section. In the third embodiment, the groove portions 70a to 70d shown in FIG. 4, the groove portions 80a to 80d shown in FIG. 5, or the semiconductor device cooling mechanism 90 shown in FIG. Needless to say, the present invention can be applied to the embodiment.
[0032]
A semiconductor device cooling mechanism 110 according to a fourth embodiment of the present invention is shown in FIG. The semiconductor device cooling mechanism 110 is characterized in that the grooves 18a to 18d are not individually provided as in the semiconductor device cooling mechanism 10 of the first embodiment shown in FIGS. The entire region where the conductive material 50 is applied (see FIG. 9) is surrounded by the groove 112. In this case, the depth of the groove 112 may be the same as the grooves 18a to 18d or may be shallower in some cases. With this configuration, even when the heat conductive material 50 is applied to the mounting surface 14 in a large amount, the surplus heat conductive material 52 does not leak to the outside of the semiconductor device cooling mechanism 110. The groove 112 is accommodated. Therefore, the trouble of wiping off the excess heat conductive material 52 leaked to the outside of the semiconductor device cooling mechanism 110 does not occur.
[0033]
In addition, the shape of the groove part 112 of 4th Embodiment demonstrated above can also be made into the groove part shape shown in FIG. 4 or FIG. Furthermore, the fourth embodiment can be used in appropriate combination with the configuration of the second embodiment or the third embodiment.
[0034]
【The invention's effect】
As described above, according to the present invention, when the semiconductor device cooling mechanism is screwed to the semiconductor device, a part of the thermally conductive material interposed therebetween is formed around the screw hole. It is accommodated in the groove and does not flow into the screw hole. That is, it is possible to easily and reliably prevent the heat conductive material from flowing into the screw hole without strictly managing the application position and the application amount of the heat conductive material. As a result, the screw will not break due to excessive tightening, and it will not cause looseness or fatigue failure due to insufficient tightening, and a semiconductor device with excellent quality will be obtained and the semiconductor device cooling mechanism will be assembled to the semiconductor device. Work can be made efficient.
[Brief description of the drawings]
FIG. 1 is a perspective view illustrating a configuration of a cooling mechanism for a semiconductor device according to a first embodiment of the present invention and a bonding relationship between the cooling mechanism for a semiconductor device and a semiconductor device to be cooled.
2 is a longitudinal sectional view taken along the line II-II of the cooling mechanism for a semiconductor device shown in FIG. 1, and shows a state in which a heat conductive material is applied to a substantially central portion of a mounting surface.
3 is a longitudinal sectional view taken along the line II-II of the semiconductor device cooling mechanism shown in FIG. 1, and shows a state in which the semiconductor device cooling mechanism and the semiconductor device are screwed together.
4 is a partial longitudinal sectional view of a cooling mechanism for a semiconductor device, illustrating a structure of a modified example of the groove shown in FIGS. 1 to 3; FIG.
5 is a partial longitudinal sectional view of a cooling mechanism for a semiconductor device, illustrating a structure of a modified example of the groove portion shown in FIG. 4. FIG.
FIG. 6 is a partial vertical cross-sectional view illustrating the main structure of a cooling mechanism for a semiconductor device according to a second embodiment of the present invention.
FIG. 7 is a partial plan view for explaining a main structure of a cooling mechanism for a semiconductor device according to a third embodiment of the present invention.
8 is a longitudinal sectional view taken along line VII-VII of the semiconductor device cooling mechanism shown in FIG. 7;
FIG. 9 is a plan view illustrating the shape of a groove of a semiconductor device cooling mechanism according to a fourth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10, 90, 100, 110 ... Semiconductor device cooling mechanism 12 ... Base part 14 ... Mounting surface 16a-16d ... Screw hole 18a-18d, 70a-70d, 80a-80d, 112 ... Groove part 20 ... Fin part 40 ... Semiconductor device 42 ... Heat spreader 44a-44d ... Through hole 50 ... Thermally conductive material 52 ... Excess thermal conductive material 60 ... Screw 72 ... First wall part 74 ... Second wall part 82 ... Protruding part 102 ... Through hole

Claims (6)

ペースト状の熱伝導性材料を介して発熱体である半導体デバイスに取り付けられるベース部と、該ベース部と一体的に形成され、前記熱伝導性材料及び前記ベース部を介して伝導した前記半導体デバイスの熱を空気中に放出するフィン部とから構成される半導体デバイス用冷却機構において、
前記ベース部は、
前記フィン部が形成される面と反対側の面であって、前記半導体デバイスとの間で前記熱伝導性材料が塗布される取付面と、
前記半導体デバイス用冷却機構を前記半導体デバイスに固定するための螺子穴と、
少なくとも前記螺子穴の周囲に形成され、前記熱伝導性材料の一部が前記螺子穴に流入するのを防ぐための溝部と、
を備えることを特徴とする半導体デバイス用冷却機構。
A base portion attached to a semiconductor device as a heating element via a paste-like heat conductive material, and the semiconductor device formed integrally with the base portion and conducted via the heat conductive material and the base portion In a cooling mechanism for a semiconductor device composed of fins that release heat of air into the air,
The base portion is
A mounting surface on which the thermally conductive material is applied between the semiconductor device and the surface opposite to the surface on which the fin portion is formed;
A screw hole for fixing the semiconductor device cooling mechanism to the semiconductor device;
A groove portion that is formed at least around the screw hole and prevents a part of the thermally conductive material from flowing into the screw hole;
A cooling mechanism for semiconductor devices, comprising:
請求項1記載の半導体デバイス用冷却機構において、
前記溝部は、前記螺子穴側に形成され且つ前記取付面に対して略垂直に形成される第1壁部と、前記螺子穴側とは反対側に形成され且つ傾斜した第2壁部とからなることを特徴とする半導体デバイス用冷却機構。
The cooling mechanism for a semiconductor device according to claim 1,
The groove portion includes a first wall portion formed on the screw hole side and substantially perpendicular to the mounting surface, and a second wall portion formed on the side opposite to the screw hole side and inclined. A cooling mechanism for a semiconductor device.
請求項2記載の半導体デバイス用冷却機構において、
前記第1壁部の上部に前記取付面に沿って前記第2壁部側に延在する突出部を形成することを特徴とする半導体デバイス用冷却機構。
The cooling mechanism for a semiconductor device according to claim 2,
A cooling mechanism for a semiconductor device, wherein a protruding portion extending toward the second wall portion along the mounting surface is formed on an upper portion of the first wall portion.
請求項1〜3のいずれか1項に記載の半導体デバイス用冷却機構において、
前記取付面における前記溝部で囲まれた領域の高さを前記取付面における前記熱伝導性材料が塗布される領域の高さよりも高く設定することを特徴とする半導体デバイス用冷却機構。
In the cooling mechanism for semiconductor devices according to any one of claims 1 to 3,
A cooling mechanism for a semiconductor device, characterized in that a height of a region surrounded by the groove portion on the mounting surface is set higher than a height of a region on the mounting surface to which the heat conductive material is applied.
請求項1〜4のいずれか1項に記載の半導体デバイス用冷却機構において、
前記溝部の底部には、前記ベース部を貫通してフィン部側から外部に連通する貫通孔が形成されることを特徴とする半導体デバイス用冷却機構。
In the cooling mechanism for a semiconductor device according to any one of claims 1 to 4,
A cooling mechanism for a semiconductor device, wherein a through-hole penetrating the base portion and communicating from the fin portion side to the outside is formed at a bottom portion of the groove portion.
請求項1〜5のいずれか1項に記載の半導体デバイス用冷却機構において、
前記溝部は、前記取付面における前記熱伝導性材料が塗布される領域全体を囲繞することを特徴とする半導体デバイス用冷却機構。
In the cooling mechanism for a semiconductor device according to any one of claims 1 to 5,
The said groove part surrounds the whole area | region where the said heat conductive material is applied in the said attachment surface, The cooling mechanism for semiconductor devices characterized by the above-mentioned.
JP2003167998A 2003-06-12 2003-06-12 Cooling mechanism for semiconductor device Pending JP2005005519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003167998A JP2005005519A (en) 2003-06-12 2003-06-12 Cooling mechanism for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003167998A JP2005005519A (en) 2003-06-12 2003-06-12 Cooling mechanism for semiconductor device

Publications (1)

Publication Number Publication Date
JP2005005519A true JP2005005519A (en) 2005-01-06

Family

ID=34093632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003167998A Pending JP2005005519A (en) 2003-06-12 2003-06-12 Cooling mechanism for semiconductor device

Country Status (1)

Country Link
JP (1) JP2005005519A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269639A (en) * 2005-03-23 2006-10-05 Denso Corp Heat radiating device and on-vehicle electronic equipment
JP2006294918A (en) * 2005-04-12 2006-10-26 Mitsubishi Electric Corp Inverter
JP2011086666A (en) * 2009-10-13 2011-04-28 Denso Corp Cooling device and onboard electronic device
JP2013118353A (en) * 2011-10-31 2013-06-13 Rohm Co Ltd Semiconductor device
JP2013138113A (en) * 2011-12-28 2013-07-11 Toyota Motor Corp Cooling structure
JP2014120576A (en) * 2012-12-14 2014-06-30 Nec Computertechno Ltd Cooling device, electronic apparatus comprising the same, and cooling method
JP2016127050A (en) * 2014-12-26 2016-07-11 株式会社デンソー Electronic equipment and driving device using the same
JP2019201120A (en) * 2018-05-17 2019-11-21 株式会社オートネットワーク技術研究所 Circuit device
JP6815562B1 (en) * 2019-12-02 2021-01-20 三菱電機株式会社 heatsink

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269639A (en) * 2005-03-23 2006-10-05 Denso Corp Heat radiating device and on-vehicle electronic equipment
JP2006294918A (en) * 2005-04-12 2006-10-26 Mitsubishi Electric Corp Inverter
JP2011086666A (en) * 2009-10-13 2011-04-28 Denso Corp Cooling device and onboard electronic device
JP2013118353A (en) * 2011-10-31 2013-06-13 Rohm Co Ltd Semiconductor device
JP2013138113A (en) * 2011-12-28 2013-07-11 Toyota Motor Corp Cooling structure
JP2014120576A (en) * 2012-12-14 2014-06-30 Nec Computertechno Ltd Cooling device, electronic apparatus comprising the same, and cooling method
JP2016127050A (en) * 2014-12-26 2016-07-11 株式会社デンソー Electronic equipment and driving device using the same
JP2019201120A (en) * 2018-05-17 2019-11-21 株式会社オートネットワーク技術研究所 Circuit device
CN112106454A (en) * 2018-05-17 2020-12-18 株式会社自动网络技术研究所 Circuit arrangement
CN112106454B (en) * 2018-05-17 2023-08-29 株式会社自动网络技术研究所 Circuit arrangement
JP6815562B1 (en) * 2019-12-02 2021-01-20 三菱電機株式会社 heatsink
WO2021111493A1 (en) * 2019-12-02 2021-06-10 三菱電機株式会社 Heat sink
US11488885B2 (en) 2019-12-02 2022-11-01 Mitsubishi Electric Corporation Heat sink

Similar Documents

Publication Publication Date Title
JP6060553B2 (en) Semiconductor device
JP4533152B2 (en) Semiconductor device
US7551439B2 (en) Fluid cooled electronic assembly
US7274105B2 (en) Thermal conductive electronics substrate and assembly
US7439617B2 (en) Capillary underflow integral heat spreader
JP3644428B2 (en) Power module mounting structure
US11129310B2 (en) Semiconductor module, vehicle and manufacturing method
KR101030939B1 (en) Heat dissipation apparatus
JP7284566B2 (en) semiconductor equipment
JP5875467B2 (en) Power semiconductor device
JP2006303290A (en) Semiconductor device
JP2003324173A (en) Cooling device for semiconductor element
JP2007067258A (en) Cooler and power module
JP4600199B2 (en) Cooler and power module
KR20190136915A (en) Electronics cold plate
JP2005191502A (en) Electronic part cooling device
KR20130049739A (en) Power semiconductor module cooling apparatus
JP2005005519A (en) Cooling mechanism for semiconductor device
JP2004072106A (en) Adjustable pedestal thermal interface
JP5301497B2 (en) Semiconductor device
JP7205662B2 (en) semiconductor module
JP2004247684A (en) Heat sink and heat radiating device
JP2000332171A (en) Heat dissipation structure of heat generating element and module having that structure
JP7367394B2 (en) Semiconductor module, vehicle and manufacturing method
CN211404486U (en) Radiator for IC component and IC radiating assembly