JP2005005000A - Proton conductive film for fuel cell, and its manufacturing method - Google Patents

Proton conductive film for fuel cell, and its manufacturing method Download PDF

Info

Publication number
JP2005005000A
JP2005005000A JP2003164230A JP2003164230A JP2005005000A JP 2005005000 A JP2005005000 A JP 2005005000A JP 2003164230 A JP2003164230 A JP 2003164230A JP 2003164230 A JP2003164230 A JP 2003164230A JP 2005005000 A JP2005005000 A JP 2005005000A
Authority
JP
Japan
Prior art keywords
proton
thin film
plasma treatment
fuel cell
proton conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003164230A
Other languages
Japanese (ja)
Inventor
Hideomi Koinuma
秀臣 鯉沼
Takeshi Terajima
岳史 寺島
Shuichiro Matsumoto
修一郎 松本
Harukazu Shimizu
治和 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Tokyo Institute of Technology NUC
Original Assignee
Sekisui Chemical Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Tokyo Institute of Technology NUC filed Critical Sekisui Chemical Co Ltd
Priority to JP2003164230A priority Critical patent/JP2005005000A/en
Publication of JP2005005000A publication Critical patent/JP2005005000A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a proton conductive film (proton conductive film for a fuel cell) by a simple treatment process in a short time as compared with a conventional chemical treatment. <P>SOLUTION: This proton conductive film for a fuel cell is formed of a film formed by introducing a proton dissociative group into carbon atoms constituting fullerene molecules having a proton conductivity by an ordinary-pressure discharge plasma treatment. Its manufacturing method is also provided. This application also includes: a proton conductive film for a fuel cell formed of a film formed by applying wettability improvement by the same ordinary-pressure discharge plasma treatment as a preprocess for introducing the proton dissociative group; and its manufacturing method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用プロトン伝導性膜及びその製造方法に関し、特に、化学処理に比べて、短時間でかつ簡易に作製し得る、燃料電池の電解質で使用可能なプロトン伝導膜及びその製造方法に関する。
【0002】
【従来の技術】
従来の技術には、例えば、特許文献1(特開2002−42832号公報)に記載の「電気化学デバイス及びその製造方法」のように、水素ガスを燃料とする燃粁電池に、フラーレン誘導体をプロトン伝導体として用い、デパイス全体の軽量化,筒素化,小型化を図った電気化学デパイス及びその製造方法が提案されている。
この特許文献1には、フラーレンに、プロトン解離性の基である、−OH,−OSOH,−COOH,−SOH,−OPO(OH)のいずれかの基を、フラーレン分子を構成する炭素原子に化学処理で導入して作製したプロトン伝導体が記載されている。一例にポリ水酸化フラーレンの生成が記載されているが、この生成プロセスの時間を合計すると、最低4日はかかってしまい、長時間を要するという欠点を有している。また、生成プロセスが何工程もあり複雑であるという問題点を有している。
【0003】
【特許文献1】
特開2002−42832号公報
【0004】
【発明が解決しようとする課題】
本発明は、前記欠点,問題点に鑑み成されたものであって、本発明が解決しようとする課題は、より短時間に、より簡易な処理過程でプロトン伝導性膜(燃料電池用プロトン伝導性膜)を作製することである。
【0005】
【課題を解決するための手段】
上記課題を解決するため、本発明に係る燃料電池用プロトン伝導性膜は、「常圧放電プラズマ処理により、フラーレン分子を構成する炭素原子にプロトン解離性の官能基が導入されたプロトン伝導性を有する膜からなる」ことを特徴とし(請求項1)、その製造方法として、「フラーレン分子を構成する炭素原子に常圧放電プラズマ処理を施し、該炭素原子にプロトン解離性の官能基を導入する」ことを特徴とする(請求項3)。
【0006】
このように、フラーレン分子を構成する炭素原子にプロトン解離性の官能基を導入する手段として“常圧放電プラズマ処理”を採用することで、従来の化学処理に比して、短時間でかつ簡易に、燃料電池用プロトン伝導性膜を作製することができる。
【0007】
また、本発明に係る燃料電池用プロトン伝導性膜は、「常圧放電プラズマ処理によって濡れ性を向上させたフラーレン薄膜に、常圧放電プラズマ処理により、該フラーレン薄膜を構成する炭素原子にプロトン解離性の官能基が導入されたプロトン伝導性を有する薄膜からなる」ことを特徴とし(請求項2)、その製造方法として、「フラーレン薄膜を作製する第1工程、前記薄膜に常圧放電プラズマ処理を施し、前記薄膜の濡れ性を向上させる第2工程、前記濡れ性が向上したフラーレン薄膜に常圧放電プラズマ処理を施し、該薄膜を構成する炭素原子にプロトン解離性の官能基を導入する第3工程よりなる」ことを特徴とする(請求項4)。
【0008】
このように、“常圧放電プラズマ処理”による「プロトン解離性基の導入」の前処理として、同じく“常圧放電プラズマ処理”による「濡れ性の向上処理」を施すことで、すなわち、前処理(濡れ性の向上処理)を行った後に「プロトン解離性基の導入」を行うことで、前処理を行わない場合よりも、より多くのプロトン解離性基を導入することができる。
【0009】
【発明の実施の形態】
以下に、本発明の実施の形態について説明する。
本発明において、プロトン解離性の官能基(以下“プロトン解離性基”という)の導入対象となる母体としての“フラーレン分子”としては、公知のC36,C60,C70,C76,C78,C80,C82,C84などの単体、または、これらの2種以上の混合物(前掲の特許文献1参照)を挙げることができる。
また、上記プロトン解離性基としては、−OH,−OSOH,−COOH,−SOH,−OPO(OH)を挙げることができ、いずれも本発明に包含されるものである。
【0010】
本発明は、“プロトン解離性基の導入”、及び、その前処理としての“濡れ性の向上処理”を施す手段として「常圧放電プラズマ処理」を採用することを特徴とする。この常圧放電プラズマ処理としては、周期表第0族に属する希ガス類元素ガス、あるいは、これらの混合ガスを用いて発生させたプラズマで処理することが好ましい。このようなプラズマ処理により、所望の処理効果を安定的に得ることができる。
【0011】
本発明において、上記希ガス類元素の種類については、特に限定するものではないが、ヘリウムまたはアルゴンが好ましい。より好ましくは、ヘリウム−アルゴン混合ガスを用いて発生させたプラズマで処理する場合である。この際の混合比率は、50:1〜1:50が好ましく、より好ましくは5:1〜1:5である。なお、ヘリウム単独使用では、濡れ性向上がアルゴンに比べて劣り、一方、アルゴン単独使用では、濡れ性向上は大きいけれども、ガス温度が上がりすぎて、プラズマが安定しにくい傾向にある。
【0012】
本発明において、プラズマ処理をする際は、アーク放電が起こらない条件でなければならない。その理由は、被処理材であるフラーレン薄膜がアーク放電にさらされると、蒸発してしまうからである。なお、上記常圧放電プラズマ処理で使用する装置としては、トーチタイプ,平行平板型,リモート型などのプラズマ発生装置を任意に使用することができる。
【0013】
ここで、本発明の好ましい実施の形態について説明すると、まず、フラーレン薄膜を作製し、次に、このフラーレン薄膜に、ヘリウム−アルゴン混合ガスの常圧放電プラズマ処理を施して、該薄膜の濡れ性を向上させ、さらに過酸化水素等の酸を原料として用いたヘリウム−アルゴン混合ガスの常圧放電プラズマ処理を施して、フラーレン薄膜を構成する炭素原子にプロトン解離性基を導入することにより、プロトン伝導性膜を作製する。
得られたプロトン伝導膜は、薄膜であるので、燃料電池の電解質部分を薄くでき、スタックのコンパクト化が見込める作用効果を奏する。また、従来の化学処理を用いるより、短時間で生成可能なので、生産性が向上するという顕著な作用効果が生じるものである。
【0014】
【実施例】
次に、本発明の実施例として、燃料電池用プロトン伝導性膜の製造例を挙げるが、本発明は、以下の記載により限定されるものではない。
【0015】
<薄膜の作製>
まず、C60用原料のフラーレン粉末を用意し、真空蒸着機を用いて薄膜化した。この時、フラーレン粉末は10mgおよび50mg,真空度は10−7Torr、カレントは55Aで、基板にフラーレンが蒸着した。膜厚は、フラーレン粉末を10mg用いた例では約0.12μm、50mg用いた例では約0.20μmであり、蒸着レートは1Å/secであった。(なお、上記基板としては、Pt,Si,石英,カーボンブラックなどの材質からなる基板を使用できるが、本実施例では、29重量%担持カーボンブラックをカーボンペーパー上に平滑に形成した基板を用いた。)
【0016】
得られた薄膜をTEMで分析したところ、非常に結晶性の高いフラーレン薄膜(C60薄膜)であった。また、紫外線吸収スペクトルでも有効な結果が得られた。この紫外線吸収スペクトルの測定結果を図1に示す。C60薄膜の場合、通常、217nm、266nm、339nm、そして、433nmに吸収のピークが出るとされているが、図1から明らかなように、本実施例の前記薄膜(C60薄膜)は、これと矛盾しない結果が得られた。なお、200nm台のピークに関しては、薄膜の厚さが影響していると考えられる。
また、得られた薄膜を質量分析装置にかけた。その結果、C60の分子量である“720”に大きなピークがあることを確認した。
【0017】
<簿膜の濡れ性向上手段:常圧放電プラズマ処理>
本発明では、燃料電池の電解質に利用できる薄膜を作製するために、OH基等のプロトン解離基を導入する必要があるが、本実施例では、このプロトン解離基導入に先立って、つまり、その前処理として、前記薄膜(C60薄膜)に常圧放電プラズマ処理を施し、該薄膜の濡れ性を向上させた。この常圧放電プラズマ処理に、図2に示す装置(常圧放電プラズマ装置)を使用した。図中、1は高周波電源、2はガス導入路、3,4は電極、5はフラーレン薄膜、6は基板、7はプラズマである。
【0018】
本実施例では、高周波電源1に13.56MHzのRF電源を用い、50Wのパワーでプラズマ7を発生させた。常圧プラズマの発生には、HeガスとArガスの混合ガスを用い(それぞれ50sccm)、フラーレン薄膜5との距離を1mmとし、アフターグロー放電領域にさらした。反応時間は30秒とした。この処理でフラーレン薄膜5の濡れ性が向上した。
【0019】
<プロトン解離基導入手段:常圧放電プラズマ処理>
前記“濡れ性が向上したフラーレン薄膜”に、前掲の図2に示す常圧放電プラズマ装置を用いて、前記した前処理と同じプラズマ条件で、プロトン解離基(OH基)を導入した。
すなわち、まず、前処理で濡れ性を向上させた前記フラーレン簿膜の表面に、過酸化水素を表面に噴霧した。その直後から図2に示す装置(常圧放電プラズマ装置)で処理した。プラズマ条件は、前記と同様とし、そして、基板6を動かし、トータル10分で全面に処理した。
【0020】
その後、処理したサンプル(フラーレンプラズマ処理膜)の赤外吸収スペクトルの測定を行い、OH基の存在を確認した。図3に赤外吸収スペクトルの測定結果を示す。なお、図3に、前記<薄膜の作製>で得られた「フラーレン薄膜(C60薄膜)」に対する赤外吸収スペクトルの測定結果も併記した。
図3から明らかなように、前記サンプル(フラーレンプラズマ処理膜)では、3200〜3600nmにOH基のプロードのピークが確認できた。
【0021】
また、前記サンプル(フラーレンプラズマ処理膜)のプロトン伝導度を測定した。この測定は、基板が燃科電池で使用可能な拡散層付きの電極(2.2cm角のカーボン系の材料)であり、もう一方を同素材の電極で挟み、回路を組んで、水素ガス募囲気下で複素インピーダンスを測定し、その後、プロトン伝導度を算出した。なお、複素インピーダンスの測定には、日置電機株式会社製の3522−50LCRハイテスタ(電気化学仕様)を用いた。また、0.1Hz〜100kHzまでの測定を25℃で行った。
図4に、複素インピーダンスの測定結果を示す。この測定結果およびフラーレンプラズマ処理膜のサイズから、プロトン伝導度は“8.0×10−5S/cm”であった。
【0022】
なお、本実施例では、過酸化水素を用い、プロトン解離基としてOH基を導入する例を挙げているが、本発明は、この基のみに限定されるものではなく、プロトン解離基であれば、他の基でも問題なく適用することができる。
例えば、硫酸を用いて“−OSOH”または“−SOH”を、酢酸を用いて“−COOH”を、リン酸を用いて“−OPO(OH)”を導入することもできる。なお、これらのプロトン解離基を導入する際のプラズマ条件は、前記実施例のOH基導入の場合と同一である。
【0023】
【発明の効果】
本発明は、以上詳記したとおり、常圧放電プラズマ処理により、フラーレン分子を構成する炭素原子にプロトン解離性基が導入されたプロトン伝導性を有する膜からなる燃料電池用プロトン伝導性膜、および、その製造方法を特徴とする。このように、プロトン解離性基を導入する手段として“常圧放電プラズマ処理”を採用することで、従来の化学処理に比して、短時間でかつ簡易に作製することができる。
【図面の簡単な説明】
【図1】紫外線吸収スペクトルの測定結果を示す図である。
【図2】常圧放電プラズマ装置を示す図である。
【図3】赤外吸収スペクトルの測定結果を示す図である。
【図4】複素インピーダンスの測定結果を示す図である。
【符号の説明】
1 高周波電源
2 ガス導入路
3,4 電極
5 プラーレン薄膜
6 基板
7 プラズマ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a proton conductive membrane for a fuel cell and a method for producing the same, and more particularly to a proton conductive membrane usable in an electrolyte of a fuel cell and a method for producing the same that can be produced in a short time and easily compared to chemical treatment. About.
[0002]
[Prior art]
Conventional techniques include, for example, a fullerene derivative in a fuel cell using hydrogen gas as a fuel, as in “Electrochemical device and manufacturing method thereof” described in Patent Document 1 (Japanese Patent Laid-Open No. 2002-42832). There has been proposed an electrochemical device which is used as a proton conductor to reduce the weight of the device as a whole, to form a cylinder, and to be miniaturized, and a manufacturing method thereof.
In this Patent Document 1, any one of —OH, —OSO 3 H, —COOH, —SO 3 H, —OPO (OH) 3 , which is a proton dissociable group, is added to fullerene, and a fullerene molecule is added. A proton conductor prepared by introducing a chemical treatment into constituting carbon atoms is described. In one example, the production of polyhydroxyl fullerene is described. However, when the time of this production process is summed up, it takes at least 4 days and has a disadvantage that it takes a long time. In addition, there is a problem that the generation process is complicated with many steps.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-42832
[Problems to be solved by the invention]
The present invention has been made in view of the above drawbacks and problems, and the problem to be solved by the present invention is that a proton conductive membrane (proton conductivity for a fuel cell) can be obtained in a shorter time and in a simpler process. A conductive film).
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the proton conductive membrane for a fuel cell according to the present invention has a proton conductivity in which a proton dissociative functional group is introduced into a carbon atom constituting a fullerene molecule by atmospheric pressure plasma treatment. (Claim 1), and as a method for producing the same, "atmospheric pressure discharge plasma treatment is performed on carbon atoms constituting the fullerene molecule, and proton-dissociative functional groups are introduced into the carbon atoms." (Claim 3).
[0006]
In this way, by adopting “atmospheric pressure plasma treatment” as a means of introducing proton-dissociable functional groups into carbon atoms constituting the fullerene molecule, it is simpler and quicker than conventional chemical treatment. In addition, a proton conductive membrane for a fuel cell can be produced.
[0007]
In addition, the proton conductive membrane for a fuel cell according to the present invention includes a “fullerene thin film having improved wettability by atmospheric pressure plasma treatment, and a proton dissociation to carbon atoms constituting the fullerene thin film by atmospheric pressure plasma treatment. A thin film having proton conductivity into which a functional group is introduced ”(Claim 2), and a manufacturing method thereof is as follows:“ First step of producing a fullerene thin film, atmospheric pressure discharge plasma treatment on the thin film ” A second step of improving the wettability of the thin film, applying a normal pressure discharge plasma treatment to the fullerene thin film with improved wettability, and introducing a proton dissociative functional group into carbon atoms constituting the thin film It consists of three steps "(claim 4).
[0008]
In this way, as the pretreatment of “introduction of proton dissociable groups” by “normal pressure discharge plasma treatment”, “prevention of wettability” by “normal pressure discharge plasma treatment” is also performed, that is, pretreatment By performing “introduction of proton-dissociable groups” after performing (wetting improvement treatment), more proton-dissociable groups can be introduced than when no pretreatment is performed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
In the present invention, as a “fullerene molecule” as a base to which a proton dissociable functional group (hereinafter referred to as “proton dissociable group”) is introduced, known C36, C60, C70, C76, C78, C80, C82 are known. , C84, etc., or a mixture of two or more thereof (see the above-mentioned Patent Document 1).
Examples of the proton dissociable group include —OH, —OSO 3 H, —COOH, —SO 3 H, and —OPO (OH) 3 , all of which are included in the present invention.
[0010]
The present invention is characterized by adopting “atmospheric discharge plasma treatment” as means for performing “introduction of proton-dissociable group” and “wetting improvement treatment” as pretreatment thereof. As the atmospheric pressure discharge plasma treatment, it is preferable to perform treatment with a plasma generated using a rare gas element gas belonging to Group 0 of the periodic table or a mixed gas thereof. By such plasma treatment, a desired treatment effect can be stably obtained.
[0011]
In the present invention, the kind of the rare gas element is not particularly limited, but helium or argon is preferable. More preferably, the treatment is performed with plasma generated using a helium-argon mixed gas. In this case, the mixing ratio is preferably 50: 1 to 1:50, more preferably 5: 1 to 1: 5. When helium alone is used, the wettability improvement is inferior to that of argon. On the other hand, when argon alone is used, the wettability improvement is large, but the gas temperature is too high and the plasma tends to be difficult to stabilize.
[0012]
In the present invention, the plasma treatment must be performed under conditions that do not cause arc discharge. The reason is that the fullerene thin film as the material to be treated evaporates when exposed to arc discharge. In addition, as an apparatus used by the said atmospheric pressure plasma treatment, plasma generators, such as a torch type, a parallel plate type, and a remote type, can be used arbitrarily.
[0013]
Here, a preferred embodiment of the present invention will be described. First, a fullerene thin film is produced, and then the fullerene thin film is subjected to a normal-pressure discharge plasma treatment of a helium-argon mixed gas to thereby wett the thin film. Proton dissociation groups are introduced into carbon atoms constituting the fullerene thin film by applying atmospheric pressure discharge plasma treatment of a helium-argon mixed gas using an acid such as hydrogen peroxide as a raw material. A conductive film is produced.
Since the obtained proton conducting membrane is a thin film, the electrolyte part of the fuel cell can be made thin, and the effect of expecting a compact stack can be obtained. Moreover, since it can produce | generate in a short time rather than using the conventional chemical process, the remarkable effect that productivity improves is produced.
[0014]
【Example】
Next, although the manufacture example of the proton conductive membrane for fuel cells is given as an Example of this invention, this invention is not limited by the following description.
[0015]
<Preparation of thin film>
First, a C60 raw material fullerene powder was prepared and thinned using a vacuum vapor deposition machine. At this time, the fullerene powder was 10 mg and 50 mg, the degree of vacuum was 10 −7 Torr, the current was 55 A, and fullerene was deposited on the substrate. The film thickness was about 0.12 μm in the example using 10 mg of fullerene powder, about 0.20 μm in the example using 50 mg, and the deposition rate was 1 kg / sec. (Note that a substrate made of a material such as Pt, Si, quartz, or carbon black can be used as the substrate. However, in this embodiment, a substrate in which 29% by weight supported carbon black is smoothly formed on carbon paper is used. .)
[0016]
When the obtained thin film was analyzed by TEM, it was a fullerene thin film (C60 thin film) with very high crystallinity. Effective results were also obtained in the ultraviolet absorption spectrum. The measurement result of this ultraviolet absorption spectrum is shown in FIG. In the case of the C60 thin film, absorption peaks are usually observed at 217 nm, 266 nm, 339 nm, and 433 nm. As is clear from FIG. 1, the thin film (C60 thin film) of this example is Consistent results were obtained. In addition, regarding the peak of the 200 nm range, it is thought that the thickness of the thin film influences.
Moreover, the obtained thin film was applied to the mass spectrometer. As a result, it was confirmed that there was a large peak at “720” which is the molecular weight of C60.
[0017]
<Means for improving wettability of book film: atmospheric discharge plasma treatment>
In the present invention, it is necessary to introduce a proton dissociation group such as an OH group in order to produce a thin film that can be used as an electrolyte for a fuel cell. In this example, prior to this proton dissociation group introduction, that is, As a pretreatment, the thin film (C60 thin film) was subjected to an atmospheric discharge plasma treatment to improve the wettability of the thin film. The apparatus (normal pressure discharge plasma apparatus) shown in FIG. 2 was used for this normal pressure discharge plasma treatment. In the figure, 1 is a high-frequency power source, 2 is a gas introduction path, 3 and 4 are electrodes, 5 is a fullerene thin film, 6 is a substrate, and 7 is plasma.
[0018]
In the present embodiment, an RF power source of 13.56 MHz was used as the high frequency power source 1, and the plasma 7 was generated with a power of 50W. For generation of atmospheric pressure plasma, a mixed gas of He gas and Ar gas was used (50 sccm each), the distance from the fullerene thin film 5 was set to 1 mm, and the plasma was exposed to the afterglow discharge region. The reaction time was 30 seconds. This treatment improved the wettability of the fullerene thin film 5.
[0019]
<Proton dissociation group introduction means: atmospheric pressure discharge plasma treatment>
Proton dissociation groups (OH groups) were introduced into the “fullerene thin film with improved wettability” using the atmospheric pressure plasma apparatus shown in FIG. 2 under the same plasma conditions as in the pretreatment described above.
That is, first, hydrogen peroxide was sprayed on the surface of the fullerene film whose wettability was improved by pretreatment. Immediately thereafter, treatment was carried out with the apparatus shown in FIG. 2 (atmospheric discharge plasma apparatus). The plasma conditions were the same as described above, and the substrate 6 was moved and processed over the entire surface in a total of 10 minutes.
[0020]
Thereafter, the infrared absorption spectrum of the treated sample (fullerene plasma treatment film) was measured to confirm the presence of OH groups. FIG. 3 shows the measurement result of the infrared absorption spectrum. In addition, the measurement result of the infrared absorption spectrum with respect to the "fullerene thin film (C60 thin film)" obtained by said <preparation of a thin film> was also written in FIG.
As is clear from FIG. 3, in the sample (fullerene plasma treatment film), a peak of OH group broadening was confirmed at 3200 to 3600 nm.
[0021]
In addition, the proton conductivity of the sample (fullerene plasma treatment membrane) was measured. In this measurement, the substrate is an electrode with a diffusion layer that can be used in a fuel cell (a carbon material of 2.2 cm square), the other is sandwiched between electrodes of the same material, a circuit is assembled, and hydrogen gas is recruited. The complex impedance was measured under ambient conditions, and then the proton conductivity was calculated. The complex impedance was measured using a 3522-50 LCR HiTester (electrochemical specification) manufactured by Hioki Electric Co., Ltd. Further, measurements from 0.1 Hz to 100 kHz were performed at 25 ° C.
FIG. 4 shows the measurement result of the complex impedance. From the measurement result and the size of the fullerene plasma treatment film, the proton conductivity was “8.0 × 10 −5 S / cm”.
[0022]
In this example, hydrogen peroxide is used and an OH group is introduced as a proton dissociation group. However, the present invention is not limited to this group, and any proton dissociation group may be used. Other groups can be applied without problems.
For example, “—OSO 3 H” or “—SO 3 H” can be introduced using sulfuric acid, “—COOH” can be introduced using acetic acid, and “—OPO (OH) 3 ” can be introduced using phosphoric acid. . The plasma conditions for introducing these proton dissociation groups are the same as those in the case of introducing OH groups in the above-described embodiment.
[0023]
【The invention's effect】
As described in detail above, the present invention provides a proton conductive membrane for a fuel cell comprising a proton conductive membrane in which a proton dissociable group is introduced into a carbon atom constituting a fullerene molecule by atmospheric pressure plasma treatment, and And its manufacturing method. As described above, by adopting “atmospheric discharge plasma treatment” as a means for introducing a proton dissociable group, it can be produced in a shorter time and more easily than conventional chemical treatment.
[Brief description of the drawings]
FIG. 1 is a diagram showing the measurement results of an ultraviolet absorption spectrum.
FIG. 2 is a view showing an atmospheric discharge plasma apparatus.
FIG. 3 is a diagram showing a measurement result of an infrared absorption spectrum.
FIG. 4 is a diagram showing measurement results of complex impedance.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High frequency power supply 2 Gas introduction path 3, 4 Electrode 5 Fullerene thin film 6 Substrate 7 Plasma

Claims (6)

常圧放電プラズマ処理により、フラーレン分子を構成する炭素原子にプロトン解離性の官能基が導入されたプロトン伝導性を有する膜からなることを特徴とする燃料電池用プロトン伝導性膜。A proton conductive membrane for a fuel cell comprising a proton conductive membrane in which a proton dissociative functional group is introduced into a carbon atom constituting a fullerene molecule by atmospheric pressure discharge plasma treatment. 常圧放電プラズマ処理によって濡れ性を向上させたフラーレン薄膜に、常圧放電プラズマ処理により、該フラーレン薄膜を構成する炭素原子にプロトン解離性の官能基が導入されたプロトン伝導性を有する薄膜からなることを特徴とする燃料電池用プロトン伝導性膜。A fullerene thin film whose wettability is improved by atmospheric pressure plasma treatment, and a proton conductive thin film in which proton dissociative functional groups are introduced into carbon atoms constituting the fullerene thin film by atmospheric pressure plasma treatment. A proton conductive membrane for a fuel cell. 前記常圧放電プラズマ処理は、周期表第0族に属する希ガス類元素ガス、あるいは、これらの混合ガスを用いて発生させたプラズマで処理することを特徴とする請求項1または請求項2に記載の燃料電池用プロトン伝導性膜。The said atmospheric pressure plasma treatment is processed with the plasma generated using the noble gas element gas which belongs to periodic table group 0, or these mixed gas, The Claim 1 or Claim 2 characterized by the above-mentioned. Proton conducting membrane for fuel cells. フラーレン分子を構成する炭素原子に常圧放電プラズマ処理を施し、該炭素原子にプロトン解離性の官能基を導入することを特徴とする燃料電池用プロトン伝導性膜の製造方法。A method for producing a proton conductive membrane for a fuel cell, comprising subjecting a carbon atom constituting a fullerene molecule to atmospheric pressure discharge plasma treatment and introducing a proton dissociative functional group into the carbon atom. フラーレン薄膜を作製する第1工程、前記薄膜に常圧放電プラズマ処理を施し、前記薄膜の濡れ性を向上させる第2工程、前記濡れ性が向上したフラーレン薄膜に常圧放電プラズマ処理を施し、該薄膜を構成する炭素原子にプロトン解離性の官能基を導入する第3工程、よりなることを特徴とする燃料電池用プロトン伝導性膜の製造方法。A first step of producing a fullerene thin film, a second step of subjecting the thin film to atmospheric pressure plasma treatment to improve wettability of the thin film, and a fullerene thin film having improved wettability to atmospheric pressure discharge plasma treatment, A method for producing a proton conductive membrane for a fuel cell, comprising a third step of introducing a proton dissociative functional group into carbon atoms constituting the thin film. 前記常圧放電プラズマ処理は、周期表第0族に属する希ガス類元素ガス、あるいは、これらの混合ガスを用いて発生させたプラズマで処理することを特徴とする請求項4または請求項5に記載の燃料電池用プロトン伝導性膜の製造方法。The said normal pressure discharge plasma processing is processed with the plasma generated using the noble gas element gas which belongs to periodic table group 0, or these mixed gas, The Claim 4 or Claim 5 characterized by the above-mentioned. A method for producing a proton conductive membrane for a fuel cell.
JP2003164230A 2003-06-09 2003-06-09 Proton conductive film for fuel cell, and its manufacturing method Pending JP2005005000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164230A JP2005005000A (en) 2003-06-09 2003-06-09 Proton conductive film for fuel cell, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164230A JP2005005000A (en) 2003-06-09 2003-06-09 Proton conductive film for fuel cell, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005005000A true JP2005005000A (en) 2005-01-06

Family

ID=34091082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164230A Pending JP2005005000A (en) 2003-06-09 2003-06-09 Proton conductive film for fuel cell, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005005000A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182357A (en) * 2006-01-10 2007-07-19 Nok Corp Aftertreatment method of carbon material thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182357A (en) * 2006-01-10 2007-07-19 Nok Corp Aftertreatment method of carbon material thin film

Similar Documents

Publication Publication Date Title
JP7156648B2 (en) Carbon nanostructured material and method of forming carbon nanostructured material
Baraket et al. Reduction of graphene oxide by electron beam generated plasmas produced in methane/argon mixtures
JP5463282B2 (en) Method for producing graphene
US20220056599A1 (en) Vertical Branched Graphene
Kumar et al. Enhanced negative ion yields on diamond surfaces at elevated temperatures
TW200927983A (en) Atmospheric pressure plasma processing apparatus
Takabayashi et al. Relationship between the structure and electrical characteristics of diamond-like carbon films
Savastenko et al. Enhanced electrocatalytic activity of CoTMPP-based catalysts for PEMFCs by plasma treatment
JP2005272284A (en) Method for making carbon nanotube and substrate for making carbon nanotube
JP2004217977A (en) Amorphous nitrided carbon film and manufacturing method therefor
JP3662401B2 (en) Insulating material and method for producing the same, method for producing fluorinated fullerene-containing film, semiconductor device and method for producing the same
JP2005005000A (en) Proton conductive film for fuel cell, and its manufacturing method
JP5028593B2 (en) Method for producing transparent conductive film
JP2008239357A (en) Method for manufacturing carbon nanowall
Tang et al. Nonthermal plasma treatment for electrocatalysts structural and surface engineering
JP2000038654A (en) Production of substrate with transparent electrically conductive film, substrate with transparent electrically conductive film and liquid crystal displaying element
TW201100580A (en) A method for forming a fluorocarbon layer using a plasma reaction processs
JP3088784B2 (en) C60 manufacturing method
JP2002141292A (en) Method of manufacturing silicon thin film
WO1998059355A3 (en) Cold cathode and methods for producing the same
Fraih et al. Controlled reduction of graphene oxide via hydrogen plasma for tuning sensitivity and recovery time of rGO based oxygen gas sensor
Li et al. Improvement of vanadium redox flow battery efficiency through carbon felt electrodes modification by atmospheric dielectric barrier discharge
JP3664472B2 (en) Coating processing method and aperture plate
JPH04199828A (en) Manufacture of oxide thin film of high dielectric constant
KR20230146874A (en) Preparing method of polymer membrane for fuel cell, polymer membrane prepared therefrom, and membrane electrode assembly and fuel cell system comprising same