JP2007182357A - Aftertreatment method of carbon material thin film - Google Patents

Aftertreatment method of carbon material thin film Download PDF

Info

Publication number
JP2007182357A
JP2007182357A JP2006002387A JP2006002387A JP2007182357A JP 2007182357 A JP2007182357 A JP 2007182357A JP 2006002387 A JP2006002387 A JP 2006002387A JP 2006002387 A JP2006002387 A JP 2006002387A JP 2007182357 A JP2007182357 A JP 2007182357A
Authority
JP
Japan
Prior art keywords
thin film
carbon
carbon material
material thin
post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006002387A
Other languages
Japanese (ja)
Other versions
JP5050352B2 (en
Inventor
Yoshiaki Maeda
義明 前田
Toru Uda
徹 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2006002387A priority Critical patent/JP5050352B2/en
Publication of JP2007182357A publication Critical patent/JP2007182357A/en
Application granted granted Critical
Publication of JP5050352B2 publication Critical patent/JP5050352B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aftertreatment method of a carbon material thin film formed by an electrodeposition process using a nonaqueous electrodeposition liquid added with a dispersant, by which the resistance value of the film is lowered, and the obtained film is suitably applied to the surface of substrates such as a separator for a polymer electrolyte fuel cell. <P>SOLUTION: This aftertreatment method comprises heat treating a carbon material thin film formed by an electrodeposition process using a nonaqueous electrodeposition liquid added with a dispersant at 200-500°C under an inert gas atmosphere. As the carbon material thin film formed by the electrodeposition process using the nonaqueous liquid added with the dispersant, one obtained by the following process is suitably used: a carbon material is dispersed in a hydrocarbon-based solvent added with a basic polymer type dispersant, electric voltage is applied in the solvent by making a material to be coated as anode, and forming a carbon material thin film on the surface of the anode material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炭素材料薄膜の後処理方法に関する。さらに詳しくは、抵抗値を低下せしめ、固体高分子型燃料電池用セパレータ等の基材表面に好適に適用される炭素材料薄膜の後処理方法に関する。   The present invention relates to a post-treatment method for a carbon material thin film. More specifically, the present invention relates to a post-treatment method for a carbon material thin film that lowers the resistance value and is suitably applied to the surface of a substrate such as a separator for a polymer electrolyte fuel cell.

炭素材料は、電気伝導性、熱伝導性、耐食性、耐熱性、黒色着色性および薬品安定性など多くの面ですぐれた性能を有するため、様々な用途に使用されており、特に耐食性を要する帯電防止材や電磁波シールド材や、電気伝導性および耐食性を有することが必要とされる燃料電池セパレータあるいはリチウム二次電池の負極には、金属材料の使用が難しいため、黒鉛、カーボンブラックまたはカーボンファイバーなどの炭素材料が使用されている。   Carbon materials have excellent performance in many aspects such as electrical conductivity, thermal conductivity, corrosion resistance, heat resistance, black colorability, and chemical stability, so they are used in various applications, especially those that require corrosion resistance. Since it is difficult to use metallic materials for the prevention material, electromagnetic shielding material, fuel cell separators that need to have electrical conductivity and corrosion resistance, or the negative electrode of lithium secondary batteries, graphite, carbon black, carbon fiber, etc. Carbon materials are used.

これらの用途では、樹脂またはゴムなどに導電性フィラーとして炭素材料を添加し、成形する方法や、炭素材料に樹脂またはゴムなどをバインダーとして添加して成形する方法などが一般的に用いられている。一方、対象物の表面のみに炭素材料を薄膜化する方法は、電気特性と強度特性の両特性を満足できることから、特に、表面の電気伝導性や放電性が重要とされる燃料電池セパレータあるいはリチウム二次電池の負極に用いられている。
特開平10−334927号公報
In these applications, a method of forming by adding a carbon material as a conductive filler to a resin or rubber or the like, a method of adding a resin or rubber or the like as a binder to a carbon material, and the like are generally used. . On the other hand, the method of thinning the carbon material only on the surface of the target object can satisfy both the electrical characteristics and the strength characteristics, and therefore, particularly the fuel cell separator or lithium in which the electrical conductivity and discharge characteristics of the surface are important. Used for the negative electrode of secondary batteries.
JP-A-10-334927

炭素材料を薄膜化する方法としては、蒸着法、CND法、スピンコート法、スプレー塗布法、浸漬塗布法、静電塗布法、電着法などが挙げられるが、中でも複雑な形状のものにも膜厚を均一に製膜可能である電着法が有効である。この電着法は、水系電着液と非水系電着液の2種類に分類される。   Examples of methods for thinning a carbon material include vapor deposition, CND, spin coating, spray coating, dip coating, electrostatic coating, and electrodeposition. An electrodeposition method that can form a uniform film thickness is effective. This electrodeposition method is classified into two types, an aqueous electrodeposition liquid and a non-aqueous electrodeposition liquid.

水系の電着法としては、自動車ボディーの下塗り塗装に使用されているカチオン電着塗装が一般的である。これは、電着塗料中に被塗物を浸漬し、被塗物を陰極として対極との間に電流を流し、陰極に塗膜を析出させて製膜する方法であり、この際、電着塗料に炭素材料を分散させておくと、炭素材料は電着塗料に付随して陰極側に移動し、被塗物に複合的に製膜されるというものである。この方法では、電着塗料が分散剤の働きもするため電解液中の炭素材料の分散性が良く、さらには電着塗料の流動速度が大きいため電着量が多く、短時間で製膜できるといった長所があるものの、被塗物表面は電着塗料と炭素材料の複合膜となるため、被塗物表面の炭素密度が低くなるといった欠点がある。
日本接着学会誌 Vol.27、No.9、401頁(1991)
As a water-based electrodeposition method, cationic electrodeposition coating, which is used for undercoating of automobile bodies, is common. This is a method in which an object to be coated is immersed in an electrodeposition coating, an electric current is passed between the object to be coated as a cathode, and a coating film is deposited on the cathode to form a film. When the carbon material is dispersed in the paint, the carbon material moves to the cathode side along with the electrodeposition paint, and is formed into a composite film on the object to be coated. In this method, since the electrodeposition paint also acts as a dispersant, the dispersibility of the carbon material in the electrolytic solution is good, and furthermore, the electrodeposition paint has a large flow rate, so that the amount of electrodeposition is large and a film can be formed in a short time. However, since the surface of the object to be coated is a composite film of an electrodeposition paint and a carbon material, the carbon density of the surface of the object to be coated is low.
Journal of the Adhesion Society of Japan Vol.27, No.9, 401 (1991)

一方、非水系の電着法としては、水系の電着が不可能なアルミニウム材料に関するものが多いものの、炭素材料においてもアセトニトリルとトリエチルアミンなどの低分子量の塩基性化合物からなる溶媒に黒鉛を分散させ、この電着液に被塗物を陽極として浸漬し、対極との間に電流を流し、陽極に黒鉛を析出させ製膜する方法が提案されている。しかるに、本方法においては帯電した黒鉛が電場により移動し析出するため、被塗物表面の炭素密度が高くなるといった長所がある一方で、電着液への黒鉛の分散性が悪く、また黒鉛の泳動速度が遅いため電着量が少なく、製膜に多くの時間を要するといった欠点がある。
表面技術 Vol.53、No.10、685頁(2002)
On the other hand, many non-aqueous electrodeposition methods relate to aluminum materials that cannot be electrodeposited in water, but carbon materials are also dispersed in a solvent composed of a basic compound of low molecular weight such as acetonitrile and triethylamine. A method has been proposed in which an object to be coated is immersed in this electrodeposition liquid as an anode, a current is passed between the electrode and a counter electrode, and graphite is deposited on the anode to form a film. However, in this method, since the charged graphite moves and precipitates due to the electric field, there is an advantage that the carbon density on the surface of the object to be coated is increased. On the other hand, the dispersibility of the graphite in the electrodeposition liquid is poor, and Since the migration speed is slow, the amount of electrodeposition is small, and there is a disadvantage that a long time is required for film formation.
Surface Technology Vol. 53, No. 10, p. 685 (2002)

また、カーボンナノチューブは、優れた電気伝導性と熱伝導性を有し、この特性を活かした様々な応用用途が期待されているが、通常はカーボンナノチューブ同士が絡み合った状態にあるため、薄膜形成が非常に困難であり、薄膜化が難しい材料である。一方で、カーボンナノチューブは高価な材料であるため、少量の使用により効果を発揮させることが求められているのが現状である。   Carbon nanotubes have excellent electrical and thermal conductivity, and are expected to be used in various applications that take advantage of these properties. However, since carbon nanotubes are usually intertwined, thin film formation Is a material that is very difficult to make into a thin film. On the other hand, since the carbon nanotube is an expensive material, it is currently required to exhibit the effect by using a small amount.

かかる要請から、カーボンナノチューブの薄膜化方法として、電場を利用してカーボンナノチューブを製膜することにより行う方法、具体的には、ジメチルホルムアミド溶媒中にカーボンナノチューブを分散させ、この分散溶媒中にて電極に電圧をかけ、陽極側にカーボンナノチューブを吸着させるという方法が提案されている。しかるに、かかる方法ではカーボンナノチューブの分散量が少ないため、結果的に吸着量が少ないといった解決すべき課題が残されている。
特開2005−235425号公報
From such a request, as a method of thinning the carbon nanotube, a method of forming a carbon nanotube using an electric field, specifically, by dispersing the carbon nanotube in a dimethylformamide solvent, A method of applying a voltage to the electrode and adsorbing the carbon nanotube on the anode side has been proposed. However, in this method, since the amount of carbon nanotube dispersion is small, there remains a problem to be solved such that the amount of adsorption is small.
JP 2005-235425 A

また、燃料電池用電極の拡散層(GDL)には、カーボンペーパー、カーボン不織布、カーボン織布などのカーボンシートよりなる多孔質炭素体が基材として使用されており、このような多孔質炭素体基材には、高い導電性と大きな比表面積とが求められている。特に、ガス拡散体としての使用に際しては、ガス拡散体片面側の電解質で発電した電気を、その反対側の面のセパレータに通電する必要があるため導電性にすぐれていることが求められており、ガス拡散体とセパレータの接触面積が大きい程、接触抵抗が小さくなるので好ましいとされる。なお、ガス拡散体では、内部の導電抵抗に比べ、表面の接触抵抗の方が問題になる場合が多い。   In addition, a porous carbon body made of a carbon sheet such as carbon paper, carbon non-woven fabric, or carbon woven fabric is used as a base material for the diffusion layer (GDL) of the fuel cell electrode. The base material is required to have high conductivity and a large specific surface area. In particular, when used as a gas diffuser, it is required that the electricity generated by the electrolyte on one side of the gas diffuser must be passed through the separator on the opposite side, so that it has excellent conductivity. The larger the contact area between the gas diffuser and the separator, the smaller the contact resistance. In the case of a gas diffuser, the surface contact resistance is often more problematic than the internal conductive resistance.

しかしながら、セパレータとの接触面積を大きくする手段として、ガス拡散体の嵩密度を高くすると、ガスの拡散抵抗が大きくなるので好ましくないため、ガス拡散体の密度を小さくし、表面の接触面積を小さくする手段として、ガス拡散体の表面に導電性の多孔質層を別に設けることが行われる。   However, increasing the bulk density of the gas diffuser as a means for increasing the contact area with the separator is not preferable because the gas diffusion resistance increases, so the density of the gas diffuser is decreased and the surface contact area is decreased. As a means to do this, a conductive porous layer is separately provided on the surface of the gas diffuser.

カーボンナノチューブは、すぐれた導電性を有し、比表面積が非常に大きいため、高導電性ならびに大きな比表面積を有する多孔質炭素体材料として非常に有望視されている。しかるに、カーボンナノチューブは、凝集性が非常に強くかつ複雑に絡み合った状態にあり、さらに嵩密度が非常に低いため、単に溶媒中にこれを分散してガス拡散体上に担持させただけでは、カーボンナノチューブ層の均質性が得られず、十分なガス拡散体の抵抗低減効果は得られない。   Since carbon nanotubes have excellent electrical conductivity and a very large specific surface area, they are highly promising as porous carbon body materials having high electrical conductivity and a large specific surface area. However, the carbon nanotubes are in a state where the cohesion is very strong and intricately entangled, and the bulk density is very low, so simply by dispersing this in a solvent and supporting it on the gas diffuser, The homogeneity of the carbon nanotube layer cannot be obtained, and a sufficient resistance reduction effect of the gas diffuser cannot be obtained.

また、樹脂に導電性フィラーを加えた場合、導電性を向上させるために導電性フィラー量を増加させると、樹脂としての特性が失われ、成形性や強度が著しく低下する。一方、導電性フィラー量を少なくすると、所望の電気特性が得られない。樹脂に導電性フィラーを加えて燃料電池用セパレータ等を成形する場合には、このような問題を解決するため、セパレータ内部を高電気抵抗層とし、表面を低電気抵抗層とする提案もみられるが、表面層の厚さをコントロールすることが難しく、抵抗むらを生じ易い。
特開2004−192855号公報
Further, when a conductive filler is added to the resin, if the amount of the conductive filler is increased in order to improve the conductivity, the characteristics as the resin are lost, and the moldability and strength are remarkably lowered. On the other hand, if the amount of the conductive filler is reduced, desired electrical characteristics cannot be obtained. In the case of forming a separator for a fuel cell by adding a conductive filler to the resin, in order to solve such a problem, there is a proposal that the separator has a high electrical resistance layer and the surface has a low electrical resistance layer. It is difficult to control the thickness of the surface layer, and resistance unevenness is likely to occur.
JP 2004-192855 A

本発明の目的は、分散剤を添加した非水系電着液を用いた電着法によって製膜された炭素材料薄膜であって、その抵抗値を低下せしめ、固体高分子型燃料電池用セパレート等の基材表面に好適に適用される炭素材料薄膜の後処理方法を提供することにある。   An object of the present invention is a carbon material thin film formed by an electrodeposition method using a non-aqueous electrodeposition liquid to which a dispersant is added, the resistance value of which is reduced, and a separator for a polymer electrolyte fuel cell, etc. Another object of the present invention is to provide a post-treatment method for a carbon material thin film that is suitably applied to the surface of a substrate.

かかる本発明の目的は、分散剤を添加した非水系電着液を用いた電着法により製膜された炭素材料薄膜を、不活性ガス雰囲気で200〜500℃に加熱処理する炭化水素薄膜の後処理によって達成される。   An object of the present invention is to provide a hydrocarbon thin film obtained by heat-treating a carbon material thin film formed by an electrodeposition method using a non-aqueous electrodeposition liquid to which a dispersant is added at 200 to 500 ° C. in an inert gas atmosphere. Achieved by post-processing.

分散剤を添加した非水系電着液を用いた電着法により製膜された炭素材料薄膜としては、塩基性高分子型分散剤を添加した炭化水素系溶媒中に炭素材料を分散させ、この溶媒中で被被覆材を陽極として電圧を印加し、陽極材表面上に炭素材料薄膜を形成せしめたものが好適に用いられる。   As a carbon material thin film formed by an electrodeposition method using a non-aqueous electrodeposition liquid to which a dispersant is added, a carbon material is dispersed in a hydrocarbon solvent to which a basic polymer type dispersant is added. A material in which a coating material is used as an anode in a solvent and a carbon material thin film is formed on the surface of the anode material is preferably used.

分散剤を添加した非水系電着液を用いた電着法により製膜された炭素材料薄膜、好ましくは塩基性高分子型分散剤を添加した炭化水素系溶媒中に炭素材料を分散させ、この溶媒中で被被覆材を陽極として電圧を印加し、陽極材表面上に炭素材料薄膜を形成せしめたものを、不活性ガス雰囲気中で加熱処理することにより、薄膜中に残存していた分散剤が蒸発・揮散あるいは分解し、薄膜中の炭素材料、好ましくはカーボンナノチューブの濃度を高めるので、薄膜の抵抗値を有効に低下せしめることができる。   The carbon material is dispersed in a carbon material thin film formed by an electrodeposition method using a non-aqueous electrodeposition liquid to which a dispersant is added, preferably a hydrocarbon solvent to which a basic polymer type dispersant is added. Dispersant that remained in the thin film by applying a voltage in the solvent with the material to be coated as an anode and forming a carbon material thin film on the surface of the anode material by heat treatment in an inert gas atmosphere Evaporates, volatilizes or decomposes to increase the concentration of the carbon material, preferably carbon nanotubes, in the thin film, so that the resistance value of the thin film can be effectively reduced.

また、電着法によりカーボンナノチューブの薄膜を形成させた場合には、カーボンナノチューブの使用量が少なく、薄膜の厚さをコントロールすることが可能であり、このようなカーボンナノチューブ薄膜を例えば燃料電池セパレータの表面に形成させると、導電性にすぐれかつ抵抗値が低いばかりではなく、カーボンナノチューブの形状に起因する絡まりによって薄膜が保持されているため柔軟性があり、燃料電池スタック締結時に圧力むらが生じても、安定した抵抗値を維持することができる。   In addition, when a carbon nanotube thin film is formed by an electrodeposition method, the amount of carbon nanotube used is small and the thickness of the thin film can be controlled. For example, such a carbon nanotube thin film can be used as a fuel cell separator. In addition to excellent conductivity and low resistance, the thin film is held by the entanglement due to the shape of the carbon nanotubes, so there is flexibility and pressure unevenness occurs when the fuel cell stack is fastened. However, a stable resistance value can be maintained.

このようなカーボンナノチューブ薄膜の形成は、燃料電池用セパレータに限っていっても、焼成カーボンセパレータ、樹脂・黒鉛製セパレータ、金属セパレータ等のすべてに適用可能であり、またマスキングをすることで導電性の必要なリブ部のみの製膜も可能である。さらに、下記特許文献に示されるようなセパレータの粗さに制約なく、本発明方法を適用することができ、セパレータの表面状態を問わず、セパレータの製造コストを低減することができる。
特開2004−6432号公報
The formation of such a carbon nanotube thin film can be applied to all of a carbon separator, a fired carbon separator, a resin / graphite separator, a metal separator, etc., and can be made conductive by masking. It is also possible to form only the necessary rib portion. Furthermore, the method of the present invention can be applied without restriction on the roughness of the separator as shown in the following patent document, and the manufacturing cost of the separator can be reduced regardless of the surface state of the separator.
JP 2004-6432 A

分散剤を添加した非水系電着液を用いた電着法により製膜された炭素材料薄膜は、好ましくは塩基性高分子型分散剤を添加した炭化水素系溶媒中に炭素材料を分散させ、この溶媒中で被被覆材を陽極として電圧を印加し、陽極材表面上に炭素材料薄膜を形成せしめたものものであるので、この態様について説明することとする。   The carbon material thin film formed by the electrodeposition method using the non-aqueous electrodeposition liquid to which the dispersant is added preferably disperses the carbon material in the hydrocarbon solvent to which the basic polymer type dispersant is added, In this solvent, a coating material is used as an anode, and a voltage is applied to form a carbon material thin film on the surface of the anode material. Therefore, this embodiment will be described.

炭素材料としては、カーボンナノチューブ、カーボンブラック、黒鉛、カーボンファイバー、フラーレンなどが挙げられるが、好ましくは、優れた電気伝導性と熱伝導性の観点からカーボンナノチューブが、電気特性および嵩密度の観点からカーボンブラックまたは黒鉛が用いられる。これらは、溶液分散するものであれば特に制限なく使用することができ、カーボンナノチューブとしては単層カーボンナノチューブまたは多層カーボンナノチューブなどが、カーボンブラックとしては、ケッチェンブラック、アセチレンブラックなどが、また黒鉛としては、人造黒鉛、天然黒鉛のいずれかが用いられる。   Examples of the carbon material include carbon nanotube, carbon black, graphite, carbon fiber, fullerene, and the like. Preferably, from the viewpoint of excellent electrical conductivity and thermal conductivity, the carbon nanotube is from the viewpoint of electrical characteristics and bulk density. Carbon black or graphite is used. These can be used without particular limitation as long as they are dispersed in a solution, such as single-walled carbon nanotubes or multi-walled carbon nanotubes as carbon nanotubes, ketjen black, acetylene black, etc. as carbon black, and graphite. As such, either artificial graphite or natural graphite is used.

塩基性高分子型分散剤としては、分子量が数千〜数万であり、エステルを有する構造のものであれば特に制限なく使用することができ、脂肪酸エステルなど、好ましくはポリエステル酸アマイドアミン塩が用いられる。実際には、市販品、例えば楠本化成製品ディスパロンDA-703-50、DA-705、DA-725、DA-234等が用いられる。この他、ポリエーテルリン酸エステルのアミン塩である同社製品ディスパロンDA-325等も用いられる。これらは、1〜20重量%、好ましくは3〜10重量%の割合で、炭化水素系溶媒中に添加されて用いられる。この使用割合がこれ以下では、本発明の目的が達成されず、一方これ以上の割合で用いられると、形成した薄膜中に塩基性高分子型分散剤が多量に付着することとなり、好ましくない。   As the basic polymer type dispersant, a molecular weight of several thousand to several tens of thousands can be used without particular limitation as long as it has an ester structure, and a fatty acid ester or the like, preferably a polyester acid amide amine salt is used. Used. In practice, commercially available products such as Enomoto Kasei products Disparon DA-703-50, DA-705, DA-725, DA-234 and the like are used. In addition, the company's product Disparon DA-325, which is an amine salt of polyether phosphate, is also used. These are used by being added to a hydrocarbon solvent in a proportion of 1 to 20% by weight, preferably 3 to 10% by weight. If the use ratio is less than this, the object of the present invention is not achieved. On the other hand, if the use ratio is more than this, a large amount of the basic polymer type dispersant is adhered to the formed thin film, which is not preferable.

塩基性高分子型分散剤を添加した炭化水素溶媒中に分散させた炭素材料、好ましくはカーボンナノチューブの平均粒子径(湿式でのレーザー散乱法による50%粒子径)は、100〜1000nm、好ましくは500〜800nmに設定されることが好ましい。このような平均粒子径への調整は、ボールミルなどを用いても行われるが、好ましくは超音波ホモジナイザを用いて行われる。超音波ホモジナイザの代りに、超音波洗浄器を用いると、分散液中のカーボンナノチューブ凝集塊の平均粒子径は1000nm以上となり、またポット型ボールミルを用いると、カーボンナノチューブの破断などがみられることもある。   The average particle size of carbon material, preferably carbon nanotubes (50% particle size by wet laser scattering method) dispersed in a hydrocarbon solvent to which a basic polymer type dispersant is added is preferably 100 to 1000 nm, preferably The thickness is preferably set to 500 to 800 nm. Such adjustment to the average particle diameter is also performed using a ball mill or the like, but is preferably performed using an ultrasonic homogenizer. If an ultrasonic cleaner is used instead of an ultrasonic homogenizer, the average particle diameter of the carbon nanotube aggregates in the dispersion will be 1000 nm or more, and if a pot-type ball mill is used, the carbon nanotubes may break. is there.

炭化水素系溶媒としては、芳香族炭化水素溶媒などが挙げられるが、好ましくはキシレンまたはトルエンが用いられる。これらの炭化水素溶媒は、炭素材料に対して一般に約100〜1000倍量程度用いられる。   Examples of the hydrocarbon solvent include aromatic hydrocarbon solvents, and preferably xylene or toluene is used. These hydrocarbon solvents are generally used in an amount of about 100 to 1000 times the carbon material.

被被覆材陽極としては、導電性のものであれば特に制限なく、また導通のない基材でも無電解メッキを施したのもを使用することができ、例えば樹脂と黒鉛などからなる燃料電池用の電極のガス拡散体基材またはセパレータ基材、帯電防止基材、電磁波シールド基材、リチウム電池電極基材、電界放出ディスプレー基材、放熱基材などが用いられるが、好ましくはカーボンペーパー、カーボン不織布、カーボン織布などの多孔質炭素体であるカーボンシート基材が用いられる。   The anode of the coating material is not particularly limited as long as it is conductive, and a non-conductive base material subjected to electroless plating can be used, for example, an electrode for a fuel cell made of resin and graphite Gas diffuser base material or separator base material, antistatic base material, electromagnetic wave shield base material, lithium battery electrode base material, field emission display base material, heat dissipation base material, etc. are used, preferably carbon paper, carbon non-woven fabric, A carbon sheet substrate that is a porous carbon body such as a carbon woven fabric is used.

炭素材料薄膜の形成原理は、例えばカーボンナノチューブにあっては次の通りである。カーボンナノチューブは製造時に用いる金属触媒の除去のため、加熱、酸処理等の精製が行われるが、この際、カーボンナノチューブに存在する欠陥箇所が酸化され、カルボニル基、水酸基等の官能性基が発生し、カーボンナノチューブは水中でアニオン電荷をもつと考えられる。そこで、カーボンナノチューブを分散させた溶液に電場をかければ、カーボンナノチューブは陽極である燃料電池セパレータ基材に移動し付着(吸着)し、また付着したカーボンナノチューブは凝集のし易さから繋がったネットワークを形成することとなる。   The principle of forming the carbon material thin film is as follows, for example, in the case of carbon nanotubes. Carbon nanotubes are refined by heating, acid treatment, etc. to remove the metal catalyst used in production. At this time, defective portions present in the carbon nanotubes are oxidized, and functional groups such as carbonyl groups and hydroxyl groups are generated. Carbon nanotubes are considered to have an anionic charge in water. Therefore, if an electric field is applied to a solution in which carbon nanotubes are dispersed, the carbon nanotubes move to and adhere to (adsorb on) the fuel cell separator substrate that is the anode, and the attached carbon nanotubes are connected due to the ease of aggregation. Will be formed.

そのため、炭素材料薄膜の形成は、炭素材料を塩基性高分子型分散剤を添加した炭化水素系溶媒中で、上記陽極に電圧を印加することにより陽極材上に付着(吸着)することにより行われる。ここで、印加される電圧は、1〜1000V、好ましくは5〜500Vであり、印加電圧がこれより低い場合には、炭素材料の付着量が少なくなってしまい、一方これより大きい場合には、炭素材料の付着膜が不均一となり、かつ電力効率が悪化するため好ましくない。また、印加時間は必要とする製膜量により異なるが、例えば1〜3000秒、好ましくは30〜1000秒あるいは周期的に印加することも可能である。このとき、炭素材料の沈降を防ぐべく、分散溶液を攪拌しながら製膜することも行われる。また、製膜時にマスキングを行うことで、導電性が必要な部分にのみ炭素材料を付着させることができる。   Therefore, the carbon material thin film is formed by adhering (adsorbing) the carbon material on the anode material by applying a voltage to the anode in a hydrocarbon solvent to which a basic polymer type dispersant is added. Is called. Here, the applied voltage is 1 to 1000 V, preferably 5 to 500 V. When the applied voltage is lower than this, the amount of adhesion of the carbon material decreases, whereas when larger than this, The adhesion film of the carbon material is not uniform, and the power efficiency is deteriorated, which is not preferable. The application time varies depending on the amount of film formation required, but it can be applied, for example, for 1 to 3000 seconds, preferably 30 to 1000 seconds, or periodically. At this time, in order to prevent sedimentation of the carbon material, a film is also formed while stirring the dispersion solution. Further, by performing masking at the time of film formation, the carbon material can be attached only to a portion requiring conductivity.

また、炭素材料薄膜の形成は、炭素材料を塩基性高分子型分散剤を添加した炭化水素溶媒中で、パルスファンクション発生器の如き交流電圧を制御する装置を用いて交流電場を適用し、上記陽極に電圧を印加して陽極材上に炭素材料を付着(吸着)させることによっても行われる。ここで、印加される電圧は、約1〜100V、好ましくは約3〜20V、特に好ましくは5V程度であり、周波数は約0.1〜1000Hz、好ましくは約1〜10Hzであり、印加時間は必要とする製膜量および電極間距離(一般に約3〜5mmに設定される)により異なるが、例えば10〜1000分、好ましくは20〜200分あるいは周期的に印加することも可能である。   The carbon material thin film is formed by applying an AC electric field using a device that controls an AC voltage, such as a pulse function generator, in a hydrocarbon solvent to which a basic polymer type dispersant is added. It is also performed by applying a voltage to the anode to adhere (adsorb) the carbon material on the anode material. Here, the applied voltage is about 1 to 100 V, preferably about 3 to 20 V, particularly preferably about 5 V, the frequency is about 0.1 to 1000 Hz, preferably about 1 to 10 Hz, and the application time is required. Depending on the amount of film to be formed and the distance between electrodes (generally set to about 3 to 5 mm), for example, it can be applied for 10 to 1000 minutes, preferably 20 to 200 minutes or periodically.

表面に炭素材料薄膜が製膜された陽極材は、分散溶液中から取り出した後、表面に製膜された炭素材料以外を取除くように洗浄され、乾燥される。   The anode material having the carbon material thin film formed on the surface is taken out of the dispersion solution, and then washed and dried so as to remove other than the carbon material formed on the surface.

以上の工程を繰り返し行うことで、陽極材表面上に製膜される炭素材料の膜厚を厚くしていくことができる。すなわち、上記工程の繰り返し回数を設定することによって、製膜される炭素材料の膜厚を所望の厚み、例えば約1〜50μm程度の厚みに制御することが可能となる。   By repeating the above steps, the film thickness of the carbon material formed on the anode material surface can be increased. That is, by setting the number of repetitions of the above steps, the film thickness of the carbon material to be formed can be controlled to a desired thickness, for example, about 1 to 50 μm.

このようにして製膜された炭素材料薄膜、好ましくはカーボンナノチューブ薄膜は、窒素ガス、アルゴンガス等の不活性ガス雰囲気中で約200〜500℃、好ましくは約230〜350℃で加熱処理される。この加熱処理により、薄膜中に残存していた塩基性高分子型分散剤等の分散剤が蒸発・揮散あるいは分解し、薄膜中の炭素材料、好ましくはカーボンナノチューブの濃度を高めるので、薄膜の抵抗値を有効に低下せしめる。   The carbon material thin film thus formed, preferably the carbon nanotube thin film, is heated at about 200 to 500 ° C., preferably about 230 to 350 ° C. in an inert gas atmosphere such as nitrogen gas or argon gas. . This heat treatment evaporates, volatilizes, or decomposes the dispersing agent such as the basic polymer type dispersant remaining in the thin film, thereby increasing the concentration of the carbon material, preferably carbon nanotubes in the thin film. Effectively lowers the value.

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

比較例1
(a)レゾール型フェノール樹脂(昭和高分子製品MCS-302)19重量%、人造黒鉛(日本黒鉛製品PAG-H100;平均粒径100μm)80重量%およびステアリン酸(内部離型剤)1重量%をヘンシェルミキサで予備混合し、予備混合した混合物を加圧ニーダを用いて100℃、10分間に混練を行い、冷却後パワーミルで粉砕して成形材料を得た。この成形材料を用い、温度170℃、圧力50MPa、5分間の条件下で成形を行い、100×10×2.1mmのセパレータ材料成形品を得た。
(b)キシレン90mlに、ポリエステル酸アマイドアミン塩(楠本化成製品ディスパロンDA-703-50;50%キシレン溶液)10mlを加え、この溶液に気相成長法多層カーボンナノチューブ(日機装製品;繊維径10〜30nm、平均繊維長1〜100μm)500mgを添加し、超音波ホモジナイザ(BRANSON SONIFIER 450)を用いて、出力300Wで12時間の照射分散処理を行い、多層カーボンナノチューブ分散液を得た。湿式でのレーザー散乱による平均粒子径(50%粒子径)は、600nmであった。
(c)電極として上記セパレータ材料成形品を用い、PTFE製スペーサを用いて、電極間距離が2cmとなるように設置した。そこに200Vの電圧を15分間印加することで、陽極へのカーボンナノチューブ製膜処理を行った(製膜面積10cm2、厚さ2mm)。形成された薄膜のSEM写真は、図1に示される。この薄膜について、走査型電子顕微鏡観察を行ったところ、約30μmの厚さのカーボンナノチューブ吸着層が確認された。
(d)このカーボンナノチューブ薄膜層を剥離し、TGAによる分析を行ったところ、薄膜中に含まれるカーボンナノチューブの含有量は85重量%で、残りの15重量%は分散剤であった。製膜されたセパレータを表面積が1cm2になるように加工し、それを金メッキ電極で挟み、荷重を1MPaとして厚み方向の抵抗値を測定すると、12.0mΩ・cm2であった。なお、薄膜層の剥離は、刃物で界面を削ぎ落としたり、熱転写などの強制的な手段で行われる。
Comparative Example 1
(a) 19% by weight of resol type phenolic resin (Showa polymer product MCS-302), artificial graphite (Japanese graphite product PAG-H100; average particle size 100 μm) 80% by weight and stearic acid (internal mold release agent) 1% by weight Were premixed with a Henschel mixer, the premixed mixture was kneaded at 100 ° C. for 10 minutes using a pressure kneader, cooled and pulverized with a power mill to obtain a molding material. Using this molding material, molding was performed under the conditions of a temperature of 170 ° C. and a pressure of 50 MPa for 5 minutes to obtain a separator material molded product of 100 × 10 × 2.1 mm.
(b) To 90 ml of xylene, 10 ml of polyester acid amide amine salt (Tsubakimoto Kasei product Disparon DA-703-50; 50% xylene solution) is added, and to this solution, vapor grown multi-walled carbon nanotubes (Nikkiso product; fiber diameter 10 ~ 500 mg of 30 nm and an average fiber length of 1 to 100 μm) was added, and irradiation dispersion treatment was performed for 12 hours at an output of 300 W using an ultrasonic homogenizer (BRANSON SONIFIER 450) to obtain a multi-walled carbon nanotube dispersion. The average particle size (50% particle size) by wet laser scattering was 600 nm.
(c) The separator material molded product was used as an electrode, and a PTFE spacer was used so that the distance between the electrodes was 2 cm. A carbon nanotube film was formed on the anode by applying a voltage of 200 V for 15 minutes (film formation area: 10 cm 2 , thickness: 2 mm). An SEM photograph of the formed thin film is shown in FIG. When this thin film was observed with a scanning electron microscope, a carbon nanotube adsorption layer having a thickness of about 30 μm was confirmed.
(d) When this carbon nanotube thin film layer was peeled off and analyzed by TGA, the content of carbon nanotubes contained in the thin film was 85% by weight, and the remaining 15% by weight was a dispersant. The formed separator was processed to have a surface area of 1 cm 2 , sandwiched between gold-plated electrodes, and measured for a resistance value in the thickness direction with a load of 1 MPa, it was 12.0 mΩ · cm 2 . In addition, peeling of a thin film layer is performed by forced means, such as shaving off an interface with a blade or thermal transfer.

実施例1
比較例1の(c)工程で得られた製膜されたセパレータを、不活性ガス(N2ガス)雰囲気中250℃で10時間の焼成を行った。(d)工程の剥離カーボンナノチューブ薄膜層のTGA分析では、薄膜中に含まれるカーボンナノチューブの含有量は94重量%で、残りの6重量%は分散剤であった。同様に、厚み方向の抵抗値を測定すると、9.7mΩ・cm2であった。
Example 1
The film-formed separator obtained in the step (c) of Comparative Example 1 was baked at 250 ° C. for 10 hours in an inert gas (N 2 gas) atmosphere. In the TGA analysis of the exfoliated carbon nanotube thin film layer in step (d), the content of carbon nanotubes contained in the thin film was 94% by weight, and the remaining 6% by weight was a dispersant. Similarly, when the resistance value in the thickness direction was measured, it was 9.7 mΩ · cm 2 .

実施例2
比較例1の(c)工程で得られた製膜されたセパレータを、不活性ガス(N2ガス)雰囲気中300℃で10時間の焼成を行った。(d)工程の剥離カーボンナノチューブ薄膜層のTGA分析では、薄膜中に含まれるカーボンナノチューブの含有量は96重量%で、残りの4重量%は分散剤であった。同様に、厚み方向の抵抗値を測定すると、9.2mΩ・cm2であった。
Example 2
The film-formed separator obtained in the step (c) of Comparative Example 1 was baked at 300 ° C. for 10 hours in an inert gas (N 2 gas) atmosphere. In the TGA analysis of the exfoliated carbon nanotube thin film layer in step (d), the content of carbon nanotubes contained in the thin film was 96% by weight, and the remaining 4% by weight was a dispersant. Similarly, when the resistance value in the thickness direction was measured, it was 9.2 mΩ · cm 2 .

参考例
比較例1の(a)工程で得られたセパレータ材料成形品を金メッキ電極で挟み、荷重を1MPaとして厚み方向の抵抗値を測定すると、13.7mΩ・cm2であった。
Reference Example The separator material molded product obtained in the step (a) of Comparative Example 1 was sandwiched between gold-plated electrodes, and the resistance value in the thickness direction was measured with a load of 1 MPa, which was 13.7 mΩ · cm 2 .

比較例2
比較例1の(a)工程で得られたセパレータ材料成形品を、(b)工程で得られた多層カーボンナノチューブ分散液中に浸漬した後、室温下で1時間乾燥させてカーボンナノチューブ薄膜を形成させた。(d)工程と同じように、カーボンナノチューブ薄膜を剥離し、TGA分析を行うと、薄膜中に含まれるカーボンナノチューブの含有量は25重量%で、残りの75重量%は分散剤であった。同様に、厚み方向の抵抗値を測定すると、24.0mΩ・cm2であった。
Comparative Example 2
The separator material molded product obtained in step (a) of Comparative Example 1 was immersed in the multi-walled carbon nanotube dispersion obtained in step (b) and then dried at room temperature for 1 hour to form a carbon nanotube thin film. I let you. As in the step (d), when the carbon nanotube thin film was peeled off and TGA analysis was performed, the content of carbon nanotubes contained in the thin film was 25% by weight, and the remaining 75% by weight was a dispersant. Similarly, the resistance value in the thickness direction was measured and found to be 24.0 mΩ · cm 2 .

以上の結果から、次のようなことがいえる。
(1)電着法によりカーボンナノチューブ薄膜を被覆したセパレータは、これを比較しないセパレータよりも低い抵抗値が得られる(比較例1-参考例1)。
(2)セパレータ上に被覆されたカーボンナノチューブ薄膜を、不活性ガス雰囲気中で焼成すると、さらに低い抵抗値が得られる(実施例1〜2-比較例1)。
(3)浸漬法によりカーボンナノチューブを被覆したセパレータは、薄膜中に含まれているカーボンナノチューブ量が少なく、被覆されないセパレータよりも高い抵抗値を示している(参考例-比較例2)。
From the above results, the following can be said.
(1) A separator coated with a carbon nanotube thin film by an electrodeposition method has a lower resistance value than a separator that does not compare this (Comparative Example 1-Reference Example 1).
(2) When the carbon nanotube thin film coated on the separator is baked in an inert gas atmosphere, even lower resistance values are obtained (Examples 1 to 2—Comparative Example 1).
(3) The separator coated with the carbon nanotubes by the dipping method has a smaller amount of carbon nanotubes contained in the thin film and exhibits a higher resistance value than the uncoated separator (Reference Example-Comparative Example 2).

本発明方法に係る炭素材料薄膜の後処理方法を用いて得られた炭素材料薄膜は、樹脂と黒鉛などからなる燃料電池用セパレータ、帯電防止材、電磁波シールド材、リチウム電池電極、電界放出ディスプレーなどに有効に用いられる。また、カーボンナノチューブにあっては熱伝導性にもすぐれているため、放熱材としても有効に使用される。   The carbon material thin film obtained by using the post-treatment method of the carbon material thin film according to the method of the present invention includes a fuel cell separator made of resin and graphite, an antistatic material, an electromagnetic shielding material, a lithium battery electrode, a field emission display, and the like. It is used effectively. In addition, since carbon nanotubes are excellent in thermal conductivity, they are also effectively used as heat dissipation materials.

特に、樹脂と黒鉛からなるセパレータ基材にあっては、導電性フィラーに樹脂を加えて成形(賦型)されるが、表面側に樹脂が多く含まれるスキン層が形成され、導電性を有する黒鉛が表面に現れる箇所が点在するだけで少なくなってしまうため、燃料電池セパレータの表面で必要とされる導電性を十分に得ることができず、接触抵抗が大きくなることが問題となるが、本発明方法により得られる炭素材料薄膜をセパレーター表面に適用することにより、セパレーター表面に導電ネットワークが形成され、表面上の導電性を向上することができ、またその抵抗値を有効に低下せしめることができる。   In particular, a separator base material made of resin and graphite is molded (molded) by adding a resin to a conductive filler, but has a skin layer containing a large amount of resin on the surface side and has conductivity. Since there are only a few spots where graphite appears on the surface, the conductivity required on the surface of the fuel cell separator cannot be obtained sufficiently, and there is a problem that the contact resistance increases. By applying the carbon material thin film obtained by the method of the present invention to the separator surface, a conductive network is formed on the separator surface, the conductivity on the surface can be improved, and the resistance value can be effectively reduced. Can do.

電着法によりセパレータ材料成形品上に製膜されたカーボンナノチューブ薄膜のSEM写真である。It is a SEM photograph of the carbon nanotube thin film formed on the separator material molding by the electrodeposition method.

Claims (13)

分散剤を添加した非水系電着液を用いた電着法により製膜された炭素材料薄膜を、不活性ガス雰囲気中で200〜500℃に加熱処理することを特徴とする炭素材料薄膜の後処理方法。   After the carbon material thin film characterized by heat-treating the carbon material thin film formed by the electrodeposition method using the non-aqueous electrodeposition liquid to which the dispersant is added at 200 to 500 ° C. in an inert gas atmosphere. Processing method. 分散剤を添加した非水系電着液を用いた電着法により製膜された炭素材料薄膜が、塩基性高分子型分散剤を添加した炭化水素系溶媒中に炭素材料を分散させ、この溶媒中で被被覆材を陽極として電圧を印加し、陽極材表面上に炭素材料薄膜を形成せしめたものである請求項1記載の炭素材料薄膜の後処理方法。   A carbon material thin film formed by an electrodeposition method using a non-aqueous electrodeposition liquid to which a dispersant is added disperses the carbon material in a hydrocarbon solvent to which a basic polymer type dispersant is added. 2. The post-treatment method for a carbon material thin film according to claim 1, wherein a voltage is applied using the material to be coated as an anode to form a carbon material thin film on the surface of the anode material. 炭素材料がカーボンナノチューブ、カーボンブラックまたは黒鉛である請求項2記載の炭素材料薄膜の後処理方法。   The post-treatment method for a carbon material thin film according to claim 2, wherein the carbon material is carbon nanotube, carbon black, or graphite. 塩基性高分子型分散剤が、ポリエステル酸アマイドアミン塩である請求項2記載の炭素材料薄膜の後処理方法。   The post-treatment method for a carbon material thin film according to claim 2, wherein the basic polymer type dispersant is a polyester acid amide amine salt. 炭化水素系溶媒が芳香族炭化水素溶媒である請求項2記載の炭素材料薄膜の後処理方法。   The post-treatment method for a carbon material thin film according to claim 2, wherein the hydrocarbon solvent is an aromatic hydrocarbon solvent. 被被覆材陽極として燃料電池用の電極ガス拡散体基材またはセパレータ基材、帯電防止基材、電磁波シールド基材、リチウム電池電極基材、電界放出ディスプレー基材あるいは放熱基材が用いられる請求項2記載の炭素材料薄膜の後処理方法。   The electrode gas diffuser base material or separator base material for a fuel cell, an antistatic base material, an electromagnetic wave shielding base material, a lithium battery electrode base material, a field emission display base material, or a heat dissipation base material is used as a coating material anode. The post-processing method of the carbon material thin film of 2. 被被覆材陽極としてカーボンシート基材が用いられる請求項2記載の炭素材料薄膜の後処理方法。   The post-treatment method of a carbon material thin film according to claim 2, wherein a carbon sheet substrate is used as an anode to be coated. カーボンシートがカーボンペーパー、カーボン不織布またはカーボン織布である請求項7記載の炭素材料薄膜の後処理方法。   The carbon material thin film post-processing method according to claim 7, wherein the carbon sheet is carbon paper, carbon non-woven fabric, or carbon woven fabric. 塩素性高分子型分散剤を添加した炭化水素系溶媒中に分散させた炭素材料が100〜1000nmの平均粒子径(湿式でのレーザー散乱法による50%粒子径)を有する請求項2記載の炭素材料薄膜の後処理方法。   The carbon according to claim 2, wherein the carbon material dispersed in the hydrocarbon solvent to which the chlorinated polymer type dispersant is added has an average particle size of 100 to 1000 nm (50% particle size by wet laser scattering method). Post-processing method for material thin film. 炭素材料がカーボンナノチューブである請求項9記載の炭素材料薄膜の後処理方法。   The carbon material thin film post-treatment method according to claim 9, wherein the carbon material is a carbon nanotube. 炭素材料の平均粒子径を100〜1000nmに調整することが超音波ホモジナイザを用いて行われる請求項9または10記載の炭素材料薄膜の後処理方法。   The post-treatment method for a carbon material thin film according to claim 9 or 10, wherein the average particle diameter of the carbon material is adjusted to 100 to 1000 nm using an ultrasonic homogenizer. 請求項1乃至11のいずれかに記載の方法により後処理された炭素材料薄膜。   A carbon material thin film post-treated by the method according to claim 1. 表面に請求項12記載の炭素材料薄膜を形成させた燃料電池用の電極ガス拡散体またはセパレータ、帯電防止材、電磁波シールド材、リチウム電池電極、電界放出ディスプレーあるいは放熱材。   An electrode gas diffuser or separator for a fuel cell having the carbon material thin film according to claim 12 formed on its surface, an antistatic material, an electromagnetic shielding material, a lithium battery electrode, a field emission display, or a heat dissipation material.
JP2006002387A 2006-01-10 2006-01-10 Post-treatment method for carbon material thin film Expired - Fee Related JP5050352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006002387A JP5050352B2 (en) 2006-01-10 2006-01-10 Post-treatment method for carbon material thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006002387A JP5050352B2 (en) 2006-01-10 2006-01-10 Post-treatment method for carbon material thin film

Publications (2)

Publication Number Publication Date
JP2007182357A true JP2007182357A (en) 2007-07-19
JP5050352B2 JP5050352B2 (en) 2012-10-17

Family

ID=38338752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006002387A Expired - Fee Related JP5050352B2 (en) 2006-01-10 2006-01-10 Post-treatment method for carbon material thin film

Country Status (1)

Country Link
JP (1) JP5050352B2 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146421A (en) * 2007-12-14 2009-07-02 Qinghua Univ Touch panel, method for manufacturing the same, and display using the touch panel
JP2009146416A (en) * 2007-12-12 2009-07-02 Qinghua Univ Touch panel, method for making the same, and display adopting the touch panel
JP2010189218A (en) * 2009-02-17 2010-09-02 Ono Kogei Kk Carbon fiber-containing coating film and method for producing the same
US8105126B2 (en) 2008-07-04 2012-01-31 Tsinghua University Method for fabricating touch panel
US8111245B2 (en) 2007-12-21 2012-02-07 Tsinghua University Touch panel and display device using the same
US8115742B2 (en) 2007-12-12 2012-02-14 Tsinghua University Touch panel and display device using the same
US8125878B2 (en) 2007-12-27 2012-02-28 Tsinghua University Touch panel and display device using the same
US8199119B2 (en) 2007-12-12 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8237674B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237669B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237668B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch control device
US8237673B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237672B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237675B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237671B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237670B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8243029B2 (en) 2007-12-14 2012-08-14 Tsinghua University Touch panel and display device using the same
US8243030B2 (en) 2007-12-21 2012-08-14 Tsinghua University Touch panel and display device using the same
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248378B2 (en) 2007-12-21 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248377B2 (en) 2007-10-23 2012-08-21 Tsinghua University Touch panel
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
KR101281881B1 (en) * 2011-07-12 2013-07-05 성균관대학교산학협력단 Electrodeposition of graphene layer from doped graphite
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
JP2014187048A (en) * 2009-06-09 2014-10-02 Sivarajan Ramesh Liquid base nanostructure carbon material (ncm) coating of bipolar plate for fuel cell
JP2014214328A (en) * 2013-04-23 2014-11-17 田中貴金属工業株式会社 Electrode for sensor and production method thereof
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148185A (en) * 1994-06-28 1996-06-07 Sharp Corp Nonaqueous electrolyte secondary battery and negative electrode therefor
JPH1171537A (en) * 1997-08-29 1999-03-16 Asahi Chem Ind Co Ltd Electroconductive coating material composition for floor and electroconductive floor material
JP2001316104A (en) * 2000-04-28 2001-11-13 Sony Corp Carbon material for hydrogen occlusion and its manufacturing method, hydrogen occluding carbon material and its manufacturing method, and cell using hydrogen occluding carbon material and fuel cell using hydrogen occluding carbon material
JP2003081618A (en) * 2001-09-07 2003-03-19 Noritake Itron Corp Method for forming carbon nanotube film
JP2003512286A (en) * 1999-10-27 2003-04-02 ウィリアム・マーシュ・ライス・ユニバーシティ Macroscopically arranged assemblies of carbon nanotubes
JP2004010988A (en) * 2002-06-07 2004-01-15 Sharp Corp Method of producing carbonaceous material membrane and secondary battery with nonaqueous electrolyte
JP2005005000A (en) * 2003-06-09 2005-01-06 Tokyo Institute Of Technology Proton conductive film for fuel cell, and its manufacturing method
JP2005139353A (en) * 2003-11-07 2005-06-02 Jsr Corp Composition for use in electrodeposition of carbon cluster, carbon cluster membrane, its manufacturing method and electronic element
JP2005235425A (en) * 2004-02-17 2005-09-02 Nok Corp Manufacturing method of fuel cell separator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148185A (en) * 1994-06-28 1996-06-07 Sharp Corp Nonaqueous electrolyte secondary battery and negative electrode therefor
JPH1171537A (en) * 1997-08-29 1999-03-16 Asahi Chem Ind Co Ltd Electroconductive coating material composition for floor and electroconductive floor material
JP2003512286A (en) * 1999-10-27 2003-04-02 ウィリアム・マーシュ・ライス・ユニバーシティ Macroscopically arranged assemblies of carbon nanotubes
JP2001316104A (en) * 2000-04-28 2001-11-13 Sony Corp Carbon material for hydrogen occlusion and its manufacturing method, hydrogen occluding carbon material and its manufacturing method, and cell using hydrogen occluding carbon material and fuel cell using hydrogen occluding carbon material
JP2003081618A (en) * 2001-09-07 2003-03-19 Noritake Itron Corp Method for forming carbon nanotube film
JP2004010988A (en) * 2002-06-07 2004-01-15 Sharp Corp Method of producing carbonaceous material membrane and secondary battery with nonaqueous electrolyte
JP2005005000A (en) * 2003-06-09 2005-01-06 Tokyo Institute Of Technology Proton conductive film for fuel cell, and its manufacturing method
JP2005139353A (en) * 2003-11-07 2005-06-02 Jsr Corp Composition for use in electrodeposition of carbon cluster, carbon cluster membrane, its manufacturing method and electronic element
JP2005235425A (en) * 2004-02-17 2005-09-02 Nok Corp Manufacturing method of fuel cell separator

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8248377B2 (en) 2007-10-23 2012-08-21 Tsinghua University Touch panel
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
JP2009146416A (en) * 2007-12-12 2009-07-02 Qinghua Univ Touch panel, method for making the same, and display adopting the touch panel
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8115742B2 (en) 2007-12-12 2012-02-14 Tsinghua University Touch panel and display device using the same
US8237670B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8199119B2 (en) 2007-12-12 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8237674B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237671B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
JP2009146421A (en) * 2007-12-14 2009-07-02 Qinghua Univ Touch panel, method for manufacturing the same, and display using the touch panel
US8243029B2 (en) 2007-12-14 2012-08-14 Tsinghua University Touch panel and display device using the same
US8237673B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237672B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8243030B2 (en) 2007-12-21 2012-08-14 Tsinghua University Touch panel and display device using the same
US8248378B2 (en) 2007-12-21 2012-08-21 Tsinghua University Touch panel and display device using the same
US8111245B2 (en) 2007-12-21 2012-02-07 Tsinghua University Touch panel and display device using the same
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8237669B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237675B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237668B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch control device
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US8125878B2 (en) 2007-12-27 2012-02-28 Tsinghua University Touch panel and display device using the same
US8228308B2 (en) 2008-07-04 2012-07-24 Tsinghua University Method for making liquid crystal display adopting touch panel
US8105126B2 (en) 2008-07-04 2012-01-31 Tsinghua University Method for fabricating touch panel
US8199123B2 (en) 2008-07-04 2012-06-12 Tsinghua University Method for making liquid crystal display screen
US8237679B2 (en) 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8411051B2 (en) 2008-07-09 2013-04-02 Tsinghua University Liquid crystal display screen
US8411052B2 (en) 2008-07-09 2013-04-02 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
JP2010189218A (en) * 2009-02-17 2010-09-02 Ono Kogei Kk Carbon fiber-containing coating film and method for producing the same
JP2014187048A (en) * 2009-06-09 2014-10-02 Sivarajan Ramesh Liquid base nanostructure carbon material (ncm) coating of bipolar plate for fuel cell
US9966611B2 (en) 2009-06-09 2018-05-08 Ramesh Sivarajan Solution based nanostructured carbon materials (NCM) coatings on bipolar plates in fuel cells
US10826078B2 (en) 2009-06-09 2020-11-03 Ramesh Sivarajan Solution based nanostructured carbon materials (NCM) coatings on bipolar plates in fuel cells
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
KR101281881B1 (en) * 2011-07-12 2013-07-05 성균관대학교산학협력단 Electrodeposition of graphene layer from doped graphite
US9133562B2 (en) 2011-07-12 2015-09-15 Research & Business Foundation Sungkyunkwan University Electrodeposition of graphene layer from doped graphite
JP2014214328A (en) * 2013-04-23 2014-11-17 田中貴金属工業株式会社 Electrode for sensor and production method thereof

Also Published As

Publication number Publication date
JP5050352B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5050352B2 (en) Post-treatment method for carbon material thin film
Li et al. In situ grown MWCNTs/MXenes nanocomposites on carbon cloth for high‐performance flexible supercapacitors
Zhang et al. A flexible metallic TiC nanofiber/vertical graphene 1D/2D heterostructured as active electrocatalyst for advanced Li–S batteries
EP3188292B1 (en) Electrical connection structure
Kovalenko et al. Detonation nanodiamond and onion‐like‐carbon‐embedded polyaniline for supercapacitors
JP5887382B2 (en) Liquid-based nanostructured carbon material (NCM) coating on bipolar plates for fuel cells
KR100994181B1 (en) Enhancement of electro-conductivity of conducting material in lithium ion battery
US9520591B2 (en) Methods of coating an electrically conductive substrate and related electrodepositable compositions
US11616220B2 (en) Electrodepositable compositions and electrodeposited coatings including graphenic carbon particles
JP4581663B2 (en) Method for forming carbon material thin film
JP2007258030A (en) Manufacturing method for carbon material thin film
CN110121799B (en) Electrode for secondary battery, and methods for producing them
WO2018049158A1 (en) Methods of coating an electrically conductive substrate and related electrodepositable compositions including graphenic carbon particles
CN111799449A (en) Preparation method of composite negative electrode material and composite negative electrode material for lithium secondary battery
JP4910332B2 (en) Method for producing carbon material thin film
KR101919048B1 (en) Manufacturing method of anode for lithium secondary battery
JP4961746B2 (en) Method for forming carbon nanotube thin film
KR20120062394A (en) Supported pt catalyst for fuel cell coated conductive polymer on its surface and its manufacturing method
Junqing et al. Preparation and electrochemical properties of hollow nickel oxide fibers
KR101594138B1 (en) Electrogenerated Ionic Polymer Conductive Film Composite and method of manufacturing the same
JP2007176070A (en) Electroconductive composite membrane, manufacturing method of the same, and separator for fuel cell
KR101883674B1 (en) Stretchable Current Collector, Manufacturing Method of the Same, Stretchable Electrode including the Same and Stretchable Battery including the Same
KR101850006B1 (en) An anode material for aqueous rechargeable natrium-ion battery and a method for manufacturing the same
KR102717312B1 (en) Manufacturing method of flexible electrode for energy storage device and manufactured thereof
JP2018095960A (en) Formation method of conductive carbon film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R150 Certificate of patent or registration of utility model

Ref document number: 5050352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees