JP2005003725A - Optical protection thin film and its manufacturing method - Google Patents

Optical protection thin film and its manufacturing method Download PDF

Info

Publication number
JP2005003725A
JP2005003725A JP2003164055A JP2003164055A JP2005003725A JP 2005003725 A JP2005003725 A JP 2005003725A JP 2003164055 A JP2003164055 A JP 2003164055A JP 2003164055 A JP2003164055 A JP 2003164055A JP 2005003725 A JP2005003725 A JP 2005003725A
Authority
JP
Japan
Prior art keywords
thin film
resin
particle size
conductive particles
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003164055A
Other languages
Japanese (ja)
Inventor
Junsho Ka
順祥 柯
Da-Wang Lai
大王 頼
Hakuhei O
伯萍 王
Kiko Rin
其宏 林
Hoyu Ko
豐裕 黄
Shubin Hyo
修敏 馮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optimax Technology Corp
Original Assignee
Optimax Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optimax Technology Corp filed Critical Optimax Technology Corp
Priority to JP2003164055A priority Critical patent/JP2005003725A/en
Publication of JP2005003725A publication Critical patent/JP2005003725A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the structure of an optical protection thin film having electrostatic prevention and antiglare functions, and to provide its manufacturing method. <P>SOLUTION: The optical protection thin film attains the electrostatic prevention and antiglare functions by successively forming a conductive thin film structure arranging two kinds of different resin thin films of a resin A and a resin B on a plastic substrate. The optical protection thin film attains conduction and antistatic functions by adding conductive particles of two kinds of particle diameter standards in the resin A, stretching particle diameter of the conductive particles of a comparatively large particle diameter standard between the total thickness of two resin thin film layers, and bringing at least a part of the conductive particles of the comparatively large particle diameter standard into contact with the uppermost surface of the thin film layer of the resin B or exposing at least a part of the conductive particles of the comparatively large particle diameter standard on the uppermost surface of the thin film layer of the resin B. Need for separately adding the conductive particles is eliminated by selecting a material providing good hardness after curing the resin B, and providing a hard protection function. Besides, the optical protection thin film provides the antiglare function by adding silicon oxide minute particles of a nano meter level in the neighborhood of the uppermost surface approaching the thin film layer of the resin B. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は一種の静電防止(anti−static)と防眩(anti−glare)機能を具えた光学保護薄膜とその製造方法に係り、特に、プラスチック基板構造にあって、粒径の異なる導電粒子と微小粒子を同一構造中に存在させるとにより、上述の二つの機能を達成するようにした光学保護薄膜とその製造方法に関する。
【0002】
【従来の技術】
ガラス基板或いは透光のプラスチック基板はフラットディスプレイに不可欠の基本元素の一つであり、そのうち透光のプラスチック基板はその重量が軽く破裂しにくい等の点がガラス基板より優れている。しかしプラスチック基板には以下のような欠点がある。即ち、静電気を発生しやすく灰塵を吸着することである。液晶ディスプレイの場合、典型的なシンプル型トリックス駆動型液晶フラットディスプレイ(SM−LCD)の構造は図1に示されるようであり、上から下に、硬質保護層13(hard coating layer)、導電層12(conductive layer)、保護膜11、偏光板10、プラスチック基板30、列電極50、液晶層80、行電極60、カラーフィルタ70、プラスチック基板40、偏光板20、保護膜21、導電層22、硬質保護層23を具えている。図1に示されるように、その液晶分子は列電極50と行電極60の間に位置し、外部より提供される駆動電圧が液晶を回転させる。しかしシンプル式マトリックス駆動型液晶平面ディスプレイ(SM−LCD)は、走査電子数の増加によるクロストークの発生、及び、上下の偏光板の電荷累積が電場及び液晶作動に干渉する問題を有している。偏光板製造工程において、その上下両面にそれぞれ上保護膜と離型膜が貼り付けられる。保護膜の用途は偏光板の膜面を保護して、膜面の製造工程或いは運送中の損壊を防止することにある。離型膜はパネル貼り付け前の接着保護のために用いられる。保護膜が剥離される時、膜面は摩擦により静電累積を発生して、残留した静電気が異物を吸引しうる。また、製造工程中の離型膜除去時にも静電累積が発生して異物を吸引するほか、続いてパネルを貼り合わせる時のアライメント作業で偏差を発生させ、工程の歩留りに影響を与える。このため静電防止防眩フィルム(anti−static anti−glare film;ASAG film)が発生した。その静電防止防眩薄膜は前述したように三層構造、即ち、硬質保護層13、導電層12、保護膜11を具えている。
【0003】
静電防止技術上、スパッタ方式で導電層を形成することもでき、その粒子は比較的均一で、且つその基材との密着度は良好であり、光学特性も良好である。しかしその設備価格は高く、真空チャンバ(chamber)中で行なう必要があり、ハードウエア設備が高価であり、原料の樹脂膜の真空キャビティー内での作業を実施しにくいことがその欠点である。またウェットコーティング方式で導電層を形成する方式として、大日本印刷による二層コーティング方式(特許文献1)が提出されており、それによると、透光の保護膜(以下プラスチック基板と称する)の上に透光性の導電層(transparent conductivelayer)と硬質保護層(hard coat layer)を順に形成している。そのうち導電層はアンチモン錫酸化物(ATO)或いはインジウム錫酸化物(ITO)の導電粒子を含有し、且つその表面抵抗は10 Ω/□以下であり、静電気の発生が減らされている。増加された導電層により基板の表面の抵抗は10 Ω/□程度にまで下げられ、大量の静電気の発生が防止される。透光度を考慮して、一般に厚さは5μm程度とされえる。しかし導電層硬度は不良で、衝突により脱落しやすく、このためその上に硬化樹脂を塗布して強化する必要がある。また硬化樹脂自体は導電性を具備しないため、導電性金属粒子を加えることによりその導電性を延長して、累積する電荷を除去する必要がある。しかし導電性金属粒子価格は高く、コーティングコスト及び工程上の難度もまた高くなる。
【0004】
その硬質保護層は硬化樹脂及び導電性金属粒子を混合して導電層の上にコーティングし、硬化樹脂により基本的な硬度要求を提供し、添加した導電性金属粒子はコーティング表面と導電層の間の電流の導通に供される。もし薄膜の防眩機能を増加するならば、硬質保護層中に余分にナノメータレベルの微小粒子を添加し、微小粒子の光に対する散乱現象により防眩機能を発生させる。
【0005】
【発明が解決しようとする課題】
本発明はプラスチック基板の要求に対して静電防止防眩の機能を具えた光学保護薄膜構造を提供し、上述の従来の技術の問題を解決する。
【0006】
本発明の主要な目的は、一種の光学保護薄膜の製造方法を提供することにあり、それは、プラスチック基板の上に導電層を形成する時に、導電粒子を添加することにより静電防止の機能を具備させる方法である。
【0007】
本発明のもう一つの目的は、一種の光学保護薄膜の製造方法を提供することにあり、それは、プラスチック基板の上に導電層を形成する時、微小粒子を導電層上層に加えることにより防眩の機能を達成する方法である。
【0008】
本発明の別の目的は、一種の光学保護薄膜の構造を提供することにあり、それは、構造硬度が良好で且つプラスチック基板との密着度が高い光学保護薄膜であるものとする。
【0009】
【課題を解決するための手段】
請求項1の発明は、光学保護薄膜の製造方法において、
(a)基板、樹脂A、及び樹脂Bを準備し、樹脂A中に少なくとも二種類の異なる寸法規格の導電粒子、即ち比較的大きい粒径規格の導電粒子と比較的小さい粒径規格の導電粒子を加える工程、
(b)樹脂Aを基板上にコーティングし並びに硬化処理して硬化した樹脂A薄膜を基板の上に形成し、且つこの硬化後の樹脂A薄膜の厚さは該比較的大きい粒径規格の導電粒子の粒径より小さく且つ該比較的小さい粒径規格の導電粒子の粒径より大きいものとする工程、
(c)樹脂Bを樹脂A薄膜の上にコーティングし並びに硬化処理を行ない、硬化した樹脂B薄膜を樹脂A薄膜の上に形成し、並びに前述の比較的大きい粒径規格の導電粒子中の少なくとも一部の比較的大きい粒径規格の導電粒子の上縁が硬化後の樹脂B薄膜の上表面に接触するか該上表面より露出して外界環境と接触するものとする工程、
以上の工程を具えたことを特徴とする、光学保護薄膜の製造方法としている。
請求項2の発明は、請求項1記載の光学保護薄膜の製造方法において、(a)の工程中の比較的大きい粒径規格の導電粒子の粒径を0.5〜7μmとし、比較的小さい粒径規格の導電粒子の粒径を0.1〜0.5μmとし、且つこれらの導電粒子をアンチモン錫酸化物(ATO)或いはインジウム錫酸化物(ITO)のいずれかとすることを特徴とする、光学保護薄膜の製造方法としている。
請求項3の発明は、請求項1記載の光学保護薄膜の製造方法において、樹脂B中に二酸化けい素で形成されて粒径が0.1〜1μmの微小粒子を加え、この微小粒子を樹脂B薄膜の上表面に接近する位置に分布させることを特徴とする、光学保護薄膜の製造方法としている。
請求項4の発明は、光学保護薄膜において、
基板と、
該基板の上に形成され、比較的大きい粒径規格の導電粒子と比較的小さい粒径規格の導電粒子を少なくとも含有し、並びに厚さが比較的小さい粒径規格の導電粒子の粒径と比較的大きい粒径規格の導電粒子の粒径の間とされる樹脂A薄膜と、
該樹脂A薄膜の上に形成され、少なくとも一部の比較的大きい粒径規格の導電粒子の上縁を上表面に接触させるか該上表面より露出させて外界環境と接触させる樹脂B薄膜と、
を具えたことを特徴とする、光学保護薄膜としている。
請求項5の発明は、請求項4記載の光学保護薄膜において、導電粒子がアンチモン錫酸化物(ATO)或いはインジウム錫酸化物(ITO)のいずれかとされ、並びに比較的大きい粒径規格の導電粒子の粒径が0.5〜7μmとされ、比較的小さい粒径規格の導電粒子の粒径が約0.5μmとされたことを特徴とする、光学保護薄膜としている。
請求項6の発明は、請求項4記載の光学保護薄膜において、樹脂B薄膜中に粒径が0.1〜1.0μmの二酸化けい素の微小粒子が含有され、該微小粒子が樹脂B薄膜の上表面に接近する位置に分布したことを特徴とする、光学保護薄膜としている。
【0010】
【発明の実施の形態】
まず、セルローストリアセテート膜或いはポリエステル膜とされるプラスチック基板を提供し、続いてプラスチック基板の上に導電層を形成する。この導電層は二種類の異なる樹脂を使用して形成した二層の樹脂薄膜構造とする。即ち、まず導電粒子を樹脂A中に混入し、樹脂Aの導電効果を良好とする。その導電粒子の粒径規格には二種類がある。導電粒子を含む樹脂Aをウェットコーティング方式で基板上にコーティングする。続いて、熱硬化工程で樹脂A中の大部分のアルコール類を蒸発させて樹脂Aを固定し、並びに熱硬化後の樹脂Aの厚さを比較的大きい粒径規格の導電粒子の粒径より小さいものとする。さらに熱硬化或いは紫外線硬化の方式で樹脂A中のポリマーを重合反応させて構造を強化する。さらに、良好な硬度を有する樹脂Bを提供し、並びに粒径が小さい二酸化けい素を樹脂B中に加え、微小粒子による防眩の機能を達成するのに供する。微小粒子を含む樹脂Bはウェットコーティングの方式で樹脂Aの上に形成し、並びに導電粒子間の間隙に充満させる。続いて、熱硬化工程及び熱硬化或いは紫外線硬化等の工程により樹脂Aを強化する。この時、比較的大きい粒径規格の導電粒子はその粒径が比較的大きいため、一部の比較的大きい粒径規格の導電粒子の上縁が樹脂Bの上表面外に接触或いは露出し、これにより電荷が樹脂B中に累積するのを防止でき、これにより静電防止の機能を達成する。こうして、静電防止及び防眩機能を有する光学保護薄膜を完成する。
【0011】
【実施例】
本発明は導電層を構成する樹脂A中に少なくとも二種類の異なる粒径規格の導電粒子、即ち比較的大きい粒径規格の導電粒子と比較的小さい粒径規格の導電粒子とを添加し、導電と静電防止の機能を提供する。そのうち、硬化後の樹脂A薄膜の厚さは該比較的小さい粒径規格の導電粒子の粒径より大きく、該比較的大きい粒径規格の導電粒子の粒径より小さい。樹脂Bは硬度が高い材料で構成され、それは樹脂A薄膜の上にコーティングされて硬質保護層とされ、並びに前述の比較的大きい粒径規格の導電粒子の少なくとも一部の上縁が硬化後の樹脂B薄膜の上表面に接触するか或いは露出して外界環境と接触する。これにより、樹脂B中に導電性の金属粒子を添加する必要がなく、樹脂A薄膜中の電荷を外界に釈放することができ、並びに電荷の樹脂B中の累積を防止でき、静電防止の機能を達成し、且つ製造工程を簡易化し製造コストを減らす機能を有する。
【0012】
本発明の発明の重点を説明するため、本発明はフラットディスプレイの保護膜の製作を実施例とし並びに図面と組み合わせてこれを説明する。
図2に示されるように、プラスチック基板100は、その材質が、セルロース(celllose)、ジアセテート(diacetate)、トリアセテート(triacetate)、セルロースアセテートブチレート(cellulose acetate butyrate,polyester)、ポリアミド(polyamide)、ポリイミド(polyimide)、ポリエーテルスルホン(polyether sulfone)、ポリスルホン(polysulfone)、ポリプロピレン(polypropylene)、ポリメチルペンテン(polymethylpentene)、ポリビニルクロライド(polyvinyl chloride)、ポリビニルアセタール(polyvinyl acetal)、ポリエーテルケトン(polyether ketone)、メチルポリメタクリレート(methyl polymethacrylate)、メタクリル樹脂(polymethyl methacrylate;PMMA)、ポリカーボネート(polycarbonate)、ポリウレタン(polyurethane)より選択されうる。そのうち好ましい基材はセルローストリアセテート(cellulose triacetate;TAC)、ポリエチレン(polyethylene;PET)である。本実施例で提供されるTAC或いはPET基板は業界でよく使用される基板材料であり、富士(Fuji)或いはコニカ(Konica)等のメーカーがこの種類の基板を提供している。
【0013】
続いて、本発明の重点を説明する。プラスチック基板100の上の導電層200を形成する。該導電層200は実質上、導電粒子を具え良好な導電層を提供する樹脂A薄膜層、及び材質が比較的硬く硬質保護層とされる樹脂B薄膜層を具えた二層構造とされる。この導電層200の形成は二つの工程に分けられる。即ち、まず基板100の上に導電粒子220と樹脂Aを堆積させるか或いはコーティングし、続いてその上に樹脂Bと微小粒子230を形成する。その詳細な実施工程は以下のとおりである。図3に示されるように、先ず導電粒子220を樹脂A中に混合し、樹脂Aは1−ブタノール(1−Butanol)、エタノール(Ethanol)、エチルアセテート(Ethyl acetate;EAC)、ヘキサン(Hexane)、イソプロパノール(isopropanol;IPA)(80%)及び一部のアクリル樹脂で組成され、固体含有量は5〜25%とされる。導電粒子220の樹脂Aにおける重量百分率は5〜30%の間とされ、その導電粒子220の粒径には二種類があり、それぞれ比較的大きい粒径規格の導電粒子(粒径が0.5〜7μmの間)と、比較的小さい粒径規格の導電粒子(粒径が0.1〜0.5μmの間)とされる。粒径が0.5〜7μmの比較的大きい粒径規格の導電粒子の含有量は導電粒子220全体の0.5〜10重量%である。粒径が0.5以下の比較的小さい粒径規格の導電粒子の含有量は導電粒子220全体の90〜99.5重量%である。導電粒子220の材料はアンチモン錫酸化物(ATO)或いはインジウム錫酸化物(ITO)で組成されている。少なくとも二種類の粒径規格の導電粒子220を含む樹脂Aがウエットコーティング方式で基板100の上にコーティングされて厚さ約5μmの薄膜が形成される。そのうちウエットコーティングにはスピンコーティング、ロールコーティング、凹版印刷コーティング(gravure coating)、バーコーティング(bar coating)、及びスロットダイコーティング(slot die coating)方式が採用されうる。図3より分かるように、本発明の実施例中で使用される樹脂Aは、熱硬化と紫外線照射等の硬化処理工程の後、その厚さが薄くなって、完全には全ての導電粒子を被覆しなくなり、硬化処理後の樹脂Aの厚さは比較的小さい粒径規格の導電粒子の粒径より僅かに大きいが、比較的大きい粒径規格の導電粒子の粒径より小さくなり、全ての比較的大きい粒径規格の導電粒子が部分的に硬化後の樹脂Aの上表面外に突出する(図2の如し)。そのATO(或いはITO)材質の導電粒子220は伝統的な構造中の導電層の導電元素とされる。伝統的な製造工程と同様の粒径(約0.1〜0.5μm)のATO(或いはITO)の粒子を加えて導電と静電防止の機能を提供するほか、本発明は、更に少量の比較的大きい粒径規格の導電粒子(0.5〜7μm)のATO(或いはITO)粒子を添加する。もともとの導電性に影響を与えない前提の下、比較的大きい粒径のATOを樹脂Aと樹脂Bの厚さの間に充填並びに跨接させることにより、本発明の樹脂Bに導電粒子を加えず、またその静電防止機能に影響を与えないものとする。この方式により周知の技術中の、別に導電性の金属粒子を硬質保護層に加えることによる電荷累積の欠点を防止し、製造工程上の困難を減らすと共に、製造コストを下げる。
【0014】
続いて、硬化処理中の熱硬化工程を行ない、樹脂A中のほとんどのアルコール類を熱硬化の工程で蒸発させて樹脂Aを固定する。その熱硬化温度は50〜95℃の間とし、熱硬化時間は0.5〜5分とする。熱硬化温度は樹脂Aに使用される溶剤により決定し、溶剤の沸点より低いものとされ、熱硬化工程を行なう。本実施例中、樹脂Aの溶剤は、イソプロパノールとし、これにより使用する熱硬化温度は約60℃とする。続いて紫外線を使用し、樹脂A中の重合物に橋かけ結合(cross−link)の重合反応を行なわせて構造を強化する。このとき、供給する紫外線エネルギー量は150〜1000mJ/cm の間とし、硬化後の樹脂Aの厚さは0.5〜2μmである。
【0015】
続いて、1〜3wt%の二酸化けい素(silicon oxide or
silica)ナノメータレベルの微小粒子230を樹脂B中に加え、ミキサで混合攪拌し、その二酸化けい素微小粒子230の粒径は0.1〜1.0μmの間とされる。樹脂B中の主要成分はアクリル樹脂とされ、固体含有量は45〜50%とされる。その硬化処理後には比較的高い硬度を有して硬質保護層とされる。二酸化けい素微小粒子230が樹脂Bのコーティングと硬化過程中に、自身の浮力により上向きに樹脂Bの上表面付近に集まる。ゆえに、最外層(樹脂B)の上表面付近内の微小粒子230(silica)を利用し、光入射後に、微小粒子230の存在により入射光を不規則な方式で異なる角度に散乱させ、これにより防眩の硬化を達成する。微小粒子230を含む樹脂Bをウエットコーティング方式で樹脂A上の導電粒子220の間に厚さ約10μmにコーティングし、並びに全ての導電粒子220の間の間隙に充満させる。その微小粒子230が浮力の関係から樹脂Bの表面付近に浮き上がり、その防眩機能を発揮する。そのうちウェットコーティングには樹脂Aと同じ或いは異なるコーティング方式を採用可能である。続いて、硬化処理を行ない、熱硬化工程により樹脂B中の大部分の溶剤を蒸発させて樹脂Bを固定する。その熱硬化温度は50〜95℃とされ、熱硬化時間は0.5〜5minである。続いて紫外線を使用し、樹脂B中の重合物に橋かけ結合(cross−link)の重合反応を行なわせて構造を強化する。このとき、供給する紫外線エネルギー量は150〜1000mJ/cm の間とし、硬化後の樹脂Aの厚さは4〜5μmである。
【0016】
こうして形成される導電層200は硬質保護、静電防止及び防眩の機能を有する。その導電粒子220により導電層200は樹脂A薄膜或いは樹脂B薄膜がいずれも静電解除機能を具備し、且つ樹脂Bの硬度もまた十分に導電層200と基板100を保護するものとされ、こうして伝統的な工程中の硬質保護層の機能を提供する。本発明はフラットディスプレイ(例えばLCD、PDA、PDP、ノートブック型パソコン、CRT)の表面光学膜に運用可能である。この光学薄膜の静電防止と防眩の機能を利用し、静電防止が求められるLCDパネルメーカーの材料に対する要求に対応し、並びにフラットディスプレイの灰塵吸着を減少し並びに使用者の快適性を増加する。
【0017】
【発明の効果】
総合すると、本発明は樹脂A中に少なくとも二種類の異なる粒径規格の導電粒子を具え、そのうち、比較的大きい粒径規格の導電粒子の粒径が硬化後の樹脂A薄膜の厚さより大きいだけでなく、樹脂Aと樹脂Bの両者の硬化後の総厚さ以上とされる。これにより、少なくとも一部の比較的大きい粒径規格の導電粒子の上縁が硬化後の樹脂B薄膜の上表面に接触或いは露出し、別に導電性の金属粒子を添加しなくとも、樹脂A薄膜中の電荷を外界に放出できると共に、樹脂B中の電荷累積を防止でき、こうして静電防止機能を達成する。これにより、周知の技術(例えば特許文献1)が別に硬質保護層中に導電性金属粒子を添加しなければならなかったことによる製造工程上の困難と製造コストアップの欠点を解決し、製造工程の簡易化と製造コストダウンの機能を達成している。
【0018】
上述の説明は本発明の実施範囲を限定するものではなう、本発明に基づきなしうる細部の修飾或いは改変は、いずれも本発明の請求範囲に属するものとする。
【図面の簡単な説明】
【図1】従来のシンプル式マトリックス駆動型液晶フラットディスプレイの垂直構造断面図である。
【図2】本発明の実施例中のプラスチック基板の製造工程構造断面図である。
【図3】本発明の実施例中の導電粒子形成の製造工程構造断面図である。
【図4】本発明の実施例中の防眩機能導電層形成の製造工程構造断面図である。
【符号の説明】
10 偏光板 11 保護膜
12 導電層 13 硬質保護層
20 偏光板 21 保護膜
22 導電層 23 硬質保護層
30 プラスチック基板 40 プラスチック基板
50 列電極 60 行電極
70 カラーフィルタ 80 液晶層
100 プラスチック基板 200 導電層
220 導電粒子 230 微小粒子
A 樹脂 B 樹脂
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical protective thin film having a kind of anti-static and anti-glare functions and a method of manufacturing the same, and more particularly, to a conductive substrate having a different particle size in a plastic substrate structure. In addition, the present invention relates to an optical protective thin film that achieves the above-described two functions by making microparticles and microparticles exist in the same structure, and a method for manufacturing the same.
[0002]
[Prior art]
A glass substrate or a light-transmitting plastic substrate is one of the basic elements indispensable for a flat display, and the light-transmitting plastic substrate is superior to the glass substrate in that it is light in weight and difficult to burst. However, the plastic substrate has the following disadvantages. That is, it is easy to generate static electricity and adsorb ash dust. In the case of a liquid crystal display, the structure of a typical simple tricks-driven liquid crystal flat display (SM-LCD) is as shown in FIG. 1, from the top to the bottom, a hard protective layer 13 (hard coating layer), a conductive layer 12 (conductive layer), protective film 11, polarizing plate 10, plastic substrate 30, column electrode 50, liquid crystal layer 80, row electrode 60, color filter 70, plastic substrate 40, polarizing plate 20, protective film 21, conductive layer 22, A hard protective layer 23 is provided. As shown in FIG. 1, the liquid crystal molecules are located between the column electrode 50 and the row electrode 60, and a driving voltage provided from the outside rotates the liquid crystal. However, the simple matrix drive type liquid crystal flat panel display (SM-LCD) has the problem that the crosstalk due to the increase in the number of scanning electrons and the charge accumulation of the upper and lower polarizing plates interfere with the electric field and the liquid crystal operation. . In the polarizing plate manufacturing process, an upper protective film and a release film are attached to the upper and lower surfaces, respectively. The purpose of the protective film is to protect the film surface of the polarizing plate and prevent the film surface from being damaged during the manufacturing process or transportation. The release film is used for protecting the adhesive before attaching the panel. When the protective film is peeled off, the film surface generates electrostatic accumulation due to friction, and the remaining static electricity can attract foreign substances. In addition, electrostatic accumulation also occurs during the removal of the release film during the manufacturing process, and foreign matter is sucked in. In addition, a deviation is generated in the alignment work when the panels are bonded together, which affects the process yield. For this reason, an anti-static anti-glare film (ASAG film) was generated. As described above, the antistatic antiglare thin film has a three-layer structure, that is, a hard protective layer 13, a conductive layer 12, and a protective film 11.
[0003]
In terms of antistatic technology, the conductive layer can also be formed by sputtering, the particles are relatively uniform, the degree of adhesion with the substrate is good, and the optical properties are also good. However, the equipment cost is high, it is necessary to carry out in a vacuum chamber, the hardware equipment is expensive, and it is difficult to carry out the work in the vacuum cavity of the raw resin film. In addition, as a method for forming a conductive layer by a wet coating method, a two-layer coating method (Patent Document 1) by Dai Nippon Printing has been submitted. According to this, a transparent protective film (hereinafter referred to as a plastic substrate) is formed. In addition, a transparent conductive layer and a hard protective layer are sequentially formed. Among them, the conductive layer contains conductive particles of antimony tin oxide (ATO) or indium tin oxide (ITO), and the surface resistance is 10 8 Ω / □ or less, and the generation of static electricity is reduced. The increased conductive layer lowers the resistance of the substrate surface to about 10 6 Ω / □, thereby preventing a large amount of static electricity. In consideration of translucency, the thickness can generally be about 5 μm. However, the hardness of the conductive layer is poor, and it is easy to drop off due to a collision. Therefore, it is necessary to apply a cured resin thereon to strengthen it. Further, since the cured resin itself does not have conductivity, it is necessary to extend the conductivity by adding conductive metal particles to remove accumulated charges. However, the conductive metal particle price is high, and the coating cost and process difficulty are also high.
[0004]
The hard protective layer is a mixture of hardened resin and conductive metal particles coated onto the conductive layer to provide basic hardness requirements with the hardened resin, and the added conductive metal particles are between the coating surface and the conductive layer. It is used for current conduction. If the antiglare function of the thin film is to be increased, extra nanometer level fine particles are added to the hard protective layer, and the antiglare function is generated by the scattering phenomenon of the fine particles with respect to the light.
[0005]
[Problems to be solved by the invention]
The present invention provides an optical protective thin film structure having an anti-glare and anti-glare function in response to the demand for a plastic substrate, and solves the above-mentioned problems of the prior art.
[0006]
The main object of the present invention is to provide a method for producing a kind of optical protective thin film, which has an antistatic function by adding conductive particles when a conductive layer is formed on a plastic substrate. It is the method of providing.
[0007]
Another object of the present invention is to provide a kind of method for producing an optical protective thin film, which is to form an antiglare layer by adding fine particles to the upper layer of the conductive layer when the conductive layer is formed on the plastic substrate. Is a way to achieve the function.
[0008]
Another object of the present invention is to provide a kind of optical protective thin film structure, which is an optical protective thin film having good structural hardness and high adhesion to a plastic substrate.
[0009]
[Means for Solving the Problems]
The invention of claim 1 is a method of manufacturing an optical protective thin film,
(A) A substrate, a resin A, and a resin B are prepared, and at least two different size standard conductive particles in the resin A, that is, a relatively large particle size standard conductive particle and a relatively small particle size standard conductive particle Adding a process,
(B) Resin A is coated on the substrate and cured to form a cured resin A thin film on the substrate, and the thickness of the cured resin A thin film is a conductive material having a relatively large particle size standard. A process that is smaller than the particle size of the particles and larger than the particle size of the conductive particles of the relatively small particle size standard,
(C) The resin B is coated on the resin A thin film and cured, and the cured resin B thin film is formed on the resin A thin film, and at least in the above-mentioned conductive particles having a relatively large particle size standard A process in which the upper edges of some of the relatively large particle size conductive particles are in contact with the upper surface of the cured resin B thin film or exposed from the upper surface to be in contact with the external environment;
An optical protective thin film manufacturing method characterized by comprising the above steps.
According to a second aspect of the present invention, in the method for producing an optical protective thin film according to the first aspect, the conductive particles having a relatively large particle size standard in the step (a) have a particle size of 0.5 to 7 μm, which is relatively small. The particle size of the conductive particles of the particle size standard is 0.1 to 0.5 μm, and these conductive particles are either antimony tin oxide (ATO) or indium tin oxide (ITO), This is a method for manufacturing an optical protective thin film.
According to a third aspect of the present invention, in the method for producing an optical protective thin film according to the first aspect, fine particles formed of silicon dioxide and having a particle diameter of 0.1 to 1 μm are added to the resin B, and the fine particles are added to the resin. The method of manufacturing an optical protective thin film is characterized by being distributed at positions approaching the upper surface of the B thin film.
The invention of claim 4 is the optical protective thin film,
A substrate,
Compared to the particle size of conductive particles having a relatively large particle size standard and conductive particles having a relatively small particle size standard formed on the substrate and having a relatively small particle size standard, and having a relatively small thickness A resin A thin film that is between the particle sizes of conductive particles having a large particle size standard;
A resin B thin film formed on the resin A thin film and contacting the upper surface of at least a part of the conductive particles having a relatively large particle size standard with the upper surface or being exposed from the upper surface;
An optical protective thin film characterized by comprising:
The invention according to claim 5 is the optical protective thin film according to claim 4, wherein the conductive particles are either antimony tin oxide (ATO) or indium tin oxide (ITO), and the conductive particles having a relatively large particle size standard The optical protective thin film is characterized in that the particle size of the conductive particles having a relatively small particle size standard is about 0.5 μm.
According to a sixth aspect of the present invention, in the optical protective thin film according to the fourth aspect of the present invention, the resin B thin film contains silicon dioxide fine particles having a particle size of 0.1 to 1.0 μm, and the fine particles are the resin B thin film. The optical protective thin film is characterized in that it is distributed at a position approaching the upper surface.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
First, a plastic substrate which is a cellulose triacetate film or a polyester film is provided, and then a conductive layer is formed on the plastic substrate. This conductive layer has a two-layer resin thin film structure formed using two different types of resins. That is, first, the conductive particles are mixed in the resin A to improve the conductive effect of the resin A. There are two types of particle size standards for the conductive particles. Resin A containing conductive particles is coated on the substrate by a wet coating method. Subsequently, most of the alcohols in the resin A are evaporated in the thermosetting step to fix the resin A, and the thickness of the resin A after the thermosetting is larger than the particle size of the conductive particles having a relatively large particle size standard. It shall be small. Further, the structure is strengthened by polymerizing the polymer in the resin A by heat curing or ultraviolet curing. Furthermore, the resin B having a good hardness is provided, and silicon dioxide having a small particle size is added to the resin B to serve to achieve an antiglare function due to the fine particles. The resin B containing fine particles is formed on the resin A by a wet coating method, and the gaps between the conductive particles are filled. Subsequently, the resin A is reinforced by a thermosetting process and a process such as thermosetting or ultraviolet curing. At this time, since the conductive particles having a relatively large particle size standard have a relatively large particle size, the upper edges of some of the relatively large particle size standard conductive particles are in contact with or exposed to the outside of the upper surface of the resin B. Thereby, it is possible to prevent electric charges from accumulating in the resin B, thereby achieving an antistatic function. Thus, an optical protective thin film having antistatic and antiglare functions is completed.
[0011]
【Example】
In the present invention, at least two kinds of conductive particles having different particle size specifications, that is, conductive particles having a relatively large particle size specification and conductive particles having a relatively small particle size specification are added to the resin A constituting the conductive layer. And provide anti-static function. Among these, the thickness of the cured resin A thin film is larger than the particle size of the conductive particles having the relatively small particle size specification and smaller than the particle size of the conductive particles having the relatively large particle size specification. Resin B is composed of a material having high hardness, which is coated on the resin A thin film to form a hard protective layer, and the upper edge of at least a part of the conductive particles having the relatively large particle size standard is cured. The resin B is in contact with the upper surface of the thin film or exposed to contact with the outside environment. Thereby, there is no need to add conductive metal particles to the resin B, the charge in the resin A thin film can be released to the outside, and the accumulation of the charge in the resin B can be prevented, thereby preventing the static electricity. The function is achieved, and the manufacturing process is simplified and the manufacturing cost is reduced.
[0012]
In order to explain the emphasis of the invention of the present invention, the present invention will be described by taking the production of a protective film for a flat display as an example and in combination with the drawings.
As shown in FIG. 2, the plastic substrate 100 is composed of cellulose, diacetate, triacetate, cellulose acetate butyrate, polyester, polyamide, Polyimide, polyethersulfone, polysulfone, polypropylene, polymethylpentene, polyvinyl chloride, and polyacetal. Teruketon (polyether ketone), methyl polymethacrylate (methyl polymethacrylate), methacrylic resin (polymethyl methacrylate; PMMA), polycarbonate (poly carbonate), may be selected from polyurethane (the POLYURETHANE). Among them, preferred substrates are cellulose triacetate (TAC) and polyethylene (polyethylene). The TAC or PET substrate provided in this embodiment is a substrate material often used in the industry, and manufacturers such as Fuji and Konica provide this type of substrate.
[0013]
Subsequently, the emphasis of the present invention will be described. A conductive layer 200 is formed on the plastic substrate 100. The conductive layer 200 substantially has a two-layer structure including a resin A thin film layer that includes conductive particles and provides a good conductive layer, and a resin B thin film layer that is a relatively hard and hard protective layer. The formation of the conductive layer 200 is divided into two steps. That is, the conductive particles 220 and the resin A are first deposited or coated on the substrate 100, and then the resin B and the fine particles 230 are formed thereon. The detailed implementation process is as follows. As shown in FIG. 3, first, the conductive particles 220 are mixed in the resin A, and the resin A is 1-butanol, ethanol, ethyl acetate (EAC), hexane (Hexane). , Isopropanol (IPA) (80%) and some acrylic resins, and the solid content is 5-25%. The weight percentage of the conductive particles 220 in the resin A is between 5 and 30%, and there are two types of particle diameters of the conductive particles 220. ˜7 μm) and conductive particles having a relatively small particle size standard (particle size between 0.1 and 0.5 μm). The content of conductive particles having a relatively large particle size with a particle size of 0.5 to 7 μm is 0.5 to 10% by weight of the entire conductive particles 220. The content of conductive particles having a relatively small particle size standard with a particle size of 0.5 or less is 90 to 99.5% by weight of the entire conductive particles 220. The material of the conductive particles 220 is composed of antimony tin oxide (ATO) or indium tin oxide (ITO). Resin A including conductive particles 220 having at least two kinds of particle size standards is coated on substrate 100 by a wet coating method to form a thin film having a thickness of about 5 μm. Of these, spin coating, roll coating, gravure coating, bar coating, and slot die coating may be employed for wet coating. As can be seen from FIG. 3, the resin A used in the examples of the present invention becomes thin after the curing treatment steps such as thermal curing and ultraviolet irradiation, and all the conductive particles are completely removed. The thickness of the resin A after being cured is slightly larger than the particle size of the conductive particles having a relatively small particle size standard, but smaller than the particle size of the conductive particle having a relatively large particle size standard. The conductive particles having a relatively large particle size standard partially protrude outside the upper surface of the cured resin A (as shown in FIG. 2). The conductive particles 220 made of the ATO (or ITO) material are used as the conductive elements of the conductive layer in the traditional structure. In addition to providing ATO (or ITO) particles with the same particle size (about 0.1-0.5 μm) as in the traditional manufacturing process to provide conductivity and antistatic functions, ATO (or ITO) particles of conductive particles (0.5 to 7 μm) having a relatively large particle size standard are added. Under the assumption that the original conductivity is not affected, conductive particles are added to the resin B of the present invention by filling and straddling a relatively large particle size ATO between the thicknesses of the resin A and the resin B. In addition, it shall not affect the antistatic function. By this method, it is possible to prevent the disadvantage of charge accumulation due to addition of conductive metal particles to the hard protective layer, which is a known technique, thereby reducing the difficulty in the manufacturing process and reducing the manufacturing cost.
[0014]
Subsequently, a thermosetting process during the curing process is performed, and most of the alcohols in the resin A are evaporated in the thermosetting process to fix the resin A. The thermosetting temperature is between 50 and 95 ° C., and the thermosetting time is 0.5 to 5 minutes. The thermosetting temperature is determined by the solvent used for the resin A and is lower than the boiling point of the solvent, and the thermosetting process is performed. In this example, the solvent of the resin A is isopropanol, and the thermosetting temperature used is about 60 ° C. Subsequently, ultraviolet rays are used to cause the polymer in the resin A to undergo a cross-link polymerization reaction to strengthen the structure. At this time, the amount of ultraviolet energy supplied is between 150 and 1000 mJ / cm 2 , and the thickness of the cured resin A is 0.5 to 2 μm.
[0015]
Subsequently, 1 to 3 wt% silicon dioxide or silicon oxide or
Silica) Nanometer-level microparticles 230 are added into resin B, and mixed and stirred by a mixer. The silicon dioxide microparticles 230 have a particle size of 0.1 to 1.0 μm. The main component in the resin B is an acrylic resin, and the solid content is 45 to 50%. After the curing process, the hard protective layer has a relatively high hardness. During the coating and curing process of the resin B, the silicon dioxide fine particles 230 gather upward near the upper surface of the resin B due to their buoyancy. Therefore, using the microparticles 230 (silica) in the vicinity of the upper surface of the outermost layer (resin B), after the light is incident, the incident light is scattered at different angles in an irregular manner due to the presence of the microparticles 230. Achieve anti-glare cure. Resin B containing fine particles 230 is coated between conductive particles 220 on resin A to a thickness of about 10 μm by a wet coating method, and gaps between all conductive particles 220 are filled. The fine particles 230 float near the surface of the resin B due to the buoyancy, and exhibit the antiglare function. Among them, the same or different coating method as that of the resin A can be used for the wet coating. Subsequently, a curing process is performed, and most of the solvent in the resin B is evaporated by a thermosetting process to fix the resin B. The thermosetting temperature is 50 to 95 ° C., and the thermosetting time is 0.5 to 5 min. Subsequently, ultraviolet rays are used to cause the polymer in the resin B to undergo a cross-link polymerization reaction to strengthen the structure. At this time, the amount of ultraviolet energy supplied is between 150 and 1000 mJ / cm 2 , and the thickness of the resin A after curing is 4 to 5 μm.
[0016]
The conductive layer 200 thus formed has functions of hard protection, antistatic and antiglare. With the conductive particles 220, the resin layer 200 or the resin layer B has the electrostatic release function in the conductive layer 200, and the hardness of the resin B also sufficiently protects the conductive layer 200 and the substrate 100. Provides the function of a hard protective layer during the traditional process. The present invention can be applied to the surface optical film of a flat display (for example, LCD, PDA, PDP, notebook personal computer, CRT). Utilizing the anti-static and anti-glare functions of this optical thin film to meet the demand for materials of LCD panel manufacturers that require anti-static, reduce ash dust adsorption on flat displays and increase user comfort To do.
[0017]
【The invention's effect】
In summary, the present invention comprises at least two kinds of conductive particles having different particle size specifications in the resin A, of which the particle size of the relatively large particle size specification is larger than the thickness of the cured resin A thin film. Instead, the total thickness after curing of both the resin A and the resin B is set to be equal to or greater. As a result, the upper edge of at least a part of the conductive particles having a relatively large particle size standard is in contact with or exposed to the upper surface of the cured resin B thin film. The charge inside can be released to the outside, and the charge accumulation in the resin B can be prevented, thus achieving the antistatic function. As a result, a known technique (for example, Patent Document 1) solves the difficulty in the manufacturing process and the disadvantage of increasing the manufacturing cost due to the addition of conductive metal particles to the hard protective layer. Has achieved the functions of simplification and manufacturing cost reduction.
[0018]
The above description is not intended to limit the scope of the present invention, and any modification or alteration in detail that can be made based on the present invention shall fall within the scope of the present invention.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view of a conventional simple matrix drive type liquid crystal flat display.
FIG. 2 is a sectional view of a manufacturing process structure of a plastic substrate in an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a manufacturing process structure for forming conductive particles in an example of the present invention.
FIG. 4 is a cross-sectional view of a manufacturing process structure for forming an antiglare function conductive layer in an example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Polarizing plate 11 Protective film 12 Conductive layer 13 Hard protective layer 20 Polarizing plate 21 Protective film 22 Conductive layer 23 Hard protective layer 30 Plastic substrate 40 Plastic substrate 50 Column electrode 60 Row electrode 70 Color filter 80 Liquid crystal layer 100 Plastic substrate 200 Conductive layer 220 conductive particles 230 microparticles A resin B resin

Claims (6)

光学保護薄膜の製造方法において、
(a)基板、樹脂A、及び樹脂Bを準備し、樹脂A中に少なくとも二種類の異なる寸法規格の導電粒子、即ち比較的大きい粒径規格の導電粒子と比較的小さい粒径規格の導電粒子を加える工程、
(b)樹脂Aを基板上にコーティングし並びに硬化処理して硬化した樹脂A薄膜を基板の上に形成し、且つこの硬化後の樹脂A薄膜の厚さは該比較的大きい粒径規格の導電粒子の粒径より小さく且つ該比較的小さい粒径規格の導電粒子の粒径より大きいものとする工程、
(c)樹脂Bを樹脂A薄膜の上にコーティングし並びに硬化処理を行ない、硬化した樹脂B薄膜を樹脂A薄膜の上に形成し、並びに前述の比較的大きい粒径規格の導電粒子中の少なくとも一部の比較的大きい粒径規格の導電粒子の上縁が硬化後の樹脂B薄膜の上表面に接触するか該上表面より露出して外界環境と接触するものとする工程、
以上の工程を具えたことを特徴とする、光学保護薄膜の製造方法。
In the method for producing an optical protective thin film,
(A) A substrate, a resin A, and a resin B are prepared, and at least two different size standard conductive particles in the resin A, that is, a relatively large particle size standard conductive particle and a relatively small particle size standard conductive particle Adding a process,
(B) Resin A is coated on the substrate and cured to form a cured resin A thin film on the substrate, and the thickness of the cured resin A thin film is a conductive material having a relatively large particle size standard. A process that is smaller than the particle size of the particles and larger than the particle size of the conductive particles of the relatively small particle size standard,
(C) The resin B is coated on the resin A thin film and cured, and the cured resin B thin film is formed on the resin A thin film, and at least in the above-mentioned conductive particles having a relatively large particle size standard A process in which the upper edges of some of the relatively large particle size conductive particles are in contact with the upper surface of the cured resin B thin film or exposed from the upper surface to be in contact with the external environment;
A method for producing an optical protective thin film comprising the steps described above.
請求項1記載の光学保護薄膜の製造方法において、(a)の工程中の比較的大きい粒径規格の導電粒子の粒径を0.5〜7μmとし、比較的小さい粒径規格の導電粒子の粒径を0.1〜0.5μmとし、且つこれらの導電粒子をアンチモン錫酸化物(ATO)或いはインジウム錫酸化物(ITO)のいずれかとすることを特徴とする、光学保護薄膜の製造方法。The method for producing an optical protective thin film according to claim 1, wherein the particle size of the conductive particles having a relatively large particle size standard in the step (a) is 0.5 to 7 µm, A method for producing an optical protective thin film, characterized in that the particle diameter is 0.1 to 0.5 μm, and these conductive particles are either antimony tin oxide (ATO) or indium tin oxide (ITO). 請求項1記載の光学保護薄膜の製造方法において、樹脂B中に二酸化けい素で形成されて粒径が0.1〜1μmの微小粒子を加え、この微小粒子を樹脂B薄膜の上表面に接近する位置に分布させることを特徴とする、光学保護薄膜の製造方法。2. The method for producing an optical protective thin film according to claim 1, wherein fine particles formed of silicon dioxide and having a particle diameter of 0.1 to 1 [mu] m are added in the resin B, and the fine particles are brought close to the upper surface of the resin B thin film. A method for producing an optical protective thin film, characterized in that the optical protective thin film is distributed at a position to be distributed. 光学保護薄膜において、
基板と、
該基板の上に形成され、比較的大きい粒径規格の導電粒子と比較的小さい粒径規格の導電粒子を少なくとも含有し、並びに厚さが比較的小さい粒径規格の導電粒子の粒径と比較的大きい粒径規格の導電粒子の粒径の間とされる樹脂A薄膜と、
該樹脂A薄膜の上に形成され、少なくとも一部の比較的大きい粒径規格の導電粒子の上縁を上表面に接触させるか該上表面より露出させて外界環境と接触させる樹脂B薄膜と、
を具えたことを特徴とする、光学保護薄膜。
In optical protective thin film,
A substrate,
Compared to the particle size of conductive particles having a relatively large particle size standard and conductive particles having a relatively small particle size standard formed on the substrate and having a relatively small particle size standard, and having a relatively small thickness A resin A thin film that is between the particle sizes of conductive particles having a large particle size standard;
A resin B thin film formed on the resin A thin film and contacting the upper surface of at least a part of the conductive particles having a relatively large particle size standard with the upper surface or being exposed from the upper surface;
An optical protective thin film characterized by comprising:
請求項4記載の光学保護薄膜において、導電粒子がアンチモン錫酸化物(ATO)或いはインジウム錫酸化物(ITO)のいずれかとされ、並びに比較的大きい粒径規格の導電粒子の粒径が0.5〜7μmとされ、比較的小さい粒径規格の導電粒子の粒径が約0.5μmとされたことを特徴とする、光学保護薄膜。5. The optical protective thin film according to claim 4, wherein the conductive particles are either antimony tin oxide (ATO) or indium tin oxide (ITO), and the conductive particles having a relatively large particle size standard have a particle size of 0.5. An optical protective thin film characterized in that the particle size of conductive particles having a relatively small particle size is about 0.5 μm. 請求項4記載の光学保護薄膜において、樹脂B薄膜中に粒径が0.1〜1.0μmの二酸化けい素の微小粒子が含有され、該微小粒子が樹脂B薄膜の上表面に接近する位置に分布したことを特徴とする、光学保護薄膜。5. The optical protective thin film according to claim 4, wherein fine particles of silicon dioxide having a particle size of 0.1 to 1.0 [mu] m are contained in the resin B thin film, and the fine particles approach the upper surface of the resin B thin film. An optical protective thin film characterized by being distributed in
JP2003164055A 2003-06-09 2003-06-09 Optical protection thin film and its manufacturing method Pending JP2005003725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164055A JP2005003725A (en) 2003-06-09 2003-06-09 Optical protection thin film and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164055A JP2005003725A (en) 2003-06-09 2003-06-09 Optical protection thin film and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005003725A true JP2005003725A (en) 2005-01-06

Family

ID=34090972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164055A Pending JP2005003725A (en) 2003-06-09 2003-06-09 Optical protection thin film and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005003725A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012514220A (en) * 2008-12-24 2012-06-21 チェイル インダストリーズ インコーポレイテッド Anti-glare film containing anti-glare agent in form of overlapping two anti-glare particles and method for producing the same
KR101340645B1 (en) 2011-08-24 2013-12-12 울산대학교 산학협력단 Manufacturing method of coatinglayer having excellent water repellency

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012514220A (en) * 2008-12-24 2012-06-21 チェイル インダストリーズ インコーポレイテッド Anti-glare film containing anti-glare agent in form of overlapping two anti-glare particles and method for producing the same
KR101340645B1 (en) 2011-08-24 2013-12-12 울산대학교 산학협력단 Manufacturing method of coatinglayer having excellent water repellency

Similar Documents

Publication Publication Date Title
KR101555411B1 (en) Transparent conductive film and use thereof
TW518424B (en) Anti-reflection material and its polarization film
WO2015115540A1 (en) Double-sided translucent conductive film, roll thereof, and touch panel
JP2003039607A (en) Antistatic hard coat film and method for manufacturing the same
JP5935802B2 (en) Method for producing antiglare film
TW201213840A (en) Optical film and method for producing the same
KR20120052277A (en) Optical laminate, polarizing plate and image display device
TWI614660B (en) Transparent conductive film and touch panel therewith and display device
EP2876468A1 (en) Conductive optical element, input element and display element
KR101271284B1 (en) Functional film for display screen and method for producing same
JP2002267818A (en) Light diffusible sheet and optical element
WO2014141921A1 (en) Laminate for use in touch panel and manufacturing method of laminate for use in touch panel
JP6475920B2 (en) Touch panel
JP2004047456A (en) Transparent conductive material and touch panel
JP2004214069A (en) Transparent conductive film, transparent conductive laminate, and touch panel
TW201830103A (en) Polarizing plate and liquid crystal display device
JP2009098659A (en) Antistatic optical film, polarizing plate, image display, and liquid crystal display
KR20050108906A (en) Conductive polarizer for lcd
CN110441837A (en) It is a kind of it is low reflection anti-dazzle film, with this it is low reflection anti-dazzle film polarizer and liquid crystal display panel
JP2011174976A (en) Antiglare film
JP6508169B2 (en) Optical laminate for front of in-cell touch panel liquid crystal element, in-cell touch panel liquid crystal display device, and method of manufacturing them
JP2002267804A (en) Antireflection film and method for manufacturing the same
US20040197550A1 (en) Structure and fabricating method of optic protection film
JP3696661B2 (en) Transparent conductive sheet for inner touch panel
JP2005003725A (en) Optical protection thin film and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807