JP2005003558A - Liquid chromatography apparatus and method of analyzing optical isomer contained in sample - Google Patents

Liquid chromatography apparatus and method of analyzing optical isomer contained in sample Download PDF

Info

Publication number
JP2005003558A
JP2005003558A JP2003168320A JP2003168320A JP2005003558A JP 2005003558 A JP2005003558 A JP 2005003558A JP 2003168320 A JP2003168320 A JP 2003168320A JP 2003168320 A JP2003168320 A JP 2003168320A JP 2005003558 A JP2005003558 A JP 2005003558A
Authority
JP
Japan
Prior art keywords
sample
components
liquid
mobile phase
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003168320A
Other languages
Japanese (ja)
Other versions
JP4291628B2 (en
Inventor
Kiyoshi Zaitsu
潔 財津
Kenji Hamase
健司 浜瀬
Masashi Mita
真史 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP2003168320A priority Critical patent/JP4291628B2/en
Publication of JP2005003558A publication Critical patent/JP2005003558A/en
Application granted granted Critical
Publication of JP4291628B2 publication Critical patent/JP4291628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8877Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample optical isomers

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of analyzing optical isomers contained in a sample and a liquid chromatography apparatus allowing quick analysis with a relatively small amount of sample. <P>SOLUTION: The liquid chromatography apparatus comprises: a first mobile phase supply section which stores a first liquid as a mobile phase; a sample injection section which injects components containing optical isomers into the first liquid supplied from the first mobile phase supply section; a separation column which separates the components of the sample injected into the first liquid; a components retention section which individually retains each component of the sample separated through the separation column; a second mobile phase supply section which supplies the components retention section with a second liquid as a mobile phase; an optical resolution column which resolves the optical isomers contained in each component of the sample supplied from the components retention section together with the second liquid; and a detector which detects the optical isomers contained in each component of the sample. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、液体クロマトグラフ装置、及び試料に含まれる光学異性体の分析方法に関する。
【0002】
【従来の技術】
アミノ酸の多くは、α位に不斉炭素原子を有しており、D体とL体が存在するが、タンパク質の構成単位をはじめとして自然界に存在するアミノ酸のほとんどが、L−アミノ酸である(例えば、非特許文献1参照)。しかし近年、かつて非天然型アミノ酸と呼ばれていたD−アミノ酸が、細菌だけではなく環形動物、昆虫、植物、及び脊椎動物に至るまで幅広く存在し、種々の重要な役割を有していることが報告されてきた(例えば、非特許文献2参照)。哺乳類においても、ヒトを含め、ラット又はマウスなどで遊離型又はペプチド中に取り込まれた形で様々なD−アミノ酸の存在が報告されている(例えば、非特許文献3及び4参照)。
【0003】
中でも遊離型のD−Ser、D−Aspについては、他のアミノ酸と比較して内在性含量が高く、その由来や生理機能について多数の報告が存在する(例えば、非特許文献5、6、7及び8参照)。D−Serについては、大脳や海馬等の前脳部に局在し、N−メチル−D−アスパラギン酸(NMDA)受容体の神経伝達を調節することが明らかになっており(例えば、非特許文献9参照)、D−Aspは、松果体及び精巣に存在し(例えば、非特許文献7、8、及び10参照)、メラトニン及びテストステロン等の分泌を制御することが報告されている(例えば、非特許文献11及び12参照)。また、D−Serの投与により精神分裂病の症状が改善されたという報告もあり(例えば、非特許文献13参照)、D−アミノ酸は、医薬品への応用も期待されている。
しかし、他のD−アミノ酸は、生体内の含量が極めて微量であり、分析法の選択性及び感度不足のためにほとんど研究が進展していない。
【0004】
最近、発明者等は、D−Ala、D−Leu、D−Proについて高感度かつ選択的なカラムスイッチングキラルHPLC法を開発し、これらのD−アミノ酸が、ラット又はマウスにおいてそれぞれ異なった組織分布を示すことを明らかにした(非特許文献14、15、及び16参照)。この事実は、これまで報告されていなかった様々なアミノ酸についても哺乳類中に存在し、生理機能を有する可能性を示しており、これらの存在確認と、生体内分布の解明が望まれている。このような、新たなD−アミノ酸の生理機能の解明が、D−アミノ酸をリード化合物とする新規薬効分子の探索を可能とし、新たな医薬品創製の基盤になることが期待される。
【0005】
従来のD−アミノ酸の分析法としては、酵素を用いる方法(例えば、非特許文献17、18、及び19参照)、キラルな試薬を用いるジアステレオマー法(例えば、非特許文献17、19、及び20参照)、キラル移動相法(例えば、非特許文献21及び22参照)、キラル固定相法(例えば、非特許文献7及び23参照)等を利用する様々な方法が開発されている。
しかし、生体内のD−アミノ酸は、極めて微量である場合が多く、従来法では感度や選択性の不足、前処理の煩雑さ、1種類のアミノ酸分析に時間を要する等の理由により、機能解明などを目的とする多数のD−アミノ酸のスクリーニングは現実的には不可能であった。
【0006】
一方、上述のカラムスイッチングキラルHPLC法は、これまで報告されている生体内微量D−アミノ酸分析法の中で最も優れた分析法の一つである(例えば、非特許文献14、15、及び16参照)。
【0007】
しかし、カラムスイッチングキラルHPLC法では、単一のシステムで一度に一種類のアミノ酸しか分析できないことに加えて、一回の分析に長時間を要する。これは主にこのHPLC装置の光学分割能の不足に起因している。
【0008】
【非特許文献1】
J.J.Corrigan:D−Amino acids in animals,Science,164,142−149(1969)
【0009】
【非特許文献2】
左右田健次:D−アミノ酸の生化学(I),化学32,517−526(1977)
【0010】
【非特許文献3】
長田洋子:生体に存在するD−アミノ酸 −哺乳類を中心として−,札幌医誌,58,271−278(1989)
【0011】
【非特許文献4】
本間 浩,今井一洋:生体におけるD−アミノ酸,ぶんせき,1998,266−273(1998)
【0012】
【非特許文献5】
A.Hashimoto,T.Nishikawa,T.Hayashi,N.Fujii,K.Harada,T.Oka and K.Takahashi: The presence of free D−Serine in rat brain,FEBS Lett.,296,33−36(1992)
【0013】
【非特許文献6】
A.Hashimoto and T.Oka:Free D−aspartate and D−serine in the mammalian brain and periphery,Prog.Neurobiol.,52,325−353(l997)
【0014】
【非特許文献7】
K.Hamase,H.Homma,Y.Takigawa,T.Fukushima,T.Santa and K.Imai:Regional distribution and postnatal changes of D−amino acids in rat brain,Biochim.Biophys.Acta,1334,214−222(l997)
【0015】
【非特許文献8】
8. A.D’Aniello,M.M.D.Fiore,G.D’Aniello,F.E.Colin,G.Lewis and B.P.Setchell:Secretion of D−aspartic acid by the rat testis and its role in endocrinology of the testis and spermatogenesis,FEBS Lett.,436,23−27(1998)
【0016】
【非特許文献9】
A.Hashimoto,T.Nishikawa,T.Oka and K.Takahashi: Endogeneous D−Serine in rat brain: N−methyl−D−aspartate receptor−related distribution and aging,J.Neurochem.,60,783−786(l993)
【0017】
【非特許文献10】
K.Sakai,H.Homma,J.−A.Lee,T.Fukushima,T.Santa,K.Tashiro,T.Iwatsubo and K.Imai:Localization of D−aspartic acidin elongate spermatids in rat testis,Arch.Biochem.Biophys,351,96−105(1998)
【0018】
【非特許文献11】
Y.Takigawa,H.Homma,J.−A.Lee,T.Fukushima,T.Santa,T.Iwatsubo and K.Imai:D−Aspartate uptake into cultured rat pinealocytes and the concomitant effect on L−aspartate levels and melatonin secretion,Biochem.Biopys.Res.Commun.,248,64l−647(1998)
【0019】
【非特許文献12】
A.D’Aniello,A.D.Cosmo,C.D.Cristo, L.Annunziato,L.Petrucelli and G.Fisher:Involvement of D−aspartic acid in the synthesis of testosterone in rat testes,Life Sci.,59,97−104(1996)
【0020】
【非特許文献13】
G.Tsai,P.Yang,L.−C.Chung,N.Lange andJ.T.Coyle:D−Serine added to antipsychotics for the treatment of schizophrenia,Biol.Psychiat.,44,1081−1089(1998)
【0021】
【非特許文献14】
A.Morikawa,K.Hamase and K.Zaitsu:Determination of D−alanine in the rat central nervous system and periphery using column−switching high−performance liquid chromatography,Anal. Biochem.,312,66−72(2003)
【0022】
【非特許文献15】
T.Inoue,K.Hamase,A.Morikawa and K. Zaitsu: Determination of minute amounts of D−leucine in various brain regions of rat and mouse using column−switching high−performance liquid chromatography,J.Chromatogr.B,744,213−219(2000)
【0023】
【非特許文献16】
K.Hamase,T.Inoue,A.Morikawa,R.Kormo and K.Zaitsu:Determination of free D−proline and D−leucine in the brainsof mutant mice lacking D−amino acidoxidase activity,Anal.Biochem.,298,253−258(2001)
【0024】
【非特許文献17】
K.Imai,T.Fukushima,T.Santa,H.Homma,K.Hamase,K.Sakai and M. Kato:Analytical chemistry and biochemistry of D−amino acids,Biomed.Chromatogr.,10,303−312(1996)
【0025】
【非特許文献18】
G.H.Fisher,A.D’Aniello,A.Vetere,L.Padula,G.P.Cusano and E.H.Man:FreeD−aspartate and D−alanine in normaland Alzheimer brain,Brain Res.Bull.,26,983−985(1991)
【0026】
【非特許文献19】
K.Hamase,A.Morikawa and K.Zaitsu:D−Amino acids in mammals and their diagnostic value,J.Chromatogr.B,781,73−91(2002)
【0027】
【非特許文献20】
A.Morikawa,K.Hamase,T.Inoue,R.Konno,A.Niwa and K.Zaitsu:Determination offree D−aspartic acid, D−Serine and D−alanine in the brain of mutant mice lacking D−amino−acid oxidase activity,J.Chromatogr.B,757,119−125(2001)
【0028】
【非特許文献21】
A.M.Rizzi,P.Briza and M.Breitenbach:Detemination of D−alanine and D−glutamic acid in biological samples by coupled−column chromatography using β−cyclodextrin as mobile phase additive,J.Chromatogr.,582,35−40,(l992)
【0029】
【非特許文献22】
秋山知子,笹川 立:D,Lアミノ酸の一斉分析法とその応用,蛋白質 核酸 酵素,40,76−83(1995)
【0030】
【非特許文献23】
K.Imai,M.Kato,Y.Huang,H.Ichihara,T.Fukushima,T.Santa and H.Homma,Recent progress on analytical chemistry andbiochemistry of D−amino acids,YAKUGAKU ZASSHI,117,637−646(1997)
【0031】
【発明が解決しようとする課題】
本発明は、上記問題に鑑みなされたものであり、比較的少量の試料で迅速な分析を行うことが可能な、液体クロマトグラフ装置を提供することを目的とする。
【0032】
また、本発明は、比較的少量の試料で迅速な分析を行うことが可能な、試料に含まれる光学異性体の分析方法を提供することを目的とする。
【0033】
【課題を解決するための手段】
請求項1記載の発明は、液体クロマトグラフ装置において、移動相としての第一の液体を貯蔵する第一の移動供給部、前記第一の移動相供給部から供給される前記第一の液体に光学異性体を有する成分を含む試料を注入する試料注入部、前記第一の液体に注入された前記試料の前記成分を分離する分離カラム、前記分離カラムを通じて分離された前記試料の前記成分の各々を個別に保持する成分保持部、移動相としての第二の液体を前記成分保持部へ供給する第二の移動相供給部、前記成分保持部から前記第二の液体と共に供給される前記試料の前記成分の各々に含まれる前記光学異性体を分割する光学分割カラム、及び前記試料の前記成分の各々に含まれる前記光学異性体を検出する検出器を含むことを特徴とする。
【0034】
請求項1記載の発明によれば、移動相としての第一の液体を貯蔵する第一の移動供給部、前記第一の移動相供給部から供給される前記第一の液体に光学異性体を有する成分を含む試料を注入する試料注入部、前記第一の液体に注入された前記試料の前記成分を分離する分離カラム、前記分離カラムを通じて分離された前記試料の前記成分の各々を個別に保持する成分保持部、移動相としての第二の液体を前記成分保持部へ供給する第二の移動相供給部、前記成分保持部から前記第二の液体と共に供給される前記試料の前記成分の各々に含まれる前記光学異性体を分割する光学分割カラム、及び前記試料の前記成分の各々に含まれる前記光学異性体を検出する検出器を含むので、比較的少量の試料で迅速な分析を行うことが可能な、液体クロマトグラフ装置を提供することができる。
【0035】
請求項2記載の発明は、請求項1記載の液体クロマトグラフ装置において、前記成分保持部は、前記試料の前記成分の各々を個別に保持する複数の保持部分、並びに前記試料の前記成分の各々を個別に、前記保持部分に供給する及び前記保持部分から前記光学分割カラムへ供給する供給部分を有することを特徴とする。
【0036】
請求項2記載の発明によれば、前記成分保持部は、前記試料の前記成分の各々を個別に保持する複数の保持部分、並びに前記試料の前記成分の各々を個別に、前記保持部分に供給する及び前記保持部分から前記光学分割カラムへ供給する供給部分を有するので、分離カラムを通じて分離された試料の成分の各々を、容易且つ確実に、個別に保持することができる。
【0037】
請求項3記載の発明は、試料に含まれる光学異性体の分析方法において、光学異性体を有する成分を含む試料を、移動相としての第一の液体と共に、固定相としての第一のカラム充填剤に通じて、前記試料の前記成分を分離するステップ、前記試料の前記成分の各々を個別に保持するステップ、前記試料の前記成分の各々を、移動相としての第二の液体と共に、固定相としての光学活性中心を有する第二のカラム充填剤に通じて、前記試料の成分の各々に含まれる前記光学異性体を分割するステップ、及び前記試料の成分の各々に含まれる前記光学異性体を検出するステップを含むことを特徴とする。
【0038】
請求項3記載の発明によれば、試料に含まれる光学異性体の分析方法において、光学異性体を有する成分を含む試料を、移動相としての第一の液体と共に、固定相としての第一のカラム充填剤に通じて、前記試料の前記成分を分離するステップ、前記試料の前記成分の各々を個別に保持するステップ、前記試料の前記成分の各々を、移動相としての第二の液体と共に、固定相としての光学活性中心を有する第二のカラム充填剤に通じて、前記試料の成分の各々に含まれる前記光学異性体を分割するステップ、及び前記試料の成分の各々に含まれる前記光学異性体を検出するステップを含むので、比較的少量の試料で迅速な分析を行うことが可能な、試料に含まれる光学異性体の分析方法を提供することができる。
【0039】
請求項4記載の発明は、請求項3記載の試料に含まれる光学異性体の分析方法において、前記試料の成分は、アミノ酸又はアミノ酸誘導体であることを特徴とする。
【0040】
請求項4記載の発明によれば、前記試料の成分は、アミノ酸又はアミノ酸誘導体であるので、比較的少量の試料で迅速な分析を行うことが可能な、試料に含まれるアミノ酸又はアミノ酸誘導体の光学異性体の分析方法を提供することができる。
【0041】
【発明の実施の形態】
次に、本発明の実施の形態について図面と共に説明する。
【0042】
まず、本発明による液体クロマトグラフ装置の典型的な実施の形態について図1を用いて説明する。図1に示す本発明による典型的な液体クロマトグラフ装置は、第一の移動相供給部11、脱気装置80、第一のポンプ21、試料注入部30、逆相ミクロカラム41、逆相ミクロカラム恒温装置45、第一の検出器51、第一の記録計91、カラム選択ユニット60、マルチループユニット100、第二の移動相供給部12、第二のポンプ22、キラルカラム42、キラルカラム用恒温装置46、第二の検出器52、及び第二の記録計92を含む。
【0043】
第一の移動相供給部11には、移動相としての第一の液体が貯蔵されており、第一のポンプ21によって第一の液体がくみ上げられる。第一のポンプ21によってくみ上げられた第一の液体に含まれる空気は、第一のポンプ21に対するノイズの原因となるため、脱気装置80によって除去される。脱気装置80によって空気が除去された第一の液体は、試料注入部30へ送られる。試料注入部30において、複数種のアミノ酸又はアミノ酸の誘導体などのような光学異性体を有する成分を含む試料が注入される。試料は、第一の液体と共に、逆相ミクロカラム用恒温装置45で一定の温度に維持された逆相ミクロカラム41に送られる。アミノ酸又はアミノ酸の誘導体のような試料に含まれる複数の成分は、逆相ミクロカラム41に充填された第一の充填剤によって互いに分離され、互いに異なる保持時間で第一の検出器51によって検出される。第一の検出器51で検出された試料の成分の信号は、第一の記録計91に送られて記録され、保持時間に対する検出された試料の成分の量に関するグラフを得ることができる。
【0044】
一方、第二の移動相供給部12に貯蔵された移動相としての第二の液体は、第二のポンプ22によってくみ上げられる。また、カラム選択ユニット60は、図1に示すように、(実線で示す)A1、A2及びA3の組み合わせ並びに(点線で示す)B1、B2及びB3の組み合わせの間で、第一の液体及び第二の液体の流路を切替える。カラム選択ユニット60における第一の液体及び第二の液体の流路がA1、A2、及びA3の組み合わせである場合には、逆相ミクロカラム41で分離されたアミノ酸は、流路A1を通じて廃棄される。また、第二の液体は、流路A2を通じてマルチループユニット100に送られ、マルチループユニット100から流路A3を通じてキラルカラム42へ送られ、第二の検出器52を通じて廃棄される。
【0045】
ここで、第一の検出器51でアミノ酸又はアミノ酸誘導体などの試料の成分が検出されたとき、カラム選択ユニット60における流路をA1、A2、及びA3の組み合わせからB1、B2及びB3の組み合わせに切替えると、第一の液体と共に第一の検出器51で検出されたアミノ酸又はアミノ酸誘導体などの試料の成分を、マルチループユニット100に送ることができる。第一の検出器51で試料の成分が検出されなくなるまで、マルチループユニット100に第一の液体を流してやると、全ての試料の成分が、第一の検出器51で検出された順序で、マルチループユニット100へ送られることになる。
【0046】
マルチループユニット100は、複数のループ70、並びに複数のループ70のうち選択されたループ70を流路B1及びB3と接続する切り替え手段110を有する。このようなマルチループユニット100を用いることで、逆相ミクロカラム41で分離された試料の成分の各々を、それぞれ、個別にループ70に保持することができる。すなわち、第一の検出器51における試料の成分の検出に合わせて、流路B1及びB3と接続するループ70を切替えれば、各々のループ70ごとに、試料の成分の各々を保持することができる。全ての試料の成分を個別に複数のループ70に保持した後、カラム選択ユニット60における流路を再度A1、A2、及びA3に切替えると同時に、光学分割を望む試料の成分を保持したループ70を流路A2及びA3と接続させる。
【0047】
複数のループ70の一つに保持された所望の試料の成分は、第二の液体と共にキラルカラム用恒温装置46によって一定の温度の維持されたキラルカラム42に送られ、その試料の光学異性体(アミノ酸又はアミノ酸誘導体のエナンチオマー(D体及びL体)など)が互いに分離される。分離された試料の成分の光学異性体は、互いに異なる保持時間で第二の検出器52によって検出される。次に、流路A2及びA3と接続するループを切り替え手段によって切替えて、別の試料の成分についてキラルカラム42を通じた光学異性体の分割及び第二の検出器92による検出を行う。このようにして、流路A2及びA3と接続するループ70を順次切替えることによって、マルチループユニット100に保持された全ての試料の成分について光学異性体の分割及び検出を行うことができる。試料の成分がアミノ酸である場合には、多種類のアミノ酸を、41逆相ミクロカラムでD−体及びL−体のラセミ混合物として粗分離した後、複数のループ70を使用して、キラルカラム42に順次導入し、迅速な光学分割を行うことができる。
【0048】
すなわち、この本発明による液体クロマトグラフ装置では、第一の液体に対する一回の試料の注入で、一次元目で試料の成分であるアミノ酸又はアミノ酸誘導体と夾雑成分を分離し、全てのアミノ酸又はアミノ酸誘導体について二次元目で光学分割してD体及びL体を定量することができる。よって、本発明による液体クロマトグラフ装置を使用すれば、一回の試料の注入で全ての試料の成分について光学分割及び検出を行うことができるので、従来のカラムスイッチングキラルHPLC法と比較して、廃棄する試料の量が少なく、試料の量は少量でよく、また、試料の成分における光学異性体に関する分析を迅速に行うことができる。また、試料の成分の各々を逆相ミクロカラムで分離した後に、光学分割しているので、試料の成分に関する分離能も高い。
【0049】
なお、本発明による液体クロマトグラフ装置を、以下の機器を使用して構成することができる。第一のポンプ21及び第二のポンプ22には、日本分光株式会社のPU−2080 Plusを、逆相ミクロカラム恒温装置45及びキラルカラム用恒温装置46には、島津製作所のCTO−6Aを、試料注入部30には、RHEODYNEの7125を、グラジエントユニット(図示せず)には、日本分光株式会社のGP−A40を、脱気装置80には、日本分光株式会社のDG−980−50を、カラム選択ユニット60には、日本分光株式会社のHV−992−01を使用することができる。また、マルチループユニット100は、例えば、日本分光株式会社の6ベッセルチェンジャー110、SCF−Evc−Srに、内径0.8mm×長さ80cm(容積400μL)のループ70を6本接続して作製することができる。その他、第一の検出器51及び第二の検出器52としての蛍光検出器には、日本分光株式会社のFP−1520を、第一の記録計91及び第二の記録計92には、日本分光株式会社の807−ITを使用することができる。
【0050】
本発明による液体クロマトグラフ装置を使用し、移動相としての第一の液体及び第二の液体、並びに固定相としての逆相ミクロカラム充填剤及びキラルカラム充填剤、両カラムの温度、移動相の流速などのパラメータを適切に選択すれば、様々なアミノ酸又はアミノ酸誘導体の光学分割が可能である。ここでは、分析対象のアミノ酸として、H.Bruckner and A.Schieber:Determination of amino acid enantiomers in human urine and blood sertm by gas chromatography−mass spectrometry,Biomed.Chromatogr.,15,166−172(2001)において哺乳類の尿中及び脳内においてその存在が報告されており、詳細な組織分布の解明が求められている疎水性アミノ酸であるVal、Ile、Leu及びPheを選択した場合における光学分割の好適な条件について検討した。
【0051】
まず、標品アミノ酸を用いたキラルカラムにおける迅速な光学分割のための条件について説明する。本発明による液体クロマトグラフィ装置を使用するD−アミノ酸の迅速な二次元分析システムでは、逆相ミクロカラムで粗分離したアミノ酸をキラルカラムに順次導入してD体及びL体の定量を行う。本発明の液体クロマトグラフ装置によれば、キラルカラムにおいて高分離能での迅速な光学分割を行うことができる。
【0052】
使用したキラルカラム充填剤であるt−BuCQNは、キニーネが光学活性中心であり、この光学活性中心は、スペーサーを介してシリカゲルの表面に化学結合している。このキラル固定相におけるNBD−アミノ酸の光学分割について、HPLCにより検討した。
【0053】
なお、上記標品アミノ酸としては、核酸合成用アミノ酸標品は、関東化学株式会社、ナカライテスク株式会社、和光純薬工業株式会社、及び石津製薬株式会社から入手したものを使用した。また、HPLC用乾燥アセトニトリルは、和光純薬工業株式会社から、特級NBD−Fは、東京化成工業株式会社から入手した。加えて、アミノ酸自動分析用水酸化ナトリウムは、和光純薬工業株式会社から、特級ホウ酸は、和光純薬工業株式会社から、特級トリフルオロ酢酸は、和光純薬工業株式会社からそれぞれ入手したものを使用した。さらに、HPLC標識用クエン酸一水和物は、和光純薬工業株式会社から、HPLC用メタノールは、和光純薬工業株式会社から入手したものを使用した。また、アミノ酸自動分析用水は、Milli−Qシステム(Elix 3及びGradient A10,Millipore,Bedford, MA,USA)を用いて精製したものを使用した。その他の試薬は、特記しない限り市販の特級品、1級品、HPLC用等を必要に応じて使用した。
【0054】
また、アルミブロックヒーターは、KOIKE PRECISION INSTRUMENTSのMB−1H−Uを、微量天秤は、SartoriusのBP211Dを用いた。さらに、pH測定には、堀場製作所のF−12型pHメーターを、ボルテックスミキサーには、IWAKI GLASSのTM−150を使用した。
【0055】
以上の結果よりキラルカラムとしてtBuCQNを用い、4種類の疎水性アミノ酸について迅速な光学分割が可能である。そこで次に、これらの光学分割の条件に加えて、疎水性D−アミノ酸の迅速な二次元分析に好適な逆相ミクロHPLCによるアミノ酸の分離条件について説明する。
【0056】
t−BuCQNをキラル固定相とし、4種類の疎水性アミノ酸(Val、Ile、Leu、Phe)について迅速光学分割を達成したが、これらの光学分割は、同一の固定相と同一の移動相を用いており、一次元目の逆相ミクロHPLCにおける分離条件を検討することもまた疎水性D−アミノ酸の迅速二次元分析に有効である。そこで、各アミノ酸の連続的な二次元分析を可能とするマルチループユニットを使用する本発明による液体クロマトグラフ装置において、標品を用いた逆相ミクロHPLCの分離条件を検討した。
逆相ミクロカラムにおけるNBD−Val、−Ile、−Leu、−Pheの迅速な分離について、アセトニトリルを含むTFA水溶液を移動相として用いた。各アミノ酸に対しては、NBD蛍光誘導体化反応を行い、この反応液を逆相ミクロHPLCに注入した。移動相中のアセトニトリル濃度が、22.5%であるときに得られるクロマトグラムを図2に示す。本条件において4種類のNBD−アミノ酸は、ほぼ40分で良好にベースライン分離された。
逆相ミクロHPLCを用いてDL混合物として分離される各アミノ酸の分画を、連続的にキラルカラムへ導入して光学分割を行うため、本発明では、上述のマルチループシステムを有する液体クロマトグラフ装置を使用する。ここでは、本発明による液体クロマトグラフ装置において、逆相ミクロHPLCとキラルHPLCをカラムスイッチングユニットで接続し、従来の液体クロマトグラフ装置に使用される分取用ループの代わりに、マルチループユニットとして400μLのループを6本並列に接続した6ベッセルチェンジャーを使用する。分取用ループの切り替えは、6ベッセルチェンジャーにより行い、6本の任意のループに目的とするアミノ酸分画が導入可能である。逆相ミクロHPLCと上述のキラルHPLCを接続した本発明による液体クロマトグラフ装置を用いて、DL−Val、−Ile、−Leu、−Phe混合標品のNBD蛍光誘導体化反応液を分析する。
【0057】
図3及び図4は、本発明による液体クロマトグラフ装置を用いて4種類の疎水性アミノ酸を連続で分析して得られたクロマトグラムである。各アミノ酸は、NBD蛍光誘導体化反応を行い、この反応液5μLをHPLCに注入した。
ここで、一次元目のミクロODSカラムについては、カラム充填剤としてMightysil RP−18 GPを使用し、カラムは、40℃に維持された内径1.0mm×長さ10cmのものを用いた。また、ミクロODSカラムに対する移動相は、CHCN/TFA/HO=22.5/0.02/77.5(v/v)であり、その流速は、75μL/分であった。検出は、蛍光分析法(励起波長:470nm,発光波長:530nm)で行った。
【0058】
一方、二次元目のキラルカラムに対しては、カラム充填剤としてt−BuCQNを用い、カラムは、25℃に維持された内径4.0mm×長さ15cmのものを用いた。プレカラム充填剤には、TSK−gel ODS−120Tを用い、カラムは、25℃に維持された内径3.2mm×長さ1.5cmのものを使用した。また、移動相は、10mMのクエン酸を含むCHCN/CHOH=40/60(v/v)の溶液を使用し、その流速は、Val、Ileに対しては1.5mL/分であり、Leu、Pheに対しては、2.0mL/分とした。検出は、蛍光分析法(励起波長:470nm、発光波長:530nm)で行った。
【0059】
4種のNBD−アミノ酸のループへの導入は、ミクロODSカラム側の蛍光検出器をモニターしながら行った。Valは、ピーク立ち上がりから10秒後に流路を切替えて、3分間(225μL)ループ1に導入し、これを分取後直ちにt−BuCQNにインジェクトした。Ileは、ピーク立ち上がり10秒後からLeu立ち上がり10秒後までループ1に導入し、続いてLeuをPhe立ち上がり10秒後までループ2に導入した。更にPheを3分間(225μL)ループ3に導入した。これらのアミノ酸は、順次t−BuCQNにインジェクトし、光学分割を行った。
いずれのアミノ酸もキラルカラムのみでの分析と同様に、良好に迅速な光学分割がなされ、ミクロODSカラムの移動相やループの切り替え等の影響は受けないことがわかる。また、4種類の疎水性アミノ酸の全てに対する定量に要する分析時間は、60分以内であり、迅速な二次元分析が可能である。
【0060】
次に、生体試料への適用性を検討するためddY/DAO、ddY/DAOマウスの大脳中のD−Val、D−Ile、D−Leu、D−Pheについて定量を試みた結果について説明する。
【0061】
本発明によるマルチループを利用する液体クロマトグラフ装置について生体試料への適用性を検討するため、ddY/DAO及びddY/DAOマウス大脳中のVal、Ile、Leu及びPheのエナンチオマーについて定量を試みた。R.Kormo and Y.Yasumura:Mouse mutant deficient in D−amino acid oxidase activity,Genetics,103,277−285(1983)に記載されるように、ddY/DAOマウスは金野等によって樹立された系統であり、D−アミノ酸を分解するD−アミノ酸オキシダーゼ(DAO)活性を持たないためD−アミノ酸研究に有用である。ここでは、ddY/DAO 及びddY/DAO系統マウス(SPF)は、獨協医科大学の金野柳一博士によって樹立されたものを譲り受け、各動物は、使用まで九州大学大学院薬学研究院内の動物舎において飼育した。飼育条件は、Light 7:00−19:00、Dark 19:00−7:00であり、水及び飼料は自由に摂取させた。飼料は、オリエンタル酵母のoriental NMF dietを使用した。
【0062】
ddY/DAO及びddY/DAOマウス(SPF、雄性、10週齢)をエーテル麻酔下で断頭し、摘出した大脳を20倍量のメタノールで氷冷下ホモジナイズした。これを4500gで5分間遠心分離し、上清10μLを40°Cで減圧乾固した。この残渣に200mMのホウ酸−NaOH緩衝液(pH8.0)20μL、20mMのNBD−F/CHCNの10μLを加えて60°Cで2分間反応させた。この溶液に5%TFA水溶液20μLを加え、5μLを本発明による液体クロマトグラフ装置を用いて分析した。また、大脳試料への標品添加はddY/DAOマウスを用いて行い、上記メタノールホモジネートの上清10μLを、減圧乾固した残渣を0.5μMのDL−Val、Ile、Leu、Pheを含む200mMのホウ酸−NaOH緩衝液(pH8.0)の20μLに溶解して同様に試料調製を行った。ddY/DAOマウス大脳試料に4種類の疎水性アミノ酸標品をインジェクト量当たりDL体として1pmol添加し、本発明による液体クロマトグラフ装置を用いて分析した。なお、遠心分離機は、IWAKI GLASSのCFM−100を使用した。
本発明による液体クロマトグラフ装置を用い、ddY/DAO及びddY/DAOマウス大脳中のVal、Ile、Leu、Pheの定量を試みた。
【0063】
図5は、ddY/DAO及びddY/DAOマウス大脳を分析して得られたLeuの分画のクロマトグラムである。ここで、キラルカラム充填剤には、t−BuCQNを使用し、カラムには内径4mm×長さ150mmのものを25℃の温度条件で使用した。また、移動相としての液体(流速2.0mL/分)には、10mMのクエン酸を含むアセトニトリル:メタノール=40体積%:60体積%の溶液を用いた。ddY/DAO及びddY/DAOマウス共にD−Leuが良好に分離されており、本システムが高感度な迅速二次元分析法として生体試料への適応が可能であることを示す。
従来のカラムスイッチングキラルHPLC法では、二次元目の光学分割に長時間を要していた。本発明の液体クロマトグラフ装置では、4種の疎水性アミノ酸(Leu、Ile、Val、Phe)の連続光学分割が短時間で完了し、迅速な分析が可能である。また従来の微量D−アミノ酸二次元分析法が単一のD−アミノ酸のみを分析対象としたことと比較し、本発明の液体クロマトグラフ装置は、多数のD−アミノ酸の連続分析が可能である。現在、多数のD−アミノ酸を対象とする一斉分析法としては、A.Hashimoto,T.Nishikawa,T.Oka,K.Takahashi and T.Hayashi:Determination of free amino acid enantiomers in rat brain and serum by high performance liquid chromatography after derivatization with N−tert−butyloxycarbonyl−L−cysteine and o−phthaldialdehyde,J.Chromatogr.,582,41−48(1992)に報告されたHPLCジアステレオマー法としてOPA試薬とBoc−L−Cys、H.Bruckner,S.Haasmann,M.Langer,T. Westhauser,R.Wittner and H.Godel:Liquid chromatographic determination of D− and L−amino acids by derivatization with o−phthaldialdehyde and chiral thiols:Applications with reference to biosciences,J.Chromatogr.A,666, 259−273(1994)等に報告されたキラルチオールを用いる方法、S.Einarsson,B.Josefsson,P.Moller and D.Sanchez:Separation of amino acid enantiomers and chiral amines using precolumn derivatization with (+)−1−(9−fluorenyl)ethyl chloroformate and reversed−phase liquid chromatography,Anal.Chem.,59,1191−1195(1987)に報告されたFLEC、及びY.Nagata,K.Yamamoto and T.Shimojo:Determination of D− and L−amino acids in mouse kidney by high−performance liquid chromatography,J.Chromatogr.,575,147−152(l992)に報告されたFDAAなどを利用する方法がある。またGCにおいてもChirasil−L−ValなどのキラルカラムとMSを組み合わせて定量する方法などが用いられている。これらの方法では標品DL−アミノ酸においては、長時間をかければ、良好な分離、定量が可能である。しかし、実試料では生体由来の様々な夾雑成分の妨害を受け、多量のD−アミノ酸を含む試料にしか適用されていないのが現状である。一方、本発明の液体クロマトグラフ装置は、二次元法であり、一次元目で目的アミノ酸と夾雑成分を粗分離するため極めて選択性が高く、微量のD体も分析可能である。またその感度も標品における検出限界が高く、極めて高感度かつ選択的な分析法である。
【0064】
さらに、実験動物として広く用いられているマウスのうち、ddY系統のものを使用した。この系統は金野等によってDAO活性を有するddY/DAO系統と活性を持たないddY/DAO系統が樹立されている。ddY/DAOマウスはD−アミノ酸を分解することができないため、ddY/DAOマウスに比べて組織中のD−アミノ酸含量が高い。そのためこのddY/DAO系統は生体内におけるD−アミノ酸スクリーニングの初期検討及び動態解析などの検討に適している。これまでに、Y.Nagata,R.Konno,Y.Yastmura and T.Akino:Involvment of D−amino acid oxidase in elimination of free D−amino acids in mice,Biochem.J.,257,291−292(1989)に報告されるように、ddY/DAOマウスには、ddY/DAOマウスと比較して2−10倍量の総D−アミノ酸が含まれている。また、Y.Nagata,R.Konno and A.Niwa:Amino acid levels in D−alanine−administered mutant mice lacking D−amino acid oxidase,Metabolism,43,1153−1157(1994)及びA.Hashimoto,T.Nishikawa,R.Konno,A.Niwa,Y.Yasumura,T.Oka and K.Takahashi:Free D−serine,D−aspartateand D−alanine in central nervous system and serum in mutant mice lacking D−amino acid oxidase,Neurosci.Lett.,152,33−36(1993)などに報告されているように、D−Asp、D−Ser、D−Ala、D−Leu、D−Proの脳内や血中、尿中濃度が定量されており、ほとんどの組織でddY/DAOマウスにおいてddY/DAOマウスよりも多量のD−アミノ酸が存在することが示されている。本発明による液体クロマトグラフ装置を使用して、ddY/DAOマウス大脳と比較してddY/DAOマウス大脳中に多量のD−Leuが認められた。発明者等は、既にddY/DAOマウス大脳中においてddY/DAO マウス大脳中と比較して約10倍高濃度のD−Leuが存在することを明らかにしているが、本発明による液体クロマトグラフ装置を使用して得られた結果と良く一致する。
ここで分析対象としたD−アミノ酸について、D−Leu、D−Val、D−Pheは、生体内における存在が報告されている。中でもD−Leuは研究が進んでおり、マウス脳内において松果体や下垂体に局在することや、その血中及び尿中濃度が明らかにされている。また、D−Val、及びD−Pheについては哺乳類の血液や尿などでその存在が確認されており、Bruckner等によってその定量値はヒト血中でD−Pheが0−0.3 nmol/mL、D−Valが0.3−0.4 nmol/mL、ヒト尿中でD−Pheが0.4−2.8 nmol/mL、D−Valが0−1.6 nmol/mLであると報告されている。一方、これらの体内での詳細な分布については明らかになっていない。D−Ileはこれまでに哺乳類体内における存在の報告はないが、本発明による液体クロマトグラフ装置を使用した分析結果によってマウス大脳中での存在が示唆される。
【0065】
本発明は、Val、Ile、Leu及びPheを連続分析できる液体クロマトグラフ装置を提供し、生体内における微量なD体の分析を可能とした。これにより、これらのD−アミノ酸の体内分布や生理機能の解明が容易になると考えられる。ここで、本発明による液体クロマトグラフ装置による分析対象は、4種類の疎水性アミノ酸であったが、本発明による液体クロマトグラフ装置は、更に多数の微量D−アミノ酸連続定量に適用可能であり、二次元目のキラル固定相の種類や移動相の検討による適用アミノ酸の拡大が期待できる。
【0066】
哺乳類における微量D−アミノ酸については未だ解明されていない点が多く、その解明のため迅速かつ高選択的な高感度分析法が求められている。本発明による液体クロマトグラフ装置は、マルチループユニットを使用することで、従来では不可能であったアミノ酸の迅速な二次元連続分析を達成しており、今後のD−アミノ酸研究の発展に役立つと期待される。
【0067】
【発明の効果】
本発明によれば、比較的少量の試料で迅速な分析を行うことが可能な、液体クロマトグラフ装置を提供することができる。
【0068】
また、本発明によれば、比較的少量の試料で迅速な分析を行うことが可能な、試料に含まれる光学異性体の分析方法を提供することができる。
【0069】
【図面の簡単な説明】
【図1】本発明による液体クロマトグラフ装置の典型的な実施の形態を説明する図である。
【図2】逆相ミクロカラムにおけるアミノ酸の分離の結果を示す図である。
【図3】本発明による液体クロマトグラフ装置を使用して得られたVal及びIleの光学分割の結果を示す図である。
【図4】本発明による液体クロマトグラフ装置を使用して得られたLeu及びPheの光学分割の結果を示す図である。
【図5】ddY/DAO又はddY/DAOマウスの大脳におけるNBD−Leuのクロマトグラムを示す図である。
【符号の説明】
11 第一の移動相供給部
12 第二の移動相供給部
21 第一のポンプ
22 第二のポンプ
30 試料注入部
41 逆相ミクロカラム
42 キラルカラム
45 逆相ミクロカラム恒温装置
46 キラルカラム用恒温装置
51 第一の検出器
52 第二の検出器
60 カラム選択ユニット
70 ループ
80 脱気装置
91 第一の記録計
92 第二の記録計
100 マルチループユニット
110 切り替え手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid chromatograph apparatus and a method for analyzing optical isomers contained in a sample.
[0002]
[Prior art]
Most amino acids have an asymmetric carbon atom at the α-position, and D-form and L-form exist, but most of amino acids existing in nature including protein structural units are L-amino acids ( For example, refer nonpatent literature 1). However, in recent years, D-amino acids, formerly called unnatural amino acids, are widely present not only in bacteria but also in annelids, insects, plants, and vertebrates, and have various important roles. Has been reported (for example, see Non-Patent Document 2). In mammals as well, various D-amino acids have been reported in humans, rats, mice, and the like in free form or incorporated into peptides (see, for example, Non-Patent Documents 3 and 4).
[0003]
Among them, free D-Ser and D-Asp have a higher endogenous content than other amino acids, and there are many reports on their origin and physiological functions (for example, Non-Patent Documents 5, 6, and 7). And 8). D-Ser has been found to be localized in the forebrain such as the cerebrum and hippocampus and to regulate neurotransmission of N-methyl-D-aspartate (NMDA) receptor (for example, non-patented D-Asp is present in the pineal gland and testis (see, for example, Non-Patent Documents 7, 8, and 10), and is reported to control secretion of melatonin, testosterone, and the like (eg, Non-Patent Documents 11 and 12). There is also a report that the symptoms of schizophrenia have been improved by administration of D-Ser (see, for example, Non-Patent Document 13), and D-amino acids are expected to be applied to pharmaceuticals.
However, other D-amino acids have very little content in the living body, and little research has progressed due to the lack of selectivity and sensitivity of the analysis method.
[0004]
Recently, the inventors have developed a sensitive and selective column-switching chiral HPLC method for D-Ala, D-Leu, and D-Pro, and these D-amino acids have different tissue distributions in rats or mice, respectively. (See Non-Patent Documents 14, 15, and 16). This fact indicates that various amino acids that have not been reported so far exist in mammals and have the possibility of having physiological functions, and confirmation of their existence and elucidation of biodistribution are desired. Such elucidation of the physiological function of a new D-amino acid enables the search for a novel medicinal molecule having D-amino acid as a lead compound, and is expected to become a basis for the creation of a new drug.
[0005]
Conventional methods for analyzing D-amino acids include a method using an enzyme (see, for example, Non-Patent Documents 17, 18, and 19), a diastereomeric method using a chiral reagent (for example, Non-Patent Documents 17, 19, and 20), a chiral mobile phase method (for example, see Non-Patent Documents 21 and 22), a chiral stationary phase method (for example, see Non-Patent Documents 7 and 23), and the like have been developed.
However, the amount of D-amino acids in living organisms is often very small, and the functions are elucidated due to the lack of sensitivity and selectivity in conventional methods, the complexity of pretreatment, and the time required to analyze one type of amino acid. In practice, it was impossible to screen a large number of D-amino acids for the purpose.
[0006]
On the other hand, the above-mentioned column switching chiral HPLC method is one of the most excellent analytical methods among in vivo trace D-amino acid analysis methods reported so far (for example, Non-Patent Documents 14, 15, and 16). reference).
[0007]
However, in column switching chiral HPLC method, in addition to being able to analyze only one kind of amino acid at a time with a single system, one analysis requires a long time. This is mainly due to the lack of optical resolution of this HPLC apparatus.
[0008]
[Non-Patent Document 1]
J. et al. J. et al. Corrigan: D-Amino acids in animals, Science, 164, 142-149 (1969).
[0009]
[Non-Patent Document 2]
Kenji Yokota: Biochemistry of D-amino acids (I), Chemistry 32, 517-526 (1977)
[0010]
[Non-Patent Document 3]
Yoko Nagata: D-amino acids present in living organisms -mainly in mammals-, Sapporo Medical Journal, 58, 271-278 (1989)
[0011]
[Non-Patent Document 4]
Hiroshi Honma, Kazuhiro Imai: D-amino acids in living bodies, Bunseki, 1998, 266-273 (1998)
[0012]
[Non-Patent Document 5]
A. Hashimoto, T .; Nishikawa, T .; Hayashi, N .; Fujii, K .; Harada, T .; Oka and K.K. Takahashi: The presence of free D-Serine in rat brain, FEBS Lett. , 296, 33-36 (1992)
[0013]
[Non-Patent Document 6]
A. Hashimoto and T.H. Oka: Free D-aspartate and D-serine in the mammarian brain and periphery, Prog. Neurobiol. , 52, 325-353 (l997)
[0014]
[Non-Patent Document 7]
K. Hamase, H .; Hamma, Y .; Takagawa, T .; Fukushima, T .; Santa and K.C. Imai: Regional distribution and postural changes of D-amino acids in rat brain, Biochim. Biophys. Acta, 1334, 214-222 (l997)
[0015]
[Non-Patent Document 8]
8). A. D'Aniello, M.M. M.M. D. Fiore, G .; D'Aniello, F.M. E. Colin, G.M. Lewis and B.L. P. Setchell: Secretion of D-aspartic acid by the rat tests and its roles in endocrinology of the testis and spermatogenesis, FEBS Lett. 436, 23-27 (1998)
[0016]
[Non-patent document 9]
A. Hashimoto, T .; Nishikawa, T .; Oka and K.K. Takahashi: Endogeneous D-Serine in rat brain: N-methyl-D-aspartate receptor-related distribution and agging, J. Am. Neurochem. , 60, 783-786 (l993)
[0017]
[Non-Patent Document 10]
K. Sakai, H .; Homa, J .; -A. Lee, T .; Fukushima, T .; Santa, K .; Tashiro, T .; Iwatsubo and K.K. Imai: Localization of D-aspartic acidin longates permitids in rat tests, Arch. Biochem. Biophys, 351, 96-105 (1998)
[0018]
[Non-Patent Document 11]
Y. Takagawa, H .; Homa, J .; -A. Lee, T .; Fukushima, T .; Santa, T .; Iwatsubo and K.K. Imai: D-Aspartate uptake into cultured rat pinealcycles and the concomitant effect on L-aspartate levels and meltonin secretion, Biochem. Biopys. Res. Commun. , 248, 641-647 (1998)
[0019]
[Non-Patent Document 12]
A. D'Aniello, A.M. D. Cosmo, C.I. D. Cristo, L.C. Annunziato, L.M. Petrucelli and G. Fisher: Involvement of D-aspartic acid in the synthesis of testosterone in rat tests, Life Sci. 59, 97-104 (1996)
[0020]
[Non-Patent Document 13]
G. Tsai, P.A. Yang, L .; -C. Chung, N.A. Lange and J.M. T.A. Coyle: D-Series added to antipsychotics for the treatment of schizophrenia, Biol. Psychiat. , 44, 1081-1089 (1998)
[0021]
[Non-Patent Document 14]
A. Morikawa, K .; Hamase and K.H. Zaitsu: Determination of D-alanine in the central central system and periphery using column-switching high-performance liquid chromatography. Biochem. 312, 66-72 (2003)
[0022]
[Non-Patent Document 15]
T.A. Inoue, K .; Hamase, A .; Morikawa and K.M. Zaitsu: Determination of minute amounts of D-leucine in various brain regions of mouse and singing column-switching high-performance. Chromatogr. B, 744, 213-219 (2000)
[0023]
[Non-Patent Document 16]
K. Hamase, T .; Inoue, A .; Morikawa, R .; Kormo and K.K. Zaitsu: Determination of free D-proline and D-leucine in the brainsof Mutant Micking D-amino acidoxidase activity, Anal. Biochem. , 298, 253-258 (2001)
[0024]
[Non-Patent Document 17]
K. Imai, T .; Fukushima, T .; Santa, H .; Homma, K .; Hamase, K .; Sakai and M.M. Kato: Analytical chemistry and biochemistry of D-amino acids, Biomed. Chromatogr. , 10, 303-312 (1996)
[0025]
[Non-Patent Document 18]
G. H. Fisher, A.M. D'Aniello, A.M. Vetere, L.M. Padula, G .; P. Cusano and E.M. H. Man: Free D-aspartate and D-alanine in normal Alzheimer brain, Brain Res. Bull. , 26, 983-985 (1991)
[0026]
[Non-Patent Document 19]
K. Hamase, A .; Morikawa and K.M. Zaitsu: D-Amino acids in mammals and the diagnostic value, J. Am. Chromatogr. B, 781, 73-91 (2002)
[0027]
[Non-Patent Document 20]
A. Morikawa, K .; Hamase, T .; Inoue, R.A. Konno, A .; Niwa and K.K. Zaitsu: Determination of D-aspartic acid, D-Serine and D-alanine in the brain of mutant mic lacing, D-amino-acid oxidase activity, J. et al. Chromatogr. B, 757, 119-125 (2001)
[0028]
[Non-patent document 21]
A. M.M. Rizzi, P.M. Briza and M.M. Breitenbach: Defession of D-alanine and D-glutaminic acid in biologic samples by coupled-column chromatography asymmetry. J-cyclodextrins asymmetry. Chromatogr. 582, 35-40, (992)
[0029]
[Non-Patent Document 22]
Tomoko Akiyama, Tatsumi Ninagawa: Simultaneous analysis of D and L amino acids and their applications, Protein Nucleic Acid Enzyme, 40, 76-83 (1995)
[0030]
[Non-Patent Document 23]
K. Imai, M .; Kato, Y. et al. Huang, H .; Ichihara, T .; Fukushima, T .; Santa and H.M. Homma, Regent progress on analytical chemistry and biochemistry of D-amino acids, YAKUGAKU ZASSHI, 117, 637-646 (1997)
[0031]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a liquid chromatograph apparatus capable of performing quick analysis with a relatively small amount of sample.
[0032]
Another object of the present invention is to provide a method for analyzing optical isomers contained in a sample, which can be rapidly analyzed with a relatively small amount of sample.
[0033]
[Means for Solving the Problems]
The invention according to claim 1 is the liquid chromatograph apparatus, wherein the first mobile supply unit that stores the first liquid as the mobile phase and the first liquid supplied from the first mobile phase supply unit Each of a sample injection part for injecting a sample containing a component having an optical isomer, a separation column for separating the component of the sample injected into the first liquid, and the component of the sample separated through the separation column A component holding unit that holds the liquid separately, a second mobile phase supply unit that supplies a second liquid as a mobile phase to the component holding unit, and the sample supplied from the component holding unit together with the second liquid. An optical resolution column for resolving the optical isomer contained in each of the components, and a detector for detecting the optical isomer contained in each of the components of the sample are included.
[0034]
According to the first aspect of the present invention, the first mobile supply unit that stores the first liquid as the mobile phase, and the optical isomer is added to the first liquid supplied from the first mobile phase supply unit. A sample injection unit for injecting a sample containing the component having a component; a separation column for separating the component of the sample injected into the first liquid; and holding each of the components of the sample separated through the separation column individually Each of the components of the sample supplied together with the second liquid from the component holding part, a second mobile phase supply part for supplying a second liquid as a mobile phase to the component holding part, An optical resolution column that resolves the optical isomers contained in the sample and a detector that detects the optical isomers contained in each of the components of the sample, so that rapid analysis can be performed with a relatively small amount of sample. Possible, liquid chroma It is possible to provide a graphical device.
[0035]
According to a second aspect of the present invention, in the liquid chromatograph apparatus according to the first aspect, the component holding unit includes a plurality of holding portions that individually hold the components of the sample, and each of the components of the sample. Are individually supplied to the holding part and supplied from the holding part to the optical resolution column.
[0036]
According to a second aspect of the present invention, the component holding unit supplies a plurality of holding parts for holding each of the components of the sample individually, and supplies each of the components of the sample to the holding part individually. In addition, since the supply portion is supplied from the holding portion to the optical resolution column, each of the components of the sample separated through the separation column can be easily and reliably held.
[0037]
According to a third aspect of the present invention, in the method for analyzing an optical isomer contained in a sample, the sample containing the component having the optical isomer is packed in the first column as the stationary phase together with the first liquid as the mobile phase. Separating the components of the sample through an agent, individually holding each of the components of the sample, each of the components of the sample with a second liquid as a mobile phase, and a stationary phase Separating the optical isomers contained in each of the sample components through a second column filler having an optically active center as, and the optical isomers contained in each of the sample components A step of detecting.
[0038]
According to the invention described in claim 3, in the method for analyzing an optical isomer contained in a sample, the sample containing the component having the optical isomer is mixed with the first liquid as the mobile phase and the first liquid as the stationary phase. Separating the components of the sample through a column packing, individually holding each of the components of the sample, each of the components of the sample with a second liquid as a mobile phase, Separating the optical isomers contained in each of the sample components through a second column packing having an optically active center as a stationary phase, and the optical isomerism contained in each of the sample components Since the step of detecting a body is included, it is possible to provide a method for analyzing an optical isomer contained in a sample, which can be quickly analyzed with a relatively small amount of sample.
[0039]
According to a fourth aspect of the present invention, in the method for analyzing an optical isomer contained in the sample according to the third aspect, the component of the sample is an amino acid or an amino acid derivative.
[0040]
According to the invention of claim 4, since the component of the sample is an amino acid or an amino acid derivative, the optical analysis of the amino acid or amino acid derivative contained in the sample, which can be quickly analyzed with a relatively small amount of sample, is possible. Methods for analyzing isomers can be provided.
[0041]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
[0042]
First, a typical embodiment of a liquid chromatograph apparatus according to the present invention will be described with reference to FIG. A typical liquid chromatograph apparatus according to the present invention shown in FIG. 1 includes a first mobile phase supply section 11, a degassing apparatus 80, a first pump 21, a sample injection section 30, a reverse phase microcolumn 41, a reverse phase micro Column constant temperature device 45, first detector 51, first recorder 91, column selection unit 60, multi-loop unit 100, second mobile phase supply unit 12, second pump 22, chiral column 42, constant temperature for chiral column It includes a device 46, a second detector 52, and a second recorder 92.
[0043]
A first liquid as a mobile phase is stored in the first mobile phase supply unit 11, and the first liquid is pumped up by the first pump 21. The air contained in the first liquid pumped up by the first pump 21 causes noise to the first pump 21 and is therefore removed by the deaeration device 80. The first liquid from which air has been removed by the deaeration device 80 is sent to the sample injection unit 30. In the sample injection unit 30, a sample including components having optical isomers such as a plurality of types of amino acids or amino acid derivatives is injected. The sample is sent together with the first liquid to the reverse phase microcolumn 41 maintained at a constant temperature by the thermostat 45 for reverse phase microcolumn. A plurality of components contained in a sample, such as amino acids or amino acid derivatives, are separated from each other by a first filler packed in a reverse-phase microcolumn 41 and detected by a first detector 51 with different retention times. The The sample component signal detected by the first detector 51 is sent to the first recorder 91 and recorded, and a graph relating to the amount of the detected sample component with respect to the holding time can be obtained.
[0044]
On the other hand, the second liquid as the mobile phase stored in the second mobile phase supply unit 12 is pumped up by the second pump 22. Further, as shown in FIG. 1, the column selection unit 60 includes a first liquid and a second liquid between the combination of A1, A2, and A3 (shown by solid lines) and the combination of B1, B2, and B3 (shown by dotted lines). Switch the flow path of the second liquid. When the flow paths of the first liquid and the second liquid in the column selection unit 60 are a combination of A1, A2, and A3, the amino acids separated in the reverse phase microcolumn 41 are discarded through the flow path A1. The The second liquid is sent to the multi-loop unit 100 through the flow path A 2, sent from the multi-loop unit 100 to the chiral column 42 through the flow path A 3, and discarded through the second detector 52.
[0045]
Here, when a sample component such as an amino acid or an amino acid derivative is detected by the first detector 51, the flow path in the column selection unit 60 is changed from a combination of A1, A2, and A3 to a combination of B1, B2, and B3. By switching, the components of the sample such as amino acids or amino acid derivatives detected by the first detector 51 together with the first liquid can be sent to the multi-loop unit 100. When the first liquid is allowed to flow through the multi-loop unit 100 until no sample components are detected by the first detector 51, all the sample components are detected in the order detected by the first detector 51. It is sent to the multi-loop unit 100.
[0046]
The multi-loop unit 100 includes a plurality of loops 70 and a switching unit 110 that connects a loop 70 selected from the plurality of loops 70 to the flow paths B1 and B3. By using such a multi-loop unit 100, each of the components of the sample separated by the reversed-phase microcolumn 41 can be individually held in the loop 70. That is, if the loops 70 connected to the flow paths B1 and B3 are switched in accordance with the detection of the sample components in the first detector 51, each of the sample components can be held for each loop 70. it can. After all the sample components are individually held in the plurality of loops 70, the flow path in the column selection unit 60 is switched to A1, A2, and A3 again, and at the same time, the loop 70 holding the sample components desired to be optically split is provided. It connects with channel A2 and A3.
[0047]
The components of the desired sample held in one of the plurality of loops 70 are sent together with the second liquid to the chiral column 42 maintained at a constant temperature by the chiral column thermostat 46, and the optical isomer (amino acid) of the sample is sent. Alternatively, enantiomers (such as D-form and L-form) of amino acid derivatives are separated from each other. The optical isomers of the separated sample components are detected by the second detector 52 with different retention times. Next, the loop connected to the flow paths A2 and A3 is switched by the switching means, and the components of another sample are separated by the optical isomer through the chiral column 42 and detected by the second detector 92. In this way, by sequentially switching the loop 70 connected to the flow paths A2 and A3, the optical isomers can be divided and detected for all the components of the sample held in the multi-loop unit 100. When the sample component is an amino acid, a large number of amino acids are roughly separated as a racemic mixture of D-form and L-form on a 41 reverse phase microcolumn, and then a plurality of loops 70 are used to form a chiral column 42. Can be introduced sequentially to perform rapid optical division.
[0048]
That is, in the liquid chromatograph apparatus according to the present invention, in one injection of the sample into the first liquid, the amino acid or amino acid derivative which is the sample component and the contaminant component are separated in the first dimension, and all amino acids or amino acids are separated. The derivative can be optically resolved in the second dimension to quantify D-form and L-form. Therefore, by using the liquid chromatograph apparatus according to the present invention, it is possible to perform optical resolution and detection for all the sample components in one sample injection, so compared with the conventional column switching chiral HPLC method, The amount of the sample to be discarded is small, the amount of the sample may be small, and the analysis regarding the optical isomers in the components of the sample can be quickly performed. In addition, since each of the sample components is optically resolved after being separated by a reverse phase microcolumn, the resolution of the sample components is also high.
[0049]
In addition, the liquid chromatograph apparatus by this invention can be comprised using the following apparatuses. For the first pump 21 and the second pump 22, PU-2080 Plus from JASCO Corporation, for the reversed-phase microcolumn thermostat 45 and the chiral column thermostat 46, Shimadzu CTO-6A, The injection unit 30 is RHEODYNE 7125, the gradient unit (not shown) is GP-A40 of JASCO Corporation, the deaerator 80 is DG-980-50 of JASCO Corporation, As the column selection unit 60, HV-992-01 manufactured by JASCO Corporation can be used. The multi-loop unit 100 is manufactured by connecting six loops 70 having an inner diameter of 0.8 mm and a length of 80 cm (volume of 400 μL) to, for example, a 6 vessel changer 110 and SCF-Evc-Sr manufactured by JASCO Corporation. be able to. In addition, FP-1520 of JASCO Corporation is used for the fluorescence detector as the first detector 51 and the second detector 52, and the first recorder 91 and the second recorder 92 are Japan. Spectroscopic Co., Ltd. 807-IT can be used.
[0050]
Using the liquid chromatograph apparatus according to the present invention, the first and second liquids as the mobile phase, and the reverse-phase microcolumn and chiral column fillers as the stationary phase, the temperature of both columns, the flow rate of the mobile phase By appropriately selecting parameters such as these, optical resolution of various amino acids or amino acid derivatives is possible. Here, H. as an amino acid to be analyzed. Bruckner and A.M. Schieber: Determination of amino acid enantiomers in human urine and blood sert by gas chromatography-mass spectrometry, Biomed. Chromatogr. , 15, 166-172 (2001), the presence of which is reported in mammalian urine and brain, and the hydrophobic amino acids Val, Ile, Leu and Phe, which are required to elucidate detailed tissue distribution. The preferred conditions for optical resolution in the case of selection were examined.
[0051]
First, conditions for rapid optical resolution in a chiral column using a standard amino acid will be described. In the rapid two-dimensional analysis system for D-amino acids using the liquid chromatography apparatus according to the present invention, amino acids roughly separated by a reversed-phase microcolumn are sequentially introduced into a chiral column to quantify D-form and L-form. According to the liquid chromatograph of the present invention, rapid optical resolution with high resolution can be performed in a chiral column.
[0052]
In t-BuCQN, which is a chiral column filler used, quinine is an optically active center, and this optically active center is chemically bonded to the surface of silica gel through a spacer. The optical resolution of NBD-amino acid in this chiral stationary phase was examined by HPLC.
[0053]
In addition, as said sample amino acid, the amino acid sample for nucleic acid synthesis used what was obtained from Kanto Chemical Co., Inc., Nacalai Tesque Co., Ltd., Wako Pure Chemical Industries, Ltd., and Ishizu Pharmaceutical Co., Ltd. Further, dry acetonitrile for HPLC was obtained from Wako Pure Chemical Industries, Ltd., and special grade NBD-F was obtained from Tokyo Chemical Industry Co., Ltd. In addition, sodium hydroxide for automated amino acid analysis was obtained from Wako Pure Chemical Industries, Ltd., special grade boric acid was obtained from Wako Pure Chemical Industries, Ltd., and special grade trifluoroacetic acid was obtained from Wako Pure Chemical Industries, Ltd. used. Further, citric acid monohydrate for HPLC labeling was obtained from Wako Pure Chemical Industries, Ltd., and methanol for HPLC was obtained from Wako Pure Chemical Industries, Ltd. Moreover, the water for amino acid automatic analysis used what was refine | purified using Milli-Q system (Elix3 and Gradient A10, Millipore, Bedford, MA, USA). As other reagents, commercially available special grade products, first grade products, HPLC grades and the like were used as necessary unless otherwise specified.
[0054]
The aluminum block heater used was KOIKE PRECISION INSTRUMENTS MB-1H-U, and the microbalance was Sartorius BP211D. Further, an F-12 type pH meter manufactured by Horiba, Ltd. was used for pH measurement, and an IWAKI GLASS TM-150 was used for the vortex mixer.
[0055]
From the above results, tBuCQN is used as a chiral column, and rapid optical resolution is possible for four types of hydrophobic amino acids. Therefore, in addition to these optical resolution conditions, amino acid separation conditions by reversed-phase micro-HPLC suitable for rapid two-dimensional analysis of hydrophobic D-amino acids will be described below.
[0056]
Using t-BuCQN as a chiral stationary phase, rapid optical resolution was achieved for four hydrophobic amino acids (Val, Ile, Leu, Phe), but these optical resolutions used the same stationary phase and the same mobile phase. Therefore, it is also effective for rapid two-dimensional analysis of hydrophobic D-amino acids to examine the separation conditions in the first-phase reversed-phase micro-HPLC. Therefore, in the liquid chromatograph apparatus according to the present invention that uses a multi-loop unit that enables continuous two-dimensional analysis of each amino acid, the separation conditions of reversed-phase micro HPLC using a sample were studied.
For rapid separation of NBD-Val, -Ile, -Leu, and -Phe on a reversed-phase microcolumn, an aqueous TFA solution containing acetonitrile was used as the mobile phase. Each amino acid was subjected to NBD fluorescence derivatization reaction, and this reaction solution was injected into reverse phase micro HPLC. A chromatogram obtained when the acetonitrile concentration in the mobile phase is 22.5% is shown in FIG. Under these conditions, the four types of NBD-amino acids were well baseline separated in approximately 40 minutes.
In order to carry out optical resolution by continuously introducing a fraction of each amino acid separated as a DL mixture using reverse-phase micro HPLC into a chiral column, in the present invention, a liquid chromatograph apparatus having the above-described multi-loop system is provided. use. Here, in the liquid chromatograph apparatus according to the present invention, reverse-phase micro HPLC and chiral HPLC are connected by a column switching unit, and 400 μL is used as a multi-loop unit instead of the preparative loop used in the conventional liquid chromatograph apparatus. A 6 vessel changer with 6 loops connected in parallel is used. Switching of the preparative loop is performed by a 6 vessel changer, and the desired amino acid fraction can be introduced into any 6 loops. The NBD fluorescence derivatization reaction solution of the DL-Val, -Ile, -Leu, and -Phe mixed samples is analyzed using the liquid chromatograph apparatus according to the present invention in which reverse-phase micro HPLC and the above-described chiral HPLC are connected.
[0057]
3 and 4 are chromatograms obtained by continuously analyzing four types of hydrophobic amino acids using the liquid chromatograph apparatus according to the present invention. Each amino acid was subjected to NBD fluorescence derivatization reaction, and 5 μL of this reaction solution was injected into the HPLC.
Here, for the first-dimensional micro ODS column, Mightysil RP-18 GP was used as a column filler, and the column having an inner diameter of 1.0 mm × length of 10 cm maintained at 40 ° C. was used. The mobile phase for the micro ODS column is CH 3 CN / TFA / H 2 O = 22.5 / 0.02 / 77.5 (v / v), and the flow rate was 75 μL / min. Detection was performed by fluorescence analysis (excitation wavelength: 470 nm, emission wavelength: 530 nm).
[0058]
On the other hand, for the second-dimensional chiral column, t-BuCQN was used as a column filler, and the column having an inner diameter of 4.0 mm × length of 15 cm maintained at 25 ° C. was used. As the precolumn filler, TSK-gel ODS-120T was used, and a column having an inner diameter of 3.2 mm × length of 1.5 cm maintained at 25 ° C. was used. The mobile phase is CH containing 10 mM citric acid. 3 CN / CH 3 A solution with OH = 40/60 (v / v) was used, and the flow rate was 1.5 mL / min for Val and Ile, and 2.0 mL / min for Leu and Phe. . Detection was performed by a fluorescence analysis method (excitation wavelength: 470 nm, emission wavelength: 530 nm).
[0059]
The four NBD-amino acids were introduced into the loop while monitoring the fluorescence detector on the micro ODS column side. Val switched the flow path 10 seconds after the peak rise, introduced it into the loop 1 for 3 minutes (225 μL), and immediately injected it into t-BuCQN. Ile was introduced into the loop 1 from 10 seconds after the peak rise until 10 seconds after the Leu rise, and then Leu was introduced into the loop 2 until 10 seconds after the Phe rise. Further, Phe was introduced into loop 3 for 3 minutes (225 μL). These amino acids were sequentially injected into t-BuCQN and optically resolved.
It can be seen that, as with the analysis using only the chiral column, any amino acid is subjected to a good and rapid optical resolution and is not affected by the mobile phase of the micro ODS column or switching of the loop. In addition, the analysis time required for quantification of all four types of hydrophobic amino acids is within 60 minutes, and a rapid two-dimensional analysis is possible.
[0060]
Next, in order to examine the applicability to biological samples, ddY / DAO + , DdY / DAO The results of attempts to quantify D-Val, D-Ile, D-Leu, and D-Phe in the mouse cerebrum will be described.
[0061]
In order to examine the applicability of the liquid chromatograph using the multi-loop according to the present invention to a biological sample, + And ddY / DAO An attempt was made to quantify the enantiomers of Val, Ile, Leu and Phe in the mouse cerebrum. R. Kormo and Y.K. Yasumura: Mouse Mutant Definitive in D-amino acid oxidase activity, Genetics, 103, 277-285 (1983), ddY / DAO The mouse is a strain established by Kaneno et al. And has no D-amino acid oxidase (DAO) activity for decomposing D-amino acids, which is useful for D-amino acid studies. Here, ddY / DAO + And ddY / DAO Strain mice (SPF) were inherited from Dr. Yanakaichi Kanno of Dokkyo Medical University, and each animal was raised in an animal house in Kyushu University Graduate School of Pharmaceutical Sciences until use. Breeding conditions were Light 7: 00-19: 00, Dark 19: 00-7: 00, and water and feed were freely consumed. The feed used Oriental NMF diet of oriental yeast.
[0062]
ddY / DAO And ddY / DAO + Mice (SPF, male, 10 weeks old) were decapitated under ether anesthesia, and the excised cerebrum was homogenized with 20 times the amount of methanol under ice-cooling. This was centrifuged at 4500 g for 5 minutes, and 10 μL of the supernatant was dried at 40 ° C. under reduced pressure. To this residue, 20 μL of 200 mM boric acid-NaOH buffer (pH 8.0), 20 mM NBD-F / CH 3 10 μL of CN was added and reacted at 60 ° C. for 2 minutes. 20 μL of 5% TFA aqueous solution was added to this solution, and 5 μL was analyzed using the liquid chromatograph apparatus according to the present invention. In addition, standard addition to cerebral sample is ddY / DAO + Using a mouse, 10 μL of the methanol homogenate supernatant was dried under reduced pressure, and the residue was diluted with 200 mM boric acid-NaOH buffer (pH 8.0) containing 0.5 μM DL-Val, Ile, Leu, Phe. Sample preparation was similarly performed by dissolving in 20 μL. ddY / DAO + Four types of hydrophobic amino acid preparations were added to a mouse cerebral sample as DL body per injection amount, and analyzed using the liquid chromatograph apparatus according to the present invention. In addition, CFM-100 of IWAKI GLASS was used for the centrifuge.
Using the liquid chromatograph apparatus according to the present invention, ddY / DAO + And ddY / DAO An attempt was made to quantify Val, Ile, Leu, and Phe in the mouse cerebrum.
[0063]
FIG. 5 shows ddY / DAO + And ddY / DAO It is a chromatogram of the fraction of Leu obtained by analyzing the mouse cerebrum. Here, t-BuCQN was used as a chiral column packing material, and a column having an inner diameter of 4 mm and a length of 150 mm was used at a temperature of 25 ° C. Further, a solution of acetonitrile: methanol = 40% by volume: 60% by volume containing 10 mM citric acid was used as the liquid as the mobile phase (flow rate: 2.0 mL / min). ddY / DAO + And ddY / DAO D-Leu is well separated in both mice, indicating that this system can be applied to biological samples as a highly sensitive rapid two-dimensional analysis method.
In the conventional column switching chiral HPLC method, a long time is required for optical resolution in the second dimension. In the liquid chromatograph apparatus of the present invention, continuous optical resolution of four types of hydrophobic amino acids (Leu, Ile, Val, Phe) is completed in a short time, and rapid analysis is possible. In addition, the liquid chromatograph apparatus of the present invention is capable of continuous analysis of a large number of D-amino acids, as compared with the conventional trace D-amino acid two-dimensional analysis method in which only a single D-amino acid is analyzed. . Currently, as a simultaneous analysis method for a large number of D-amino acids, A. Hashimoto, T .; Nishikawa, T .; Oka, K .; Takahashi and T.K. Hayashi: Determination of free amino acid enantiomers in rat brain and serum by high performance in-liquid ------------------------ Chromatogr. , 582, 41-48 (1992) as an HPLC diastereomer method using OPA reagent and Boc-L-Cys, H. et al. Bruckner, S.M. Haasmann, M .; Langer, T .; Westhauser, R.A. Wittner and H.W. Godel: Liquid chromatographic determination of D- and L-amino acids by derivitization with o-physical dehydration and chiral thioles: Applications. Chromatogr. A, 666, 259-273 (1994), etc. Einarson, B.M. Josefsson, P.M. Moller and D.M. Sanchez: Separation of amino acid enantiomers and chiral amines using precolumn derivation with (+)-1- (9-fluorenyl) ethyl chloroformation and reversion. Chem. 59, 1191-1195 (1987), and Y.C. Nagata, K .; Yamamoto and T.K. Shimojo: Determination of D- and L-amino acids in mouse kids by high-performance liquid chromatography, J. Chem. Chromatogr. , 575, 147-152 (1992). In GC, a method of quantifying by combining a chiral column such as Chirazil-L-Val and MS is used. In these methods, the sample DL-amino acid can be well separated and quantified over a long period of time. However, the actual sample is affected by various contaminants derived from living organisms, and is currently applied only to samples containing a large amount of D-amino acids. On the other hand, the liquid chromatograph apparatus of the present invention is a two-dimensional method, and the target amino acid and the contaminating component are roughly separated in the first dimension, so that the selectivity is very high and a trace amount of D-form can be analyzed. In addition, the sensitivity is high in the detection limit of the sample, and it is an extremely sensitive and selective analysis method.
[0064]
Furthermore, among the mice widely used as experimental animals, those of the ddY strain were used. This line is ddY / DAO having DAO activity by Kaneno et al. + DdY / DAO with no strain and activity A system has been established. ddY / DAO Because mice cannot degrade D-amino acids, ddY / DAO + Compared to mice, the D-amino acid content in tissues is high. Therefore, this ddY / DAO The strain is suitable for initial studies of D-amino acid screening in vivo and studies such as kinetic analysis. So far, Y.M. Nagata, R.A. Konno, Y .; Yastmura and T.M. Akino: Involvement of D-amino acid oxidase in elimination of free D-amino acids in rice, Biochem. J. et al. 257, 291-292 (1989), as reported in ddY / DAO. For mice, ddY / DAO + It contains 2-10 times the total D-amino acids compared to mice. Y. Nagata, R.A. Konno and A.M. Niwa: Amino acid levels in D-alanine-administered mutant rice racking D-amino acid oxidase, Metabolism, 43, 1153-1157 (1994) and A.N. Hashimoto, T .; Nishikawa, R .; Konno, A .; Niwa, Y .; Yasumura, T .; Oka and K.K. Takahashi: Free D-serine, D-aspartate and D-alanine in central nervous system and serum in mutant messaging D-amino acid oxidase, Neurosci. Lett. , 152, 33-36 (1993), etc., the concentrations of D-Asp, D-Ser, D-Ala, D-Leu, and D-Pro in the brain, blood, and urine are quantified. DdY / DAO in most organizations DdY / DAO in mice + It has been shown that there are more D-amino acids than mice. Using the liquid chromatograph apparatus according to the present invention, ddY / DAO + DdY / DAO compared to mouse cerebrum A large amount of D-Leu was observed in the mouse cerebrum. The inventors already have ddY / DAO DdY / DAO in the mouse cerebrum + Although it has been clarified that D-Leu is present at a concentration about 10 times higher than that in the mouse cerebrum, it is in good agreement with the results obtained using the liquid chromatograph apparatus according to the present invention.
Regarding D-amino acids to be analyzed here, the presence of D-Leu, D-Val, and D-Phe in vivo has been reported. In particular, research on D-Leu is progressing, and localization in the pineal gland and pituitary gland in the mouse brain and its blood and urine concentrations have been clarified. In addition, the presence of D-Val and D-Phe is confirmed in mammalian blood and urine, and the quantitative value of D-Phe is 0-0.3 nmol / mL in human blood by Bruckner et al. D-Val is 0.3-0.4 nmol / mL, D-Phe is 0.4-2.8 nmol / mL, and D-Val is 0-1.6 nmol / mL in human urine. It has been reported. On the other hand, the detailed distribution in these bodies is not clear. D-Ile has not been reported to exist in the mammalian body so far, but the result of analysis using the liquid chromatograph apparatus according to the present invention suggests its presence in the mouse cerebrum.
[0065]
The present invention provides a liquid chromatograph that can continuously analyze Val, Ile, Leu, and Phe, and enables analysis of a trace amount of D-form in a living body. As a result, it is considered that elucidation of in vivo distribution and physiological functions of these D-amino acids is facilitated. Here, although the analysis object by the liquid chromatograph apparatus by this invention was four types of hydrophobic amino acids, the liquid chromatograph apparatus by this invention is applicable to many trace amount D-amino acid continuous quantification, The expansion of applicable amino acids can be expected by examining the type of mobile stationary phase and mobile phase in the second dimension.
[0066]
Many trace D-amino acids in mammals have not yet been elucidated, and rapid and highly selective high-sensitivity analysis methods are required for the elucidation. The liquid chromatograph apparatus according to the present invention has achieved rapid two-dimensional continuous analysis of amino acids, which has been impossible in the past, by using a multi-loop unit. Be expected.
[0067]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the liquid chromatograph apparatus which can perform a quick analysis with a comparatively small sample can be provided.
[0068]
Moreover, according to the present invention, it is possible to provide a method for analyzing optical isomers contained in a sample, which can be rapidly analyzed with a relatively small amount of sample.
[0069]
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an exemplary embodiment of a liquid chromatograph apparatus according to the present invention.
FIG. 2 is a diagram showing the results of amino acid separation in a reversed-phase microcolumn.
FIG. 3 is a diagram showing the results of optical resolution of Val and Ile obtained using the liquid chromatograph apparatus according to the present invention.
FIG. 4 is a diagram showing the result of optical resolution of Leu and Phe obtained using the liquid chromatograph apparatus according to the present invention.
FIG. 5 ddY / DAO + Or ddY / DAO It is a figure which shows the chromatogram of NBD-Leu in a mouse | mouth cerebrum.
[Explanation of symbols]
11 First mobile phase supply section
12 Second mobile phase supply section
21 First pump
22 Second pump
30 Sample injection part
41 Reversed-phase microcolumn
42 chiral column
45 Reversed-phase microcolumn thermostat
46 Thermostat for chiral column
51 First detector
52 Second detector
60 column selection unit
70 loops
80 Deaerator
91 First recorder
92 Second recorder
100 multi-loop unit
110 Switching means

Claims (4)

移動相としての第一の液体を貯蔵する第一の移動供給部、
前記第一の移動相供給部から供給される前記第一の液体に光学異性体を有する成分を含む試料を注入する試料注入部、
前記第一の液体に注入された前記試料の前記成分を分離する分離カラム、
前記分離カラムを通じて分離された前記試料の前記成分の各々を個別に保持する成分保持部、
移動相としての第二の液体を前記成分保持部へ供給する第二の移動相供給部、
前記成分保持部から前記第二の液体と共に供給される前記試料の前記成分の各々に含まれる前記光学異性体を分割する光学分割カラム、及び
前記試料の前記成分の各々に含まれる前記光学異性体を検出する検出器
を含むことを特徴とする液体クロマトグラフ装置。
A first mobile supply for storing a first liquid as a mobile phase;
A sample injection unit for injecting a sample containing a component having an optical isomer into the first liquid supplied from the first mobile phase supply unit;
A separation column for separating the components of the sample injected into the first liquid;
A component holding unit for individually holding each of the components of the sample separated through the separation column;
A second mobile phase supply unit for supplying a second liquid as a mobile phase to the component holding unit;
An optical resolution column for splitting the optical isomers contained in each of the components of the sample supplied from the component holding unit together with the second liquid, and the optical isomers contained in each of the components of the sample A liquid chromatograph apparatus comprising a detector for detecting odor.
前記成分保持部は、
前記試料の前記成分の各々を個別に保持する複数の保持部分、並びに
前記試料の前記成分の各々を個別に、前記保持部分に供給する及び前記保持部分から前記光学分割カラムへ供給する供給部分を有することを特徴とする請求項1記載の液体クロマトグラフ装置。
The component holding unit is
A plurality of holding portions for individually holding each of the components of the sample, and a supply portion for supplying each of the components of the sample individually to the holding portion and from the holding portion to the optical resolution column; The liquid chromatograph according to claim 1, comprising:
光学異性体を有する成分を含む試料を、移動相としての第一の液体と共に、固定相としての第一のカラム充填剤に通じて、前記試料の前記成分を分離するステップ、
前記試料の前記成分の各々を個別に保持するステップ、
前記試料の前記成分の各々を、移動相としての第二の液体と共に、固定相としての光学活性中心を有する第二のカラム充填剤に通じて、前記試料の成分の各々に含まれる前記光学異性体を分割するステップ、及び
前記試料の成分の各々に含まれる前記光学異性体を検出するステップ
を含むことを特徴とする試料に含まれる光学異性体の分析方法。
Passing a sample containing components having optical isomers together with a first liquid as a mobile phase to a first column filler as a stationary phase to separate the components of the sample;
Individually holding each of the components of the sample;
Each of the components of the sample is passed through a second column filler having an optically active center as a stationary phase together with a second liquid as a mobile phase, and the optical isomerism contained in each of the components of the sample. A method for analyzing an optical isomer contained in a sample, comprising: dividing a body; and detecting the optical isomer contained in each of the components of the sample.
前記試料の成分は、アミノ酸又はアミノ酸誘導体であることを特徴とする請求項3記載の試料に含まれる光学異性体の分析方法。The method for analyzing an optical isomer contained in a sample according to claim 3, wherein the component of the sample is an amino acid or an amino acid derivative.
JP2003168320A 2003-06-12 2003-06-12 Liquid chromatograph apparatus and method for analyzing optical isomers contained in sample Expired - Lifetime JP4291628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168320A JP4291628B2 (en) 2003-06-12 2003-06-12 Liquid chromatograph apparatus and method for analyzing optical isomers contained in sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168320A JP4291628B2 (en) 2003-06-12 2003-06-12 Liquid chromatograph apparatus and method for analyzing optical isomers contained in sample

Publications (2)

Publication Number Publication Date
JP2005003558A true JP2005003558A (en) 2005-01-06
JP4291628B2 JP4291628B2 (en) 2009-07-08

Family

ID=34093858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168320A Expired - Lifetime JP4291628B2 (en) 2003-06-12 2003-06-12 Liquid chromatograph apparatus and method for analyzing optical isomers contained in sample

Country Status (1)

Country Link
JP (1) JP4291628B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185558A (en) * 2007-01-31 2008-08-14 Shiseido Co Ltd Two-dimensional liquid chromatography analysis method and preparative channel switching unit
JP2008249447A (en) * 2007-03-30 2008-10-16 Hitachi High-Technologies Corp Method and system for amino acid analysis
WO2011030903A1 (en) 2009-09-14 2011-03-17 株式会社資生堂 Composition for alleviating ultraviolet radiation-induced damage
WO2011040363A1 (en) 2009-09-29 2011-04-07 株式会社資生堂 Collagen production accelerating composition
WO2011040071A1 (en) 2009-09-29 2011-04-07 株式会社資生堂 Antioxidant composition
WO2011040070A1 (en) 2009-09-30 2011-04-07 株式会社資生堂 Oral composition for alleviation of ultraviolet radiation-induced damage
WO2013115334A1 (en) 2012-01-31 2013-08-08 株式会社資生堂 Separating agent and method for manufacturing same
US8586622B2 (en) 2009-09-30 2013-11-19 Shiseido Company, Ltd. Laminin-332 product on stimulating composition
CN103439433A (en) * 2013-09-11 2013-12-11 青岛普仁仪器有限公司 Dilution-free linear curve chromatograph and linear curve measuring method
CN103439432A (en) * 2013-09-11 2013-12-11 青岛普仁仪器有限公司 Dilution-free linear curve chromatograph and linear curve measuring method
JP2014512805A (en) * 2011-02-28 2014-05-29 ベーリンガー インゲルハイム エルツェーファウ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Liquid phase separation of plasmid DNA isoforms and topological isomers
JP2015049201A (en) * 2013-09-03 2015-03-16 株式会社 資生堂 Cysteine and cystine determination method and determination reagent kit
WO2017077653A1 (en) * 2015-11-06 2017-05-11 株式会社資生堂 Fluorescence detection device, analysis method, and fluorescence detection system
CN107683414A (en) * 2015-06-10 2018-02-09 国立大学法人金泽大学 The ill biomarker of nephrosis
WO2018092818A1 (en) * 2016-11-15 2018-05-24 株式会社資生堂 Multidimensional chromatographic analysis method and analysis system
EP3598126A4 (en) * 2017-03-17 2020-03-04 Shimadzu Corporation Data processing device for chromatograph

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133296B (en) 2012-03-18 2022-03-25 镜株式会社 Disease sample analysis device, disease sample analysis system, and disease sample analysis method
EP3842806A1 (en) 2013-12-11 2021-06-30 Kagami Inc. Marker for early diagnosis of kidney failure
JP7366428B2 (en) * 2018-08-27 2023-10-23 Kagami株式会社 Skin sample analysis method and system for determining psoriasis
CN113196062A (en) 2018-10-17 2021-07-30 镜株式会社 Method for determining glomerular filtration capacity
JPWO2020196436A1 (en) 2019-03-22 2020-10-01
JP6993654B2 (en) 2019-12-27 2022-02-15 Kagami株式会社 Methods and systems for estimating renal function

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185558A (en) * 2007-01-31 2008-08-14 Shiseido Co Ltd Two-dimensional liquid chromatography analysis method and preparative channel switching unit
JP2008249447A (en) * 2007-03-30 2008-10-16 Hitachi High-Technologies Corp Method and system for amino acid analysis
WO2011030903A1 (en) 2009-09-14 2011-03-17 株式会社資生堂 Composition for alleviating ultraviolet radiation-induced damage
US8637572B2 (en) 2009-09-29 2014-01-28 Shiseido Company, Ltd. Composition for promoting collagen production
WO2011040363A1 (en) 2009-09-29 2011-04-07 株式会社資生堂 Collagen production accelerating composition
WO2011040071A1 (en) 2009-09-29 2011-04-07 株式会社資生堂 Antioxidant composition
US8962684B2 (en) 2009-09-29 2015-02-24 Shiseido Company, Ltd. Antioxidant composition
WO2011040070A1 (en) 2009-09-30 2011-04-07 株式会社資生堂 Oral composition for alleviation of ultraviolet radiation-induced damage
US8586622B2 (en) 2009-09-30 2013-11-19 Shiseido Company, Ltd. Laminin-332 product on stimulating composition
JP2014512805A (en) * 2011-02-28 2014-05-29 ベーリンガー インゲルハイム エルツェーファウ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Liquid phase separation of plasmid DNA isoforms and topological isomers
KR20140122238A (en) 2012-01-31 2014-10-17 가부시키가이샤 시세이도 Separating agent and method for manufacturing same
WO2013115334A1 (en) 2012-01-31 2013-08-08 株式会社資生堂 Separating agent and method for manufacturing same
US9266826B2 (en) 2012-01-31 2016-02-23 Shiseido Company, Ltd. Separating agent and manufacturing method thereof
JP2015049201A (en) * 2013-09-03 2015-03-16 株式会社 資生堂 Cysteine and cystine determination method and determination reagent kit
CN103439432A (en) * 2013-09-11 2013-12-11 青岛普仁仪器有限公司 Dilution-free linear curve chromatograph and linear curve measuring method
CN103439433A (en) * 2013-09-11 2013-12-11 青岛普仁仪器有限公司 Dilution-free linear curve chromatograph and linear curve measuring method
CN107683414A (en) * 2015-06-10 2018-02-09 国立大学法人金泽大学 The ill biomarker of nephrosis
WO2017078153A1 (en) * 2015-11-06 2017-05-11 株式会社資生堂 Fluorescence detection apparatus, analysis method, and fluorescence detection system
WO2017077653A1 (en) * 2015-11-06 2017-05-11 株式会社資生堂 Fluorescence detection device, analysis method, and fluorescence detection system
JPWO2017078153A1 (en) * 2015-11-06 2018-09-06 株式会社 資生堂 Fluorescence detection apparatus, analysis method, and fluorescence detection system
WO2018092818A1 (en) * 2016-11-15 2018-05-24 株式会社資生堂 Multidimensional chromatographic analysis method and analysis system
CN109923413A (en) * 2016-11-15 2019-06-21 株式会社资生堂 Multistage chromatography analysis method and analysis system
EP3598126A4 (en) * 2017-03-17 2020-03-04 Shimadzu Corporation Data processing device for chromatograph
US11567046B2 (en) 2017-03-17 2023-01-31 Shimadzu Corporation Data-processing device for chromatograph

Also Published As

Publication number Publication date
JP4291628B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP4291628B2 (en) Liquid chromatograph apparatus and method for analyzing optical isomers contained in sample
Ishii et al. Development of an online two-dimensional high-performance liquid chromatographic system in combination with tandem mass spectrometric detection for enantiomeric analysis of free amino acids in human physiological fluid
Hamase et al. Simultaneous determination of hydrophilic amino acid enantiomers in mammalian tissues and physiological fluids applying a fully automated micro-two-dimensional high-performance liquid chromatographic concept
Weatherly et al. D-amino acid levels in perfused mouse brain tissue and blood: a comparative study
Grant et al. Determination of d-serine and related neuroactive amino acids in human plasma by high-performance liquid chromatography with fluorimetric detection
Koga et al. Enantioselective two-dimensional high-performance liquid chromatographic determination of N-methyl-D-aspartic acid and its analogues in mammals and bivalves
MIYOSHI et al. Enantioselective two-dimensional high-performance liquid chromatographic determination of amino acids; analysis and physiological significance of D-amino acids in mammals
Visser et al. A sensitive and simple ultra-high-performance-liquid chromatography–tandem mass spectrometry based method for the quantification of d-amino acids in body fluids
Brückner et al. Liquid chromatographic determination of d-and l-amino acids by derivatization with o-phthaldialdehyde and chiral thiols: Applications with reference to biosciences
Miyoshi et al. Determination of D-serine and D-alanine in the tissues and physiological fluids of mice with various D-amino-acid oxidase activities using two-dimensional high-performance liquid chromatography with fluorescence detection
Dołowy et al. Application of TLC, HPLC and GC methods to the study of amino acid and peptide enantiomers: a review
Hamase et al. Comprehensive analysis of branched aliphatic D-amino acids in mammals using an integrated multi-loop two-dimensional column-switching high-performance liquid chromatographic system combining reversed-phase and enantioselective columns
Miyoshi et al. Simultaneous two-dimensional HPLC determination of free D-serine and D-alanine in the brain and periphery of mutant rats lacking D-amino-acid oxidase
Morikawa et al. Determination of D-alanine in the rat central nervous system and periphery using column-switching high-performance liquid chromatography
Hamase et al. D-Amino acids in mammals and their diagnostic value
Ayon et al. LC-MS/MS-based separation and quantification of Marfey’s reagent derivatized proteinogenic amino acid DL-stereoisomers
Han et al. Simultaneous determination of d-aspartic acid and d-glutamic acid in rat tissues and physiological fluids using a multi-loop two-dimensional HPLC procedure
Harada et al. Biaryl axially chiral derivatizing agent for simultaneous separation and sensitive detection of proteinogenic amino acid enantiomers using liquid chromatography–tandem mass spectrometry
Takayama et al. A novel approach for LC-MS/MS-based chiral metabolomics fingerprinting and chiral metabolomics extraction using a pair of enantiomers of chiral derivatization reagents
Schwaninger et al. Chiral drug analysis using mass spectrometric detection relevant to research and practice in clinical and forensic toxicology
Mochizuki et al. Isotopic variants of light and heavy L-pyroglutamic acid succinimidyl esters as the derivatization reagents for DL-amino acid chiral metabolomics identification by liquid chromatography and electrospray ionization mass spectrometry
Koga et al. Enantioselective determination of citrulline and ornithine in the urine of d-amino acid oxidase deficient mice using a two-dimensional high-performance liquid chromatographic system
Haginaka Pharmaceutical and biomedical applications of enantioseparations using liquid chromatographic techniques
Bai et al. Analysis of endogenous D-amino acid-containing peptides in metazoa
Kirschner et al. Separation and sensitive detection of D‐amino acids in biological matrices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4291628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term