JP2005003439A - Method and device for treating waste liquid including radioactive organic waste liquid - Google Patents

Method and device for treating waste liquid including radioactive organic waste liquid Download PDF

Info

Publication number
JP2005003439A
JP2005003439A JP2003165170A JP2003165170A JP2005003439A JP 2005003439 A JP2005003439 A JP 2005003439A JP 2003165170 A JP2003165170 A JP 2003165170A JP 2003165170 A JP2003165170 A JP 2003165170A JP 2005003439 A JP2005003439 A JP 2005003439A
Authority
JP
Japan
Prior art keywords
waste liquid
organic
radioactive
adsorption
filter medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003165170A
Other languages
Japanese (ja)
Other versions
JP3958712B2 (en
Inventor
Masao Kozuka
正夫 狐塚
Naomichi Yamabayashi
尚道 山林
Kazuhide Yano
和秀 矢野
Hisazumi Kase
尚澄 加瀬
Isamu Seto
勇 瀬戸
Junji Konishi
淳二 小西
Yukio Hanamoto
行生 花本
Naoki Mizuniwa
直樹 水庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BML Inc
Kaken Co Ltd
Chiyoda Technol Corp
Original Assignee
BML Inc
Kaken Co Ltd
Chiyoda Technol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BML Inc, Kaken Co Ltd, Chiyoda Technol Corp filed Critical BML Inc
Priority to JP2003165170A priority Critical patent/JP3958712B2/en
Publication of JP2005003439A publication Critical patent/JP2005003439A/en
Application granted granted Critical
Publication of JP3958712B2 publication Critical patent/JP3958712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To decompose organic matter by causing enzyme, etc. to act thereon thereby removing the organic matter from a waste liquid while causing adsorptive filter elements to maintain their function for a long period, with respect to the waste liquid including radioactive organic waste liquid. <P>SOLUTION: This method for treating a waste liquid including radioactive organic waste liquid comprises processes for: decomposing protein in the waste liquid by applying a proteolytic enzyme to the waste liquid; conditioning the waste liquid to be acid, in which the protein is decomposed, then causing the waste liquid to flow/circulate in an adsorption reaction tank with activated carbon added thereto, and then passing the waste liquid through an adsorption column packed with activated carbon; and putting the waste liquid to halogen adsorption and filtration, that is, for passing the waste liquid through the adsorptive filter elements to which halogen is added having higher chemical activity than halogen included in the waste liquid has. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、インビトロ或いはインビボ検査、診断、試験等を行う試験、医療、研究施設などから排出される放射性有機廃液を含む廃液の処理に適用される廃液処理方法と装置に関し、特に放射性有機物を含有する廃液の処理方法と装置に関する。
【0002】
【従来の技術】
例えば、生体物質や生体内部で起こる特定の反応部分を生体内外で試験することは生物化学ではしばしば行われる。このようなインビトロ検査やインビボ検査においては様々な検査試薬が使用されているが、特にヨウ素125やヨウ素131のような放射性ハロゲン化蛋白質はハロゲンの放射性核種がタンパク質のいわば標識として使用されることから、生化学分野や医学分野で多く使用されている。
このような放射性核種を有する試薬を使用する施設から廃棄される放射性核種を含む廃液は、放射性廃液として取り扱わなければならず、そのまま公共下水道等に放流することはできない。
【0003】
現在、このような放射性ハロゲン核種を含む廃液の法的基準は、放射性物質ごとに定められた濃度を基準とした管理がなされている。そこで、放射性廃液の放流が許容される排水中濃度基準に適合させるため、放射性廃液を貯留槽で長期にわたり貯留し、放射性物質の半減期を経て、その放射能レベルが減衰した後、多量の水で放射性廃液を希釈し、放流する処理方式がとられている。
【0004】
しかしながら、前記従来の廃液処理手段では、放射性物質の半減期を経るまで、放射性物質を含む廃液を貯留槽に貯留し、減衰を待たなければならないため、大きな容積の貯留槽を必要とし、放射性物質排水処理設備が大型になるという課題がある。さらに、多量の水で放射性廃液を希釈し、放流するため、放射性廃液の処理に多量の希釈水を必要とし、この点でも処理設備が大型化する。それだけでなく、放流する放射性物質の絶対量は低減できないので、放流水による自然環境への汚染が問題となる。
【0005】
そこで本件発明者らは先に、小規模な処理設備でハロゲン元素を含む廃液を処理することを可能とし、これにより、ハロゲンを含む廃液処理の負担を軽減し、当該廃液処理を容易にするため、ハロゲンを含む廃液から当該ハロゲン元素を選択的に無機化し、無機化したハロゲン元素を吸着保持するハロゲン吸着濾材に通すことにより、廃液に含まれるハロゲン元素を吸着濾材に吸着させ、廃液から除去する技術を提案した(特開2000−219642号公報、特開2000−239190号公報)。特に、特開2000−239190号公報では、有機ハロゲン化合物を含む廃液を通過させる容器内に、有機ハロゲン化合物の分子内のハロゲン元素を選択的に無機化し、無機化したハロゲン元素を吸着保持するハロゲン吸着濾材(以下「ハロゲン吸着濾材」という。)を充填したカラムが開示されている。
【0006】
【発明が解決しようとしている課題】
ところが、前記のような放射性ハロゲン化タンパク質を含む試薬を使用した研究施設等から廃棄される廃液の処理においては、前記のようなハロゲン吸着濾材では十分な処理効果を得ることが出来ないことが明らかになった。このような廃液中のハロゲン核種はタンパク質と結合し、その複雑な立体的分子構造の中に包含されている。
【0007】
一般にタンパク質等の高分子化合物は活性炭等の吸着濾材に吸着され難く、また吸着されたとしても、吸着濾材の細孔を覆ってしまい、吸着濾材の吸着能力を早期に低下させる。これが原因で、前記のような放射性ハロゲン化タンパク質を含む検査試薬等を使用した場合の廃液中のハロゲンは前記のハロゲン吸着濾材を充填したカラムを通しても50%程度しか除去出来なかった。これはタンパク質分子の巨大さと複雑な立体構造による妨害である。
【0008】
本発明は、従来の放射性ハロゲン化タンパク質を含む廃液の処理技術における課題に鑑み、タンパク質とハロゲンとを分離して廃液から除去出来ると共に、ハロゲンの除去率を高く、且つ吸着濾材の機能保持の長期化を図り、放射性ハロゲン化タンパク質を含む廃液の処理をより容易にすることを目的とする。
【0009】
【課題を解決するための手段】
既に述べた通り、放射性ハロゲン化タンパク質を含む検査試薬等の廃液中のハロゲン元素はタンパク質と結合し、その複雑な立体的分子構造に包含されている。そこでこのように、タンパク質に結合し、あるいはタンパク質に包含された廃液中のハロゲンを吸着濾材に通して廃液から除去するためには、その前に予めタンパク質を分解し低分子化させる必要がある。
【0010】
そこで本件発明者らは、廃液を吸着濾材に通す前の前処理として、廃液中のタンパク質の分解による低分子化、または、放射性ハロゲンの脱離を期待し、過酸化水素を添加することを検討し、実験を行った。これにより、一応の成果は見られたものの、必ずしも十分ではなかった。そこで過酸化水素による前処理に加え、紫外線照射、タンパク分解酵素の添加を検討した。その中で廃液にタンパク分解酵素を添加し40℃で5〜7日間保持しタンパク質を分解させることにより、放射性ハロゲンの高い除去性能を維持できることが分かった。
本発明による放射性ハロゲン化タンパク質を含む廃液処理方法と装置は、このような観点からなされたものである。
【0011】
まず本発明による廃液処理方法は、高濃度のタンパク質を含む有機廃液に有機物分解酵素を適用して廃液中のタンパク質の有機物を分解する工程を有するものである。より具体的には、放射性同位元素が結合あるいは放射性同位元素を含有するタンパク質の有機物を含む廃液を処理する方法において、廃液に有機物分解酵素を適用して廃液中の有機物を分解する工程、有機物を分解した廃液を吸着濾材で処理して放射性同位元素を除去する工程、これらの工程を組合せた放射性有機廃液の処理方法である。
【0012】
例えば、廃液中のタンパク質の有機物を分解する工程において、廃液中に過酸化水素を添加して有機物の分解を促進する。また、この廃液中のタンパク質の有機物を分解する工程において、光触媒作用により有機物の分解を促進させることも出来る。
また、吸着濾材で処理する工程では、吸着濾材を添加した吸着反応槽の中で廃液を流動、循環させた後、吸着濾材を充填したカラムに通す。吸着濾材として、活性炭やゼオライトの多孔質吸着材、または選択的吸着機能が付加された活性炭やゼオライトの多孔質吸着材あるいはイオン交換樹脂や無機イオン交換体が使用される。
【0013】
なお、廃液中の除去対象物質が放射性ハロゲン元素の場合は、そのハロゲン元素よりも化学的活性の高い非放射性ハロゲン元素が添着された前記選択的吸着機能が付加された活性炭やゼオライトの吸着濾材で、ハロゲン置換反応を利用して廃液を処理する。
【0014】
さらに、このような放射性ハロゲン化タンパク質を含む廃液処理方法を実施するための装置は、前記の廃液に有機物分解酵素を適用して廃液中の有機物を分解する反応槽と、必要な場合その前後のいずれかに前記の過酸化水素添加及び/または前記の光触媒作用による廃液中有機物の分解反応槽と、これら有機物分解廃液を吸着濾材で処理する吸着カラムを一連のプロセスとして有する。
【0015】
例えば、廃液を吸着濾材で処理する吸着処理手段が、吸着濾材を添加し、この吸着濾材と共に廃液を流動、循環させる吸着反応槽と、この吸着反応槽を通過した廃液を通す吸着濾材を充填した吸着カラムからなる。
【0016】
【発明の実施の形態】
次に、図面を参照しながら、本発明の実施の形態について、具体的且つ詳細に説明する。
まず、本発明による放射性ハロゲン化タンパク質を含む廃液処理方法と装置を開発するに至る検討と実験の過程を含めてその廃液処理方法と装置について説明する。
【0017】
放射性ハロゲンとしてI−125を含むインビトロ検査試薬を使用する施設から排出される廃液の処理手段を検討した。具体的には、廃液中のハロゲンを吸着濾材に通して除去する前に、予めタンパク質を分解し、低分子化させ、その後に活性炭や臭素を添着した活性炭からなるハロゲン吸着濾材を充填した吸着カラムに通し、残った放射性ヨウ素を除去するシステムを検討した。
【0018】
最初に、廃液に過酸化水素を添加した後に、活性炭を添加し、廃液中のI−125等の放射性ヨウ素を除去し、その後にハロゲン吸着濾材を充填した吸着カラムに通し、残った放射性ヨウ素を除去するシステムを検討した。
【0019】
しかし、I・125を含むインビトロ検査試薬を使用する施設から排出される廃液は、採取日や保存期間によりその性状が変化し、前述のような過酸化水素による前処理のみでは除去性能が不足することが分かった。そこで、図1のフローシートに示すように、過酸化水素による前処理に加え、光触媒のもとで紫外線照射をすること及び酵素の添加を検討した。その中で廃液に酵素を添加し、酵素が活性化する40℃前後の温度で、5〜7日間保持し、廃液中に含まれるタンパク質を分解させることにより高い除去性能を維持できることが分かった。
【0020】
図2にこの試験結果を示す。図2のグラフから明らかな通り、過酸化水素による前処理のみでは、処理回数を数回重ねるとI−125の除去率が急激に低下する。これに対し、過酸化水素の添加による前処理に加え、酵素を添加し、酵素が活性化する40℃前後の温度で、5〜7日間保持した方法や、さらに光触媒を添加し、紫外線照射したものでは、処理回数を経ても除去率が低下しにくいことが分かった。特に酵素を適用することによる除去率の維持の効果が大きい。紫外線照射による除去率維持に対する寄与はそれ程大きくはない。
【0021】
次に、酵素添加によるI−125の除去率の向上の効果を確認するため、中性プロテアーゼ(エイチビィアイ製:商品名オリエンターゼ10NL)0.3重量%で処理した廃液200mlに、図3に示すように活性炭(三菱化学製:商品名ダイアホープ008S24/42)を2g添加し、攪拌した。その後上澄み水を取り出し、I−125の除去率を測定したところ、攪拌時間60分以上で90%以上の除去率を得ることが出来た。
【0022】
前記の酵素以外にも、酸性プロテアーゼ(新日本化学工業製:商品名スミチームAP、キッコーマン製:商品名モルシンF)についても同様にして廃液の処理実験を行ったところ、同様の結果が得られた。この結果を図4に示す。図4において、「AC」の表示はフラスコ中の廃液に活性炭を添加したことを、「KBAC」の表示は、フラスコ中の廃液に臭素を添着した活性炭を添加したことを示す。
【0023】
さらに、図3の実験では、三角フラスコを2段に配置し、同じ廃液に対して前記の処理を2回繰り返して行うことも試みた。この場合の処理1段目のI−125の除去率と処理2段目のI−125の除去率及び2段処理しないで同じ時間の処理を行った時のI−125の除去率を処理回数との関係で示したのが図5である。また、2段階の処理を30回繰り返し行った結果が図6である。
【0024】
次に、酵素処理の最適条件を検討した。図7は検討に用いたデータの一例であり、活性炭処理回数をパラメータにI−125の除去率を示している。処理は合計各6回行い、データの整理には処理各回目の平均値を用いた。この図7の結果から図8を得ている。これにより、処理時間として7日間程度で除去率が平衡に達することが分かった。
【0025】
同様にして、図9は処理温度をパラメータとしたI−125の除去率を示しており、図10は酵素添加量をパラメータとしたI−125の除去率を示している。これらの結果から最適な酵素処理条件は、処理時間7日程度、処理温度40℃、酵素添加量0.3重量%であることが分かった。
【0026】
このような検討結果から、I−125を含むインビトロ検査試薬を使用し、その廃液を排出する施設に廃水処理装置を設置した。図11はその装置による廃水処理のフローを示し、図12はその廃水処理装置の処理系統図を示す。
【0027】
この廃水処理装置では、始め分解反応槽1)に廃水を移送して40℃で約7日間酵素処理を行う。分解反応槽1)はヒータを備え、廃水温度を40℃に維持することが出来る。同時に7日間静置することにより、ハロゲン化タンパク質を低分子化する一方活性炭及び臭素添着活性炭に負荷をかける不溶物を沈殿させて不純物を低分子化して活性炭の延命化を図り、最終的に貯留槽に返送する機能を有する。
【0028】
分解反応槽1)で酵素処理を施した廃液は、分解反応槽2)に送りpH3に調整し、過酸化水素を添加し、I−125を吸着反応槽内の活性炭により除去する。吸着反応槽で廃水を処理した後、廃液は活性炭を充填した吸着カラムと臭素を添着した活性炭を充填した吸着カラムに順次通し、排水槽に送られる。排水槽でpHを中性に戻し、貯留槽に送られる。
【0029】
図12に示した装置では、分解反応槽1)が2基、吸着反応槽が2基、活性炭を充填した吸着カラムと活性炭に臭素を添着したハロゲン吸着濾材を充填した吸着カラムとの直列接続が3系統設けられている。これらは同時に使用し、例えば分解反応槽2)や吸着反応槽を2段のステップ処理にすることもできる。また、例えば図12に黒く塗りつぶしたバルブを閉じたバルブで、白抜きのバルブを開いたバルブとしたように、2基、3系統ある設備を交互に使用することも出来る。特に、吸着カラム類は処理回数を重ねて吸着したI−125が飽和状態に達したときは、それへの廃水の通水を停止し、その間他のカラム系統に通水しながら、新たな吸着カラムに交換することが可能である。分解反応槽1)や吸着反応槽も同様であり、定期的なメンテナンスのために、2基づつ設置しておくことは有効であろう。
【0030】
図12に示した装置において、実際に廃液処理を行ったときの処理回数毎のI−125の除去率の結果を図13に示す。処理プロセスとして、吸着反応槽は2段階の処理を行っており、吸着反応槽1段と吸着反応槽2段はそれぞれ1段目と2段目の処理した後のI−125除去率であり、吸着カラム出口は2段階の吸着反応槽で処理した後、活性炭に臭素を添着した吸着濾材を充填した吸着カラムを通した後のI−125除去率を示している。
【0031】
図11に示した実際の廃液処理装置としては、廃液濃度100Bq/ml)、廃液量(500L/回)、処理回数(2回/日)という処理条件において、I−125除去率が平均90%以上、連続1ヶ月間維持できるものを目標として開発した。図13の吸着カラム出口の除去率の結果は、この目標を十分達成し得るものであった。この装置による1年間当りの廃水処理量は、廃液処理量:180m、I−125吸着除去量:13.5GBqに相当するものである。この吸着除去量:I−125は、I−125半減期(59.4日)換算で貯留槽に約7カ月間保管した減衰率に相当する。
【0032】
使用済のカラムは低レベル放射性廃棄物として処理する必要があり、乾燥処理後に半減期排出基準まで適切に保管することになる。しかし、その容積は廃水に比べて遙かに小さく、保管の負担を大幅に低減出来ることになる。
前述した実施形態では、I−125を含むインビトロ検査試薬を使用する施設から排出される廃液について説明したが、本発明はこれに限らず、放射性有機廃液を含む他の廃液にも同様にして適用することが出来る。
【0033】
但し、最終工程として使用されるハロゲン吸着濾材を充填したカラムは、廃液中に含まれるハロゲンの種類により若干異なる。最終工程として使用されるハロゲン吸着濾材は、廃液に含まれるハロゲンよりも化学反応性の高いハロゲンをゼオライト、活性炭、その他の多孔質物質からなる担体に含有、含浸させて安定化させたものである。例えば、廃液に含まれるハロゲンが臭素の場合、ハロゲン吸着濾材に添着させるハロゲンは、臭素よりも化学反応性の高い塩素である。
【0034】
【発明の効果】
以上説明した通り、本発明による放射性有機廃液を含む廃液処理方法と装置では、廃液を吸着濾材に通す前の前処理として、廃液中のタンパク質を酵素やその他の手段により分解し、低分子化するかまたは放射性ヨウ素をタンパク質から脱離させることにより、吸着濾材の高い吸着能力を維持し、なお且つその長寿命化を図ることが出来る。これにより、吸着濾材の除去性能を長期にわたって維持できるので、従来困難とされてきたタンパク質と結合した放射性ハロゲンを含む廃液の処理を容易に行うことが出来る。さらに、医療診断等に頻繁に使われているテクネシウム99m(放射性)や将来多用されると予想される放射性レニウムなども、図11に示す廃液処理プロセスにおいて同時に除去される。
【0035】
具体的には、放射性ハロゲンを含む廃液を、その廃液のまま放射性ハロゲンの半減期を利用して処理する従来の処理手段に比べ、放射性ハロゲンのみを吸着濾材またはハロゲン吸着濾材に吸着保持した状態で処理出来るので、処理に要する容積を大幅に小さくすることが出来るようになる。
【図面の簡単な説明】
【図1】本発明をなすに当たり、実験的に行った処理方法の工程を示すフローシートである。
【図2】図1による実験的な処理方法の検証結果としての各処理条件における処理回数とI−125の除去率との関係を示すグラフである。
【図3】実験的に行った図1の処理方法において、酵素の適用による効果を検証するための実験を示す概略説明図である。
【図4】図1による実験的な処理方法の検証結果としての各処理条件における攪拌時間とI−125の除去率との関係を示すグラフである。
【図5】図3による実験的な処理方法の検証結果として処理1段目のI−125の除去率と処理2段目のI−125の除去率及び2段処理しないで同じ時間の処理を行った時のI−125の除去率を処理回数との関係で示したグラフである。
【図6】図3による処理方法により30回繰り返し処理を行ったときの処理回数毎のI−125の除去率を示す。
【図7】酵素処理の効果とその使用最適条件を検討するため、処理回数をパラメータに酵素の使用の有無及び酵素による処理日数毎にI−125の除去率を示したグラフである。
【図8】酵素処理の最適条件を検討するため、酵素処理日数をパラメータにI−125の除去率を示したグラフである。
【図9】酵素処理の最適条件を検討するため、処理温度をパラメータとしたI−125の除去率を示したグラフである。
【図10】酵素処理の最適条件を検討するため、酵素添加量をパラメータとしたI−125の除去率を示したグラフである。
【図11】本発明により開発された放射性有機廃液を含む廃液処理方法の一実施形態を示す廃水処理のフローシートである。
【図12】本発明により開発された放射性有機廃液を含む廃液処理方法の一実施形態を示す処理系統図である。
【図13】図12に示した装置において、実際に廃液処理を行ったときの処理回数毎のI−125の除去率を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a waste liquid processing method and apparatus applied to the treatment of waste liquid including radioactive organic waste liquid discharged from in vitro or in vivo inspection, diagnosis, test, medical, research facility, etc., and particularly contains radioactive organic matter. The present invention relates to a waste liquid treatment method and apparatus.
[0002]
[Prior art]
For example, it is often done in biochemistry to test biological materials and specific reactive moieties that occur inside the body, both inside and outside the body. Various test reagents are used in such in vitro tests and in vivo tests. Particularly, radiohalogenated proteins such as iodine 125 and iodine 131 are used because the radionuclides of halogen are used as a so-called label for proteins. It is often used in the biochemical and medical fields.
Waste liquid containing a radionuclide discarded from a facility that uses a reagent having such a radionuclide must be handled as a radioactive waste liquid and cannot be discharged into a public sewer as such.
[0003]
At present, the legal standards for waste liquids containing such radiohalogenous nuclides are managed based on the concentration determined for each radioactive substance. Therefore, in order to meet the wastewater concentration standards that allow the discharge of radioactive waste liquid, the radioactive waste liquid is stored in a storage tank for a long period of time. In this method, the radioactive liquid waste is diluted and discharged.
[0004]
However, in the conventional waste liquid treatment means, it is necessary to store the waste liquid containing the radioactive substance in the storage tank until the half-life of the radioactive substance passes, and to wait for the attenuation. There is a problem that the wastewater treatment facility becomes large. Furthermore, since the radioactive waste liquid is diluted and discharged with a large amount of water, a large amount of diluted water is required for the treatment of the radioactive waste liquid, and the processing equipment is also enlarged in this respect. In addition, since the absolute amount of radioactive material to be discharged cannot be reduced, contamination of the natural environment by discharged water becomes a problem.
[0005]
Therefore, the inventors of the present invention can first treat a halogen-containing waste liquid with a small-scale treatment facility, thereby reducing the burden of halogen-containing waste liquid treatment and facilitating the waste liquid treatment. The halogen element is selectively mineralized from the waste liquid containing halogen, and passed through a halogen adsorption filter medium that adsorbs and holds the inorganic halogen element, thereby adsorbing the halogen element contained in the waste liquid to the adsorption filter medium and removing it from the waste liquid. Techniques have been proposed (Japanese Patent Laid-Open Nos. 2000-219642 and 2000-239190). In particular, Japanese Patent Laid-Open No. 2000-239190 discloses a halogen that selectively mineralizes a halogen element in a molecule of an organic halogen compound and adsorbs and holds the halogenated inorganic element in a container through which a waste liquid containing the organic halogen compound passes. A column packed with an adsorption filter medium (hereinafter referred to as “halogen adsorption filter medium”) is disclosed.
[0006]
[Problems to be solved by the invention]
However, it is clear that in the treatment of waste liquid discarded from a research facility using a reagent containing a radioactive halogenated protein as described above, a sufficient treatment effect cannot be obtained with the halogen adsorption filter medium as described above. Became. Such halogen nuclides in the waste liquid bind to proteins and are included in the complex three-dimensional molecular structure.
[0007]
In general, a high molecular compound such as protein is difficult to be adsorbed on an adsorbent filter medium such as activated carbon, and even if adsorbed, the pores of the adsorbent filter medium are covered, and the adsorption capacity of the adsorbent filter medium is reduced early. For this reason, only about 50% of the halogen in the waste liquid when the above-described test reagent containing a radiohalogenated protein was used could be removed even through the column packed with the halogen adsorption filter medium. This is a hindrance due to the size and complexity of protein molecules.
[0008]
In view of the problems in the conventional waste liquid treatment technology containing radioactive halogenated proteins, the present invention can separate proteins and halogens from the waste liquid and has a high halogen removal rate and a long-term retention of the function of the adsorption filter medium. The purpose is to make the waste liquid containing radioactive halogenated protein easier.
[0009]
[Means for Solving the Problems]
As already described, halogen elements in waste liquids such as test reagents containing radiohalogenated proteins bind to proteins and are included in their complex three-dimensional molecular structures. Therefore, in order to remove the halogen in the waste liquid contained in the protein through the adsorptive filter medium as described above, it is necessary to decompose the protein in advance and lower the molecular weight in advance.
[0010]
Therefore, the present inventors considered adding hydrogen peroxide as a pretreatment prior to passing the waste liquid through the adsorption filter medium in anticipation of lowering the molecular weight by decomposing proteins in the waste liquid or desorption of radioactive halogen. The experiment was conducted. As a result, although some results were seen, it was not always sufficient. Therefore, in addition to the pretreatment with hydrogen peroxide, ultraviolet irradiation and addition of proteolytic enzymes were examined. It was found that high removal performance of radioactive halogen can be maintained by adding a proteolytic enzyme to the waste liquid and maintaining the protein at 40 ° C. for 5 to 7 days to decompose the protein.
The waste liquid treatment method and apparatus containing a radiohalogenated protein according to the present invention have been made from such a viewpoint.
[0011]
First, the waste liquid treatment method according to the present invention includes a step of degrading protein organic matter in the waste liquid by applying an organic substance-degrading enzyme to the organic waste liquid containing a high concentration of protein. More specifically, in a method for treating a waste liquid containing a protein organic substance to which a radioisotope is bound or contains a radioisotope, a process of decomposing the organic substance in the waste liquid by applying an organic substance-degrading enzyme to the waste liquid, This is a process for removing the radioactive isotope by treating the decomposed waste liquid with an adsorption filter medium, and a method for treating the radioactive organic waste liquid by combining these processes.
[0012]
For example, in the step of decomposing protein organic matter in the waste solution, hydrogen peroxide is added to the waste solution to promote the decomposition of the organic matter. Further, in the step of decomposing the organic substance of protein in the waste liquid, the decomposition of the organic substance can be promoted by photocatalytic action.
In the step of treating with the adsorbent filter medium, the waste liquid flows and circulates in the adsorption reaction tank to which the adsorbent filter medium is added, and then passes through a column packed with the adsorbent filter medium. As the adsorption filter medium, a porous adsorbent of activated carbon or zeolite, a porous adsorbent of activated carbon or zeolite to which a selective adsorption function is added, an ion exchange resin, or an inorganic ion exchanger is used.
[0013]
In addition, when the substance to be removed in the waste liquid is a radioactive halogen element, it is possible to use an activated carbon or zeolite adsorbent filter medium to which the selective adsorption function added with a non-radioactive halogen element having higher chemical activity than the halogen element is added. The waste liquid is treated using a halogen substitution reaction.
[0014]
Furthermore, an apparatus for carrying out a waste liquid treatment method containing such a radiohalogenated protein includes a reaction tank for decomposing organic matter in the waste liquid by applying an organic substance-degrading enzyme to the waste liquid, and if necessary, before and after that. Any of the above-described processes includes a decomposition reaction tank for decomposing organic matter in the waste liquid by the addition of hydrogen peroxide and / or the photocatalytic action, and an adsorption column for treating these organic matter decomposition waste liquid with an adsorption filter medium.
[0015]
For example, an adsorption processing means for treating a waste liquid with an adsorption filter medium is filled with an adsorption reaction medium for adding an adsorption filter medium, causing the waste liquid to flow and circulate together with the adsorption filter medium, and an adsorption filter medium for passing the waste liquid that has passed through the adsorption reaction tank. It consists of an adsorption column.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described specifically and in detail with reference to the drawings.
First, the waste liquid treatment method and apparatus will be described, including the examination and experimental processes leading to the development of the waste liquid treatment method and apparatus containing the radioactive halogenated protein according to the present invention.
[0017]
A method for treating waste liquid discharged from a facility using an in vitro test reagent containing I-125 as radioactive halogen was examined. Specifically, before removing the halogen in the waste liquid through the adsorption filter medium, the adsorption column is packed with a halogen adsorption filter medium consisting of activated carbon impregnated with activated carbon and bromine after degrading the protein in advance and reducing the molecular weight. The system which removes the remaining radioactive iodine was examined.
[0018]
First, after adding hydrogen peroxide to the waste liquid, activated carbon is added to remove radioactive iodine such as I-125 in the waste liquid, and then passed through an adsorption column filled with a halogen adsorption filter medium, and the remaining radioactive iodine is removed. We examined the system to be removed.
[0019]
However, the properties of waste liquid discharged from facilities that use in vitro test reagents including I · 125 vary depending on the date of collection and storage period, and removal performance is insufficient only by pretreatment with hydrogen peroxide as described above. I understood that. Therefore, as shown in the flow sheet of FIG. 1, in addition to the pretreatment with hydrogen peroxide, ultraviolet irradiation under a photocatalyst and addition of an enzyme were examined. It was found that high removal performance can be maintained by adding the enzyme to the waste liquid, maintaining the enzyme at a temperature of about 40 ° C. for 5 to 7 days, and decomposing the protein contained in the waste liquid.
[0020]
FIG. 2 shows the test results. As apparent from the graph of FIG. 2, with only the pretreatment with hydrogen peroxide, the removal rate of I-125 rapidly decreases when the number of treatments is repeated several times. On the other hand, in addition to the pretreatment by addition of hydrogen peroxide, an enzyme was added, and the method was maintained at a temperature of about 40 ° C. at which the enzyme was activated for 5 to 7 days, and a photocatalyst was added, followed by ultraviolet irradiation. It was found that the removal rate is less likely to decrease even after the number of treatments. In particular, the effect of maintaining the removal rate by applying the enzyme is great. The contribution to maintaining the removal rate by ultraviolet irradiation is not so great.
[0021]
Next, in order to confirm the effect of improving the removal rate of I-125 by the enzyme addition, 200 ml of waste liquid treated with 0.3% by weight of neutral protease (product name: Orientase 10NL, manufactured by HIBI) is shown in FIG. As described above, 2 g of activated carbon (manufactured by Mitsubishi Chemical Co., Ltd., trade name: Diahop 008S24 / 42) was added and stirred. Thereafter, the supernatant water was taken out and the removal rate of I-125 was measured. As a result, a removal rate of 90% or more could be obtained with a stirring time of 60 minutes or more.
[0022]
In addition to the above-mentioned enzymes, wastewater treatment experiments were also conducted in the same manner for acid protease (manufactured by Shin Nippon Kagaku Kogyo: trade name Sumiteam AP, manufactured by Kikkoman: trade name Morsin F), and similar results were obtained. . The result is shown in FIG. In FIG. 4, “AC” indicates that activated carbon has been added to the waste liquid in the flask, and “KBAC” indicates that activated carbon impregnated with bromine has been added to the waste liquid in the flask.
[0023]
Furthermore, in the experiment of FIG. 3, it tried to repeat the said process twice with respect to the same waste liquid, arrange | positioning an Erlenmeyer flask in two steps. In this case, the removal rate of I-125 in the first stage of processing, the removal rate of I-125 in the second stage of processing, and the removal rate of I-125 when processing for the same time is performed without performing two-stage processing. FIG. 5 shows this relationship. Further, FIG. 6 shows the result of repeating the two-stage process 30 times.
[0024]
Next, the optimum conditions for enzyme treatment were examined. FIG. 7 is an example of data used for the study, and shows the removal rate of I-125 using the number of times of activated carbon treatment as a parameter. The processing was performed 6 times in total, and the average value of each processing time was used to organize the data. FIG. 8 is obtained from the result of FIG. As a result, it was found that the removal rate reached equilibrium in about 7 days as the treatment time.
[0025]
Similarly, FIG. 9 shows the removal rate of I-125 using the treatment temperature as a parameter, and FIG. 10 shows the removal rate of I-125 using the amount of enzyme added as a parameter. From these results, it was found that the optimum enzyme treatment conditions were a treatment time of about 7 days, a treatment temperature of 40 ° C., and an enzyme addition amount of 0.3% by weight.
[0026]
From such examination results, an in vitro test reagent containing I-125 was used, and a wastewater treatment apparatus was installed in a facility for discharging the waste liquid. FIG. 11 shows a flow of wastewater treatment by the apparatus, and FIG. 12 shows a treatment system diagram of the wastewater treatment apparatus.
[0027]
In this wastewater treatment apparatus, first, wastewater is transferred to the decomposition reaction tank 1) and subjected to enzyme treatment at 40 ° C. for about 7 days. The decomposition reaction tank 1) is equipped with a heater and can maintain the wastewater temperature at 40 ° C. By standing for 7 days at the same time, the halogenated protein is reduced in molecular weight while the activated carbon and bromine-impregnated activated carbon are precipitated to precipitate insoluble substances, thereby reducing the molecular weight of the impurities and extending the life of the activated carbon. Has the function of returning to the tank.
[0028]
The waste liquid subjected to the enzyme treatment in the decomposition reaction tank 1) is sent to the decomposition reaction tank 2), adjusted to pH 3, hydrogen peroxide is added, and I-125 is removed by activated carbon in the adsorption reaction tank. After treating the wastewater in the adsorption reaction tank, the waste liquid is sequentially passed through an adsorption column filled with activated carbon and an adsorption column filled with activated carbon impregnated with bromine and sent to the drainage tank. The pH is returned to neutral in the drainage tank and sent to the storage tank.
[0029]
In the apparatus shown in FIG. 12, two decomposition reaction tanks 1) and two adsorption reaction tanks are connected in series with an adsorption column packed with activated carbon and an adsorption column packed with a halogen adsorption filter medium in which bromine is added to activated carbon. Three systems are provided. These can be used simultaneously, and for example, the decomposition reaction tank 2) and the adsorption reaction tank can be made into a two-step process. Also, for example, two or three systems of equipment can be used alternately, such as a closed valve in FIG. 12 with a closed valve and an open valve. In particular, when the adsorption column I-125 that has been adsorbed by repeated treatments reaches a saturated state, the flow of waste water to the column is stopped and a new adsorption is performed while water is passed to other column systems. It is possible to exchange the column. The same applies to the decomposition reaction tank 1) and the adsorption reaction tank, and it would be effective to install two reactors for regular maintenance.
[0030]
In the apparatus shown in FIG. 12, the result of the removal rate of I-125 for every processing frequency when waste liquid processing is actually performed is shown in FIG. As a treatment process, the adsorption reaction tank is performing two stages of treatment, and the first stage of the adsorption reaction tank and the second stage of the adsorption reaction tank are the I-125 removal rates after the first and second stages of treatment, respectively. The adsorption column outlet shows the I-125 removal rate after being treated in a two-stage adsorption reaction tank and then passed through an adsorption column filled with activated carbon impregnated with bromine.
[0031]
The actual waste liquid treatment apparatus shown in FIG. 11 has an average I-125 removal rate of 90% under the treatment conditions of waste liquid concentration 100 Bq / ml), waste liquid amount (500 L / time), and number of treatments (2 times / day). As mentioned above, it was developed with the goal of being able to maintain for a continuous month. The result of the removal rate at the outlet of the adsorption column in FIG. 13 was sufficient to achieve this goal. The wastewater treatment amount per year by this apparatus is equivalent to the waste liquid treatment amount: 180 m 3 and the I-125 adsorption removal amount: 13.5 GBq. This adsorption removal amount: I-125 corresponds to the decay rate stored for about 7 months in the storage tank in terms of I-125 half-life (59.4 days).
[0032]
Spent columns need to be treated as low-level radioactive waste and will be properly stored to the half-life emission standard after drying. However, the volume is much smaller than the waste water, and the storage burden can be greatly reduced.
In the above-described embodiment, the waste liquid discharged from the facility that uses the in vitro test reagent containing I-125 has been described. However, the present invention is not limited to this, and is similarly applied to other waste liquids including radioactive organic waste liquids. I can do it.
[0033]
However, the column packed with the halogen-adsorbing filter medium used as the final step differs slightly depending on the type of halogen contained in the waste liquid. The halogen-adsorbing filter medium used as the final step is a material that is stabilized by containing, impregnating, and impregnating a carrier made of zeolite, activated carbon, or other porous material with a halogen that is more chemically reactive than the halogen contained in the waste liquid. . For example, when the halogen contained in the waste liquid is bromine, the halogen to be attached to the halogen adsorption filter medium is chlorine having a higher chemical reactivity than bromine.
[0034]
【The invention's effect】
As described above, in the waste liquid treatment method and apparatus including the radioactive organic waste liquid according to the present invention, as a pretreatment before passing the waste liquid through the adsorption filter medium, the protein in the waste liquid is decomposed by an enzyme or other means to reduce the molecular weight. Alternatively, by desorbing radioactive iodine from the protein, it is possible to maintain the high adsorption capacity of the adsorption filter medium and to extend its life. Thereby, since the removal performance of the adsorbent filter medium can be maintained for a long period of time, it is possible to easily treat the waste liquid containing radioactive halogen bound to protein, which has been considered difficult in the past. Furthermore, technesium 99m (radioactive) frequently used for medical diagnosis and radioactive rhenium expected to be frequently used in the future are simultaneously removed in the waste liquid treatment process shown in FIG.
[0035]
Specifically, in comparison with conventional treatment means that treats waste liquid containing radioactive halogen using the half-life of radioactive halogen as the waste liquid, in a state where only radioactive halogen is adsorbed and held on the adsorption filter medium or halogen adsorption filter medium. Since the process can be performed, the volume required for the process can be significantly reduced.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a flow sheet showing the steps of a treatment method conducted experimentally in making the present invention.
FIG. 2 is a graph showing the relationship between the number of processes and the removal rate of I-125 under each processing condition as a verification result of the experimental processing method according to FIG. 1;
FIG. 3 is a schematic explanatory view showing an experiment for verifying an effect of application of an enzyme in the treatment method of FIG. 1 conducted experimentally.
4 is a graph showing the relationship between the stirring time and the removal rate of I-125 under each processing condition as a verification result of the experimental processing method according to FIG. 1;
FIG. 5 shows the result of verification of the experimental processing method shown in FIG. 3; the removal rate of I-125 in the first stage and the removal rate of I-125 in the second stage; It is the graph which showed the removal rate of I-125 at the time of performing by the relationship with the frequency | count of a process.
6 shows the removal rate of I-125 for each processing count when the processing is repeated 30 times by the processing method of FIG.
FIG. 7 is a graph showing whether or not an enzyme is used and the removal rate of I-125 for each number of treatment days with the number of treatments as parameters, in order to examine the effect of enzyme treatment and the optimum conditions for use.
FIG. 8 is a graph showing the removal rate of I-125 using the number of days of enzyme treatment as a parameter in order to examine the optimum conditions for enzyme treatment.
FIG. 9 is a graph showing the removal rate of I-125 using the treatment temperature as a parameter in order to examine the optimum conditions for enzyme treatment.
FIG. 10 is a graph showing the removal rate of I-125 using the amount of enzyme added as a parameter in order to examine the optimum conditions for enzyme treatment.
FIG. 11 is a wastewater treatment flow sheet showing an embodiment of a waste liquid treatment method including a radioactive organic waste liquid developed according to the present invention.
FIG. 12 is a treatment system diagram showing an embodiment of a waste liquid treatment method including a radioactive organic waste liquid developed according to the present invention.
13 is a graph showing the removal rate of I-125 for each number of treatments when waste liquid treatment is actually performed in the apparatus shown in FIG.

Claims (9)

高濃度のタンパク質を含む有機廃液に有機物分解酵素を適用して廃液中のタンパク質の有機物を分解する工程を有する放射性有機廃液を含む廃液処理方法。A waste liquid treatment method comprising a radioactive organic waste liquid, comprising a step of degrading protein organic matter in a waste liquid by applying an organic matter degrading enzyme to the organic waste liquid containing a high concentration of protein. 放射性同位元素が結合あるいは放射性同位元素を含有するタンパク質の有機物を含む廃液を処理する方法において、廃液に有機物分解酵素を適用して廃液中の有機物を分解する工程、有機物を分解した廃液を吸着濾材で処理して放射性同位元素を除去する工程、これらの工程を組合せたことを特徴とする放射性有機廃液を含む廃液処理方法。In a method for treating waste liquid containing organic matter of protein containing radioactive isotopes or containing radioactive isotopes, a process of decomposing organic matter in the waste liquid by applying organic matter-degrading enzyme to the waste liquid, an adsorbent filter material for the waste liquid that has decomposed the organic matter A process for removing radioactive isotopes by treatment with a waste liquid treatment method comprising a radioactive organic waste liquid, characterized in that these processes are combined. 放射性同位元素を含む廃液中のタンパク質の有機物を分解する工程において、廃液中に過酸化水素を添加して有機物の分解を促進することを特徴とする請求項1または請求項2に記載の放射性有機廃液を含む廃液処理方法。3. The radioactive organic substance according to claim 1, wherein in the step of decomposing the organic substance of the protein in the waste liquid containing the radioisotope, hydrogen peroxide is added to the waste liquid to promote the decomposition of the organic substance. Waste liquid treatment method including waste liquid. 廃液中のタンパク質の有機物を分解する工程において、光触媒作用により有機物の分解を促進させることを特徴とする請求項1〜3の何れかに記載のタンパク質を含む放射性有機廃液を含む放射性有機廃液を含む廃液処理方法。In the step of decomposing the organic matter of protein in the waste liquid, the organic organic waste liquid containing the radioactive organic waste liquid containing the protein according to any one of claims 1 to 3 is promoted by photocatalytic action. Waste liquid treatment method. 吸着濾材で処理する工程が、吸着濾材を添加した吸着反応槽の中で廃液を流動、循環させた後、吸着濾材を充填したカラムに通す工程であることを特徴とする請求項1〜4の何れかに記載の放射性有機廃液を含む廃液処理方法。The step of treating with an adsorbent filter medium is a process of flowing and circulating the waste liquid in an adsorption reaction tank to which the adsorbent filter medium is added, and then passing the waste liquid through a column packed with the adsorbent filter medium. A waste liquid treatment method comprising the radioactive organic waste liquid according to any one of the above. 吸着濾材として、活性炭やゼオライトの多孔質吸着材、または選択的吸着機能が付加された活性炭やゼオライトの多孔質吸着材あるいはイオン交換樹脂や無機イオン交換体であることを特徴とする請求項1〜5の何れかに記載の放射性有機廃液を含む廃液処理方法。The adsorption filter medium is a porous adsorbent of activated carbon or zeolite, a porous adsorbent of activated carbon or zeolite to which a selective adsorption function is added, an ion exchange resin, or an inorganic ion exchanger. A waste liquid treatment method comprising the radioactive organic waste liquid according to claim 5. 廃液中の除去対象物質が放射性ハロゲン元素の場合で、そのハロゲン元素よりも化学的活性の高い非放射性ハロゲン元素が添着された前記選択的吸着機能が付加された活性炭やゼオライトの吸着濾材で、ハロゲン置換反応を利用して廃液を処理する工程を有することを特徴とする請求項6の記載の放射性有機廃液を含む廃液処理方法。In the case where the substance to be removed in the waste liquid is a radioactive halogen element, an activated carbon or zeolite adsorption filter medium to which the selective adsorption function is added, to which a non-radioactive halogen element having a chemical activity higher than that of the halogen element is added. The waste liquid treatment method including a radioactive organic waste liquid according to claim 6, further comprising a step of treating the waste liquid using a substitution reaction. 放射性有機廃液を処理する装置において、請求項1及び2記載の廃液に有機物分解酵素を適用して廃液中の有機物を分解する反応槽と、必要な場合その前後のいずれかに請求項3記載の過酸化水素添加及び/または光触媒作用による廃液中有機物の分解反応槽と、これら有機物分解廃液を吸着濾材で処理する吸着カラムを一連のプロセスとして有することを特徴とする放射性有機廃液を含む廃液処理装置。In the apparatus which processes a radioactive organic waste liquid, The reaction tank which decomposes | disassembles the organic substance in a waste liquid by applying an organic substance decomposing enzyme to the waste liquid of Claim 1 and 2, and if necessary, either before or after that Waste water treatment apparatus containing radioactive organic waste liquid, characterized by having a series of processes including a decomposition reaction tank of organic substances in waste liquid by addition of hydrogen peroxide and / or photocatalysis, and an adsorption column for treating these organic substance decomposition waste liquid with an adsorption filter medium . 廃液を吸着濾材で処理する吸着処理手段が、吸着濾材を添加し、この吸着濾材と共に廃液を流動、循環させる吸着反応槽と、この吸着反応槽を通過した廃液を通す吸着濾材を充填した吸着カラムからなることを特徴とする請求項8に記載の放射性有機廃液を含む廃液処理装置。An adsorption treatment means for treating the waste liquid with the adsorption filter medium adds an adsorption filter medium, and flows and circulates the waste liquid together with the adsorption filter medium, and an adsorption column packed with the adsorption filter medium for passing the waste liquid that has passed through the adsorption reaction tank. The waste liquid processing apparatus containing the radioactive organic waste liquid according to claim 8, comprising:
JP2003165170A 2003-06-10 2003-06-10 Waste liquid treatment method and apparatus including radioactive organic waste liquid Expired - Fee Related JP3958712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003165170A JP3958712B2 (en) 2003-06-10 2003-06-10 Waste liquid treatment method and apparatus including radioactive organic waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165170A JP3958712B2 (en) 2003-06-10 2003-06-10 Waste liquid treatment method and apparatus including radioactive organic waste liquid

Publications (2)

Publication Number Publication Date
JP2005003439A true JP2005003439A (en) 2005-01-06
JP3958712B2 JP3958712B2 (en) 2007-08-15

Family

ID=34091739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165170A Expired - Fee Related JP3958712B2 (en) 2003-06-10 2003-06-10 Waste liquid treatment method and apparatus including radioactive organic waste liquid

Country Status (1)

Country Link
JP (1) JP3958712B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013015446A (en) * 2011-07-05 2013-01-24 Bora Company Inc Water purification device
CN103301652A (en) * 2013-05-31 2013-09-18 西北核技术研究所 Separation device for gallium-containing radioactive solution
JP2015178449A (en) * 2015-03-09 2015-10-08 株式会社Ls Nova removal of contaminated radioactive material
WO2016122866A1 (en) 2015-01-30 2016-08-04 Studsvik, Inc. Apparatus and methods for treatment of radioactive organic waste

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101318218B1 (en) * 2012-01-19 2013-10-15 서강대학교산학협력단 Microcolumn for use in chromatography for separation or detection or quantative analysis of radioactive substances and method for detecting of radioactive substances using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182598A (en) * 1985-02-08 1986-08-15 三菱化学株式会社 Method of removing radioactive iodine
JPS61270700A (en) * 1985-05-24 1986-11-29 日揮株式会社 Method of treating radioactive waste
JPH01196599A (en) * 1988-02-01 1989-08-08 Nippon Atom Ind Group Co Ltd Treatment of chemical decontamination waste liquid
JPH04204295A (en) * 1990-11-30 1992-07-24 Tomoji Tanaka Cleaning of dust, sump and soil contaminated with radioaction in reactor power plant
JPH0643292A (en) * 1992-07-27 1994-02-18 Toshiba Corp Radioactive waste liquid disposal device
JPH0815489A (en) * 1994-06-27 1996-01-19 Ishikawajima Harima Heavy Ind Co Ltd Waste liquid treatment device
JPH09136903A (en) * 1995-11-10 1997-05-27 Kao Corp Production of depolymerized natural rubber
JPH1066954A (en) * 1996-08-26 1998-03-10 Bridgestone Corp Garbage decomposing method and device therefor
JP2000019293A (en) * 1998-04-28 2000-01-21 Nissui Pharm Co Ltd Method for disposal of radioactive waste

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182598A (en) * 1985-02-08 1986-08-15 三菱化学株式会社 Method of removing radioactive iodine
JPS61270700A (en) * 1985-05-24 1986-11-29 日揮株式会社 Method of treating radioactive waste
JPH01196599A (en) * 1988-02-01 1989-08-08 Nippon Atom Ind Group Co Ltd Treatment of chemical decontamination waste liquid
JPH04204295A (en) * 1990-11-30 1992-07-24 Tomoji Tanaka Cleaning of dust, sump and soil contaminated with radioaction in reactor power plant
JPH0643292A (en) * 1992-07-27 1994-02-18 Toshiba Corp Radioactive waste liquid disposal device
JPH0815489A (en) * 1994-06-27 1996-01-19 Ishikawajima Harima Heavy Ind Co Ltd Waste liquid treatment device
JPH09136903A (en) * 1995-11-10 1997-05-27 Kao Corp Production of depolymerized natural rubber
JPH1066954A (en) * 1996-08-26 1998-03-10 Bridgestone Corp Garbage decomposing method and device therefor
JP2000019293A (en) * 1998-04-28 2000-01-21 Nissui Pharm Co Ltd Method for disposal of radioactive waste

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
多久和智也 他5名: "医療用放射性ヨウ素廃液高度処理システムに関する研究(II)−医療施設廃液による現場試験−", RADIOISOTOPES, vol. 第51巻第8号, JPN4006011334, 15 August 2002 (2002-08-15), JP, pages 296 - 300, ISSN: 0000750283 *
多久和智也 他5名: "医療用放射性ヨウ素廃液高度処理システムに関する研究(II)−医療施設廃液による現場試験−", RADIOISOTOPES, vol. 第51巻第8号, JPNX007009931, 15 August 2002 (2002-08-15), JP, pages 296 - 300, ISSN: 0000823818 *
多久和智也 他5名: "医療用放射性ヨウ素廃液高度処理システムに関する研究(II)−医療施設廃液による現場試験−", RADIOISOTOPES, vol. 第51巻第8号, JPNX007019270, 15 August 2002 (2002-08-15), JP, pages 296 - 300, ISSN: 0000839541 *
花本行生 他5名: "医療用放射性ヨウ素廃液高度処理システムに関する研究(I)−放射性ヨウ素吸着剤の廃液処理への適用−", RADIOISOTOPES, vol. 第51巻第7号, JPN4006011333, 15 July 2002 (2002-07-15), JP, pages 261 - 265, ISSN: 0000750282 *
花本行生 他5名: "医療用放射性ヨウ素廃液高度処理システムに関する研究(I)−放射性ヨウ素吸着剤の廃液処理への適用−", RADIOISOTOPES, vol. 第51巻第7号, JPNX007009930, 15 July 2002 (2002-07-15), JP, pages 261 - 265, ISSN: 0000823817 *
花本行生 他5名: "医療用放射性ヨウ素廃液高度処理システムに関する研究(I)−放射性ヨウ素吸着剤の廃液処理への適用−", RADIOISOTOPES, vol. 第51巻第7号, JPNX007019269, 15 July 2002 (2002-07-15), JP, pages 261 - 265, ISSN: 0000839540 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013015446A (en) * 2011-07-05 2013-01-24 Bora Company Inc Water purification device
CN103301652A (en) * 2013-05-31 2013-09-18 西北核技术研究所 Separation device for gallium-containing radioactive solution
WO2016122866A1 (en) 2015-01-30 2016-08-04 Studsvik, Inc. Apparatus and methods for treatment of radioactive organic waste
CN107112063A (en) * 2015-01-30 2017-08-29 斯都斯维克公司 Apparatus and method for handling radioactivity debirs
EP3251123A4 (en) * 2015-01-30 2018-09-12 Studsvik, Inc. Apparatus and methods for treatment of radioactive organic waste
US10593437B2 (en) 2015-01-30 2020-03-17 Studsvik, Inc. Methods for treatment of radioactive organic waste
CN107112063B (en) * 2015-01-30 2020-10-30 斯都斯维克公司 Apparatus and method for treating radioactive organic waste
JP2015178449A (en) * 2015-03-09 2015-10-08 株式会社Ls Nova removal of contaminated radioactive material

Also Published As

Publication number Publication date
JP3958712B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
US8663479B2 (en) Method for removing cationic contaminants from water using natural zeolite underloaded with transition metal ions to limit leakage of intrinsic arsenic therefrom
Zhang et al. Enhanced removal of iodide ions by nano Cu2O/Cu modified activated carbon from simulated wastewater with improved countercurrent two-stage adsorption
ES2369066T3 (en) DECONTAMINATION PROCEDURE OF A RADIOACTIVE EFFLUENT LIQUID WITH ONE OR VARIOUS RADIOACTIVE CHEMICAL ELEMENTS BY SOLID-LIQUID EXTRACTION THAT IMPLEMENTS A RECYCLING LOOP.
Ho et al. Granular activated carbon adsorption of 2-methylisoborneol (MIB): pilot-and laboratory-scale evaluations
JP4524444B2 (en) Radioactive material-containing waste liquid treatment method and equipment
JP3958712B2 (en) Waste liquid treatment method and apparatus including radioactive organic waste liquid
WO2012039037A1 (en) Method and device for separating technetium from technetium-containing molybdenum and purifying same, and method and device for recovering molybdenum
Pozo et al. Radioactive decontamination of metal surfaces using peelable films made from chitosan gels and chitosan/magnetite nanoparticle composites
JP6240382B2 (en) Radioactive cesium adsorbent and method for recovering radioactive cesium using the same
Seliman et al. Mobility of radionuclides in soil/groundwater system: Comparing the influence of EDTA and four of its degradation products
JP2004045371A (en) Processing method and device for liquid including radionuclide
JP2002267796A (en) Solid material and radioactive material-containing waste liquid disposal method using it
JPH0247599A (en) Treatment method for radioactive nuclide containing waste liquid
JP6607646B2 (en) Contaminated water treatment method
JP5320323B2 (en) Waste liquid treatment method and treatment apparatus
JP6178116B2 (en) Soil decontamination apparatus and method
John et al. Application of new inorganic-organic composite absorbers with polyacrylonitrile binding matrix for separation of radionuclides from liquid radioactive wastes
JPH1190463A (en) Method for removing ammonia from water
KR20100030250A (en) Removal method of iodine mixtures from aqueous solution
Karimi-Jashni et al. Electrochemical reactivation of granular activated carbon: Effect of electrolyte mixing
JP2015025706A (en) Method and device for decontaminating soil
JP2003302493A (en) Fixing agent for radioactive iodine gas and fixing method thereof
KR101618346B1 (en) Manufacturing method of soil fixation agents with adhesion of radionuclide
JP2004325177A (en) Treatment device for water solution containing organic acid
JPS62161097A (en) Method of processing waste liquor containing radioactive nuclear specy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070510

R150 Certificate of patent or registration of utility model

Ref document number: 3958712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees