JP2005003268A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2005003268A
JP2005003268A JP2003167319A JP2003167319A JP2005003268A JP 2005003268 A JP2005003268 A JP 2005003268A JP 2003167319 A JP2003167319 A JP 2003167319A JP 2003167319 A JP2003167319 A JP 2003167319A JP 2005003268 A JP2005003268 A JP 2005003268A
Authority
JP
Japan
Prior art keywords
heat exchanger
path
refrigerant
supercooling
zone heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003167319A
Other languages
Japanese (ja)
Inventor
Eiji Futagami
英治 二神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2003167319A priority Critical patent/JP2005003268A/en
Publication of JP2005003268A publication Critical patent/JP2005003268A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins

Abstract

<P>PROBLEM TO BE SOLVED: To improve the cooling and heating performances by switching the number of passes of a supercooling zone heat exchanger between the evaporating action and the condensing action of the heat exchanger in an air conditioner provided with the supercooling area heat exchangers of each of the indoor and outdoor heat exchangers. <P>SOLUTION: In this air conditioner, the supercooling zone heat exchanger attached to an indoor heat exchanger 6a is composed of a first supercooling zone heat exchanger 20a having a first pass SP1 and a first supercooling zone heat exchanger 20b having a pass SP2, and constituted so that the passes SP1, SP2 and passes MP1, MP2 of the indoor heat exchanger 6a are connected through check valves 23, 24, 30, 32. In a case where the heat exchanger is made to act as a condenser, it is constituted so that the passes SP1, SP2 of each of the supercooling zone heat exchangers 20a, 20b allow a refrigerant to flow in series as one pass, and when it is acted as the evaporator, the refrigerant is allowed to flow in parallel in two passes by each of SP1, SP2 to reduce the pressure loss. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、スプリット型の空気調和機に関し、さらに詳しく言えば、室内熱交換器および室外熱交換器の各々に過冷却域熱交換器を備えた空気調和機に関するものである。
【0002】
【従来の技術】
空気調和機は基本的な構成として、図3に示すように、圧縮機1,四方弁2,室内熱交換器3,室外熱交換器4および減圧器(キャピラリーチューブあるいは電子膨張弁)5とを冷媒配管を介して接続してなる冷凍サイクルを備えている。
【0003】
冷房運転時には、圧縮機1から吐出された冷媒が四方弁2→室外熱交換器4→減圧器管5→室内熱交換器3→四方弁2→圧縮機1の順に流れ、室外熱交換器4が凝縮器として作用し、室内熱交換器3が蒸発器として作用する。暖房運転時における冷媒流路は冷房運転時と逆となり、室内熱交換器3が凝縮器として作用し、室外熱交換器4が蒸発器として作用する。
【0004】
熱交換効率の向上を図るために、室内熱交換器3および室外熱交換器4内に複数の冷媒配管(伝熱管)を通して複数パスとしているが、蒸発器として作用させる場合、凝縮器として作用させる場合よりも冷媒流速が増加するため、圧力損失が大きくなる。これが原因で、特に室内機および室外機の小型化を考慮して熱交換器に通す伝熱管を細くする場合、蒸発能力と凝縮能力とに大きな能力差が生じる。
【0005】
これを解消するために、特許文献1においては、逆止弁を用いて室内熱交換器のパス数を切り替えるようにしている。すなわち、室内熱交換器を凝縮器として作用させるときにはパス数を減らし、蒸発器として作用させるときにはパス数を増やして圧力損失の影響を受け難くし、蒸発能力と凝縮能力との差が生じないようにする。
【0006】
また、特許文献2では、熱交換器全体のパス数(室内熱交換器のパス数および室外熱交換器のパス数)を逆止弁および冷媒配管によって切り替え、冷房運転時には室外熱交換器(凝縮器)を1パス、室内熱交換器(蒸発器)を2パスとし、暖房運転時には室内熱交換器(凝縮器)を1パス、室外熱交換器(蒸発器)を2パスとすることを提案している。
【0007】
【特許文献1】
特開2001−99470号公報
【特許文献2】
特開平10−9703号公報
【0008】
【発明が解決しようとする課題】
ところで、空気調和機の一部の機種では、冷房や暖房効率の向上を目的として、室内熱交換器と室外熱交換器の各々に、本来の熱交換器に加えて過冷却域熱交換器を付設することが行われている。その室内機側の熱交換器の構成例を図4に示し、室外機側の熱交換器の構成例を図5に示す。
【0009】
この例において、室内機側の熱交換器6は、室内機の背面側から前面側にかけて室内送風ファン8を囲むようにラムダ型に配置された主熱交換器としての複数の室内熱交換器6aを備え、この室内熱交換器6aの一つに沿って過冷却域熱交換器6bが配置されている。また、室外機側の熱交換器7については、縦長の室外熱交換器7aの室外送風ファン9とは反対側の一端面に沿って過冷却域熱交換器7bが付設されている。
【0010】
なお、図4および図5において、破線矢印は熱交換器が凝縮器として作用する場合の冷媒流れ方向を表し、実線矢印は熱交換器が蒸発器として作用する場合の冷媒流れ方向を表している。
【0011】
そのパス構造については、図6の模式図に示すように、室内熱交換器6aは冷凍サイクルの冷媒配管に含まれる二股冷媒管10,11により分岐された伝熱管よりなる2パスを備え、これに対して過冷却域熱交換器6bには冷凍サイクルの冷媒配管が1パスとして通されている。
【0012】
同様に、室外熱交換器7aも冷凍サイクルの冷媒配管に含まれる二股冷媒管12,13により分岐された伝熱管よりなる2パスを備え、これに対して過冷却域熱交換器7bには冷凍サイクルの冷媒配管が1パスとして通されている。
【0013】
冷房運転時には冷媒が図6の破線矢印に示すように流れ、暖房運転時には冷媒がこれと逆方向に流れるが、従来では上記したように各熱交換器6a,7aでは2パスで、過冷却域熱交換器6b,7bでは1パスであるため、特に蒸発器として作用する側の過冷却域熱交換器での圧力損失が増加し効率低下をきたすことがある。また、大型の熱交換器になると、凝縮器として作用する側の過冷却域熱交換器での圧力損失も大きくなる。
【0014】
したがって、本発明の課題は、室内および室外の各熱交換器に過冷却域熱交換器を備える空気調和機において、蒸発器として作用する場合と凝縮器として作用する場合とで、過冷却域熱交換器のパスを切り替えて空調性能の低下が生じないようにすることにある。
【0015】
【課題を解決するための手段】
上記課題を解決するため、本発明は、少なくとも圧縮機,四方弁,室内熱交換器,室外熱交換器および減圧器を冷媒配管を介して所定の順序で接続してなる冷凍サイクルを含み、上記室内熱交換器および上記室外熱交換器の各々が、主熱交換器と過冷却域熱交換器とを備えている空気調和機において、上記過冷却域熱交換器に冷媒を通す複数のパスを持たせるとともに、その各パスと上記主熱交換器との間および上記各パス間にそれぞれ弁手段を設け、上記主熱交換器を蒸発器として作用させる場合には、冷媒を上記過冷却域熱交換器の各パスに並列に流し、上記主熱交換器を凝縮器として作用させる場合には、冷媒を上記過冷却域熱交換器の各パスに直列に流すことを特徴としている。
【0016】
本発明の好ましい態様においては、上記主熱交換器内に通すパスを2パスとし、上記過冷却域熱交換器をそれぞれ1パスを有する第1および第2の2つの過冷却域熱交換器に実質的に分割し、上記主熱交換器の一方のパスを二股に分岐させて、その一方の分岐部を第1逆止弁を介して上記第1過冷却域熱交換器のパスの一端に接続するとともに、その他方の分岐部を第2逆止弁を介して上記第1過冷却域熱交換器のパスの他端に接続し、上記主熱交換器の他方のパスを第3逆止弁を介して上記第2過冷却域熱交換器のパスの一端と接続し、上記主熱交換器の各パスの相互を直接的に第1バイパス管で接続し、上記第1過冷却域熱交換器のパスの他端と上記第2過冷却域熱交換器のパスの一端とを直接的に第2バイパス管で接続し、上記第1過冷却域熱交換器のパスの一端を第4逆止弁を介して上記冷凍サイクルの冷媒配管に接続し、上記第2過冷却域熱交換器のパスの他端は直接上記冷凍サイクルの冷媒配管に接続してなり、上記各逆止弁の順方向(冷媒が流れる方向)が、上記第1逆止弁は上記主熱交換器から上記第1過冷却域熱交換器の一端に向かう方向、上記第2逆止弁は上記第1過冷却域熱交換器の他端から上記主熱交換器に向かう方向、上記第3逆止弁は上記第2過冷却域熱交換器の一端から上記主熱交換器に向かう方向、上記第4逆止弁は上記冷凍サイクルの冷媒配管から上記第1過冷却域熱交換器の一端に向かう方向とされる。
【0017】
これによれば、上記各逆止弁の冷媒流れ方向および接続配管系の圧力差により、上記主熱交換器が蒸発器として作用する場合には、冷媒が各過冷却域熱交換器のパスを並列的に流れ、上記主熱交換器が凝縮器として作用する場合には、冷媒が第1および第2過冷却域熱交換器の各パスを直列的に流れる。
【0018】
上記第1ないし第4逆止弁に代えて第1ないし第4電磁弁を用いてもよく、上記主熱交換器を蒸発器として作用させる場合には、上記第1電磁弁を閉じる一方で上記第2ないし第3電磁弁を開とし、上記主熱交換器を凝縮器として作用させる場合には、上記第1電磁弁を開とする一方で上記第2ないし第3電磁弁を閉じるように上記各電磁弁が制御される。
【0019】
【発明の実施の形態】
以下、本発明の実施形態を図1および図2を参照して詳細に説明するが、本発明はこれに限定されるものではない。なお、図1は室内機側の熱交換器を示す模式図、図2は室外機側の熱交換器を示す模式図であるが、図6と同一部分には同一の参照符号を用いている。
【0020】
本発明の空気調和機は、室内機および室外機の熱交換器全体のうち過冷却域熱交換器において、凝縮器として作用する場合には冷媒の流れを1パスにし、蒸発器として作用する場合には2パスにする。
【0021】
図1に示す室内機側の熱交換器は、主熱交換器としての室内熱交換器6aと、2つに分割された第1過冷却域熱交換器20aおよび第2過冷却域熱交換器20bとを備えている。図2に示す室外機側の熱交換器も同様に、主熱交換器としての室外熱交換器7aと、2つに分割された第1過冷却域熱交換器21aおよび第2過冷却域熱交換器21bとを備えている。
【0022】
過冷却域熱交換器20a,20bおよび過冷却域熱交換器21a,21bは、それぞれ伝熱管よりなる1パスを備えている。なお、各過冷却域熱交換器は分割されているが、必ずしもそれらの熱交換フィンまでが分割されている必要はなく、2パスを備えた過冷却域熱交換器において、一方のパスを備えた部分を第1過冷却域熱交換器とし、他方のパスを備えた部分を第2過冷却域熱交換器としてもよく、このような態様も本発明に含まれる。また、この例において、室内熱交換器6aと室外熱交換器7aは上記従来例と同じく2パスを備えている。
【0023】
室内熱交換器6aの一方のパスMP1は、第1逆止弁23を有する冷媒配管22を介して第1過冷却域熱交換器20aのパスSP1の一端に接続されている。第1逆止弁23の冷媒流れ方向(順方向)は、室内熱交換器6aから第1過冷却域熱交換器20aに向かう方向である。
【0024】
室内熱交換器6aの他方のパスMP2は、第3逆止弁25を有する冷媒配管24を介して第2過冷却域熱交換器20bのパスSP2の一端に接続されている。第3逆止弁25の冷媒流れ方向は、第2過冷却域熱交換器20bから室内熱交換器6aに向かう方向である。
【0025】
冷媒配管22と冷媒配管24との間で、逆止弁23,25よりも室内熱交換器6a側にはバイパスの冷媒配管26が設けられ、室内熱交換器6aの2つの各パスMP1,MP2を合流させる。すなわち、図1の矢印A,Bの箇所に示すように、冷媒配管26は室内熱交換器6aの各冷媒口付近に接続されている。
【0026】
第1過冷却域熱交換器20aのパスSP1の他端は、バイパス的な冷媒配管27を介して第2過冷却域熱交換器20bのパスSP2の一端に接続されている。すなわち、凝縮器として作用するときに冷媒を1パスで流すために、第1過冷却域熱交換器20aのパスSP1の他端と、第2過冷却域熱交換器20bのパスSP2の一端とが同図の矢印C,Dの箇所で冷媒配管24にて接続されている。第2過冷却域熱交換器20bのパスSP2の他端は、冷媒配管28を介して冷凍サイクルの冷媒配管に合流している。
【0027】
また、第1過冷却域熱交換器20aのパスSP1の一端は、第4逆止弁30を有する冷媒配管29を介して冷凍サイクルの冷媒配管に合流している(矢印E,F箇所参照)。第4逆止弁30の冷媒流れ方向は、冷凍サイクルの冷媒配管側から第1過冷却域熱交換器20aに向かう方向である。
【0028】
また、第1過冷却域熱交換器20aのパスSP1の他端は、第2逆止弁32を有する冷媒配管31を介して室内熱交換器6a側の冷媒配管22に接続されている(図の矢印C,G参照)。第2逆止弁32の冷媒流れ方向は、第1過冷却域熱交換器20aのパスSP1の他端から室内熱交換器6aに向かう方向である。
【0029】
以上、図1により室内機側の熱交換器の構成について説明したが、図2に示す室外機側の熱交換器も図1と同じ構成である。すなわち、室内機側の熱交換器が凝縮器として作用する場合、室外機側の熱交換器は蒸発器として作用し、室外機側の熱交換器が凝縮器として作用する場合、室内機側の熱交換器が蒸発器として作用するからである。したがって、図2において図1に相当する部分には同一の参照符号を付して重複説明を省略する。
【0030】
次に、本発明による空気調和機の動作について説明すると、例えば冷房運転時であれば、図2の室外機側の熱交換器が凝縮器として作用するとともに、図1の室内機側の熱交換器が蒸発器として作用し、冷媒が図1および図2の破線矢印に示すように流れる。
【0031】
すなわち、圧縮機1から吐出された冷媒は四方弁2を介して室外熱交換器7aに流入するが、二股冷媒管12によって2つに分岐されて室外熱交換器7a内の2つのパスMP1,MP2を流れる。
【0032】
そして、室外熱交換器7aの一方のパスMP1を通った冷媒は、逆止弁23を介して第1過冷却域熱交換器21aのパスSP1に流入する一方、室外熱交換器7aの他方のパスMP2を通った冷媒は、第3逆止弁25によって止められるためバイパスの冷媒配管26を介して一方のパスMP1を通った冷媒と合流して第1過冷却域熱交換器21aのパスSP1に流入する。
【0033】
すなわち、室外熱交換器7aを2パスで通った冷媒のすべてが第1過冷却域熱交換器21aのパスSP1に流入する。そして、パスSP1の他端から冷媒配管27を介して第2過冷却域熱交換器21bの一端に流入し、この第2過冷却域熱交換器21bのパスSP2を通って冷媒配管28を介して冷凍サイクルの冷媒配管に至る。すなわち、冷媒は第1過冷却域熱交換器21aのパスSP1と第2過冷却域熱交換器21bのパスSP2とを直列的に流れる。
【0034】
このとき、図2の矢印C,G箇所の圧力関係はG>Cであることから、第1過冷却域熱交換器21aのパスSP1を通った冷媒は第2逆止弁32側に流れない。また、同図の矢印B,D箇所の圧力関係がB>Dであることから、第1過冷却域熱交換器21aを通った冷媒は第3逆止弁25側に流れない。
【0035】
上記したように室外側の熱交換器を通った冷媒は、減圧器5(図6参照)を介して蒸発器として作用する図1の室内機側の熱交換器に送られ、室内機側の冷媒配管28,29で二股に分流される。
【0036】
そのうち、冷媒配管28を通る冷媒は、第2過冷却域熱交換器20bのパスSP2に流れ、冷媒配管24の第3逆止弁25を介して室内熱交換器6aの他方のパスMP2に流入する。
【0037】
また、冷媒配管29を通る冷媒は、冷媒配管29の第4逆止弁30を介して第1過冷却域熱交換器20a側に流れ、この第1の過冷却域熱交換器20aのパスSP1を通り、冷媒配管31の第2逆止弁32を介して室内熱交換器6aの一方のパスMP1に流入する。
【0038】
このとき、図1の矢印B,C箇所の圧力関係はC>Bであることから、第2過冷却域熱交換器20bのパスSP2を通った冷媒は、冷媒配管27を介して同図矢印C側に流れない。また、同図の矢印A,F箇所の圧力関係はF>Aであることから、第2逆止弁32を通った冷媒は第1冷却域熱交換器20aに戻らず、また同図の矢印C,G箇所の圧力関係はC>Gであることから、第1過冷却域熱交換器20aのパスSP1を通った冷媒は冷媒配管27側に流れない。
【0039】
このようにして、室内熱交換器6aの2パスを通った冷媒は二股冷媒管10を介して合流し、冷凍サイクルの冷媒配管および四方弁2を介して圧縮機1に戻される(図3参照)。
【0040】
以上は、室内機側の熱交換器が蒸発器として作用し、室外機側の熱交換器が凝縮器として作用する場合についての説明であるが、暖房運転時にはその逆として作用するだけ、その冷媒流れについては同様であることから、その説明を省略する。
【0041】
このように、凝縮器として作用する側の熱交換器では、過冷却域熱交換器が1パスに切り替わるため十分に過冷却機能が発揮され、また、蒸発器として作用する側の熱交換器では、過冷却域熱交換器が2パスに切り替わるため圧力損失が低減され、冷房,暖房性能が向上する。
【0042】
なお、上記の例では、逆止弁23,25,30,32を用いているが、その逆止弁に代えて電磁弁を用いるようにしてもよい。その場合、熱交換器が凝縮器として作用する場合には、逆止弁23に対応する電磁弁のみ開き、残りの逆止弁24,30,32に対応する電磁弁を閉じる制御を行うようにすればよい。
【0043】
また、熱交換器が蒸発器として作用する場合には、逆止弁24,30,32に対応する電磁弁を開き、逆止弁23に対応する電磁弁を閉じる制御を行うようにすればよい。なお、各電磁弁の開閉制御は、当該空気調和機の制御手段によって行わせることができる。
【0044】
【発明の効果】
以上説明したように、本発明によれば、室内および室外の各熱交換器に過冷却域熱交換器を備える空気調和機において、蒸発器として作用する場合と凝縮器として作用する場合とで過冷却域熱交換器のパス数を切り替え可能とし、熱交換器が凝縮器として作用する場合には過冷却域熱交換器のパス数を減らして十分に過冷却機能を発揮させ、また、熱交換器が蒸発器として作用する場合には過冷却域熱交換器のパス数を多くして圧力損失を低減するようにしたことにより、冷房,暖房性能を向上させることができる。
【図面の簡単な説明】
【図1】本発明の空気調和機が備える室内機側熱交換器の構成を示す概略的構成図。
【図2】本発明の空気調和機が備える室外機側熱交換器の構成を示す概略的構成図。
【図3】空気調和機の冷凍サイクルを示す模式図。
【図4】過冷却域熱交換器を備えた従来の室内機の構成を示す概略的な断面図。
【図5】過冷却域熱交換器を備えた従来の室外機の構成を示す概略的な断面図。
【図6】上記過冷却域熱交換器を備えた室内機と室外機を含む冷凍サイクルの一部分を示す模式図。
【符号の説明】
6a 室内熱交換器
7a 室外熱交換器
10,12 二股冷媒配管
20a,21a 第1過冷却域熱交換器
20b,21b 第2過冷却域熱交換器
22,24,26,27,31 冷媒配管
23,25,30,32 逆止弁
MP1,MP2,SP1,SP2 パス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a split type air conditioner, and more particularly to an air conditioner including an indoor heat exchanger and an outdoor heat exchanger each including a supercooling zone heat exchanger.
[0002]
[Prior art]
As shown in FIG. 3, the air conditioner has a basic configuration including a compressor 1, a four-way valve 2, an indoor heat exchanger 3, an outdoor heat exchanger 4, and a decompressor (capillary tube or electronic expansion valve) 5. It has a refrigeration cycle that is connected via a refrigerant pipe.
[0003]
During the cooling operation, the refrigerant discharged from the compressor 1 flows in the order of the four-way valve 2 → the outdoor heat exchanger 4 → the decompressor pipe 5 → the indoor heat exchanger 3 → the four-way valve 2 → the compressor 1, and the outdoor heat exchanger 4 Acts as a condenser, and the indoor heat exchanger 3 acts as an evaporator. The refrigerant flow path during the heating operation is opposite to that during the cooling operation, and the indoor heat exchanger 3 acts as a condenser and the outdoor heat exchanger 4 acts as an evaporator.
[0004]
In order to improve the heat exchange efficiency, a plurality of passes are made through a plurality of refrigerant pipes (heat transfer pipes) in the indoor heat exchanger 3 and the outdoor heat exchanger 4, but when acting as an evaporator, it acts as a condenser. Since the refrigerant flow rate increases more than the case, the pressure loss increases. For this reason, particularly when the heat transfer tubes passing through the heat exchanger are made thin in consideration of downsizing of the indoor unit and the outdoor unit, a large difference in capability occurs between the evaporation capability and the condensation capability.
[0005]
In order to eliminate this, in Patent Document 1, the number of passes of the indoor heat exchanger is switched using a check valve. That is, when the indoor heat exchanger is operated as a condenser, the number of passes is reduced, and when the indoor heat exchanger is operated as an evaporator, the number of passes is increased to make it less susceptible to pressure loss, so that there is no difference between the evaporation capacity and the condensation capacity. To.
[0006]
In Patent Document 2, the number of passes of the entire heat exchanger (the number of passes of the indoor heat exchanger and the number of passes of the outdoor heat exchanger) is switched by a check valve and refrigerant piping, and the outdoor heat exchanger (condensation) is performed during cooling operation. Proposed to use 1 pass for the heat exchanger, 2 passes for the indoor heat exchanger (evaporator), 1 pass for the indoor heat exchanger (condenser) and 2 passes for the outdoor heat exchanger (evaporator) during heating operation is doing.
[0007]
[Patent Document 1]
JP 2001-99470 A [Patent Document 2]
Japanese Patent Laid-Open No. 10-9703
[Problems to be solved by the invention]
By the way, in some air conditioner models, in order to improve cooling and heating efficiency, each of the indoor heat exchanger and the outdoor heat exchanger is provided with a supercooling zone heat exchanger in addition to the original heat exchanger. Attached is done. A configuration example of the heat exchanger on the indoor unit side is shown in FIG. 4, and a configuration example of the heat exchanger on the outdoor unit side is shown in FIG.
[0009]
In this example, the heat exchanger 6 on the indoor unit side includes a plurality of indoor heat exchangers 6a as main heat exchangers arranged in a lambda shape so as to surround the indoor blower fan 8 from the back side to the front side of the indoor unit. A supercooling zone heat exchanger 6b is disposed along one of the indoor heat exchangers 6a. Moreover, about the outdoor side heat exchanger 7, the supercooling zone heat exchanger 7b is attached along the end surface on the opposite side to the outdoor ventilation fan 9 of the vertically long outdoor heat exchanger 7a.
[0010]
4 and 5, the broken line arrow indicates the refrigerant flow direction when the heat exchanger acts as a condenser, and the solid line arrow indicates the refrigerant flow direction when the heat exchanger acts as an evaporator. .
[0011]
Regarding the path structure, as shown in the schematic diagram of FIG. 6, the indoor heat exchanger 6a has two paths consisting of heat transfer tubes branched by bifurcated refrigerant tubes 10 and 11 included in the refrigerant piping of the refrigeration cycle. On the other hand, the refrigerant piping of the refrigeration cycle is passed through the supercooling zone heat exchanger 6b as one pass.
[0012]
Similarly, the outdoor heat exchanger 7a is also provided with two paths consisting of heat transfer tubes branched by bifurcated refrigerant tubes 12 and 13 included in the refrigerant piping of the refrigeration cycle, whereas the supercooling zone heat exchanger 7b is refrigerated. The refrigerant piping of the cycle is passed as one pass.
[0013]
During the cooling operation, the refrigerant flows as indicated by the broken-line arrows in FIG. 6, and during the heating operation, the refrigerant flows in the opposite direction. Conventionally, as described above, each heat exchanger 6a, 7a has two passes, and the supercooling region. Since the heat exchangers 6b and 7b have one pass, the pressure loss particularly in the supercooling zone heat exchanger on the side acting as an evaporator may increase and the efficiency may decrease. Moreover, when it becomes a large-sized heat exchanger, the pressure loss in the supercooling zone heat exchanger of the side which acts as a condenser will also become large.
[0014]
Therefore, the problem of the present invention is that in an air conditioner including a supercooling zone heat exchanger in each of the indoor and outdoor heat exchangers, the supercooling zone heat is obtained when acting as an evaporator and when acting as a condenser. The purpose is to prevent the deterioration of the air conditioning performance by switching the path of the exchanger.
[0015]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention includes a refrigeration cycle in which at least a compressor, a four-way valve, an indoor heat exchanger, an outdoor heat exchanger, and a decompressor are connected in a predetermined order via a refrigerant pipe, In the air conditioner in which each of the indoor heat exchanger and the outdoor heat exchanger includes a main heat exchanger and a supercooling zone heat exchanger, a plurality of paths for passing the refrigerant through the supercooling zone heat exchanger are provided. When providing the valve means between each of the paths and the main heat exchanger and between the paths, the main heat exchanger acts as an evaporator. When the main heat exchanger is caused to act as a condenser in parallel with each path of the exchanger, the refrigerant is flowed in series with each path of the supercooling zone heat exchanger.
[0016]
In a preferred embodiment of the present invention, two passes are made to pass through the main heat exchanger, and the supercooling zone heat exchanger is divided into two first and second supercooling zone heat exchangers each having one pass. Substantially dividing, branching one path of the main heat exchanger into two branches, one branch of the path to one end of the path of the first supercooling zone heat exchanger via the first check valve The other branch is connected to the other end of the path of the first supercooling zone heat exchanger via the second check valve, and the other path of the main heat exchanger is connected to the third check. A valve is connected to one end of the path of the second supercooling zone heat exchanger, the paths of the main heat exchanger are directly connected to each other by a first bypass pipe, and the first subcooling zone heat is The other end of the path of the exchanger and one end of the path of the second subcooling zone heat exchanger are directly connected by a second bypass pipe, and the first excess One end of the path of the rejection zone heat exchanger is connected to the refrigerant pipe of the refrigeration cycle via a fourth check valve, and the other end of the path of the second supercooling zone heat exchanger is directly connected to the refrigerant pipe of the refrigeration cycle. The first check valve is directed from the main heat exchanger toward one end of the first subcooling zone heat exchanger, The second check valve is in a direction from the other end of the first subcooling zone heat exchanger to the main heat exchanger, and the third check valve is from one end of the second subcooling zone heat exchanger to the main heat exchanger. The direction toward the heat exchanger, the fourth check valve is a direction from the refrigerant pipe of the refrigeration cycle toward one end of the first subcooling zone heat exchanger.
[0017]
According to this, when the main heat exchanger acts as an evaporator due to the refrigerant flow direction of each check valve and the pressure difference of the connecting piping system, the refrigerant passes through the path of each subcooling zone heat exchanger. When flowing in parallel and the main heat exchanger acts as a condenser, the refrigerant flows in series through each path of the first and second subcooling zone heat exchangers.
[0018]
Instead of the first to fourth check valves, first to fourth solenoid valves may be used. When the main heat exchanger is operated as an evaporator, the first solenoid valve is closed while the first solenoid valve is closed. When the second to third solenoid valves are opened and the main heat exchanger acts as a condenser, the first solenoid valve is opened while the second to third solenoid valves are closed. Each solenoid valve is controlled.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, although an embodiment of the present invention is described in detail with reference to Drawing 1 and Drawing 2, the present invention is not limited to this. 1 is a schematic diagram showing a heat exchanger on the indoor unit side, and FIG. 2 is a schematic diagram showing a heat exchanger on the outdoor unit side. The same reference numerals are used for the same parts as in FIG. .
[0020]
When the air conditioner of the present invention acts as a condenser in the supercooling zone heat exchanger among the heat exchangers of the indoor unit and the outdoor unit, the refrigerant flow is made one pass and acts as an evaporator. There are two passes.
[0021]
The indoor-unit-side heat exchanger shown in FIG. 1 includes an indoor heat exchanger 6a as a main heat exchanger, a first subcooling zone heat exchanger 20a and a second subcooling zone heat exchanger divided into two. 20b. Similarly, the outdoor-unit-side heat exchanger shown in FIG. 2 has an outdoor heat exchanger 7a as a main heat exchanger, a first subcooling zone heat exchanger 21a divided into two, and a second subcooling zone heat. And an exchanger 21b.
[0022]
The supercooling zone heat exchangers 20a and 20b and the supercooling zone heat exchangers 21a and 21b each have a single path made of heat transfer tubes. In addition, although each supercooling zone heat exchanger is divided | segmented, it is not necessarily required that those heat exchange fins are divided | segmented. The part with the other path may be the second subcooling zone heat exchanger, and such a mode is also included in the present invention. In this example, the indoor heat exchanger 6a and the outdoor heat exchanger 7a have two paths as in the conventional example.
[0023]
One path MP1 of the indoor heat exchanger 6a is connected to one end of a path SP1 of the first subcooling zone heat exchanger 20a via a refrigerant pipe 22 having a first check valve 23. The refrigerant flow direction (forward direction) of the first check valve 23 is a direction from the indoor heat exchanger 6a toward the first subcooling zone heat exchanger 20a.
[0024]
The other path MP2 of the indoor heat exchanger 6a is connected to one end of a path SP2 of the second subcooling zone heat exchanger 20b via a refrigerant pipe 24 having a third check valve 25. The refrigerant flow direction of the third check valve 25 is a direction from the second subcooling zone heat exchanger 20b toward the indoor heat exchanger 6a.
[0025]
Between the refrigerant pipe 22 and the refrigerant pipe 24, a bypass refrigerant pipe 26 is provided on the indoor heat exchanger 6a side of the check valves 23 and 25, and two paths MP1 and MP2 of the indoor heat exchanger 6a are provided. To join. That is, as shown by the positions of arrows A and B in FIG. 1, the refrigerant pipe 26 is connected to the vicinity of each refrigerant port of the indoor heat exchanger 6a.
[0026]
The other end of the path SP1 of the first subcooling region heat exchanger 20a is connected to one end of the path SP2 of the second subcooling region heat exchanger 20b via a bypass refrigerant pipe 27. That is, in order to flow the refrigerant in one pass when acting as a condenser, the other end of the path SP1 of the first subcooling zone heat exchanger 20a and one end of the path SP2 of the second subcooling zone heat exchanger 20b Are connected by a refrigerant pipe 24 at the positions indicated by arrows C and D in FIG. The other end of the path SP2 of the second subcooling zone heat exchanger 20b joins the refrigerant pipe of the refrigeration cycle via the refrigerant pipe 28.
[0027]
In addition, one end of the path SP1 of the first supercooling zone heat exchanger 20a joins the refrigerant pipe of the refrigeration cycle via the refrigerant pipe 29 having the fourth check valve 30 (see the arrows E and F). . The refrigerant flow direction of the fourth check valve 30 is a direction from the refrigerant piping side of the refrigeration cycle toward the first supercooling zone heat exchanger 20a.
[0028]
The other end of the path SP1 of the first subcooling zone heat exchanger 20a is connected to the refrigerant pipe 22 on the indoor heat exchanger 6a side through the refrigerant pipe 31 having the second check valve 32 (see FIG. (See arrows C and G). The refrigerant flow direction of the second check valve 32 is a direction from the other end of the path SP1 of the first subcooling zone heat exchanger 20a toward the indoor heat exchanger 6a.
[0029]
Although the configuration of the heat exchanger on the indoor unit side has been described with reference to FIG. 1, the heat exchanger on the outdoor unit side shown in FIG. 2 has the same configuration as that in FIG. That is, when the indoor unit-side heat exchanger acts as a condenser, the outdoor unit-side heat exchanger acts as an evaporator, and when the outdoor unit-side heat exchanger acts as a condenser, This is because the heat exchanger acts as an evaporator. Therefore, in FIG. 2, the same reference numerals are given to the portions corresponding to FIG.
[0030]
Next, the operation of the air conditioner according to the present invention will be described. For example, during the cooling operation, the heat exchanger on the outdoor unit side in FIG. 2 acts as a condenser and the heat exchange on the indoor unit side in FIG. The vessel acts as an evaporator, and the refrigerant flows as shown by the dashed arrows in FIGS.
[0031]
That is, the refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 7a through the four-way valve 2, but is branched into two by the bifurcated refrigerant pipe 12, and the two paths MP1, MP1 in the outdoor heat exchanger 7a are obtained. Flows through MP2.
[0032]
The refrigerant that has passed through one path MP1 of the outdoor heat exchanger 7a flows into the path SP1 of the first subcooling zone heat exchanger 21a via the check valve 23, while the other of the outdoor heat exchanger 7a. Since the refrigerant that has passed through the path MP2 is stopped by the third check valve 25, it joins with the refrigerant that has passed through one path MP1 via the bypass refrigerant pipe 26, and the path SP1 of the first subcooling zone heat exchanger 21a. Flow into.
[0033]
That is, all of the refrigerant that has passed through the outdoor heat exchanger 7a in two passes flows into the path SP1 of the first subcooling zone heat exchanger 21a. And it flows into the end of the 2nd subcooling zone heat exchanger 21b from the other end of path SP1 via refrigerant piping 27, passes through path SP2 of this 2nd subcooling zone heat exchanger 21b, and passes through refrigerant piping 28. To the refrigerant piping of the refrigeration cycle. That is, the refrigerant flows in series through the path SP1 of the first supercooling zone heat exchanger 21a and the path SP2 of the second supercooling zone heat exchanger 21b.
[0034]
At this time, since the pressure relationship between the arrows C and G in FIG. 2 is G> C, the refrigerant that has passed through the path SP1 of the first subcooling zone heat exchanger 21a does not flow to the second check valve 32 side. . Further, since the pressure relationship between the arrows B and D in the figure is B> D, the refrigerant that has passed through the first supercooling zone heat exchanger 21a does not flow to the third check valve 25 side.
[0035]
As described above, the refrigerant that has passed through the outdoor heat exchanger is sent to the indoor unit side heat exchanger of FIG. 1 acting as an evaporator via the decompressor 5 (see FIG. 6). The refrigerant pipes 28 and 29 are divided into two branches.
[0036]
Among them, the refrigerant passing through the refrigerant pipe 28 flows into the path SP2 of the second subcooling zone heat exchanger 20b and flows into the other path MP2 of the indoor heat exchanger 6a through the third check valve 25 of the refrigerant pipe 24. To do.
[0037]
Further, the refrigerant passing through the refrigerant pipe 29 flows to the first subcooling zone heat exchanger 20a side through the fourth check valve 30 of the refrigerant pipe 29, and the path SP1 of the first subcooling zone heat exchanger 20a. And flows into one path MP1 of the indoor heat exchanger 6a through the second check valve 32 of the refrigerant pipe 31.
[0038]
At this time, since the pressure relationship between the arrows B and C in FIG. 1 is C> B, the refrigerant that has passed through the path SP2 of the second subcooling zone heat exchanger 20b passes through the refrigerant pipe 27 as shown by the arrow in FIG. Does not flow to C side. Further, since the pressure relationship between the arrows A and F in the figure is F> A, the refrigerant that has passed through the second check valve 32 does not return to the first cooling zone heat exchanger 20a, and the arrow in the figure. Since the pressure relationship between the C and G locations is C> G, the refrigerant that has passed through the path SP1 of the first supercooling zone heat exchanger 20a does not flow to the refrigerant pipe 27 side.
[0039]
In this way, the refrigerant that has passed through the two paths of the indoor heat exchanger 6a merges through the bifurcated refrigerant pipe 10, and is returned to the compressor 1 through the refrigerant piping of the refrigeration cycle and the four-way valve 2 (see FIG. 3). ).
[0040]
The above is a description of the case where the indoor-unit-side heat exchanger acts as an evaporator and the outdoor-unit-side heat exchanger acts as a condenser, but the refrigerant only acts as the reverse during heating operation. Since the flow is the same, the description thereof is omitted.
[0041]
In this way, in the heat exchanger on the side acting as a condenser, the supercooling zone heat exchanger is switched to one pass, so that the subcooling function is sufficiently exerted, and in the heat exchanger on the side acting as the evaporator, Since the supercooling zone heat exchanger is switched to two passes, the pressure loss is reduced, and the cooling and heating performance is improved.
[0042]
In the above example, the check valves 23, 25, 30, 32 are used, but electromagnetic valves may be used instead of the check valves. In that case, when the heat exchanger acts as a condenser, only the solenoid valve corresponding to the check valve 23 is opened, and the solenoid valves corresponding to the remaining check valves 24, 30 and 32 are closed. do it.
[0043]
In addition, when the heat exchanger acts as an evaporator, the solenoid valve corresponding to the check valves 24, 30, and 32 may be opened and the solenoid valve corresponding to the check valve 23 may be closed. . In addition, the opening / closing control of each solenoid valve can be performed by the control means of the air conditioner.
[0044]
【The invention's effect】
As described above, according to the present invention, in an air conditioner that includes a supercooling zone heat exchanger in each of the indoor and outdoor heat exchangers, there is an excess in both cases of acting as an evaporator and acting as a condenser. The number of passes of the cooling area heat exchanger can be switched, and when the heat exchanger acts as a condenser, the number of passes of the supercooling area heat exchanger is reduced to fully demonstrate the supercooling function, and heat exchange In the case where the evaporator acts as an evaporator, the cooling and heating performance can be improved by increasing the number of passes of the supercooling zone heat exchanger to reduce the pressure loss.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a configuration of an indoor unit side heat exchanger provided in an air conditioner of the present invention.
FIG. 2 is a schematic configuration diagram showing a configuration of an outdoor unit side heat exchanger provided in the air conditioner of the present invention.
FIG. 3 is a schematic diagram showing a refrigeration cycle of an air conditioner.
FIG. 4 is a schematic cross-sectional view showing a configuration of a conventional indoor unit including a supercooling zone heat exchanger.
FIG. 5 is a schematic cross-sectional view showing the configuration of a conventional outdoor unit equipped with a supercooling zone heat exchanger.
FIG. 6 is a schematic view showing a part of a refrigeration cycle including an indoor unit and an outdoor unit provided with the supercooling zone heat exchanger.
[Explanation of symbols]
6a Indoor heat exchanger 7a Outdoor heat exchangers 10, 12 Bifurcated refrigerant pipes 20a, 21a First supercooling zone heat exchangers 20b, 21b Second supercooling zone heat exchangers 22, 24, 26, 27, 31 Refrigerant pipe 23 , 25, 30, 32 Check valve MP1, MP2, SP1, SP2 pass

Claims (3)

少なくとも圧縮機,四方弁,室内熱交換器,室外熱交換器および減圧器を冷媒配管を介して所定の順序で接続してなる冷凍サイクルを含み、上記室内熱交換器および上記室外熱交換器の各々が、主熱交換器と過冷却域熱交換器とを備えている空気調和機において、
上記過冷却域熱交換器に冷媒を通す複数のパスを持たせるとともに、その各パスと上記主熱交換器との間および上記各パス間にそれぞれ弁手段を設け、上記主熱交換器を蒸発器として作用させる場合には、冷媒を上記過冷却域熱交換器の各パスに並列に流し、上記主熱交換器を凝縮器として作用させる場合には、冷媒を上記過冷却域熱交換器の各パスに直列に流すことを特徴とする空気調和機。
Including a refrigeration cycle in which at least a compressor, a four-way valve, an indoor heat exchanger, an outdoor heat exchanger, and a decompressor are connected in a predetermined order via a refrigerant pipe, and the indoor heat exchanger and the outdoor heat exchanger In each air conditioner comprising a main heat exchanger and a supercooling zone heat exchanger,
The supercooling zone heat exchanger is provided with a plurality of paths through which the refrigerant passes, and valve means are provided between each path and the main heat exchanger and between each path to evaporate the main heat exchanger. When operating as a condenser, the refrigerant is allowed to flow in parallel to each path of the supercooling zone heat exchanger, and when operating the main heat exchanger as a condenser, the refrigerant is supplied to the supercooling zone heat exchanger. An air conditioner that flows in series in each path.
上記主熱交換器内に通すパスを2パスとし、上記過冷却域熱交換器をそれぞれ1パスを有する第1および第2の2つの過冷却域熱交換器に実質的に分割し、上記主熱交換器の一方のパスを二股に分岐させて、その一方の分岐部を第1逆止弁を介して上記第1過冷却域熱交換器のパスの一端に接続するとともに、その他方の分岐部を第2逆止弁を介して上記第1過冷却域熱交換器のパスの他端に接続し、上記主熱交換器の他方のパスを第3逆止弁を介して上記第2過冷却域熱交換器のパスの一端と接続し、上記主熱交換器の各パスの相互を直接的に第1バイパス管で接続し、上記第1過冷却域熱交換器のパスの他端と上記第2過冷却域熱交換器のパスの一端とを直接的に第2バイパス管で接続し、上記第1過冷却域熱交換器のパスの一端を第4逆止弁を介して上記冷凍サイクルの冷媒配管に接続し、上記第2過冷却域熱交換器のパスの他端は直接上記冷凍サイクルの冷媒配管に接続してなり、上記各逆止弁の順方向が、上記第1逆止弁は上記主熱交換器から上記第1過冷却域熱交換器の一端に向かう方向、上記第2逆止弁は上記第1過冷却域熱交換器の他端から上記主熱交換器に向かう方向、上記第3逆止弁は上記第2過冷却域熱交換器の一端から上記主熱交換器に向かう方向、上記第4逆止弁は上記冷凍サイクルの冷媒配管から上記第1過冷却域熱交換器の一端に向かう方向である請求項1に記載の空気調和機。The main heat exchanger has two passes, and the subcooling zone heat exchanger is substantially divided into first and second subcooling zone heat exchangers each having one pass, One path of the heat exchanger is bifurcated and one branch is connected to one end of the path of the first supercooling zone heat exchanger via the first check valve, and the other branch Is connected to the other end of the path of the first supercooling zone heat exchanger via a second check valve, and the other path of the main heat exchanger is connected to the second excess valve via a third check valve. Connected to one end of the path of the cooling zone heat exchanger, connected to each other of the paths of the main heat exchanger directly by the first bypass pipe, and connected to the other end of the path of the first subcooling zone heat exchanger One end of the path of the second subcooling zone heat exchanger is directly connected to the second bypass pipe, and one end of the path of the first supercooling zone heat exchanger is connected to the fourth end. The other end of the path of the second supercooling zone heat exchanger is directly connected to the refrigerant pipe of the refrigeration cycle, and is connected to the refrigerant pipe of the refrigeration cycle via a stop valve. The direction of the first check valve is from the main heat exchanger toward one end of the first subcooling zone heat exchanger, and the second check valve is the other end of the first subcooling zone heat exchanger. To the main heat exchanger, the third check valve is directed from one end of the second subcooling zone heat exchanger to the main heat exchanger, and the fourth check valve is a refrigerant of the refrigeration cycle. The air conditioner according to claim 1, wherein the air conditioner is in a direction from a pipe toward one end of the first subcooling zone heat exchanger. 上記第1ないし第4逆止弁に代えて第1ないし第4電磁弁を用い、上記主熱交換器を蒸発器として作用させる場合には、上記第1電磁弁を閉じる一方で上記第2ないし第3電磁弁を開とし、上記主熱交換器を凝縮器として作用させる場合には、上記第1電磁弁を開とする一方で上記第2ないし第3電磁弁を閉じる請求項2に記載の空気調和機。When the first to fourth solenoid valves are used in place of the first to fourth check valves and the main heat exchanger acts as an evaporator, the first to the second solenoid valves are closed while the first to fourth solenoid valves are closed. The third solenoid valve according to claim 2, wherein when the third solenoid valve is opened and the main heat exchanger acts as a condenser, the first solenoid valve is opened and the second to third solenoid valves are closed. Air conditioner.
JP2003167319A 2003-06-12 2003-06-12 Air conditioner Withdrawn JP2005003268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003167319A JP2005003268A (en) 2003-06-12 2003-06-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003167319A JP2005003268A (en) 2003-06-12 2003-06-12 Air conditioner

Publications (1)

Publication Number Publication Date
JP2005003268A true JP2005003268A (en) 2005-01-06

Family

ID=34093155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003167319A Withdrawn JP2005003268A (en) 2003-06-12 2003-06-12 Air conditioner

Country Status (1)

Country Link
JP (1) JP2005003268A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023040296A1 (en) * 2021-09-19 2023-03-23 青岛海尔空调器有限总公司 Heat exchanger and refrigeration cycle system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023040296A1 (en) * 2021-09-19 2023-03-23 青岛海尔空调器有限总公司 Heat exchanger and refrigeration cycle system

Similar Documents

Publication Publication Date Title
JP6644154B2 (en) Air conditioner
JP5625691B2 (en) Refrigeration equipment
JP6647406B2 (en) Refrigeration cycle device
JP2006170608A (en) Heat exchanger in air conditioner
JP2003254555A (en) Air conditioner
JP4303032B2 (en) Air conditioner
JP2011133133A (en) Refrigerating device
JP2006317063A (en) Air conditioner
JP2008070053A (en) Air conditioner
JP2006090683A (en) Multiple room type air conditioner
JP3851403B2 (en) Indoor unit for air conditioner
JP2017026289A (en) Air conditioner
JP2001099510A (en) Air conditioner
JP2007212108A (en) Air conditioner
JP2005003268A (en) Air conditioner
JP2002340436A (en) Multi-chamber air conditioner
JP2004361019A (en) Air conditioner
JP2008309362A (en) Air conditioner
JP2017048953A (en) Air conditioner
JP2010190541A (en) Air conditioning device
KR100544873B1 (en) Multi-air conditioner for both cooling and heating which air cooling efficiency is improved
JP2011133132A (en) Refrigerating device
JP2002364873A (en) Air conditioner
JP7401800B2 (en) Refrigeration cycle equipment
WO2022013976A1 (en) Outdoor unit for refrigeration device and refrigeration device comprising same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905