JP2005003231A - Method and device for manufacturing slurry ice - Google Patents

Method and device for manufacturing slurry ice Download PDF

Info

Publication number
JP2005003231A
JP2005003231A JP2003164555A JP2003164555A JP2005003231A JP 2005003231 A JP2005003231 A JP 2005003231A JP 2003164555 A JP2003164555 A JP 2003164555A JP 2003164555 A JP2003164555 A JP 2003164555A JP 2005003231 A JP2005003231 A JP 2005003231A
Authority
JP
Japan
Prior art keywords
pipe
ice
brine
supply
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003164555A
Other languages
Japanese (ja)
Other versions
JP4208650B2 (en
Inventor
Kazunari Chigusa
一成 千種
Shigetoshi Iwakiri
重俊 岩切
Mitsuyo Uno
光世 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Kogyo Co Ltd
Original Assignee
Nissin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Kogyo Co Ltd filed Critical Nissin Kogyo Co Ltd
Priority to JP2003164555A priority Critical patent/JP4208650B2/en
Publication of JP2005003231A publication Critical patent/JP2005003231A/en
Application granted granted Critical
Publication of JP4208650B2 publication Critical patent/JP4208650B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a slurry ice by adjusting the content of ice without impairing the separability of ice crystal and inhibiting the smooth discharge of the slurry ice. <P>SOLUTION: In a refrigerating cycle 2 composed of an evaporator 6, a compressor 3, a condenser 4 and an expansion valve 5, a supply pipe conduit provided with a supply pump 11 is connected with an inlet 6c of an inner pipe of the evaporator 6, and a discharge pipe conduit 8 is connected with an outlet 6d. A refrigerant of the refrigerating cycle 2 is supplied to an annular space formed between an outer pipe and an inner pipe of the evaporator 6 through an inflow port 6a, and discharged through an outflow port 6b. Further, a brine is supplied to the inner pipe of the evaporator 6 through a supply circuit 7 and a supply pump 11 to be stirred by a rotating member rotated in the inner pipe of the evaporator 6, the ice crystal produced on an inner peripheral face of the inner pipe of the evaporator 6 is liberated in the brine, and the slurry ice is discharged to the discharge pipe conduit 8. Further, a bypass pipe conduit 9 provided with a circulating pump 12 is mounted between the discharge pipe conduit 8 and the supply pipe conduit 7 at a downstream side of the supply pump 11. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、スラリー氷の製造方法およびその装置に関するものである。
【0002】
【従来の技術】
従来、蒸発器と、圧縮機と、凝縮器と、膨張弁と、からなる冷凍サイクルにおいて、蒸発器を、円筒状外管と、外管内に挿入された円筒状内管と、内管内に回転自在に設けられた回転部材と、を備え、外管の内周面と内管の外周面との間に形成された環状空間に連通する冷媒の流入口および流出口を設けるとともに、内管に連通するブラインの入口および出口を設けて構成することにより、製氷機として使用することが知られている。すなわち、冷凍サイクルを循環する冷媒を流入口を通して蒸発器の環状空間に供給するとともに、流出口を通して排出し、また、供給管路および供給ポンプを介してブラインを入口を通して内管に供給するとともに、そのブラインを回転する回転部材によって撹拌して内管の内周面に生成された氷結晶をブライン内に遊離させ、微細な氷とブラインが混合した液体(以下、スラリー氷という。)を出口を通して排出管路に排出することが実用化されている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特許第3251187号公報
【0004】
【発明が解決しようとする課題】
ところで、特許文献1の製氷機においては、蒸発器に供給されるブライン流と、蒸発器中心に回転する回転部材による旋回流によって、冷媒およびブラインの伝熱面である内管の内周面に氷結晶を発生させると同時に、氷結晶を伝熱面に付着させることなくブライン中に遊離させ、微小球状の氷を発生させるものであることから、ブラインの供給量を減少させすぎると、伝熱面からの氷結晶の剥離性が低下する結果、伝熱面に氷が付着し、運転が阻害される。また、ブライン中に剥離された氷結晶は、ブライン流により蒸発器の出口を通して排出されることから、ブラインの供給量を減少させすぎると、氷結晶が蒸発器の出口付近で滞留し、スラリー氷の円滑な排出が阻害される。
【0005】
一方、この製氷機においては、蒸発器から排出されるスラリー氷における氷含有量は、ブラインの供給量によって制御されるが、前述した理由により、ブラインの供給量を一定以上に確保しなければならないことから、製氷能力の小さな蒸発器においては、氷含有量の少ない状態でしか製氷が行えなかった。
【0006】
具体的には、製氷能力が4.5kwの蒸発器6を用いて、28℃のブラインからスラリー氷を製造する場合、ブライン流量が毎分6.0リットル以下になると、伝熱効率が低下し、さらに、毎分2.0リットル以下になると、氷結晶が蒸発器の出口付近で滞留し、円滑なスラリー氷の排出が阻害されて製氷が行えなくなるものである。一方、スラリー氷における氷濃度を10%とするためには、ブライン流量は、毎分1.7リットルとする必要があるが、このブライン流量では、前述したように、製氷することができないものである。
【0007】
本発明は、このような問題点に鑑みてなされたものであり、製氷能力の小さな蒸発器においても、氷結晶の剥離性を低下させることなく、かつ、スラリー氷の円滑な排出を阻害することなく、氷含有量を調整してスラリー氷を製造することのできるスラリー氷の製造方法およびその装置を提供するものである。
【0008】
【課題を解決するための手段】
本発明のスラリー氷の製造方法は、円筒状外管と、外管内に挿入された円筒状内管と、内管内に回転自在に設けられた回転部材と、を備え、外管の内周面と内管の外周面との間に形成された環状空間に連通する冷媒の流入口および流出口を設けるとともに、内管に連通するブラインの入口および出口を設けてなる蒸発器と、圧縮機と、凝縮器と、膨張弁と、からなる冷凍サイクルであって、冷凍サイクルを循環する冷媒を流入口を通して環状空間に供給するとともに、流出口を通して排出し、ブラインを供給管路および供給ポンプを介して入口を通して内管に供給するとともに、そのブラインを回転する回転部材によって撹拌して内管の内周面に生成された氷結晶をブライン内に遊離させ、スラリー氷を出口を通して排出管路に排出するスラリー氷の製造方法において、循環ポンプを介してスラリー氷を排出管路、バイパス管路、供給管路および蒸発器の内管の間を循環させる一方、ブラインを供給ポンプを介して供給管路に供給するとともに、供給ポンプによるブラインの供給量に相当する流量のスラリー氷を排出管路の他端から排出することを特徴とするものである。
【0009】
この発明によれば、供給ポンプを駆動して、ブラインを供給管路を通して蒸発器の内管に供給するとともに、循環ポンプを駆動して、排出管路に排出されたブラインをバイパス管路を経て供給管路に合流させることにより、ブラインを排出管路、バイパス管路、供給管路および蒸発器の内管に満たして、これらの間で一定流量のブラインを循環させる。この際、供給ポンプの供給量に相当する流量のブラインが過剰となって排出管路の他端から排出される。
【0010】
一方、この状態で、冷凍サイクルを運転すれば、冷媒は、圧縮機、凝縮器、膨張弁、蒸発器の間を循環する。この際、膨張弁を経て蒸発器の環状空間に供給された冷媒は、環状空間内で蒸発して冷却作用を行うことから、蒸発器の内管に満たされたブラインは、冷媒との伝熱面である内管の内周面に氷結晶を発生させる。また、蒸発器の回転部材が回転していることにより、回転部材の回転に伴うブラインの旋回流によって内管の内周面に生成された氷結晶をブライン内に遊離させる。この後、氷を含んだブラインであるスラリー氷は、ブライン流によって排出管路に排出され、循環ポンプを介して排出管路、バイパス管路、供給管路および蒸発器の内管の間を循環するとともに、供給ポンプによって供給されたブラインの供給量に相当する流量のスラリー氷が過剰となって排出管路の他端から排出される。
【0011】
ここで、循環ポンプによるスラリー氷の循環量を蒸発器の伝熱効率が低下しない程度の流量に設定すれば、スラリー氷は、氷結晶の剥離性を低下させることなく、かつ、スラリー氷の円滑な排出を阻害することなく、排出管路、バイパス管路、供給管路、蒸発器の内管の間を円滑に循環する。そして、供給ポンプによって供給される任意の流量のブラインが、蒸発器に対する新たな供給量となることから、その供給量に対応する氷濃度のスラリー氷が同量だけ排出管路の他端から排出される。
【0012】
この結果、製氷能力の小さな蒸発器においても、氷結晶の剥離性を低下させることなく、かつ、スラリー氷の円滑な排出を阻害することなく、氷含有量を調整してスラリー氷を得ることができる。
【0013】
本発明のスラリー氷の製造装置は、円筒状外管と、外管内に挿入された円筒状内管と、内管内に回転自在に設けられた回転部材と、を備え、外管の内周面と内管の外周面との間に形成された環状空間に連通する冷媒の流入口および流出口を設けるとともに、内管に連通するブラインの入口および出口を設けてなる蒸発器と、圧縮機と、凝縮器と、膨張弁と、からなる冷凍サイクルであって、供給ポンプを配設した供給管路を内管に連通する入口に接続するとともに、その出口に排出管路を接続し、冷凍サイクルを循環する冷媒を流入口を通して環状空間に供給するとともに、流出口を通して排出し、ブラインを供給回路および供給ポンプを介して内管に供給し、そのブラインを回転する回転部材によって撹拌して内管の内周面に生成された氷結晶をブライン内に遊離させ、スラリー氷を排出管路に排出するスラリー氷の製造装置において、前記排出管路と、供給ポンプの下流側の供給管路との間に循環ポンプを配設したバイパス管路を接続したことを特徴とするものである。
【0014】
本発明によれば、供給ポンプを駆動して、ブラインを供給管路を通して蒸発器の内管に供給するとともに、循環ポンプを駆動して、排出管路に排出されたブラインをバイパス管路を経て供給管路に合流させることにより、ブラインを排出管路、バイパス管路、供給管路および蒸発器の内管に満たして、これらの間で一定流量のブラインを循環させる。この際、供給ポンプの供給量に相当する流量のブラインが過剰となって排出管路の他端から排出される。
【0015】
一方、この状態で、冷凍サイクルを運転すれば、冷媒は、圧縮機、凝縮器、膨張弁、蒸発器の間を循環する。この際、膨張弁を経て蒸発器の環状空間に供給された冷媒は、環状空間内で蒸発して冷却作用を行うことから、蒸発器の内管に満たされたブラインは、冷媒との伝熱面である内管の内周面に氷結晶を発生させる。また、蒸発器の回転部材が回転していることにより、回転部材の回転に伴うブラインの旋回流によって内管の内周面に生成された氷結晶をブライン内に遊離させる。この後、氷を含んだブラインであるスラリー氷は、ブライン流によって排出管路に排出され、循環ポンプを介して排出管路、バイパス管路、供給管路および蒸発器の内管の間を循環するとともに、供給ポンプによって供給されたブラインの供給量に相当する流量のスラリー氷が過剰となって排出管路の他端から排出される。
【0016】
この場合、供給ポンプによって供給される設定流量のブラインが蒸発器に対する新たな供給量となり、その供給量によってブラインにおける氷濃度が決定されることから、結局、供給ポンプによるブラインの供給量に対応する氷濃度のスラリー氷を同量だけ排出管路の他端から排出することができる。
【0017】
この結果、排出管路と、供給ポンプの下流側の供給管路との間に循環ポンプを配設したバイパス管路を接続することにより、氷結晶の剥離性を低下させることなく、かつ、スラリー氷の円滑な排出を阻害することなく、氷含有量を調整してスラリー氷を製造することができる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0019】
図1には、本発明のスラリー氷の製造装置1の一実施形態が示されている。
【0020】
この製造装置1は、冷凍サイクル2を構成する圧縮機3と、凝縮器4と、膨張弁5と、製氷機である蒸発器6と、蒸発器6に一端がそれぞれ接続されたブライン、具体的には、塩化ナトリウム溶液(海水)の供給管路7および排出管路8と、排出管路8と供給管路7との間に接続されたバイパス管路9と、からなり、供給管路7の他端は、海水を貯留する貯留槽10に接続される一方、供給管路7には、供給ポンプ11が配設され、また、バイパス管路9には、循環ポンプ12が配設されている。この場合、バイパス管路9は、供給ポンプ11の下流側に位置して供給管路7に接続されている。
【0021】
なお、蒸発器6は、詳細には図示しないが、前述したように、円筒状外管と、外管内に嵌挿された円筒状内管と、内管内に回転自在に設けられた回転部材と、を備え、外管の内周面と内管の外周面との間に形成された環状空間に連通する冷媒の流入口6aおよび流出口6bを設けるとともに、内管に連通するブライン(海水)の入口6cおよび出口6dを設けて構成されている。
【0022】
次に、このような製造装置1の作動について説明する。
【0023】
まず、図示しないポンプを介して海水が貯留槽10に汲み上げられており、この状態で供給ポンプ11を駆動し、貯留槽10の海水を供給管路7および入口6cを通して蒸発器6の内管に供給する。合わせて、循環ポンプ12を駆動し、蒸発器6の出口6dを通して排出管路8に排出された海水をバイパス管路9を経て供給管路7に合流させ、再び蒸発器6に供給する。
【0024】
したがって、海水を排出管路8、バイパス管路9、供給管路7および蒸発器6の内管に満たすとともに、循環ポンプ12によって一定流量の海水が排出管路8、バイパス管路9、供給管路7および蒸発器6の内管の間を循環すると同時に、供給ポンプ11の供給量に相当する流量の余剰の海水が排出管路8の他端から排出される。
【0025】
この状態で、冷凍サイクル2を運転すれば、フロンなどの冷媒は、圧縮機3によって圧縮され、高温高圧の冷媒ガスとなって凝縮器4に吐出される。この後、冷媒ガスは、凝縮器4によって凝縮され、高圧の冷媒液となって膨張弁5に供給される。次いで、冷媒液は、膨張弁5によって湿りガスとなり、蒸発器6の流入口6aを通して環状空間に供給され、環状空間内で蒸発して冷却作用を行った後、冷媒ガスとして流出口6bを経て圧縮機3に吸入される。このように、冷媒は、冷凍サイクル1の圧縮機3、凝縮器4、膨張弁5および蒸発器6を循環している。
【0026】
そして、冷凍サイクル2の運転により、冷媒は、蒸発器6の環状空間内で蒸発して冷却作用を行うことから、蒸発器6の内管に満たされて循環している海水は、冷媒との伝熱面である内管の内周面に氷結晶を発生させる。この際、蒸発器6の回転部材が回転していることにより、回転部材の回転に伴う海水の旋回流によって、内管の内周面に生成された氷結晶を付着することなく海水内に遊離させる。この後、氷を含んだ海水であるスラリー氷は、供給ポンプ11による海水流によって出口6dを通して排出管路8に排出され、前述したように、循環ポンプ12を介して排出管路8、バイパス管路9、供給管路7および蒸発器6の内管の間を循環するとともに、供給ポンプ11によって供給された海水の供給量に相当する流量のスラリー氷が余剰となって排出管路8の他端から排出される。
【0027】
したがって、供給ポンプ11によって任意の流量の海水を供給すれば、その流量に対応する氷濃度のスラリー氷を同量だけ排出管路8の他端から排出することができる。
【0028】
例えば、製氷能力が4.5kwの蒸発器6を用いて、真夏の海水温度に相当する温度である28℃の海水からスラリー氷を製造する場合、循環ポンプ12によって毎分6.0リットルの流量でスラリー氷を循環させると同時に、供給ポンプ11によって毎分1.7リットルの流量で海水を貯留槽10から供給することにより、排出管路8の他端から氷濃度が10%のスラリー氷を取り出すことができる。
【0029】
同様に、供給ポンプ11によって毎分1.4リットルの流量で海水を供給することにより、排出管路8の他端からのスラリー氷の氷濃度は約20%、供給ポンプ11によって毎分1.2リットルの流量で海水を供給することにより、排出管路8の他端からのスラリー氷の氷濃度は約30%となり、任意の氷濃度のスラリー氷を得ることができる。
【0030】
なお、前述した実施形態においては、製造装置1を陸上において、例えば、漁港に設置するばかりでなく、漁船に設置することもできる。
【0031】
【発明の効果】
このように本発明によれば、製氷能力の小さな蒸発器においても、氷結晶の剥離性を低下させることなく、かつ、スラリー氷の円滑な排出を阻害することなく、スラリー氷における氷含有量を調整してスラリー氷を製造することができる。
【図面の簡単な説明】
【図1】本発明のスラリー氷の製造装置の一実施形態を模式的に示す概略図である。
【符号の説明】
1 製造装置
2 冷凍サイクル
3 圧縮機
4 凝縮器
5 膨張弁
6 蒸発器(製氷機)
7 供給管路
8 排出管路
9 バイパス管路
10 貯留槽
11 供給ポンプ
12 循環ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for producing slurry ice.
[0002]
[Prior art]
Conventionally, in a refrigeration cycle comprising an evaporator, a compressor, a condenser, and an expansion valve, the evaporator is rotated into a cylindrical outer tube, a cylindrical inner tube inserted into the outer tube, and an inner tube. A rotating member provided freely, and provided with an inlet and an outlet for the refrigerant communicating with an annular space formed between the inner peripheral surface of the outer tube and the outer peripheral surface of the inner tube, and the inner tube It is known to use as an ice making machine by providing an inlet and an outlet for communicating brine. That is, the refrigerant circulating in the refrigeration cycle is supplied to the annular space of the evaporator through the inlet, discharged through the outlet, and the brine is supplied to the inner pipe through the inlet through the supply line and the supply pump. The brine is agitated by a rotating rotating member to release ice crystals generated on the inner peripheral surface of the inner tube into the brine, and a liquid in which fine ice and brine are mixed (hereinafter referred to as slurry ice) is passed through the outlet. Discharging to a discharge pipe has been put into practical use (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent No. 3251187 [0004]
[Problems to be solved by the invention]
By the way, in the ice making machine disclosed in Patent Document 1, the brine flow supplied to the evaporator and the swirl flow by the rotating member that rotates around the evaporator center cause the refrigerant and brine to transfer to the inner peripheral surface of the inner pipe that is the heat transfer surface. At the same time as generating ice crystals, the ice crystals are liberated in the brine without adhering to the heat transfer surface, generating microspherical ice. As a result of the decrease in the peelability of ice crystals from the surface, ice adheres to the heat transfer surface and operation is hindered. In addition, since the ice crystals separated in the brine are discharged through the outlet of the evaporator by the brine flow, if the supply amount of the brine is reduced too much, the ice crystals stay near the outlet of the evaporator and become slurry ice. Smooth discharge is hindered.
[0005]
On the other hand, in this ice making machine, the ice content in the slurry ice discharged from the evaporator is controlled by the supply amount of the brine. For the reasons described above, the supply amount of the brine must be ensured above a certain level. For this reason, in an evaporator with a small ice making capacity, ice making could only be performed with a low ice content.
[0006]
Specifically, when slurry ice is produced from 28 ° C. brine using the evaporator 6 having an ice making capacity of 4.5 kw, the heat transfer efficiency decreases when the brine flow rate is 6.0 liters per minute or less. Further, when the amount is 2.0 liters or less per minute, ice crystals stay near the outlet of the evaporator, and smooth slurry ice discharge is hindered, making it impossible to make ice. On the other hand, in order to set the ice concentration in the slurry ice to 10%, the brine flow rate needs to be 1.7 liters per minute. However, as described above, this brine flow rate cannot make ice. is there.
[0007]
The present invention has been made in view of such problems, and even in an evaporator having a small ice making capacity, it does not deteriorate the peelability of ice crystals and inhibits smooth discharge of slurry ice. The present invention provides a slurry ice production method and apparatus capable of producing slurry ice by adjusting the ice content.
[0008]
[Means for Solving the Problems]
A method for producing slurry ice of the present invention includes a cylindrical outer tube, a cylindrical inner tube inserted into the outer tube, and a rotating member provided rotatably in the inner tube, and an inner peripheral surface of the outer tube. An evaporator having an inlet and an outlet for a refrigerant communicating with an annular space formed between the inner pipe and an outer peripheral surface of the inner pipe, and an inlet and an outlet for a brine communicating with the inner pipe, a compressor, A refrigerating cycle comprising a condenser and an expansion valve, wherein the refrigerant circulating in the refrigerating cycle is supplied to the annular space through the inflow port and discharged through the outflow port, and the brine is supplied through the supply line and the supply pump. The brine is supplied to the inner pipe through the inlet, and the brine is stirred by the rotating rotating member to release the ice crystals generated on the inner peripheral surface of the inner pipe into the brine, and the slurry ice is discharged to the discharge pipe through the outlet. Sura to -In the ice production method, the slurry ice is circulated between the discharge pipe, the bypass pipe, the supply pipe and the inner pipe of the evaporator through a circulation pump, while the brine is supplied to the supply pipe through a supply pump. While supplying, slurry ice with a flow rate corresponding to the amount of brine supplied by the supply pump is discharged from the other end of the discharge pipe.
[0009]
According to the present invention, the supply pump is driven to supply brine to the inner pipe of the evaporator through the supply line, and the circulation pump is driven to pass the brine discharged to the discharge line through the bypass line. By joining the supply line, the brine is filled into the discharge line, the bypass line, the supply line, and the inner pipe of the evaporator, and a constant flow rate of brine is circulated between them. At this time, the brine having a flow rate corresponding to the supply amount of the supply pump becomes excessive and is discharged from the other end of the discharge pipe.
[0010]
On the other hand, if the refrigeration cycle is operated in this state, the refrigerant circulates between the compressor, the condenser, the expansion valve, and the evaporator. At this time, since the refrigerant supplied to the annular space of the evaporator through the expansion valve evaporates in the annular space and performs a cooling action, the brine filled in the inner pipe of the evaporator is in heat transfer with the refrigerant. Ice crystals are generated on the inner peripheral surface of the inner tube, which is the surface. Further, since the rotating member of the evaporator is rotated, ice crystals generated on the inner peripheral surface of the inner tube by the swirling flow of the brine accompanying the rotation of the rotating member are released into the brine. After that, slurry ice, which is a brine containing ice, is discharged to the discharge pipe by the brine flow, and circulates between the discharge pipe, the bypass pipe, the supply pipe and the inner pipe of the evaporator via a circulation pump. At the same time, slurry ice having a flow rate corresponding to the amount of brine supplied by the supply pump becomes excessive and is discharged from the other end of the discharge pipe.
[0011]
Here, if the amount of slurry ice circulated by the circulation pump is set to a flow rate that does not reduce the heat transfer efficiency of the evaporator, the slurry ice will not deteriorate the detachability of the ice crystals and the smoothness of the slurry ice. It smoothly circulates between the discharge pipe, the bypass pipe, the supply pipe, and the inner pipe of the evaporator without hindering the discharge. Since the brine at an arbitrary flow rate supplied by the supply pump becomes a new supply amount to the evaporator, the same amount of slurry ice having an ice concentration corresponding to the supply amount is discharged from the other end of the discharge pipe. Is done.
[0012]
As a result, even in an evaporator having a small ice-making ability, slurry ice can be obtained by adjusting the ice content without degrading ice crystal detachability and without hindering smooth discharge of slurry ice. it can.
[0013]
An apparatus for producing slurry ice of the present invention includes a cylindrical outer tube, a cylindrical inner tube inserted into the outer tube, and a rotating member provided rotatably in the inner tube, and an inner peripheral surface of the outer tube. An evaporator having an inlet and an outlet for a refrigerant communicating with an annular space formed between the inner pipe and an outer peripheral surface of the inner pipe, and an inlet and an outlet for a brine communicating with the inner pipe, a compressor, A refrigeration cycle comprising a condenser and an expansion valve, wherein a supply line provided with a supply pump is connected to an inlet communicating with the inner pipe, and a discharge line is connected to the outlet of the refrigeration cycle. The refrigerant circulating through the inlet is supplied to the annular space through the inlet, discharged through the outlet, the brine is supplied to the inner pipe through the supply circuit and the supply pump, and the brine is stirred by the rotating member that rotates. Ice generated on the inner surface of In a slurry ice manufacturing apparatus that releases crystals into brine and discharges slurry ice to a discharge pipe, a bypass in which a circulation pump is disposed between the discharge pipe and a supply pipe downstream of the supply pump It is characterized by connecting pipes.
[0014]
According to the present invention, the supply pump is driven to supply brine to the inner pipe of the evaporator through the supply line, and the circulation pump is driven to pass the brine discharged to the discharge line through the bypass line. By joining the supply line, the brine is filled into the discharge line, the bypass line, the supply line, and the inner pipe of the evaporator, and a constant flow rate of brine is circulated between them. At this time, the brine having a flow rate corresponding to the supply amount of the supply pump becomes excessive and is discharged from the other end of the discharge pipe.
[0015]
On the other hand, if the refrigeration cycle is operated in this state, the refrigerant circulates between the compressor, the condenser, the expansion valve, and the evaporator. At this time, since the refrigerant supplied to the annular space of the evaporator through the expansion valve evaporates in the annular space and performs a cooling action, the brine filled in the inner pipe of the evaporator is in heat transfer with the refrigerant. Ice crystals are generated on the inner peripheral surface of the inner tube, which is the surface. Further, since the rotating member of the evaporator is rotated, ice crystals generated on the inner peripheral surface of the inner tube by the swirling flow of the brine accompanying the rotation of the rotating member are released into the brine. After that, slurry ice, which is a brine containing ice, is discharged to the discharge pipe by the brine flow, and circulates between the discharge pipe, the bypass pipe, the supply pipe and the inner pipe of the evaporator via a circulation pump. At the same time, slurry ice having a flow rate corresponding to the amount of brine supplied by the supply pump becomes excessive and is discharged from the other end of the discharge pipe.
[0016]
In this case, the brine having a set flow rate supplied by the supply pump becomes a new supply amount to the evaporator, and the ice concentration in the brine is determined by the supply amount, so that it eventually corresponds to the supply amount of brine by the supply pump. The same amount of slurry ice having an ice concentration can be discharged from the other end of the discharge pipe.
[0017]
As a result, by connecting a bypass line having a circulation pump between the discharge line and the supply line on the downstream side of the supply pump, the slurry can be removed without reducing the peelability of ice crystals. Slurry ice can be produced by adjusting the ice content without hindering smooth discharge of ice.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
FIG. 1 shows an embodiment of the slurry ice production apparatus 1 of the present invention.
[0020]
The manufacturing apparatus 1 includes a compressor 3 constituting a refrigeration cycle 2, a condenser 4, an expansion valve 5, an evaporator 6 serving as an ice making machine, and a brine having one end connected to the evaporator 6; 1 comprises a supply line 7 and a discharge line 8 for sodium chloride solution (seawater), and a bypass line 9 connected between the discharge line 8 and the supply line 7. The other end is connected to a storage tank 10 for storing seawater, while a supply pump 11 is provided in the supply line 7, and a circulation pump 12 is provided in the bypass line 9. Yes. In this case, the bypass conduit 9 is located on the downstream side of the supply pump 11 and connected to the supply conduit 7.
[0021]
Although not shown in detail, the evaporator 6 has a cylindrical outer tube, a cylindrical inner tube fitted into the outer tube, and a rotating member rotatably provided in the inner tube, as described above. The refrigerant inlet 6a and the outlet 6b communicating with the annular space formed between the inner peripheral surface of the outer tube and the outer peripheral surface of the inner tube are provided, and the brine (seawater) communicates with the inner tube. The inlet 6c and the outlet 6d are provided.
[0022]
Next, the operation of the manufacturing apparatus 1 will be described.
[0023]
First, seawater is pumped into the storage tank 10 via a pump (not shown). In this state, the supply pump 11 is driven, and the seawater in the storage tank 10 is supplied to the inner pipe of the evaporator 6 through the supply line 7 and the inlet 6c. Supply. At the same time, the circulation pump 12 is driven, and the seawater discharged to the discharge pipe 8 through the outlet 6 d of the evaporator 6 is joined to the supply pipe 7 through the bypass pipe 9 and supplied to the evaporator 6 again.
[0024]
Therefore, the seawater is filled in the discharge pipe 8, the bypass pipe 9, the supply pipe 7 and the inner pipe of the evaporator 6, and a constant flow of seawater is discharged by the circulation pump 12 to the discharge pipe 8, the bypass pipe 9, and the supply pipe. At the same time as circulating between the passage 7 and the inner pipe of the evaporator 6, surplus seawater with a flow rate corresponding to the supply amount of the supply pump 11 is discharged from the other end of the discharge pipe 8.
[0025]
If the refrigeration cycle 2 is operated in this state, a refrigerant such as chlorofluorocarbon is compressed by the compressor 3 and discharged into the condenser 4 as a high-temperature and high-pressure refrigerant gas. Thereafter, the refrigerant gas is condensed by the condenser 4 and supplied to the expansion valve 5 as a high-pressure refrigerant liquid. Next, the refrigerant liquid becomes wet gas by the expansion valve 5, is supplied to the annular space through the inlet 6 a of the evaporator 6, evaporates in the annular space and performs a cooling action, and then passes through the outlet 6 b as the refrigerant gas. It is sucked into the compressor 3. Thus, the refrigerant circulates through the compressor 3, the condenser 4, the expansion valve 5, and the evaporator 6 of the refrigeration cycle 1.
[0026]
Then, by operating the refrigeration cycle 2, the refrigerant evaporates in the annular space of the evaporator 6 and performs a cooling action. Therefore, the seawater filled and circulated in the inner pipe of the evaporator 6 Ice crystals are generated on the inner peripheral surface of the inner tube, which is the heat transfer surface. At this time, since the rotating member of the evaporator 6 is rotating, the ice crystals generated on the inner peripheral surface of the inner pipe are freed in the seawater by the swirling flow of the seawater accompanying the rotation of the rotating member. Let Thereafter, slurry ice, which is seawater containing ice, is discharged to the discharge pipe 8 through the outlet 6d by the seawater flow by the supply pump 11, and, as described above, the discharge pipe 8, bypass pipe through the circulation pump 12. While circulating between the passage 9, the supply pipe 7 and the inner pipe of the evaporator 6, the slurry ice having a flow rate corresponding to the supply amount of seawater supplied by the supply pump 11 becomes surplus and the other of the discharge pipe 8. Discharged from the edge.
[0027]
Accordingly, if seawater having an arbitrary flow rate is supplied by the supply pump 11, the same amount of slurry ice having an ice concentration corresponding to the flow rate can be discharged from the other end of the discharge pipe 8.
[0028]
For example, when slurry ice is produced from seawater at 28 ° C., which is a temperature corresponding to midsummer seawater temperature, using the evaporator 6 having an ice making capacity of 4.5 kw, a flow rate of 6.0 liters per minute by the circulation pump 12 At the same time, the slurry ice is circulated at the same time as the supply pump 11 supplies seawater from the storage tank 10 at a flow rate of 1.7 liters per minute, whereby slurry ice having an ice concentration of 10% is discharged from the other end of the discharge pipe 8. It can be taken out.
[0029]
Similarly, by supplying seawater at a flow rate of 1.4 liters per minute by the supply pump 11, the ice concentration of the slurry ice from the other end of the discharge pipe 8 is about 20%. By supplying seawater at a flow rate of 2 liters, the ice concentration of the slurry ice from the other end of the discharge pipe 8 becomes about 30%, and slurry ice having an arbitrary ice concentration can be obtained.
[0030]
In the above-described embodiment, the manufacturing apparatus 1 can be installed not only on land, for example, on a fishing port, but also on a fishing boat.
[0031]
【The invention's effect】
Thus, according to the present invention, even in an evaporator having a small ice making capacity, the ice content in the slurry ice can be reduced without deteriorating the peelability of the ice crystals and without hindering smooth discharge of the slurry ice. It can be adjusted to produce slurry ice.
[Brief description of the drawings]
FIG. 1 is a schematic view schematically showing an embodiment of the slurry ice production apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus 2 Refrigeration cycle 3 Compressor 4 Condenser 5 Expansion valve 6 Evaporator (ice machine)
7 Supply line 8 Discharge line 9 Bypass line 10 Storage tank 11 Supply pump 12 Circulation pump

Claims (2)

円筒状外管と、外管内に挿入された円筒状内管と、内管内に回転自在に設けられた回転部材と、を備え、外管の内周面と内管の外周面との間に形成された環状空間に連通する冷媒の流入口および流出口を設けるとともに、内管に連通するブラインの入口および出口を設けてなる蒸発器と、圧縮機と、凝縮器と、膨張弁と、からなる冷凍サイクルであって、冷凍サイクルを循環する冷媒を流入口を通して環状空間に供給するとともに、流出口を通して排出し、ブラインを供給管路および供給ポンプを介して入口を通して内管に供給するとともに、そのブラインを回転する回転部材によって撹拌して内管の内周面に生成された氷結晶をブライン内に遊離させ、スラリー氷を出口を通して排出管路に排出するスラリー氷の製造方法において、循環ポンプを介してスラリー氷を排出管路、バイパス管路、供給管路および蒸発器の内管の間を循環させる一方、ブラインを供給ポンプを介して供給管路に供給するとともに、供給ポンプによるブラインの供給量に相当する流量のスラリー氷を排出管路の他端から排出することを特徴とするスラリー氷の製造方法。A cylindrical outer tube, a cylindrical inner tube inserted into the outer tube, and a rotating member rotatably provided in the inner tube, and between the inner peripheral surface of the outer tube and the outer peripheral surface of the inner tube An evaporator having a refrigerant inlet and outlet communicating with the formed annular space and a brine inlet and outlet communicating with the inner pipe, a compressor, a condenser, and an expansion valve are provided. A refrigerant that circulates through the refrigeration cycle is supplied to the annular space through the inlet, is discharged through the outlet, and the brine is supplied to the inner pipe through the inlet through the supply line and the supply pump. In the method for producing slurry ice, the brine is stirred by a rotating rotating member to release ice crystals formed on the inner peripheral surface of the inner pipe into the brine, and the slurry ice is discharged to the discharge pipe through the outlet. The slurry ice is circulated between the discharge pipe, the bypass pipe, the supply pipe and the inner pipe of the evaporator through the pump, while the brine is supplied to the supply pipe through the supply pump, A method for producing slurry ice, characterized in that slurry ice having a flow rate corresponding to the supply amount of the slurry is discharged from the other end of the discharge pipe. 円筒状外管と、外管内に挿入された円筒状内管と、内管内に回転自在に設けられた回転部材と、を備え、外管の内周面と内管の外周面との間に形成された環状空間に連通する冷媒の流入口および流出口を設けるとともに、内管に連通するブラインの入口および出口を設けてなる蒸発器と、圧縮機と、凝縮器と、膨張弁と、からなる冷凍サイクルであって、供給ポンプを配設した供給管路を内管に連通する入口に接続するとともに、その出口に排出管路を接続し、冷凍サイクルを循環する冷媒を流入口を通して環状空間に供給するとともに、流出口を通して排出し、ブラインを供給回路および供給ポンプを介して内管に供給し、そのブラインを回転する回転部材によって撹拌して内管の内周面に生成された氷結晶をブライン内に遊離させ、スラリー氷を排出管路に排出するスラリー氷の製造装置において、前記排出管路と、供給ポンプの下流側の供給管路との間に循環ポンプを配設したバイパス管路を接続したことを特徴とするスラリー氷の製造装置。A cylindrical outer tube, a cylindrical inner tube inserted into the outer tube, and a rotating member rotatably provided in the inner tube, and between the inner peripheral surface of the outer tube and the outer peripheral surface of the inner tube An evaporator having a refrigerant inlet and outlet communicating with the formed annular space and a brine inlet and outlet communicating with the inner pipe, a compressor, a condenser, and an expansion valve are provided. A refrigeration cycle comprising a supply pipe provided with a supply pump connected to an inlet communicating with the inner pipe, a discharge pipe connected to the outlet thereof, and a refrigerant circulating in the refrigeration cycle passing through the inlet through the annular space The ice crystals are generated on the inner peripheral surface of the inner pipe by being discharged by the outlet and supplying the brine to the inner pipe through the supply circuit and the supply pump, and stirring the brine by the rotating rotating member. In the brine and In the slurry ice manufacturing apparatus for discharging ice to the discharge pipe, a bypass pipe having a circulation pump is connected between the discharge pipe and a supply pipe downstream of the supply pump. An apparatus for producing slurry ice.
JP2003164555A 2003-06-10 2003-06-10 Method and apparatus for producing slurry ice Expired - Lifetime JP4208650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164555A JP4208650B2 (en) 2003-06-10 2003-06-10 Method and apparatus for producing slurry ice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164555A JP4208650B2 (en) 2003-06-10 2003-06-10 Method and apparatus for producing slurry ice

Publications (2)

Publication Number Publication Date
JP2005003231A true JP2005003231A (en) 2005-01-06
JP4208650B2 JP4208650B2 (en) 2009-01-14

Family

ID=34091291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164555A Expired - Lifetime JP4208650B2 (en) 2003-06-10 2003-06-10 Method and apparatus for producing slurry ice

Country Status (1)

Country Link
JP (1) JP4208650B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266639A (en) * 2005-03-25 2006-10-05 Mitsubishi Electric Corp Method and device for making salt water-mixed sherbet-like ice
JPWO2017086463A1 (en) * 2015-11-19 2018-09-06 ブランテック株式会社 Flake ice production apparatus, flake ice production system, flake ice production method, mobile object
WO2021206501A1 (en) * 2020-04-10 2021-10-14 임효묵 Ice slurry production system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266639A (en) * 2005-03-25 2006-10-05 Mitsubishi Electric Corp Method and device for making salt water-mixed sherbet-like ice
JPWO2017086463A1 (en) * 2015-11-19 2018-09-06 ブランテック株式会社 Flake ice production apparatus, flake ice production system, flake ice production method, mobile object
US10989458B2 (en) 2015-11-19 2021-04-27 Blanctec Co., Ltd. Cold storage unit, moving body, ice slurry supply system, cold storage article transport system, cold storage method for cold storage article, and transport method for cold storage article
US11060780B2 (en) 2015-11-19 2021-07-13 Blanctec Co., Ltd. Ice, refrigerant, ice production method, method for producing cooled article, method for producing refrigerated article of plant/animal or portion thereof, refrigerating material for plant/animal or portion thereof, method for producing frozen fresh plant/animal or portion thereof, defrosted article or processed article thereof, and freezing material for fresh plant/animal or portion thereof
WO2021206501A1 (en) * 2020-04-10 2021-10-14 임효묵 Ice slurry production system
KR20210126275A (en) * 2020-04-10 2021-10-20 임효묵 Ice slurry production system
KR102384453B1 (en) * 2020-04-10 2022-04-08 임효묵 Ice slurry production system

Also Published As

Publication number Publication date
JP4208650B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
US6658889B2 (en) Apparatus for producing potable water and slush from sea water or brine
JP2004150786A (en) Ice maker
JP2007113902A (en) Cold/hot water purifying system and apparatus for simultaneously making ice and cold water using one evaporator
US4401449A (en) Slush ice maker
JP4208650B2 (en) Method and apparatus for producing slurry ice
CN106865670A (en) Using the freezing sea water desalinating unit system of heterogeneous sedimentation crystallization nucleation mode
JP2009150597A (en) Water heater
JP5552324B2 (en) Drum ice machine
WO2020137055A1 (en) Ice making system and ice making method
JP2003056951A (en) Ice slurry continuous making method and continuous ice making heat storage system therefor
JPH04250880A (en) Method for circulating cooling water
KR100490927B1 (en) Heat pump system for a bathhouse
JP2001263793A (en) Method of removing fur
KR200324295Y1 (en) Heat pump system for a bathhouse
JP2004076997A (en) Steam injection type cold and hot water supplyer
JPS61282739A (en) Ice slurry thermal accumulation device
CN101696838A (en) Ice maker with carrier gas device
JP3302782B2 (en) Transfer control method for solid-liquid mixed fluid
JP4399309B2 (en) Ice heat storage device
JP2005061720A (en) Salt-containing ice manufacturing device
JP3065302B1 (en) Circulating water circulation method and circulation device for water circulation type compressor
KR101637216B1 (en) System for cooling of ice machine
KR101029522B1 (en) A photo reit custody device
KR100586878B1 (en) Method for controlling apparatus of cold heat transportation system using ice slurry
JP2008121928A (en) Cold water supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

R150 Certificate of patent or registration of utility model

Ref document number: 4208650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term