JP2005002962A - Vertical shaft type wind power generation device - Google Patents

Vertical shaft type wind power generation device Download PDF

Info

Publication number
JP2005002962A
JP2005002962A JP2003169761A JP2003169761A JP2005002962A JP 2005002962 A JP2005002962 A JP 2005002962A JP 2003169761 A JP2003169761 A JP 2003169761A JP 2003169761 A JP2003169761 A JP 2003169761A JP 2005002962 A JP2005002962 A JP 2005002962A
Authority
JP
Japan
Prior art keywords
wind
blades
wind power
blade
power generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003169761A
Other languages
Japanese (ja)
Inventor
Kazuo Okubo
和夫 大久保
Hiroshi Imabayashi
弘資 今林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP2003169761A priority Critical patent/JP2005002962A/en
Publication of JP2005002962A publication Critical patent/JP2005002962A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical shaft type wind power generation device capable of raising the power generation efficiency by making the most of the wind force applied to the vanes of a Darrieus type windmill. <P>SOLUTION: The vanes of the windmill are directed vertically along a rotary shaft 2 and composed of two types, vanes 5 provided on the inside surface of the rotary shaft 2 and the others 6 provided on the periphery of the rotary shaft 2. A wind collecting member 31 in a skirt shape is provided at the periphery of the rotary shaft 2 so as to direct the wind toward the vanes. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、風向に対し垂直な回転軸に沿って縦方向の羽根を有し、この羽根が風によって回転軸の回転方向に回転する垂直軸型風車を供えた垂直軸型風力発電装置の改良に関するものである。
【0002】
【従来の技術】
従来の垂直軸型型風車は、前記特許文献1に開示されているように、回転軸方向に沿って垂直方向に位置する一対の支持部材に両端部が固定される羽根を備えている。
【0003】
【特許文献1】
特開平10−110666号公報(図1、図6、図7)
【0004】
【発明が解決しようとする課題】
従来の垂直軸型風車の羽根は、前記特許文献1に開示されているように、回転軸方向に沿って複数枚が配設されている。そのため、風による回転効率を上げるためには、周方向に羽根の枚数を増加させることになる。
しかしながら、周方向の羽根の枚数増加には限度があり、風による回転効率を上昇させるためには、まだ改善する必要がある。
【0005】
本発明の目的は、垂直軸型風車の羽根に対する風力の活用を効果的にすることにより、発電効率を上昇させることができる垂直型風力発電装置を提供することにある。
【0006】
【課題を解決するための手段】
この目的を達成する請求項1の垂直軸型風力発電装置は、垂直に設けた回転軸と、当該回転軸の周方向に複数枚取り付けた縦向きの羽根とを有する風力発電装置において、前記羽根は、前記回転軸の内周と外周とに複数枚配設されていることを特徴とする。
上記構成によると、内周側の羽根と外周側の羽根とが風を受ける為、風に対する揚力が合算され、回転力が強まる。
【0007】
請求項2の垂直軸型風力発電装置は、請求項1において、前記内周側の羽根と前記外周側の羽根とは、風に対する揚力発生の向きが同じになるように配設されている。
上記構成によると、内周側の羽根と外周側の羽根とが整列状態となるため、各羽根を配設し易くなる。
【0008】
請求項3に記載の垂直軸型風力発電装置は、請求項1において、前記内周側の羽根と前記外周側の羽根とは、風に対する揚力発生の向きが交差するように配設されている。
上記構成によると、内周側の羽根と外周側の羽根との間の風速を高く又は低くなるように合わせることができ、各羽根の揚力発生効率が高くなる。
【0009】
請求項4に記載の垂直軸型風力発電装置は、請求項2又は3において、前記内周側の羽根と前記外周側の羽根とは、前記回転軸の周方向に位相差を設けて配設されている。
上記構成によると、内周側の羽根と外周側の羽根とを周方向にずらせることで、互いの干渉を少なくできる。
【0010】
請求項5に記載の垂直型風力発電装置は、垂直に設けた回転軸と、当該回転軸の周方向に複数枚取り付けた縦向きの羽根とを有する風力発電装置において、前記回転軸の少なくとも一方端側に、前記羽根に風を向かわせるスカート状の集風部材を設けたことを特徴とする。
上記構成によると、スカート状の集風部外が風を羽根に向けて集めるため、羽根の受ける風量を多くすることができる。
【0011】
請求項6に記載の垂直軸型風力発電装置は、請求項5において、前記集風部材は、スカート状の台座部と、その表面に設けられた風案内のための凸条とを備えてなる。
上記構成によると、スカート状の台座部表面の凸状が風を案内するため、風を羽根に向けて集める効率が良くなる。
【0012】
【発明の実施の形態】
次に、本発明に基づく垂直軸型風力発電装置を図示する一実施の形態を基に具体的に説明する。
図1は本発明の第1実施形態に係る垂直軸型風力発電装置の正面図であり、図2は風車用羽根の配置を示す上面図である。
【0013】
図1において、垂直軸型風力発電装置1は、垂直に設けた回転軸2と、回転軸2の周方向に複数枚取り付けた羽根3とを備えて成る。羽根3は、回転軸2に沿って縦向きに延びる、内周側羽根5及び外周側羽根6からなる。
【0014】
回転軸2の上方には、円板11を介して支持部材12,13が取り付けられている。回転軸3の下方は、軸受21を介してハウジング22に回転自在に支持されている。ハウジング22は、ベース23を有し、ベース22は図示されない基礎に対して適宜の固定手段で固定される。また、回転軸2の下方には、適宜の変速機構24を介して発電機25が連結されている。
【0015】
上側支持部材12は、円板11の上側指向折り曲げ部から斜め上方に伸びて羽根5の上方を支持する。下側支持部材13は、円板11の下側指向折り曲げ部から斜め下方に伸びて羽根5の下方を支持する。
また、羽根5と羽根6の上方は、上側連結部材14で互いに連結され、羽根5と羽根6の下方は、下側連結部材15で互いに連結されている。
なお、上側支持部材12と上側連結部材14とは一体の支持部材として構成することができる。下側支持部材13と下側連結部材15とも一体の支持部材として構成することができる。
【0016】
図2において、羽根3は、半径R1に沿って配設された2枚の内周側羽根5と、半径R2に沿って配設された2枚の外周側羽根6とからなる。なお、内周側羽根5と外周側羽根6の枚数は、2枚に限らず、3枚又は4枚であってもよい。内周羽根5及び外周羽根6のいずれも回転軸2と平行な縦向きに取り付けられている。
【0017】、
内周側羽根5と外周側羽根6とは、断面が翼状となっており、一方面は流線が長くなる凸状面となっており、他方面は流線が短くなるフラット状面となっている。このような羽根5,6は、軸方向の骨材と、骨材に所定間隔で挿入された翼状板と、翼状板の外周を覆う外皮材とからなる中空構造で構成される。また、前記骨材、翼状板及び外皮材は、アルミニウム合金で形成され、羽根5,6の全体が軽量で強固に形成されている。
【0018】
図2において、羽根5,6は、並走状態であって、その凸状面がそれぞれ外方に向かうように配設されている。風Aに対する各羽根5,6の揚力Bの向きは回転方向斜め外方であって、羽根3はC方向に回転する。
【0019】
周方向の内周と外周の両方に羽根5,6が配設され、各羽根5,6で揚力が発生するため、風Aに対する回転駆動力が増し、発電効率が向上する。
【0020】
図3は、他の配設例に係る羽根3′を示す。図3において、羽根5′,6′は、並走状態であって、その凸状面が互いに向かい合わせとなるように配設されている。風Aに対する羽根5′の揚力B′の向きは回転方向斜め内方であって、風Aに対する羽根6′の揚力B′の向きは回転方向斜め外方であって、羽根3はC方向に回転する。
【0021】
周方向の内周と外周の両方に羽根5′,6′が配設され、しかも羽根5′,6′の揚力の方向が互いに交差し、羽根5′と羽根6′の間が高速流の通路となるため、各羽根5′,6′でより高い揚力が発生するため、風Aに対する回転駆動力が増し、発電効率が向上する。
また、羽根5′,6′は並走状態であるため、連結部材14,15による、羽根5,6相互の連結が確実にできる。
【0022】
図4は、更に他の配設例に係る羽根3″を示す。図4において、外周の羽根6″は、内周の羽根5″より先行するように、所定の位相差θが設けられている。
なお、内周の羽根5″を外周の羽根6″より先行させるような位相差を設けるものであってもよい。
【0023】
先行する羽根6″と追いかける羽根5″との間に周方向のずれがあるため、羽根入口と羽根出口の間に差が生じ、流速が早くなる。また、羽根5″と羽根6″との間の空気流の干渉が少なくなる。
そのため、各羽根5″,6″で生じる揚力B″はそれぞれ確実なものとなる。
【0024】
つぎに、本発明の第2実施形態に係る垂直軸型風力発電装置を図5に基づいて説明する。
図5において、回転軸2の周囲であって、羽根3の下方を覆う集風部材31が設けられている。この集風部材31は、羽根3に向かって狭くなるスカート状の台座部32と、先端の筒部33とからなっている。スカート状の台座部32は、回転軸2の下方にある図示されないハウジングやベース23を覆っている。
【0025】
羽根3に向かう風Aのうち、羽根3の下方にあるものは、吹き抜けることなく、集風部材31により、羽根3に向かう風に向きを変える。そのため、羽根3に至る風の速度と量が増加し、羽根3による回転駆動力が増加する。
【0026】
図6に示すように、スカート状の台座部32′に、回転軸方向に向かって延びる稜線状の凸条35が周方向4等分位置に形成されている。風A′は、稜線状凸条35により、回転軸2の方向に更に集められる。それにより、羽根3に至る風の速度と量が更に増加し、羽根3による回転駆動力が更に増加する。
【0027】
図7に示すように、スカート条の台座部32″に、回転軸方向に向かってらせん状に延びる帯状の凸条36が周方向に4本形成されている。風A″は、台座部32″上のらせん状の凸状36によって、回転軸2の中心に向かう渦巻き状に集められる。それにより、羽根3に至る風の速度と量が更に増加し、羽根3による回転駆動力が更に増加する。
【0028】
なお、上記実施形態は以下のように変更して実施することができる。
第1実施形態において、内外周の羽根は2周に限らず、内周、中周、外周のように3周に羽根を配置するものであってもよい。
第2実施形態において、スカート状の集風部材は、羽根3の下方に配置するものに限らない。羽根3の上方にスカート状の集風部材を設けると、吹き上げ状の風を集めることができる。また、羽根3の上方と下方の両方にスカート状の集風部材を設けることもできる。
第1実施形態において、第2実施形態のように、内外周に複数列の羽根に加えて、スカート状の集風部材31(図1の二点鎖線)を設けるようにすると、更に風による発電効率を上げることができる。
【0029】
【発明の効果】
以上説明したように、請求項1〜4によると、内外周の羽根により、風に対する揚力を増加して、発電効率を上昇させるという効果も奏する。
【0030】
請求項5〜6によると、羽根に向かう風を集めて、羽根の揚力を増加させ、発電効率を上昇させるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1実施形態である垂直型風力発電装置の正面図である。
【図2】風車用羽根の配置を示す上面図である。
【図3】他の風車用羽根を示す上面図である。
【図4】更に他の風車用羽根を示す上面図である。
【図5】本発明の第2実施形態である垂直型風力発電装置の斜視図である。
【図6】他のスカート状集風部材を示す斜視図である。
【図7】更に他のスカート状集風部材を示す斜視図である。
【符号の説明】
1 垂直軸型風力発電装置
2 回転軸
3 羽根
5 内周側羽根
6 外周側羽根
31 集風部材
32 台座部
35 稜線状の凸条
36 帯状の凸条
[0001]
BACKGROUND OF THE INVENTION
The present invention is an improvement of a vertical axis wind power generator provided with a vertical axis type windmill having blades in the vertical direction along a rotation axis perpendicular to the wind direction, and the blades rotating in the rotation direction of the rotation axis by the wind. It is about.
[0002]
[Prior art]
As disclosed in Patent Document 1, the conventional vertical axis type wind turbine includes blades whose both ends are fixed to a pair of support members positioned in the vertical direction along the rotation axis direction.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-110666 (FIGS. 1, 6, and 7)
[0004]
[Problems to be solved by the invention]
As disclosed in Patent Document 1, a plurality of blades of a conventional vertical axis type wind turbine are disposed along the rotation axis direction. Therefore, in order to increase the rotation efficiency by wind, the number of blades is increased in the circumferential direction.
However, there is a limit to the increase in the number of blades in the circumferential direction, and it is still necessary to improve in order to increase the rotation efficiency by wind.
[0005]
An object of the present invention is to provide a vertical wind power generator capable of increasing power generation efficiency by making effective use of wind power to the blades of a vertical axis wind turbine.
[0006]
[Means for Solving the Problems]
The vertical axis wind power generator according to claim 1, which achieves this object, includes a vertical rotating shaft and a plurality of vertical blades attached in a circumferential direction of the rotating shaft. Are arranged on the inner periphery and the outer periphery of the rotating shaft.
According to the above configuration, since the inner peripheral blade and the outer peripheral blade receive wind, the lift to the wind is added and the rotational force is increased.
[0007]
A vertical axis wind power generator according to a second aspect is the first aspect, wherein the inner peripheral blade and the outer peripheral blade are arranged so that the direction of lift generation relative to the wind is the same.
According to the above configuration, the blades on the inner peripheral side and the blades on the outer peripheral side are in an aligned state, which makes it easier to dispose each blade.
[0008]
According to a third aspect of the present invention, in the vertical axis wind power generator according to the first aspect, the inner peripheral blades and the outer peripheral blades are arranged so that the directions of lift generation with respect to the wind intersect each other. .
According to the said structure, it can match | combine so that the wind speed between the blade | wing on an inner peripheral side and the blade | wing on an outer peripheral side may become high or low, and the lift generation efficiency of each blade | wing becomes high.
[0009]
According to a fourth aspect of the present invention, in the vertical axis wind power generator according to the second or third aspect, the inner blade and the outer blade are provided with a phase difference in the circumferential direction of the rotating shaft. Has been.
According to the above configuration, mutual interference can be reduced by shifting the inner peripheral blade and the outer peripheral blade in the circumferential direction.
[0010]
The vertical wind power generator according to claim 5, wherein the wind power generator includes a rotating shaft provided vertically and a plurality of vertical blades attached in a circumferential direction of the rotating shaft. At least one of the rotating shafts A skirt-shaped air collecting member for directing the wind toward the blades is provided on the end side.
According to the above configuration, since the outside of the skirt-shaped air collecting part collects the wind toward the blades, the amount of air received by the blades can be increased.
[0011]
According to a sixth aspect of the present invention, in the vertical axis wind power generation device according to the fifth aspect, the wind collecting member includes a skirt-shaped pedestal portion and a ridge for wind guidance provided on the surface thereof. .
According to the said structure, since the convex shape of the skirt-like base part surface guides a wind, the efficiency which collects a wind toward a blade | wing improves.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, a vertical axis wind power generator according to the present invention will be described in detail based on an embodiment shown in the drawings.
FIG. 1 is a front view of a vertical axis wind power generator according to a first embodiment of the present invention, and FIG. 2 is a top view showing an arrangement of wind turbine blades.
[0013]
In FIG. 1, a vertical axis wind power generator 1 includes a rotating shaft 2 provided vertically and a plurality of blades 3 attached in the circumferential direction of the rotating shaft 2. The blade 3 includes an inner peripheral blade 5 and an outer peripheral blade 6 that extend longitudinally along the rotation axis 2.
[0014]
Support members 12 and 13 are attached above the rotating shaft 2 via a disk 11. A lower portion of the rotary shaft 3 is rotatably supported by the housing 22 via a bearing 21. The housing 22 has a base 23, and the base 22 is fixed to a foundation (not shown) by appropriate fixing means. A generator 25 is connected to the lower side of the rotary shaft 2 via an appropriate speed change mechanism 24.
[0015]
The upper support member 12 extends obliquely upward from the upper-oriented bent portion of the disk 11 and supports the upper side of the blade 5. The lower support member 13 extends obliquely downward from the lower-oriented bent portion of the disk 11 and supports the lower portion of the blade 5.
The upper portions of the blades 5 and 6 are connected to each other by the upper connecting member 14, and the lower portions of the blades 5 and 6 are connected to each other by the lower connecting member 15.
The upper support member 12 and the upper connection member 14 can be configured as an integral support member. The lower support member 13 and the lower connection member 15 can also be configured as an integral support member.
[0016]
In FIG. 2, the blade 3 is composed of two inner peripheral blades 5 disposed along the radius R1 and two outer peripheral blades 6 disposed along the radius R2. The number of inner peripheral blades 5 and outer peripheral blades 6 is not limited to two, and may be three or four. Both the inner peripheral blade 5 and the outer peripheral blade 6 are attached in the vertical direction parallel to the rotating shaft 2.
,
The inner peripheral blade 5 and the outer peripheral blade 6 are wing-shaped in cross section, one surface is a convex surface with a long streamline, and the other surface is a flat surface with a short streamline. ing. Such blades 5 and 6 are configured by a hollow structure including an axial aggregate, a winged plate inserted into the aggregate at a predetermined interval, and a skin material covering the outer periphery of the winged plate. The aggregate, the wing plate, and the skin material are made of an aluminum alloy, and the entire blades 5 and 6 are light and strong.
[0018]
In FIG. 2, the blades 5 and 6 are in a parallel running state, and are arranged so that their convex surfaces are directed outward. The direction of the lift B of each blade 5, 6 with respect to the wind A is obliquely outward in the rotational direction, and the blade 3 rotates in the C direction.
[0019]
The blades 5 and 6 are disposed on both the inner and outer circumferences in the circumferential direction, and lift is generated by the blades 5 and 6, so that the rotational driving force for the wind A is increased and the power generation efficiency is improved.
[0020]
FIG. 3 shows a blade 3 ′ according to another arrangement example. In FIG. 3, the blades 5 ′ and 6 ′ are in a parallel running state, and are disposed so that their convex surfaces face each other. The direction of the lift B ′ of the blade 5 ′ with respect to the wind A is diagonally inward in the rotational direction, the direction of the lift B ′ of the blade 6 ′ with respect to the wind A is diagonally outward in the rotational direction, and the blade 3 is in the C direction. Rotate.
[0021]
The blades 5 'and 6' are arranged on both the inner and outer circumferences in the circumferential direction, and the directions of lift of the blades 5 'and 6' intersect each other, and a high-speed flow is generated between the blades 5 'and 6'. Since it becomes a passage, higher lift is generated in each blade 5 ', 6', so that the rotational driving force against the wind A is increased and the power generation efficiency is improved.
Further, since the blades 5 'and 6' are in a parallel running state, the blades 5 and 6 can be reliably connected to each other by the connecting members 14 and 15.
[0022]
4 shows a blade 3 ″ according to still another arrangement example. In FIG. 4, the outer peripheral blade 6 ″ is provided with a predetermined phase difference θ so as to precede the inner peripheral blade 5 ″. .
A phase difference may be provided so that the inner peripheral blade 5 ″ precedes the outer peripheral blade 6 ″.
[0023]
Since there is a circumferential shift between the preceding blade 6 "and the chasing blade 5", a difference occurs between the blade inlet and the blade outlet, and the flow velocity is increased. In addition, airflow interference between the blades 5 "and 6" is reduced.
Therefore, the lift B ″ generated by the blades 5 ″ and 6 ″ is reliable.
[0024]
Next, a vertical axis wind power generator according to a second embodiment of the present invention will be described with reference to FIG.
In FIG. 5, an air collecting member 31 is provided around the rotary shaft 2 and covering the lower side of the blade 3. The air collecting member 31 includes a skirt-like pedestal portion 32 that narrows toward the blade 3 and a cylindrical portion 33 at the tip. The skirt-shaped pedestal 32 covers a housing (not shown) and the base 23 below the rotary shaft 2.
[0025]
Among the winds A directed to the blades 3, those below the blades 3 are changed in the direction toward the winds directed to the blades 3 by the air collecting member 31 without being blown through. Therefore, the speed and amount of wind reaching the blades 3 are increased, and the rotational driving force by the blades 3 is increased.
[0026]
As shown in FIG. 6, ridge-like ridges 35 extending in the direction of the rotation axis are formed on the skirt-like pedestal portion 32 ′ at four equally spaced positions in the circumferential direction. The wind A ′ is further collected in the direction of the rotation axis 2 by the ridge-shaped ridges 35. Thereby, the speed and amount of wind reaching the blades 3 are further increased, and the rotational driving force by the blades 3 is further increased.
[0027]
As shown in FIG. 7, four strip-shaped ridges 36 extending in a spiral shape in the direction of the rotation axis are formed in the skirt base portion 32 ″ in the circumferential direction. "The spiral convex shape 36 gathers in a spiral toward the center of the rotating shaft 2. This further increases the speed and amount of wind reaching the blade 3, and further increases the rotational driving force by the blade 3. To do.
[0028]
In addition, the said embodiment can be changed and implemented as follows.
In 1st Embodiment, the blade | wing of an inner and outer periphery is not restricted to 2 rounds, You may arrange | position a blade | wing to 3 rounds like an inner periphery, a middle periphery, and an outer periphery.
In the second embodiment, the skirt-shaped air collecting member is not limited to the one disposed below the blade 3. When a skirt-like air collecting member is provided above the blades 3, it is possible to collect blown-up air. Also, a skirt-like air collecting member can be provided both above and below the blade 3.
In the first embodiment, when the skirt-like air collecting member 31 (two-dot chain line in FIG. 1) is provided in addition to the plurality of blades on the inner and outer circumferences as in the second embodiment, power generation by wind is further performed. Efficiency can be increased.
[0029]
【The invention's effect】
As described above, according to the first to fourth aspects, the effect of increasing the power generation efficiency by increasing the lift to the wind by the inner and outer blades.
[0030]
According to the fifth to sixth aspects, there is an effect of collecting the wind toward the blades, increasing the lift of the blades, and increasing the power generation efficiency.
[Brief description of the drawings]
FIG. 1 is a front view of a vertical wind power generator according to a first embodiment of the present invention.
FIG. 2 is a top view showing the arrangement of wind turbine blades.
FIG. 3 is a top view showing another windmill blade.
FIG. 4 is a top view showing still another wind turbine blade.
FIG. 5 is a perspective view of a vertical wind power generator according to a second embodiment of the present invention.
FIG. 6 is a perspective view showing another skirt-shaped air collecting member.
FIG. 7 is a perspective view showing still another skirt-shaped air collecting member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vertical axis type wind power generator 2 Rotating shaft 3 Blade | wing 5 Inner peripheral side blade | wing 6 Outer peripheral side blade | wing 31 Wind-collecting member 32 Base part 35 Ridge-shaped convex strip 36 Strip-shaped convex strip

Claims (6)

垂直に設けた回転軸と、当該回転軸の周方向に複数枚取り付けた縦向きの羽根とを有する風力発電装置において、前記羽根は、前記回転軸の内周と外周とに複数枚配設されていることを特徴とする垂直軸型風力発電装置。In a wind turbine generator having a rotating shaft provided vertically and a plurality of vertical blades attached in the circumferential direction of the rotating shaft, a plurality of the blades are disposed on the inner periphery and the outer periphery of the rotating shaft. A vertical axis wind power generator characterized by that. 前記内周側の羽根と前記外周側の羽根とは、風に対する揚力発生の向きが同じになるように配設されている請求項1に記載の垂直型風力発電装置。2. The vertical wind power generator according to claim 1, wherein the inner peripheral blade and the outer peripheral blade are arranged such that the direction of lift generation relative to the wind is the same. 前記内周側の羽根と前記外周側の羽根とは、風に対する揚力発生の向きが交差するように配設されている請求項1に記載の垂直型風力発電装置。2. The vertical wind power generator according to claim 1, wherein the inner peripheral blade and the outer peripheral blade are arranged such that directions of lift generation with respect to wind intersect each other. 前記内周側の羽根と前記外周側の羽根とは、前記回転軸の周方向に位相差を設けて配設されている請求項2または3に記載の垂直型風力発電装置。4. The vertical wind power generator according to claim 2, wherein the inner peripheral blade and the outer peripheral blade are disposed with a phase difference in a circumferential direction of the rotating shaft. 5. 垂直に設けた回転軸と、当該回転軸の周方向に複数枚取り付けた縦向きの羽根とを有する風力発電装置において、前記回転軸の少なくとも一方端側に、前記羽根に風を向かわせるスカート状の集風部材を設けたことを特徴とする垂直型風力発電装置。In a wind power generator having a rotating shaft provided vertically and a plurality of vertically oriented blades attached in the circumferential direction of the rotating shaft, a skirt shape for directing wind toward the blades on at least one end side of the rotating shaft A vertical wind power generator provided with a wind collecting member. 前記集風部材は、スカート状の台座部と、その表面に設けられた風案内のための凸条とを備えてなる請求項5に記載の垂直型風力発電装置。The vertical wind power generator according to claim 5, wherein the air collecting member includes a skirt-shaped pedestal portion and a ridge for wind guide provided on a surface thereof.
JP2003169761A 2003-06-13 2003-06-13 Vertical shaft type wind power generation device Pending JP2005002962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003169761A JP2005002962A (en) 2003-06-13 2003-06-13 Vertical shaft type wind power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003169761A JP2005002962A (en) 2003-06-13 2003-06-13 Vertical shaft type wind power generation device

Publications (1)

Publication Number Publication Date
JP2005002962A true JP2005002962A (en) 2005-01-06

Family

ID=34094799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003169761A Pending JP2005002962A (en) 2003-06-13 2003-06-13 Vertical shaft type wind power generation device

Country Status (1)

Country Link
JP (1) JP2005002962A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023923A (en) * 2005-07-19 2007-02-01 Hideji Tanaka Vertical type wind power generator
KR101218053B1 (en) * 2011-02-01 2013-01-03 에너진(주) a rotor for wind power generator
KR101263957B1 (en) 2006-11-23 2013-05-13 현대중공업 주식회사 Helical Turbine
KR20150144194A (en) * 2014-06-16 2015-12-24 임동섭 Wind Power Genernator Blade
CN115095475A (en) * 2022-06-24 2022-09-23 兰州理工大学 Vertical axis wind turbine structure capable of inhibiting boundary layer separation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023923A (en) * 2005-07-19 2007-02-01 Hideji Tanaka Vertical type wind power generator
KR101263957B1 (en) 2006-11-23 2013-05-13 현대중공업 주식회사 Helical Turbine
KR101218053B1 (en) * 2011-02-01 2013-01-03 에너진(주) a rotor for wind power generator
KR20150144194A (en) * 2014-06-16 2015-12-24 임동섭 Wind Power Genernator Blade
KR101582299B1 (en) * 2014-06-16 2016-01-07 임동섭 Wind Power Genernator Blade
CN115095475A (en) * 2022-06-24 2022-09-23 兰州理工大学 Vertical axis wind turbine structure capable of inhibiting boundary layer separation

Similar Documents

Publication Publication Date Title
AU656323B2 (en) Wind turbine cross wind machine
CA2579587C (en) Boundary layer wind turbine
JP4174473B2 (en) Improved turbine
US8905704B2 (en) Wind sail turbine
US4457666A (en) Apparatus and method for deriving energy from a moving gas stream
US7976267B2 (en) Helix turbine system and energy production means
US4086026A (en) Windmill with radial vanes
MX2007014023A (en) Rotor for wind turbine.
JPH04132899A (en) Axial blower
US20130017063A1 (en) Turbine
CA2688779A1 (en) Boundary layer wind turbine with tangential rotor blades
KR920004951B1 (en) Windmill
JP2007332871A (en) Impeller for windmill
JP4740382B2 (en) Windmill
US9494136B1 (en) Reflex camber surfaces for turbines
JP2005002962A (en) Vertical shaft type wind power generation device
JP2004176551A (en) Darrieus windmill
US8556572B2 (en) Wind power turbine
WO2012007934A1 (en) Dual vertical wind turbine
JP2003042055A (en) Vertical-axis wind turbine
JP5346000B2 (en) Windmill
TW201716687A (en) Multi-layered blade type wind power generation device capable of enhancing operation smoothness and being not easily damaged and deformed
JP4728008B2 (en) Horizontal axis windmill
JP3995188B2 (en) Once-through windmill
JP2004308550A (en) Wind mill power generating device